Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/linville/wirel...
[deliverable/linux.git] / drivers / net / wireless / mwl8k.c
1 /*
2 * drivers/net/wireless/mwl8k.c
3 * Driver for Marvell TOPDOG 802.11 Wireless cards
4 *
5 * Copyright (C) 2008-2009 Marvell Semiconductor Inc.
6 *
7 * This file is licensed under the terms of the GNU General Public
8 * License version 2. This program is licensed "as is" without any
9 * warranty of any kind, whether express or implied.
10 */
11
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/kernel.h>
15 #include <linux/sched.h>
16 #include <linux/spinlock.h>
17 #include <linux/list.h>
18 #include <linux/pci.h>
19 #include <linux/delay.h>
20 #include <linux/completion.h>
21 #include <linux/etherdevice.h>
22 #include <net/mac80211.h>
23 #include <linux/moduleparam.h>
24 #include <linux/firmware.h>
25 #include <linux/workqueue.h>
26
27 #define MWL8K_DESC "Marvell TOPDOG(R) 802.11 Wireless Network Driver"
28 #define MWL8K_NAME KBUILD_MODNAME
29 #define MWL8K_VERSION "0.10"
30
31 /* Register definitions */
32 #define MWL8K_HIU_GEN_PTR 0x00000c10
33 #define MWL8K_MODE_STA 0x0000005a
34 #define MWL8K_MODE_AP 0x000000a5
35 #define MWL8K_HIU_INT_CODE 0x00000c14
36 #define MWL8K_FWSTA_READY 0xf0f1f2f4
37 #define MWL8K_FWAP_READY 0xf1f2f4a5
38 #define MWL8K_INT_CODE_CMD_FINISHED 0x00000005
39 #define MWL8K_HIU_SCRATCH 0x00000c40
40
41 /* Host->device communications */
42 #define MWL8K_HIU_H2A_INTERRUPT_EVENTS 0x00000c18
43 #define MWL8K_HIU_H2A_INTERRUPT_STATUS 0x00000c1c
44 #define MWL8K_HIU_H2A_INTERRUPT_MASK 0x00000c20
45 #define MWL8K_HIU_H2A_INTERRUPT_CLEAR_SEL 0x00000c24
46 #define MWL8K_HIU_H2A_INTERRUPT_STATUS_MASK 0x00000c28
47 #define MWL8K_H2A_INT_DUMMY (1 << 20)
48 #define MWL8K_H2A_INT_RESET (1 << 15)
49 #define MWL8K_H2A_INT_DOORBELL (1 << 1)
50 #define MWL8K_H2A_INT_PPA_READY (1 << 0)
51
52 /* Device->host communications */
53 #define MWL8K_HIU_A2H_INTERRUPT_EVENTS 0x00000c2c
54 #define MWL8K_HIU_A2H_INTERRUPT_STATUS 0x00000c30
55 #define MWL8K_HIU_A2H_INTERRUPT_MASK 0x00000c34
56 #define MWL8K_HIU_A2H_INTERRUPT_CLEAR_SEL 0x00000c38
57 #define MWL8K_HIU_A2H_INTERRUPT_STATUS_MASK 0x00000c3c
58 #define MWL8K_A2H_INT_DUMMY (1 << 20)
59 #define MWL8K_A2H_INT_CHNL_SWITCHED (1 << 11)
60 #define MWL8K_A2H_INT_QUEUE_EMPTY (1 << 10)
61 #define MWL8K_A2H_INT_RADAR_DETECT (1 << 7)
62 #define MWL8K_A2H_INT_RADIO_ON (1 << 6)
63 #define MWL8K_A2H_INT_RADIO_OFF (1 << 5)
64 #define MWL8K_A2H_INT_MAC_EVENT (1 << 3)
65 #define MWL8K_A2H_INT_OPC_DONE (1 << 2)
66 #define MWL8K_A2H_INT_RX_READY (1 << 1)
67 #define MWL8K_A2H_INT_TX_DONE (1 << 0)
68
69 #define MWL8K_A2H_EVENTS (MWL8K_A2H_INT_DUMMY | \
70 MWL8K_A2H_INT_CHNL_SWITCHED | \
71 MWL8K_A2H_INT_QUEUE_EMPTY | \
72 MWL8K_A2H_INT_RADAR_DETECT | \
73 MWL8K_A2H_INT_RADIO_ON | \
74 MWL8K_A2H_INT_RADIO_OFF | \
75 MWL8K_A2H_INT_MAC_EVENT | \
76 MWL8K_A2H_INT_OPC_DONE | \
77 MWL8K_A2H_INT_RX_READY | \
78 MWL8K_A2H_INT_TX_DONE)
79
80 #define MWL8K_RX_QUEUES 1
81 #define MWL8K_TX_QUEUES 4
82
83 struct rxd_ops {
84 int rxd_size;
85 void (*rxd_init)(void *rxd, dma_addr_t next_dma_addr);
86 void (*rxd_refill)(void *rxd, dma_addr_t addr, int len);
87 int (*rxd_process)(void *rxd, struct ieee80211_rx_status *status);
88 };
89
90 struct mwl8k_device_info {
91 char *part_name;
92 char *helper_image;
93 char *fw_image;
94 struct rxd_ops *rxd_ops;
95 u16 modes;
96 };
97
98 struct mwl8k_rx_queue {
99 int rxd_count;
100
101 /* hw receives here */
102 int head;
103
104 /* refill descs here */
105 int tail;
106
107 void *rxd;
108 dma_addr_t rxd_dma;
109 struct {
110 struct sk_buff *skb;
111 DECLARE_PCI_UNMAP_ADDR(dma)
112 } *buf;
113 };
114
115 struct mwl8k_tx_queue {
116 /* hw transmits here */
117 int head;
118
119 /* sw appends here */
120 int tail;
121
122 struct ieee80211_tx_queue_stats stats;
123 struct mwl8k_tx_desc *txd;
124 dma_addr_t txd_dma;
125 struct sk_buff **skb;
126 };
127
128 /* Pointers to the firmware data and meta information about it. */
129 struct mwl8k_firmware {
130 /* Boot helper code */
131 struct firmware *helper;
132
133 /* Microcode */
134 struct firmware *ucode;
135 };
136
137 struct mwl8k_priv {
138 void __iomem *sram;
139 void __iomem *regs;
140 struct ieee80211_hw *hw;
141
142 struct pci_dev *pdev;
143
144 struct mwl8k_device_info *device_info;
145 bool ap_fw;
146 struct rxd_ops *rxd_ops;
147
148 /* firmware files and meta data */
149 struct mwl8k_firmware fw;
150
151 /* firmware access */
152 struct mutex fw_mutex;
153 struct task_struct *fw_mutex_owner;
154 int fw_mutex_depth;
155 struct completion *hostcmd_wait;
156
157 /* lock held over TX and TX reap */
158 spinlock_t tx_lock;
159
160 /* TX quiesce completion, protected by fw_mutex and tx_lock */
161 struct completion *tx_wait;
162
163 struct ieee80211_vif *vif;
164
165 struct ieee80211_channel *current_channel;
166
167 /* power management status cookie from firmware */
168 u32 *cookie;
169 dma_addr_t cookie_dma;
170
171 u16 num_mcaddrs;
172 u8 hw_rev;
173 u32 fw_rev;
174
175 /*
176 * Running count of TX packets in flight, to avoid
177 * iterating over the transmit rings each time.
178 */
179 int pending_tx_pkts;
180
181 struct mwl8k_rx_queue rxq[MWL8K_RX_QUEUES];
182 struct mwl8k_tx_queue txq[MWL8K_TX_QUEUES];
183
184 /* PHY parameters */
185 struct ieee80211_supported_band band;
186 struct ieee80211_channel channels[14];
187 struct ieee80211_rate rates[13];
188
189 bool radio_on;
190 bool radio_short_preamble;
191 bool sniffer_enabled;
192 bool wmm_enabled;
193
194 /* XXX need to convert this to handle multiple interfaces */
195 bool capture_beacon;
196 u8 capture_bssid[ETH_ALEN];
197 struct sk_buff *beacon_skb;
198
199 /*
200 * This FJ worker has to be global as it is scheduled from the
201 * RX handler. At this point we don't know which interface it
202 * belongs to until the list of bssids waiting to complete join
203 * is checked.
204 */
205 struct work_struct finalize_join_worker;
206
207 /* Tasklet to reclaim TX descriptors and buffers after tx */
208 struct tasklet_struct tx_reclaim_task;
209 };
210
211 /* Per interface specific private data */
212 struct mwl8k_vif {
213 /* backpointer to parent config block */
214 struct mwl8k_priv *priv;
215
216 /* BSS config of AP or IBSS from mac80211*/
217 struct ieee80211_bss_conf bss_info;
218
219 /* BSSID of AP or IBSS */
220 u8 bssid[ETH_ALEN];
221 u8 mac_addr[ETH_ALEN];
222
223 /*
224 * Subset of supported legacy rates.
225 * Intersection of AP and STA supported rates.
226 */
227 struct ieee80211_rate legacy_rates[13];
228
229 /* number of supported legacy rates */
230 u8 legacy_nrates;
231
232 /* Index into station database.Returned by update_sta_db call */
233 u8 peer_id;
234
235 /* Non AMPDU sequence number assigned by driver */
236 u16 seqno;
237 };
238
239 #define MWL8K_VIF(_vif) ((struct mwl8k_vif *)&((_vif)->drv_priv))
240
241 static const struct ieee80211_channel mwl8k_channels[] = {
242 { .center_freq = 2412, .hw_value = 1, },
243 { .center_freq = 2417, .hw_value = 2, },
244 { .center_freq = 2422, .hw_value = 3, },
245 { .center_freq = 2427, .hw_value = 4, },
246 { .center_freq = 2432, .hw_value = 5, },
247 { .center_freq = 2437, .hw_value = 6, },
248 { .center_freq = 2442, .hw_value = 7, },
249 { .center_freq = 2447, .hw_value = 8, },
250 { .center_freq = 2452, .hw_value = 9, },
251 { .center_freq = 2457, .hw_value = 10, },
252 { .center_freq = 2462, .hw_value = 11, },
253 };
254
255 static const struct ieee80211_rate mwl8k_rates[] = {
256 { .bitrate = 10, .hw_value = 2, },
257 { .bitrate = 20, .hw_value = 4, },
258 { .bitrate = 55, .hw_value = 11, },
259 { .bitrate = 110, .hw_value = 22, },
260 { .bitrate = 220, .hw_value = 44, },
261 { .bitrate = 60, .hw_value = 12, },
262 { .bitrate = 90, .hw_value = 18, },
263 { .bitrate = 120, .hw_value = 24, },
264 { .bitrate = 180, .hw_value = 36, },
265 { .bitrate = 240, .hw_value = 48, },
266 { .bitrate = 360, .hw_value = 72, },
267 { .bitrate = 480, .hw_value = 96, },
268 { .bitrate = 540, .hw_value = 108, },
269 };
270
271 /* Set or get info from Firmware */
272 #define MWL8K_CMD_SET 0x0001
273 #define MWL8K_CMD_GET 0x0000
274
275 /* Firmware command codes */
276 #define MWL8K_CMD_CODE_DNLD 0x0001
277 #define MWL8K_CMD_GET_HW_SPEC 0x0003
278 #define MWL8K_CMD_SET_HW_SPEC 0x0004
279 #define MWL8K_CMD_MAC_MULTICAST_ADR 0x0010
280 #define MWL8K_CMD_GET_STAT 0x0014
281 #define MWL8K_CMD_RADIO_CONTROL 0x001c
282 #define MWL8K_CMD_RF_TX_POWER 0x001e
283 #define MWL8K_CMD_RF_ANTENNA 0x0020
284 #define MWL8K_CMD_SET_PRE_SCAN 0x0107
285 #define MWL8K_CMD_SET_POST_SCAN 0x0108
286 #define MWL8K_CMD_SET_RF_CHANNEL 0x010a
287 #define MWL8K_CMD_SET_AID 0x010d
288 #define MWL8K_CMD_SET_RATE 0x0110
289 #define MWL8K_CMD_SET_FINALIZE_JOIN 0x0111
290 #define MWL8K_CMD_RTS_THRESHOLD 0x0113
291 #define MWL8K_CMD_SET_SLOT 0x0114
292 #define MWL8K_CMD_SET_EDCA_PARAMS 0x0115
293 #define MWL8K_CMD_SET_WMM_MODE 0x0123
294 #define MWL8K_CMD_MIMO_CONFIG 0x0125
295 #define MWL8K_CMD_USE_FIXED_RATE 0x0126
296 #define MWL8K_CMD_ENABLE_SNIFFER 0x0150
297 #define MWL8K_CMD_SET_MAC_ADDR 0x0202
298 #define MWL8K_CMD_SET_RATEADAPT_MODE 0x0203
299 #define MWL8K_CMD_UPDATE_STADB 0x1123
300
301 static const char *mwl8k_cmd_name(u16 cmd, char *buf, int bufsize)
302 {
303 #define MWL8K_CMDNAME(x) case MWL8K_CMD_##x: do {\
304 snprintf(buf, bufsize, "%s", #x);\
305 return buf;\
306 } while (0)
307 switch (cmd & ~0x8000) {
308 MWL8K_CMDNAME(CODE_DNLD);
309 MWL8K_CMDNAME(GET_HW_SPEC);
310 MWL8K_CMDNAME(SET_HW_SPEC);
311 MWL8K_CMDNAME(MAC_MULTICAST_ADR);
312 MWL8K_CMDNAME(GET_STAT);
313 MWL8K_CMDNAME(RADIO_CONTROL);
314 MWL8K_CMDNAME(RF_TX_POWER);
315 MWL8K_CMDNAME(RF_ANTENNA);
316 MWL8K_CMDNAME(SET_PRE_SCAN);
317 MWL8K_CMDNAME(SET_POST_SCAN);
318 MWL8K_CMDNAME(SET_RF_CHANNEL);
319 MWL8K_CMDNAME(SET_AID);
320 MWL8K_CMDNAME(SET_RATE);
321 MWL8K_CMDNAME(SET_FINALIZE_JOIN);
322 MWL8K_CMDNAME(RTS_THRESHOLD);
323 MWL8K_CMDNAME(SET_SLOT);
324 MWL8K_CMDNAME(SET_EDCA_PARAMS);
325 MWL8K_CMDNAME(SET_WMM_MODE);
326 MWL8K_CMDNAME(MIMO_CONFIG);
327 MWL8K_CMDNAME(USE_FIXED_RATE);
328 MWL8K_CMDNAME(ENABLE_SNIFFER);
329 MWL8K_CMDNAME(SET_MAC_ADDR);
330 MWL8K_CMDNAME(SET_RATEADAPT_MODE);
331 MWL8K_CMDNAME(UPDATE_STADB);
332 default:
333 snprintf(buf, bufsize, "0x%x", cmd);
334 }
335 #undef MWL8K_CMDNAME
336
337 return buf;
338 }
339
340 /* Hardware and firmware reset */
341 static void mwl8k_hw_reset(struct mwl8k_priv *priv)
342 {
343 iowrite32(MWL8K_H2A_INT_RESET,
344 priv->regs + MWL8K_HIU_H2A_INTERRUPT_EVENTS);
345 iowrite32(MWL8K_H2A_INT_RESET,
346 priv->regs + MWL8K_HIU_H2A_INTERRUPT_EVENTS);
347 msleep(20);
348 }
349
350 /* Release fw image */
351 static void mwl8k_release_fw(struct firmware **fw)
352 {
353 if (*fw == NULL)
354 return;
355 release_firmware(*fw);
356 *fw = NULL;
357 }
358
359 static void mwl8k_release_firmware(struct mwl8k_priv *priv)
360 {
361 mwl8k_release_fw(&priv->fw.ucode);
362 mwl8k_release_fw(&priv->fw.helper);
363 }
364
365 /* Request fw image */
366 static int mwl8k_request_fw(struct mwl8k_priv *priv,
367 const char *fname, struct firmware **fw)
368 {
369 /* release current image */
370 if (*fw != NULL)
371 mwl8k_release_fw(fw);
372
373 return request_firmware((const struct firmware **)fw,
374 fname, &priv->pdev->dev);
375 }
376
377 static int mwl8k_request_firmware(struct mwl8k_priv *priv)
378 {
379 struct mwl8k_device_info *di = priv->device_info;
380 int rc;
381
382 if (di->helper_image != NULL) {
383 rc = mwl8k_request_fw(priv, di->helper_image, &priv->fw.helper);
384 if (rc) {
385 printk(KERN_ERR "%s: Error requesting helper "
386 "firmware file %s\n", pci_name(priv->pdev),
387 di->helper_image);
388 return rc;
389 }
390 }
391
392 rc = mwl8k_request_fw(priv, di->fw_image, &priv->fw.ucode);
393 if (rc) {
394 printk(KERN_ERR "%s: Error requesting firmware file %s\n",
395 pci_name(priv->pdev), di->fw_image);
396 mwl8k_release_fw(&priv->fw.helper);
397 return rc;
398 }
399
400 return 0;
401 }
402
403 MODULE_FIRMWARE("mwl8k/helper_8687.fw");
404 MODULE_FIRMWARE("mwl8k/fmimage_8687.fw");
405
406 struct mwl8k_cmd_pkt {
407 __le16 code;
408 __le16 length;
409 __le16 seq_num;
410 __le16 result;
411 char payload[0];
412 } __attribute__((packed));
413
414 /*
415 * Firmware loading.
416 */
417 static int
418 mwl8k_send_fw_load_cmd(struct mwl8k_priv *priv, void *data, int length)
419 {
420 void __iomem *regs = priv->regs;
421 dma_addr_t dma_addr;
422 int loops;
423
424 dma_addr = pci_map_single(priv->pdev, data, length, PCI_DMA_TODEVICE);
425 if (pci_dma_mapping_error(priv->pdev, dma_addr))
426 return -ENOMEM;
427
428 iowrite32(dma_addr, regs + MWL8K_HIU_GEN_PTR);
429 iowrite32(0, regs + MWL8K_HIU_INT_CODE);
430 iowrite32(MWL8K_H2A_INT_DOORBELL,
431 regs + MWL8K_HIU_H2A_INTERRUPT_EVENTS);
432 iowrite32(MWL8K_H2A_INT_DUMMY,
433 regs + MWL8K_HIU_H2A_INTERRUPT_EVENTS);
434
435 loops = 1000;
436 do {
437 u32 int_code;
438
439 int_code = ioread32(regs + MWL8K_HIU_INT_CODE);
440 if (int_code == MWL8K_INT_CODE_CMD_FINISHED) {
441 iowrite32(0, regs + MWL8K_HIU_INT_CODE);
442 break;
443 }
444
445 cond_resched();
446 udelay(1);
447 } while (--loops);
448
449 pci_unmap_single(priv->pdev, dma_addr, length, PCI_DMA_TODEVICE);
450
451 return loops ? 0 : -ETIMEDOUT;
452 }
453
454 static int mwl8k_load_fw_image(struct mwl8k_priv *priv,
455 const u8 *data, size_t length)
456 {
457 struct mwl8k_cmd_pkt *cmd;
458 int done;
459 int rc = 0;
460
461 cmd = kmalloc(sizeof(*cmd) + 256, GFP_KERNEL);
462 if (cmd == NULL)
463 return -ENOMEM;
464
465 cmd->code = cpu_to_le16(MWL8K_CMD_CODE_DNLD);
466 cmd->seq_num = 0;
467 cmd->result = 0;
468
469 done = 0;
470 while (length) {
471 int block_size = length > 256 ? 256 : length;
472
473 memcpy(cmd->payload, data + done, block_size);
474 cmd->length = cpu_to_le16(block_size);
475
476 rc = mwl8k_send_fw_load_cmd(priv, cmd,
477 sizeof(*cmd) + block_size);
478 if (rc)
479 break;
480
481 done += block_size;
482 length -= block_size;
483 }
484
485 if (!rc) {
486 cmd->length = 0;
487 rc = mwl8k_send_fw_load_cmd(priv, cmd, sizeof(*cmd));
488 }
489
490 kfree(cmd);
491
492 return rc;
493 }
494
495 static int mwl8k_feed_fw_image(struct mwl8k_priv *priv,
496 const u8 *data, size_t length)
497 {
498 unsigned char *buffer;
499 int may_continue, rc = 0;
500 u32 done, prev_block_size;
501
502 buffer = kmalloc(1024, GFP_KERNEL);
503 if (buffer == NULL)
504 return -ENOMEM;
505
506 done = 0;
507 prev_block_size = 0;
508 may_continue = 1000;
509 while (may_continue > 0) {
510 u32 block_size;
511
512 block_size = ioread32(priv->regs + MWL8K_HIU_SCRATCH);
513 if (block_size & 1) {
514 block_size &= ~1;
515 may_continue--;
516 } else {
517 done += prev_block_size;
518 length -= prev_block_size;
519 }
520
521 if (block_size > 1024 || block_size > length) {
522 rc = -EOVERFLOW;
523 break;
524 }
525
526 if (length == 0) {
527 rc = 0;
528 break;
529 }
530
531 if (block_size == 0) {
532 rc = -EPROTO;
533 may_continue--;
534 udelay(1);
535 continue;
536 }
537
538 prev_block_size = block_size;
539 memcpy(buffer, data + done, block_size);
540
541 rc = mwl8k_send_fw_load_cmd(priv, buffer, block_size);
542 if (rc)
543 break;
544 }
545
546 if (!rc && length != 0)
547 rc = -EREMOTEIO;
548
549 kfree(buffer);
550
551 return rc;
552 }
553
554 static int mwl8k_load_firmware(struct ieee80211_hw *hw)
555 {
556 struct mwl8k_priv *priv = hw->priv;
557 struct firmware *fw = priv->fw.ucode;
558 struct mwl8k_device_info *di = priv->device_info;
559 int rc;
560 int loops;
561
562 if (!memcmp(fw->data, "\x01\x00\x00\x00", 4)) {
563 struct firmware *helper = priv->fw.helper;
564
565 if (helper == NULL) {
566 printk(KERN_ERR "%s: helper image needed but none "
567 "given\n", pci_name(priv->pdev));
568 return -EINVAL;
569 }
570
571 rc = mwl8k_load_fw_image(priv, helper->data, helper->size);
572 if (rc) {
573 printk(KERN_ERR "%s: unable to load firmware "
574 "helper image\n", pci_name(priv->pdev));
575 return rc;
576 }
577 msleep(1);
578
579 rc = mwl8k_feed_fw_image(priv, fw->data, fw->size);
580 } else {
581 rc = mwl8k_load_fw_image(priv, fw->data, fw->size);
582 }
583
584 if (rc) {
585 printk(KERN_ERR "%s: unable to load firmware image\n",
586 pci_name(priv->pdev));
587 return rc;
588 }
589
590 if (di->modes & BIT(NL80211_IFTYPE_AP))
591 iowrite32(MWL8K_MODE_AP, priv->regs + MWL8K_HIU_GEN_PTR);
592 else
593 iowrite32(MWL8K_MODE_STA, priv->regs + MWL8K_HIU_GEN_PTR);
594 msleep(1);
595
596 loops = 200000;
597 do {
598 u32 ready_code;
599
600 ready_code = ioread32(priv->regs + MWL8K_HIU_INT_CODE);
601 if (ready_code == MWL8K_FWAP_READY) {
602 priv->ap_fw = 1;
603 break;
604 } else if (ready_code == MWL8K_FWSTA_READY) {
605 priv->ap_fw = 0;
606 break;
607 }
608
609 cond_resched();
610 udelay(1);
611 } while (--loops);
612
613 return loops ? 0 : -ETIMEDOUT;
614 }
615
616
617 /*
618 * Defines shared between transmission and reception.
619 */
620 /* HT control fields for firmware */
621 struct ewc_ht_info {
622 __le16 control1;
623 __le16 control2;
624 __le16 control3;
625 } __attribute__((packed));
626
627 /* Firmware Station database operations */
628 #define MWL8K_STA_DB_ADD_ENTRY 0
629 #define MWL8K_STA_DB_MODIFY_ENTRY 1
630 #define MWL8K_STA_DB_DEL_ENTRY 2
631 #define MWL8K_STA_DB_FLUSH 3
632
633 /* Peer Entry flags - used to define the type of the peer node */
634 #define MWL8K_PEER_TYPE_ACCESSPOINT 2
635
636 #define MWL8K_IEEE_LEGACY_DATA_RATES 13
637 #define MWL8K_MCS_BITMAP_SIZE 16
638
639 struct peer_capability_info {
640 /* Peer type - AP vs. STA. */
641 __u8 peer_type;
642
643 /* Basic 802.11 capabilities from assoc resp. */
644 __le16 basic_caps;
645
646 /* Set if peer supports 802.11n high throughput (HT). */
647 __u8 ht_support;
648
649 /* Valid if HT is supported. */
650 __le16 ht_caps;
651 __u8 extended_ht_caps;
652 struct ewc_ht_info ewc_info;
653
654 /* Legacy rate table. Intersection of our rates and peer rates. */
655 __u8 legacy_rates[MWL8K_IEEE_LEGACY_DATA_RATES];
656
657 /* HT rate table. Intersection of our rates and peer rates. */
658 __u8 ht_rates[MWL8K_MCS_BITMAP_SIZE];
659 __u8 pad[16];
660
661 /* If set, interoperability mode, no proprietary extensions. */
662 __u8 interop;
663 __u8 pad2;
664 __u8 station_id;
665 __le16 amsdu_enabled;
666 } __attribute__((packed));
667
668 /* Inline functions to manipulate QoS field in data descriptor. */
669 static inline u16 mwl8k_qos_setbit_eosp(u16 qos)
670 {
671 u16 val_mask = 1 << 4;
672
673 /* End of Service Period Bit 4 */
674 return qos | val_mask;
675 }
676
677 static inline u16 mwl8k_qos_setbit_ack(u16 qos, u8 ack_policy)
678 {
679 u16 val_mask = 0x3;
680 u8 shift = 5;
681 u16 qos_mask = ~(val_mask << shift);
682
683 /* Ack Policy Bit 5-6 */
684 return (qos & qos_mask) | ((ack_policy & val_mask) << shift);
685 }
686
687 static inline u16 mwl8k_qos_setbit_amsdu(u16 qos)
688 {
689 u16 val_mask = 1 << 7;
690
691 /* AMSDU present Bit 7 */
692 return qos | val_mask;
693 }
694
695 static inline u16 mwl8k_qos_setbit_qlen(u16 qos, u8 len)
696 {
697 u16 val_mask = 0xff;
698 u8 shift = 8;
699 u16 qos_mask = ~(val_mask << shift);
700
701 /* Queue Length Bits 8-15 */
702 return (qos & qos_mask) | ((len & val_mask) << shift);
703 }
704
705 /* DMA header used by firmware and hardware. */
706 struct mwl8k_dma_data {
707 __le16 fwlen;
708 struct ieee80211_hdr wh;
709 } __attribute__((packed));
710
711 /* Routines to add/remove DMA header from skb. */
712 static inline void mwl8k_remove_dma_header(struct sk_buff *skb)
713 {
714 struct mwl8k_dma_data *tr = (struct mwl8k_dma_data *)skb->data;
715 void *dst, *src = &tr->wh;
716 int hdrlen = ieee80211_hdrlen(tr->wh.frame_control);
717 u16 space = sizeof(struct mwl8k_dma_data) - hdrlen;
718
719 dst = (void *)tr + space;
720 if (dst != src) {
721 memmove(dst, src, hdrlen);
722 skb_pull(skb, space);
723 }
724 }
725
726 static inline void mwl8k_add_dma_header(struct sk_buff *skb)
727 {
728 struct ieee80211_hdr *wh;
729 u32 hdrlen, pktlen;
730 struct mwl8k_dma_data *tr;
731
732 wh = (struct ieee80211_hdr *)skb->data;
733 hdrlen = ieee80211_hdrlen(wh->frame_control);
734 pktlen = skb->len;
735
736 /*
737 * Copy up/down the 802.11 header; the firmware requires
738 * we present a 2-byte payload length followed by a
739 * 4-address header (w/o QoS), followed (optionally) by
740 * any WEP/ExtIV header (but only filled in for CCMP).
741 */
742 if (hdrlen != sizeof(struct mwl8k_dma_data))
743 skb_push(skb, sizeof(struct mwl8k_dma_data) - hdrlen);
744
745 tr = (struct mwl8k_dma_data *)skb->data;
746 if (wh != &tr->wh)
747 memmove(&tr->wh, wh, hdrlen);
748
749 /* Clear addr4 */
750 memset(tr->wh.addr4, 0, ETH_ALEN);
751
752 /*
753 * Firmware length is the length of the fully formed "802.11
754 * payload". That is, everything except for the 802.11 header.
755 * This includes all crypto material including the MIC.
756 */
757 tr->fwlen = cpu_to_le16(pktlen - hdrlen);
758 }
759
760
761 /*
762 * Packet reception for 88w8366.
763 */
764 struct mwl8k_rxd_8366 {
765 __le16 pkt_len;
766 __u8 sq2;
767 __u8 rate;
768 __le32 pkt_phys_addr;
769 __le32 next_rxd_phys_addr;
770 __le16 qos_control;
771 __le16 htsig2;
772 __le32 hw_rssi_info;
773 __le32 hw_noise_floor_info;
774 __u8 noise_floor;
775 __u8 pad0[3];
776 __u8 rssi;
777 __u8 rx_status;
778 __u8 channel;
779 __u8 rx_ctrl;
780 } __attribute__((packed));
781
782 #define MWL8K_8366_RX_CTRL_OWNED_BY_HOST 0x80
783
784 static void mwl8k_rxd_8366_init(void *_rxd, dma_addr_t next_dma_addr)
785 {
786 struct mwl8k_rxd_8366 *rxd = _rxd;
787
788 rxd->next_rxd_phys_addr = cpu_to_le32(next_dma_addr);
789 rxd->rx_ctrl = MWL8K_8366_RX_CTRL_OWNED_BY_HOST;
790 }
791
792 static void mwl8k_rxd_8366_refill(void *_rxd, dma_addr_t addr, int len)
793 {
794 struct mwl8k_rxd_8366 *rxd = _rxd;
795
796 rxd->pkt_len = cpu_to_le16(len);
797 rxd->pkt_phys_addr = cpu_to_le32(addr);
798 wmb();
799 rxd->rx_ctrl = 0;
800 }
801
802 static int
803 mwl8k_rxd_8366_process(void *_rxd, struct ieee80211_rx_status *status)
804 {
805 struct mwl8k_rxd_8366 *rxd = _rxd;
806
807 if (!(rxd->rx_ctrl & MWL8K_8366_RX_CTRL_OWNED_BY_HOST))
808 return -1;
809 rmb();
810
811 memset(status, 0, sizeof(*status));
812
813 status->signal = -rxd->rssi;
814 status->noise = -rxd->noise_floor;
815
816 if (rxd->rate & 0x80) {
817 status->flag |= RX_FLAG_HT;
818 status->rate_idx = rxd->rate & 0x7f;
819 } else {
820 int i;
821
822 for (i = 0; i < ARRAY_SIZE(mwl8k_rates); i++) {
823 if (mwl8k_rates[i].hw_value == rxd->rate) {
824 status->rate_idx = i;
825 break;
826 }
827 }
828 }
829
830 status->band = IEEE80211_BAND_2GHZ;
831 status->freq = ieee80211_channel_to_frequency(rxd->channel);
832
833 return le16_to_cpu(rxd->pkt_len);
834 }
835
836 static struct rxd_ops rxd_8366_ops = {
837 .rxd_size = sizeof(struct mwl8k_rxd_8366),
838 .rxd_init = mwl8k_rxd_8366_init,
839 .rxd_refill = mwl8k_rxd_8366_refill,
840 .rxd_process = mwl8k_rxd_8366_process,
841 };
842
843 /*
844 * Packet reception for 88w8687.
845 */
846 struct mwl8k_rxd_8687 {
847 __le16 pkt_len;
848 __u8 link_quality;
849 __u8 noise_level;
850 __le32 pkt_phys_addr;
851 __le32 next_rxd_phys_addr;
852 __le16 qos_control;
853 __le16 rate_info;
854 __le32 pad0[4];
855 __u8 rssi;
856 __u8 channel;
857 __le16 pad1;
858 __u8 rx_ctrl;
859 __u8 rx_status;
860 __u8 pad2[2];
861 } __attribute__((packed));
862
863 #define MWL8K_8687_RATE_INFO_SHORTPRE 0x8000
864 #define MWL8K_8687_RATE_INFO_ANTSELECT(x) (((x) >> 11) & 0x3)
865 #define MWL8K_8687_RATE_INFO_RATEID(x) (((x) >> 3) & 0x3f)
866 #define MWL8K_8687_RATE_INFO_40MHZ 0x0004
867 #define MWL8K_8687_RATE_INFO_SHORTGI 0x0002
868 #define MWL8K_8687_RATE_INFO_MCS_FORMAT 0x0001
869
870 #define MWL8K_8687_RX_CTRL_OWNED_BY_HOST 0x02
871
872 static void mwl8k_rxd_8687_init(void *_rxd, dma_addr_t next_dma_addr)
873 {
874 struct mwl8k_rxd_8687 *rxd = _rxd;
875
876 rxd->next_rxd_phys_addr = cpu_to_le32(next_dma_addr);
877 rxd->rx_ctrl = MWL8K_8687_RX_CTRL_OWNED_BY_HOST;
878 }
879
880 static void mwl8k_rxd_8687_refill(void *_rxd, dma_addr_t addr, int len)
881 {
882 struct mwl8k_rxd_8687 *rxd = _rxd;
883
884 rxd->pkt_len = cpu_to_le16(len);
885 rxd->pkt_phys_addr = cpu_to_le32(addr);
886 wmb();
887 rxd->rx_ctrl = 0;
888 }
889
890 static int
891 mwl8k_rxd_8687_process(void *_rxd, struct ieee80211_rx_status *status)
892 {
893 struct mwl8k_rxd_8687 *rxd = _rxd;
894 u16 rate_info;
895
896 if (!(rxd->rx_ctrl & MWL8K_8687_RX_CTRL_OWNED_BY_HOST))
897 return -1;
898 rmb();
899
900 rate_info = le16_to_cpu(rxd->rate_info);
901
902 memset(status, 0, sizeof(*status));
903
904 status->signal = -rxd->rssi;
905 status->noise = -rxd->noise_level;
906 status->qual = rxd->link_quality;
907 status->antenna = MWL8K_8687_RATE_INFO_ANTSELECT(rate_info);
908 status->rate_idx = MWL8K_8687_RATE_INFO_RATEID(rate_info);
909
910 if (rate_info & MWL8K_8687_RATE_INFO_SHORTPRE)
911 status->flag |= RX_FLAG_SHORTPRE;
912 if (rate_info & MWL8K_8687_RATE_INFO_40MHZ)
913 status->flag |= RX_FLAG_40MHZ;
914 if (rate_info & MWL8K_8687_RATE_INFO_SHORTGI)
915 status->flag |= RX_FLAG_SHORT_GI;
916 if (rate_info & MWL8K_8687_RATE_INFO_MCS_FORMAT)
917 status->flag |= RX_FLAG_HT;
918
919 status->band = IEEE80211_BAND_2GHZ;
920 status->freq = ieee80211_channel_to_frequency(rxd->channel);
921
922 return le16_to_cpu(rxd->pkt_len);
923 }
924
925 static struct rxd_ops rxd_8687_ops = {
926 .rxd_size = sizeof(struct mwl8k_rxd_8687),
927 .rxd_init = mwl8k_rxd_8687_init,
928 .rxd_refill = mwl8k_rxd_8687_refill,
929 .rxd_process = mwl8k_rxd_8687_process,
930 };
931
932
933 #define MWL8K_RX_DESCS 256
934 #define MWL8K_RX_MAXSZ 3800
935
936 static int mwl8k_rxq_init(struct ieee80211_hw *hw, int index)
937 {
938 struct mwl8k_priv *priv = hw->priv;
939 struct mwl8k_rx_queue *rxq = priv->rxq + index;
940 int size;
941 int i;
942
943 rxq->rxd_count = 0;
944 rxq->head = 0;
945 rxq->tail = 0;
946
947 size = MWL8K_RX_DESCS * priv->rxd_ops->rxd_size;
948
949 rxq->rxd = pci_alloc_consistent(priv->pdev, size, &rxq->rxd_dma);
950 if (rxq->rxd == NULL) {
951 printk(KERN_ERR "%s: failed to alloc RX descriptors\n",
952 wiphy_name(hw->wiphy));
953 return -ENOMEM;
954 }
955 memset(rxq->rxd, 0, size);
956
957 rxq->buf = kmalloc(MWL8K_RX_DESCS * sizeof(*rxq->buf), GFP_KERNEL);
958 if (rxq->buf == NULL) {
959 printk(KERN_ERR "%s: failed to alloc RX skbuff list\n",
960 wiphy_name(hw->wiphy));
961 pci_free_consistent(priv->pdev, size, rxq->rxd, rxq->rxd_dma);
962 return -ENOMEM;
963 }
964 memset(rxq->buf, 0, MWL8K_RX_DESCS * sizeof(*rxq->buf));
965
966 for (i = 0; i < MWL8K_RX_DESCS; i++) {
967 int desc_size;
968 void *rxd;
969 int nexti;
970 dma_addr_t next_dma_addr;
971
972 desc_size = priv->rxd_ops->rxd_size;
973 rxd = rxq->rxd + (i * priv->rxd_ops->rxd_size);
974
975 nexti = i + 1;
976 if (nexti == MWL8K_RX_DESCS)
977 nexti = 0;
978 next_dma_addr = rxq->rxd_dma + (nexti * desc_size);
979
980 priv->rxd_ops->rxd_init(rxd, next_dma_addr);
981 }
982
983 return 0;
984 }
985
986 static int rxq_refill(struct ieee80211_hw *hw, int index, int limit)
987 {
988 struct mwl8k_priv *priv = hw->priv;
989 struct mwl8k_rx_queue *rxq = priv->rxq + index;
990 int refilled;
991
992 refilled = 0;
993 while (rxq->rxd_count < MWL8K_RX_DESCS && limit--) {
994 struct sk_buff *skb;
995 dma_addr_t addr;
996 int rx;
997 void *rxd;
998
999 skb = dev_alloc_skb(MWL8K_RX_MAXSZ);
1000 if (skb == NULL)
1001 break;
1002
1003 addr = pci_map_single(priv->pdev, skb->data,
1004 MWL8K_RX_MAXSZ, DMA_FROM_DEVICE);
1005
1006 rxq->rxd_count++;
1007 rx = rxq->tail++;
1008 if (rxq->tail == MWL8K_RX_DESCS)
1009 rxq->tail = 0;
1010 rxq->buf[rx].skb = skb;
1011 pci_unmap_addr_set(&rxq->buf[rx], dma, addr);
1012
1013 rxd = rxq->rxd + (rx * priv->rxd_ops->rxd_size);
1014 priv->rxd_ops->rxd_refill(rxd, addr, MWL8K_RX_MAXSZ);
1015
1016 refilled++;
1017 }
1018
1019 return refilled;
1020 }
1021
1022 /* Must be called only when the card's reception is completely halted */
1023 static void mwl8k_rxq_deinit(struct ieee80211_hw *hw, int index)
1024 {
1025 struct mwl8k_priv *priv = hw->priv;
1026 struct mwl8k_rx_queue *rxq = priv->rxq + index;
1027 int i;
1028
1029 for (i = 0; i < MWL8K_RX_DESCS; i++) {
1030 if (rxq->buf[i].skb != NULL) {
1031 pci_unmap_single(priv->pdev,
1032 pci_unmap_addr(&rxq->buf[i], dma),
1033 MWL8K_RX_MAXSZ, PCI_DMA_FROMDEVICE);
1034 pci_unmap_addr_set(&rxq->buf[i], dma, 0);
1035
1036 kfree_skb(rxq->buf[i].skb);
1037 rxq->buf[i].skb = NULL;
1038 }
1039 }
1040
1041 kfree(rxq->buf);
1042 rxq->buf = NULL;
1043
1044 pci_free_consistent(priv->pdev,
1045 MWL8K_RX_DESCS * priv->rxd_ops->rxd_size,
1046 rxq->rxd, rxq->rxd_dma);
1047 rxq->rxd = NULL;
1048 }
1049
1050
1051 /*
1052 * Scan a list of BSSIDs to process for finalize join.
1053 * Allows for extension to process multiple BSSIDs.
1054 */
1055 static inline int
1056 mwl8k_capture_bssid(struct mwl8k_priv *priv, struct ieee80211_hdr *wh)
1057 {
1058 return priv->capture_beacon &&
1059 ieee80211_is_beacon(wh->frame_control) &&
1060 !compare_ether_addr(wh->addr3, priv->capture_bssid);
1061 }
1062
1063 static inline void mwl8k_save_beacon(struct ieee80211_hw *hw,
1064 struct sk_buff *skb)
1065 {
1066 struct mwl8k_priv *priv = hw->priv;
1067
1068 priv->capture_beacon = false;
1069 memset(priv->capture_bssid, 0, ETH_ALEN);
1070
1071 /*
1072 * Use GFP_ATOMIC as rxq_process is called from
1073 * the primary interrupt handler, memory allocation call
1074 * must not sleep.
1075 */
1076 priv->beacon_skb = skb_copy(skb, GFP_ATOMIC);
1077 if (priv->beacon_skb != NULL)
1078 ieee80211_queue_work(hw, &priv->finalize_join_worker);
1079 }
1080
1081 static int rxq_process(struct ieee80211_hw *hw, int index, int limit)
1082 {
1083 struct mwl8k_priv *priv = hw->priv;
1084 struct mwl8k_rx_queue *rxq = priv->rxq + index;
1085 int processed;
1086
1087 processed = 0;
1088 while (rxq->rxd_count && limit--) {
1089 struct sk_buff *skb;
1090 void *rxd;
1091 int pkt_len;
1092 struct ieee80211_rx_status status;
1093
1094 skb = rxq->buf[rxq->head].skb;
1095 if (skb == NULL)
1096 break;
1097
1098 rxd = rxq->rxd + (rxq->head * priv->rxd_ops->rxd_size);
1099
1100 pkt_len = priv->rxd_ops->rxd_process(rxd, &status);
1101 if (pkt_len < 0)
1102 break;
1103
1104 rxq->buf[rxq->head].skb = NULL;
1105
1106 pci_unmap_single(priv->pdev,
1107 pci_unmap_addr(&rxq->buf[rxq->head], dma),
1108 MWL8K_RX_MAXSZ, PCI_DMA_FROMDEVICE);
1109 pci_unmap_addr_set(&rxq->buf[rxq->head], dma, 0);
1110
1111 rxq->head++;
1112 if (rxq->head == MWL8K_RX_DESCS)
1113 rxq->head = 0;
1114
1115 rxq->rxd_count--;
1116
1117 skb_put(skb, pkt_len);
1118 mwl8k_remove_dma_header(skb);
1119
1120 /*
1121 * Check for a pending join operation. Save a
1122 * copy of the beacon and schedule a tasklet to
1123 * send a FINALIZE_JOIN command to the firmware.
1124 */
1125 if (mwl8k_capture_bssid(priv, (void *)skb->data))
1126 mwl8k_save_beacon(hw, skb);
1127
1128 memcpy(IEEE80211_SKB_RXCB(skb), &status, sizeof(status));
1129 ieee80211_rx_irqsafe(hw, skb);
1130
1131 processed++;
1132 }
1133
1134 return processed;
1135 }
1136
1137
1138 /*
1139 * Packet transmission.
1140 */
1141
1142 /* Transmit packet ACK policy */
1143 #define MWL8K_TXD_ACK_POLICY_NORMAL 0
1144 #define MWL8K_TXD_ACK_POLICY_BLOCKACK 3
1145
1146 #define MWL8K_TXD_STATUS_OK 0x00000001
1147 #define MWL8K_TXD_STATUS_OK_RETRY 0x00000002
1148 #define MWL8K_TXD_STATUS_OK_MORE_RETRY 0x00000004
1149 #define MWL8K_TXD_STATUS_MULTICAST_TX 0x00000008
1150 #define MWL8K_TXD_STATUS_FW_OWNED 0x80000000
1151
1152 struct mwl8k_tx_desc {
1153 __le32 status;
1154 __u8 data_rate;
1155 __u8 tx_priority;
1156 __le16 qos_control;
1157 __le32 pkt_phys_addr;
1158 __le16 pkt_len;
1159 __u8 dest_MAC_addr[ETH_ALEN];
1160 __le32 next_txd_phys_addr;
1161 __le32 reserved;
1162 __le16 rate_info;
1163 __u8 peer_id;
1164 __u8 tx_frag_cnt;
1165 } __attribute__((packed));
1166
1167 #define MWL8K_TX_DESCS 128
1168
1169 static int mwl8k_txq_init(struct ieee80211_hw *hw, int index)
1170 {
1171 struct mwl8k_priv *priv = hw->priv;
1172 struct mwl8k_tx_queue *txq = priv->txq + index;
1173 int size;
1174 int i;
1175
1176 memset(&txq->stats, 0, sizeof(struct ieee80211_tx_queue_stats));
1177 txq->stats.limit = MWL8K_TX_DESCS;
1178 txq->head = 0;
1179 txq->tail = 0;
1180
1181 size = MWL8K_TX_DESCS * sizeof(struct mwl8k_tx_desc);
1182
1183 txq->txd = pci_alloc_consistent(priv->pdev, size, &txq->txd_dma);
1184 if (txq->txd == NULL) {
1185 printk(KERN_ERR "%s: failed to alloc TX descriptors\n",
1186 wiphy_name(hw->wiphy));
1187 return -ENOMEM;
1188 }
1189 memset(txq->txd, 0, size);
1190
1191 txq->skb = kmalloc(MWL8K_TX_DESCS * sizeof(*txq->skb), GFP_KERNEL);
1192 if (txq->skb == NULL) {
1193 printk(KERN_ERR "%s: failed to alloc TX skbuff list\n",
1194 wiphy_name(hw->wiphy));
1195 pci_free_consistent(priv->pdev, size, txq->txd, txq->txd_dma);
1196 return -ENOMEM;
1197 }
1198 memset(txq->skb, 0, MWL8K_TX_DESCS * sizeof(*txq->skb));
1199
1200 for (i = 0; i < MWL8K_TX_DESCS; i++) {
1201 struct mwl8k_tx_desc *tx_desc;
1202 int nexti;
1203
1204 tx_desc = txq->txd + i;
1205 nexti = (i + 1) % MWL8K_TX_DESCS;
1206
1207 tx_desc->status = 0;
1208 tx_desc->next_txd_phys_addr =
1209 cpu_to_le32(txq->txd_dma + nexti * sizeof(*tx_desc));
1210 }
1211
1212 return 0;
1213 }
1214
1215 static inline void mwl8k_tx_start(struct mwl8k_priv *priv)
1216 {
1217 iowrite32(MWL8K_H2A_INT_PPA_READY,
1218 priv->regs + MWL8K_HIU_H2A_INTERRUPT_EVENTS);
1219 iowrite32(MWL8K_H2A_INT_DUMMY,
1220 priv->regs + MWL8K_HIU_H2A_INTERRUPT_EVENTS);
1221 ioread32(priv->regs + MWL8K_HIU_INT_CODE);
1222 }
1223
1224 struct mwl8k_txq_info {
1225 u32 fw_owned;
1226 u32 drv_owned;
1227 u32 unused;
1228 u32 len;
1229 u32 head;
1230 u32 tail;
1231 };
1232
1233 static int mwl8k_scan_tx_ring(struct mwl8k_priv *priv,
1234 struct mwl8k_txq_info *txinfo)
1235 {
1236 int count, desc, status;
1237 struct mwl8k_tx_queue *txq;
1238 struct mwl8k_tx_desc *tx_desc;
1239 int ndescs = 0;
1240
1241 memset(txinfo, 0, MWL8K_TX_QUEUES * sizeof(struct mwl8k_txq_info));
1242
1243 for (count = 0; count < MWL8K_TX_QUEUES; count++) {
1244 txq = priv->txq + count;
1245 txinfo[count].len = txq->stats.len;
1246 txinfo[count].head = txq->head;
1247 txinfo[count].tail = txq->tail;
1248 for (desc = 0; desc < MWL8K_TX_DESCS; desc++) {
1249 tx_desc = txq->txd + desc;
1250 status = le32_to_cpu(tx_desc->status);
1251
1252 if (status & MWL8K_TXD_STATUS_FW_OWNED)
1253 txinfo[count].fw_owned++;
1254 else
1255 txinfo[count].drv_owned++;
1256
1257 if (tx_desc->pkt_len == 0)
1258 txinfo[count].unused++;
1259 }
1260 }
1261
1262 return ndescs;
1263 }
1264
1265 /*
1266 * Must be called with priv->fw_mutex held and tx queues stopped.
1267 */
1268 static int mwl8k_tx_wait_empty(struct ieee80211_hw *hw)
1269 {
1270 struct mwl8k_priv *priv = hw->priv;
1271 DECLARE_COMPLETION_ONSTACK(tx_wait);
1272 u32 count;
1273 unsigned long timeout;
1274
1275 might_sleep();
1276
1277 spin_lock_bh(&priv->tx_lock);
1278 count = priv->pending_tx_pkts;
1279 if (count)
1280 priv->tx_wait = &tx_wait;
1281 spin_unlock_bh(&priv->tx_lock);
1282
1283 if (count) {
1284 struct mwl8k_txq_info txinfo[MWL8K_TX_QUEUES];
1285 int index;
1286 int newcount;
1287
1288 timeout = wait_for_completion_timeout(&tx_wait,
1289 msecs_to_jiffies(5000));
1290 if (timeout)
1291 return 0;
1292
1293 spin_lock_bh(&priv->tx_lock);
1294 priv->tx_wait = NULL;
1295 newcount = priv->pending_tx_pkts;
1296 mwl8k_scan_tx_ring(priv, txinfo);
1297 spin_unlock_bh(&priv->tx_lock);
1298
1299 printk(KERN_ERR "%s(%u) TIMEDOUT:5000ms Pend:%u-->%u\n",
1300 __func__, __LINE__, count, newcount);
1301
1302 for (index = 0; index < MWL8K_TX_QUEUES; index++)
1303 printk(KERN_ERR "TXQ:%u L:%u H:%u T:%u FW:%u "
1304 "DRV:%u U:%u\n",
1305 index,
1306 txinfo[index].len,
1307 txinfo[index].head,
1308 txinfo[index].tail,
1309 txinfo[index].fw_owned,
1310 txinfo[index].drv_owned,
1311 txinfo[index].unused);
1312
1313 return -ETIMEDOUT;
1314 }
1315
1316 return 0;
1317 }
1318
1319 #define MWL8K_TXD_SUCCESS(status) \
1320 ((status) & (MWL8K_TXD_STATUS_OK | \
1321 MWL8K_TXD_STATUS_OK_RETRY | \
1322 MWL8K_TXD_STATUS_OK_MORE_RETRY))
1323
1324 static void mwl8k_txq_reclaim(struct ieee80211_hw *hw, int index, int force)
1325 {
1326 struct mwl8k_priv *priv = hw->priv;
1327 struct mwl8k_tx_queue *txq = priv->txq + index;
1328 int wake = 0;
1329
1330 while (txq->stats.len > 0) {
1331 int tx;
1332 struct mwl8k_tx_desc *tx_desc;
1333 unsigned long addr;
1334 int size;
1335 struct sk_buff *skb;
1336 struct ieee80211_tx_info *info;
1337 u32 status;
1338
1339 tx = txq->head;
1340 tx_desc = txq->txd + tx;
1341
1342 status = le32_to_cpu(tx_desc->status);
1343
1344 if (status & MWL8K_TXD_STATUS_FW_OWNED) {
1345 if (!force)
1346 break;
1347 tx_desc->status &=
1348 ~cpu_to_le32(MWL8K_TXD_STATUS_FW_OWNED);
1349 }
1350
1351 txq->head = (tx + 1) % MWL8K_TX_DESCS;
1352 BUG_ON(txq->stats.len == 0);
1353 txq->stats.len--;
1354 priv->pending_tx_pkts--;
1355
1356 addr = le32_to_cpu(tx_desc->pkt_phys_addr);
1357 size = le16_to_cpu(tx_desc->pkt_len);
1358 skb = txq->skb[tx];
1359 txq->skb[tx] = NULL;
1360
1361 BUG_ON(skb == NULL);
1362 pci_unmap_single(priv->pdev, addr, size, PCI_DMA_TODEVICE);
1363
1364 mwl8k_remove_dma_header(skb);
1365
1366 /* Mark descriptor as unused */
1367 tx_desc->pkt_phys_addr = 0;
1368 tx_desc->pkt_len = 0;
1369
1370 info = IEEE80211_SKB_CB(skb);
1371 ieee80211_tx_info_clear_status(info);
1372 if (MWL8K_TXD_SUCCESS(status))
1373 info->flags |= IEEE80211_TX_STAT_ACK;
1374
1375 ieee80211_tx_status_irqsafe(hw, skb);
1376
1377 wake = 1;
1378 }
1379
1380 if (wake && priv->radio_on && !mutex_is_locked(&priv->fw_mutex))
1381 ieee80211_wake_queue(hw, index);
1382 }
1383
1384 /* must be called only when the card's transmit is completely halted */
1385 static void mwl8k_txq_deinit(struct ieee80211_hw *hw, int index)
1386 {
1387 struct mwl8k_priv *priv = hw->priv;
1388 struct mwl8k_tx_queue *txq = priv->txq + index;
1389
1390 mwl8k_txq_reclaim(hw, index, 1);
1391
1392 kfree(txq->skb);
1393 txq->skb = NULL;
1394
1395 pci_free_consistent(priv->pdev,
1396 MWL8K_TX_DESCS * sizeof(struct mwl8k_tx_desc),
1397 txq->txd, txq->txd_dma);
1398 txq->txd = NULL;
1399 }
1400
1401 static int
1402 mwl8k_txq_xmit(struct ieee80211_hw *hw, int index, struct sk_buff *skb)
1403 {
1404 struct mwl8k_priv *priv = hw->priv;
1405 struct ieee80211_tx_info *tx_info;
1406 struct mwl8k_vif *mwl8k_vif;
1407 struct ieee80211_hdr *wh;
1408 struct mwl8k_tx_queue *txq;
1409 struct mwl8k_tx_desc *tx;
1410 dma_addr_t dma;
1411 u32 txstatus;
1412 u8 txdatarate;
1413 u16 qos;
1414
1415 wh = (struct ieee80211_hdr *)skb->data;
1416 if (ieee80211_is_data_qos(wh->frame_control))
1417 qos = le16_to_cpu(*((__le16 *)ieee80211_get_qos_ctl(wh)));
1418 else
1419 qos = 0;
1420
1421 mwl8k_add_dma_header(skb);
1422 wh = &((struct mwl8k_dma_data *)skb->data)->wh;
1423
1424 tx_info = IEEE80211_SKB_CB(skb);
1425 mwl8k_vif = MWL8K_VIF(tx_info->control.vif);
1426
1427 if (tx_info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) {
1428 u16 seqno = mwl8k_vif->seqno;
1429
1430 wh->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
1431 wh->seq_ctrl |= cpu_to_le16(seqno << 4);
1432 mwl8k_vif->seqno = seqno++ % 4096;
1433 }
1434
1435 /* Setup firmware control bit fields for each frame type. */
1436 txstatus = 0;
1437 txdatarate = 0;
1438 if (ieee80211_is_mgmt(wh->frame_control) ||
1439 ieee80211_is_ctl(wh->frame_control)) {
1440 txdatarate = 0;
1441 qos = mwl8k_qos_setbit_eosp(qos);
1442 /* Set Queue size to unspecified */
1443 qos = mwl8k_qos_setbit_qlen(qos, 0xff);
1444 } else if (ieee80211_is_data(wh->frame_control)) {
1445 txdatarate = 1;
1446 if (is_multicast_ether_addr(wh->addr1))
1447 txstatus |= MWL8K_TXD_STATUS_MULTICAST_TX;
1448
1449 /* Send pkt in an aggregate if AMPDU frame. */
1450 if (tx_info->flags & IEEE80211_TX_CTL_AMPDU)
1451 qos = mwl8k_qos_setbit_ack(qos,
1452 MWL8K_TXD_ACK_POLICY_BLOCKACK);
1453 else
1454 qos = mwl8k_qos_setbit_ack(qos,
1455 MWL8K_TXD_ACK_POLICY_NORMAL);
1456
1457 if (qos & IEEE80211_QOS_CONTROL_A_MSDU_PRESENT)
1458 qos = mwl8k_qos_setbit_amsdu(qos);
1459 }
1460
1461 dma = pci_map_single(priv->pdev, skb->data,
1462 skb->len, PCI_DMA_TODEVICE);
1463
1464 if (pci_dma_mapping_error(priv->pdev, dma)) {
1465 printk(KERN_DEBUG "%s: failed to dma map skb, "
1466 "dropping TX frame.\n", wiphy_name(hw->wiphy));
1467 dev_kfree_skb(skb);
1468 return NETDEV_TX_OK;
1469 }
1470
1471 spin_lock_bh(&priv->tx_lock);
1472
1473 txq = priv->txq + index;
1474
1475 BUG_ON(txq->skb[txq->tail] != NULL);
1476 txq->skb[txq->tail] = skb;
1477
1478 tx = txq->txd + txq->tail;
1479 tx->data_rate = txdatarate;
1480 tx->tx_priority = index;
1481 tx->qos_control = cpu_to_le16(qos);
1482 tx->pkt_phys_addr = cpu_to_le32(dma);
1483 tx->pkt_len = cpu_to_le16(skb->len);
1484 tx->rate_info = 0;
1485 tx->peer_id = mwl8k_vif->peer_id;
1486 wmb();
1487 tx->status = cpu_to_le32(MWL8K_TXD_STATUS_FW_OWNED | txstatus);
1488
1489 txq->stats.count++;
1490 txq->stats.len++;
1491 priv->pending_tx_pkts++;
1492
1493 txq->tail++;
1494 if (txq->tail == MWL8K_TX_DESCS)
1495 txq->tail = 0;
1496
1497 if (txq->head == txq->tail)
1498 ieee80211_stop_queue(hw, index);
1499
1500 mwl8k_tx_start(priv);
1501
1502 spin_unlock_bh(&priv->tx_lock);
1503
1504 return NETDEV_TX_OK;
1505 }
1506
1507
1508 /*
1509 * Firmware access.
1510 *
1511 * We have the following requirements for issuing firmware commands:
1512 * - Some commands require that the packet transmit path is idle when
1513 * the command is issued. (For simplicity, we'll just quiesce the
1514 * transmit path for every command.)
1515 * - There are certain sequences of commands that need to be issued to
1516 * the hardware sequentially, with no other intervening commands.
1517 *
1518 * This leads to an implementation of a "firmware lock" as a mutex that
1519 * can be taken recursively, and which is taken by both the low-level
1520 * command submission function (mwl8k_post_cmd) as well as any users of
1521 * that function that require issuing of an atomic sequence of commands,
1522 * and quiesces the transmit path whenever it's taken.
1523 */
1524 static int mwl8k_fw_lock(struct ieee80211_hw *hw)
1525 {
1526 struct mwl8k_priv *priv = hw->priv;
1527
1528 if (priv->fw_mutex_owner != current) {
1529 int rc;
1530
1531 mutex_lock(&priv->fw_mutex);
1532 ieee80211_stop_queues(hw);
1533
1534 rc = mwl8k_tx_wait_empty(hw);
1535 if (rc) {
1536 ieee80211_wake_queues(hw);
1537 mutex_unlock(&priv->fw_mutex);
1538
1539 return rc;
1540 }
1541
1542 priv->fw_mutex_owner = current;
1543 }
1544
1545 priv->fw_mutex_depth++;
1546
1547 return 0;
1548 }
1549
1550 static void mwl8k_fw_unlock(struct ieee80211_hw *hw)
1551 {
1552 struct mwl8k_priv *priv = hw->priv;
1553
1554 if (!--priv->fw_mutex_depth) {
1555 ieee80211_wake_queues(hw);
1556 priv->fw_mutex_owner = NULL;
1557 mutex_unlock(&priv->fw_mutex);
1558 }
1559 }
1560
1561
1562 /*
1563 * Command processing.
1564 */
1565
1566 /* Timeout firmware commands after 2000ms */
1567 #define MWL8K_CMD_TIMEOUT_MS 2000
1568
1569 static int mwl8k_post_cmd(struct ieee80211_hw *hw, struct mwl8k_cmd_pkt *cmd)
1570 {
1571 DECLARE_COMPLETION_ONSTACK(cmd_wait);
1572 struct mwl8k_priv *priv = hw->priv;
1573 void __iomem *regs = priv->regs;
1574 dma_addr_t dma_addr;
1575 unsigned int dma_size;
1576 int rc;
1577 unsigned long timeout = 0;
1578 u8 buf[32];
1579
1580 cmd->result = 0xffff;
1581 dma_size = le16_to_cpu(cmd->length);
1582 dma_addr = pci_map_single(priv->pdev, cmd, dma_size,
1583 PCI_DMA_BIDIRECTIONAL);
1584 if (pci_dma_mapping_error(priv->pdev, dma_addr))
1585 return -ENOMEM;
1586
1587 rc = mwl8k_fw_lock(hw);
1588 if (rc) {
1589 pci_unmap_single(priv->pdev, dma_addr, dma_size,
1590 PCI_DMA_BIDIRECTIONAL);
1591 return rc;
1592 }
1593
1594 priv->hostcmd_wait = &cmd_wait;
1595 iowrite32(dma_addr, regs + MWL8K_HIU_GEN_PTR);
1596 iowrite32(MWL8K_H2A_INT_DOORBELL,
1597 regs + MWL8K_HIU_H2A_INTERRUPT_EVENTS);
1598 iowrite32(MWL8K_H2A_INT_DUMMY,
1599 regs + MWL8K_HIU_H2A_INTERRUPT_EVENTS);
1600
1601 timeout = wait_for_completion_timeout(&cmd_wait,
1602 msecs_to_jiffies(MWL8K_CMD_TIMEOUT_MS));
1603
1604 priv->hostcmd_wait = NULL;
1605
1606 mwl8k_fw_unlock(hw);
1607
1608 pci_unmap_single(priv->pdev, dma_addr, dma_size,
1609 PCI_DMA_BIDIRECTIONAL);
1610
1611 if (!timeout) {
1612 printk(KERN_ERR "%s: Command %s timeout after %u ms\n",
1613 wiphy_name(hw->wiphy),
1614 mwl8k_cmd_name(cmd->code, buf, sizeof(buf)),
1615 MWL8K_CMD_TIMEOUT_MS);
1616 rc = -ETIMEDOUT;
1617 } else {
1618 rc = cmd->result ? -EINVAL : 0;
1619 if (rc)
1620 printk(KERN_ERR "%s: Command %s error 0x%x\n",
1621 wiphy_name(hw->wiphy),
1622 mwl8k_cmd_name(cmd->code, buf, sizeof(buf)),
1623 le16_to_cpu(cmd->result));
1624 }
1625
1626 return rc;
1627 }
1628
1629 /*
1630 * CMD_GET_HW_SPEC (STA version).
1631 */
1632 struct mwl8k_cmd_get_hw_spec_sta {
1633 struct mwl8k_cmd_pkt header;
1634 __u8 hw_rev;
1635 __u8 host_interface;
1636 __le16 num_mcaddrs;
1637 __u8 perm_addr[ETH_ALEN];
1638 __le16 region_code;
1639 __le32 fw_rev;
1640 __le32 ps_cookie;
1641 __le32 caps;
1642 __u8 mcs_bitmap[16];
1643 __le32 rx_queue_ptr;
1644 __le32 num_tx_queues;
1645 __le32 tx_queue_ptrs[MWL8K_TX_QUEUES];
1646 __le32 caps2;
1647 __le32 num_tx_desc_per_queue;
1648 __le32 total_rxd;
1649 } __attribute__((packed));
1650
1651 static int mwl8k_cmd_get_hw_spec_sta(struct ieee80211_hw *hw)
1652 {
1653 struct mwl8k_priv *priv = hw->priv;
1654 struct mwl8k_cmd_get_hw_spec_sta *cmd;
1655 int rc;
1656 int i;
1657
1658 cmd = kzalloc(sizeof(*cmd), GFP_KERNEL);
1659 if (cmd == NULL)
1660 return -ENOMEM;
1661
1662 cmd->header.code = cpu_to_le16(MWL8K_CMD_GET_HW_SPEC);
1663 cmd->header.length = cpu_to_le16(sizeof(*cmd));
1664
1665 memset(cmd->perm_addr, 0xff, sizeof(cmd->perm_addr));
1666 cmd->ps_cookie = cpu_to_le32(priv->cookie_dma);
1667 cmd->rx_queue_ptr = cpu_to_le32(priv->rxq[0].rxd_dma);
1668 cmd->num_tx_queues = cpu_to_le32(MWL8K_TX_QUEUES);
1669 for (i = 0; i < MWL8K_TX_QUEUES; i++)
1670 cmd->tx_queue_ptrs[i] = cpu_to_le32(priv->txq[i].txd_dma);
1671 cmd->num_tx_desc_per_queue = cpu_to_le32(MWL8K_TX_DESCS);
1672 cmd->total_rxd = cpu_to_le32(MWL8K_RX_DESCS);
1673
1674 rc = mwl8k_post_cmd(hw, &cmd->header);
1675
1676 if (!rc) {
1677 SET_IEEE80211_PERM_ADDR(hw, cmd->perm_addr);
1678 priv->num_mcaddrs = le16_to_cpu(cmd->num_mcaddrs);
1679 priv->fw_rev = le32_to_cpu(cmd->fw_rev);
1680 priv->hw_rev = cmd->hw_rev;
1681 }
1682
1683 kfree(cmd);
1684 return rc;
1685 }
1686
1687 /*
1688 * CMD_GET_HW_SPEC (AP version).
1689 */
1690 struct mwl8k_cmd_get_hw_spec_ap {
1691 struct mwl8k_cmd_pkt header;
1692 __u8 hw_rev;
1693 __u8 host_interface;
1694 __le16 num_wcb;
1695 __le16 num_mcaddrs;
1696 __u8 perm_addr[ETH_ALEN];
1697 __le16 region_code;
1698 __le16 num_antenna;
1699 __le32 fw_rev;
1700 __le32 wcbbase0;
1701 __le32 rxwrptr;
1702 __le32 rxrdptr;
1703 __le32 ps_cookie;
1704 __le32 wcbbase1;
1705 __le32 wcbbase2;
1706 __le32 wcbbase3;
1707 } __attribute__((packed));
1708
1709 static int mwl8k_cmd_get_hw_spec_ap(struct ieee80211_hw *hw)
1710 {
1711 struct mwl8k_priv *priv = hw->priv;
1712 struct mwl8k_cmd_get_hw_spec_ap *cmd;
1713 int rc;
1714
1715 cmd = kzalloc(sizeof(*cmd), GFP_KERNEL);
1716 if (cmd == NULL)
1717 return -ENOMEM;
1718
1719 cmd->header.code = cpu_to_le16(MWL8K_CMD_GET_HW_SPEC);
1720 cmd->header.length = cpu_to_le16(sizeof(*cmd));
1721
1722 memset(cmd->perm_addr, 0xff, sizeof(cmd->perm_addr));
1723 cmd->ps_cookie = cpu_to_le32(priv->cookie_dma);
1724
1725 rc = mwl8k_post_cmd(hw, &cmd->header);
1726
1727 if (!rc) {
1728 int off;
1729
1730 SET_IEEE80211_PERM_ADDR(hw, cmd->perm_addr);
1731 priv->num_mcaddrs = le16_to_cpu(cmd->num_mcaddrs);
1732 priv->fw_rev = le32_to_cpu(cmd->fw_rev);
1733 priv->hw_rev = cmd->hw_rev;
1734
1735 off = le32_to_cpu(cmd->wcbbase0) & 0xffff;
1736 iowrite32(cpu_to_le32(priv->txq[0].txd_dma), priv->sram + off);
1737
1738 off = le32_to_cpu(cmd->rxwrptr) & 0xffff;
1739 iowrite32(cpu_to_le32(priv->rxq[0].rxd_dma), priv->sram + off);
1740
1741 off = le32_to_cpu(cmd->rxrdptr) & 0xffff;
1742 iowrite32(cpu_to_le32(priv->rxq[0].rxd_dma), priv->sram + off);
1743
1744 off = le32_to_cpu(cmd->wcbbase1) & 0xffff;
1745 iowrite32(cpu_to_le32(priv->txq[1].txd_dma), priv->sram + off);
1746
1747 off = le32_to_cpu(cmd->wcbbase2) & 0xffff;
1748 iowrite32(cpu_to_le32(priv->txq[2].txd_dma), priv->sram + off);
1749
1750 off = le32_to_cpu(cmd->wcbbase3) & 0xffff;
1751 iowrite32(cpu_to_le32(priv->txq[3].txd_dma), priv->sram + off);
1752 }
1753
1754 kfree(cmd);
1755 return rc;
1756 }
1757
1758 /*
1759 * CMD_SET_HW_SPEC.
1760 */
1761 struct mwl8k_cmd_set_hw_spec {
1762 struct mwl8k_cmd_pkt header;
1763 __u8 hw_rev;
1764 __u8 host_interface;
1765 __le16 num_mcaddrs;
1766 __u8 perm_addr[ETH_ALEN];
1767 __le16 region_code;
1768 __le32 fw_rev;
1769 __le32 ps_cookie;
1770 __le32 caps;
1771 __le32 rx_queue_ptr;
1772 __le32 num_tx_queues;
1773 __le32 tx_queue_ptrs[MWL8K_TX_QUEUES];
1774 __le32 flags;
1775 __le32 num_tx_desc_per_queue;
1776 __le32 total_rxd;
1777 } __attribute__((packed));
1778
1779 #define MWL8K_SET_HW_SPEC_FLAG_HOST_DECR_MGMT 0x00000080
1780
1781 static int mwl8k_cmd_set_hw_spec(struct ieee80211_hw *hw)
1782 {
1783 struct mwl8k_priv *priv = hw->priv;
1784 struct mwl8k_cmd_set_hw_spec *cmd;
1785 int rc;
1786 int i;
1787
1788 cmd = kzalloc(sizeof(*cmd), GFP_KERNEL);
1789 if (cmd == NULL)
1790 return -ENOMEM;
1791
1792 cmd->header.code = cpu_to_le16(MWL8K_CMD_SET_HW_SPEC);
1793 cmd->header.length = cpu_to_le16(sizeof(*cmd));
1794
1795 cmd->ps_cookie = cpu_to_le32(priv->cookie_dma);
1796 cmd->rx_queue_ptr = cpu_to_le32(priv->rxq[0].rxd_dma);
1797 cmd->num_tx_queues = cpu_to_le32(MWL8K_TX_QUEUES);
1798 for (i = 0; i < MWL8K_TX_QUEUES; i++)
1799 cmd->tx_queue_ptrs[i] = cpu_to_le32(priv->txq[i].txd_dma);
1800 cmd->flags = cpu_to_le32(MWL8K_SET_HW_SPEC_FLAG_HOST_DECR_MGMT);
1801 cmd->num_tx_desc_per_queue = cpu_to_le32(MWL8K_TX_DESCS);
1802 cmd->total_rxd = cpu_to_le32(MWL8K_RX_DESCS);
1803
1804 rc = mwl8k_post_cmd(hw, &cmd->header);
1805 kfree(cmd);
1806
1807 return rc;
1808 }
1809
1810 /*
1811 * CMD_MAC_MULTICAST_ADR.
1812 */
1813 struct mwl8k_cmd_mac_multicast_adr {
1814 struct mwl8k_cmd_pkt header;
1815 __le16 action;
1816 __le16 numaddr;
1817 __u8 addr[0][ETH_ALEN];
1818 };
1819
1820 #define MWL8K_ENABLE_RX_DIRECTED 0x0001
1821 #define MWL8K_ENABLE_RX_MULTICAST 0x0002
1822 #define MWL8K_ENABLE_RX_ALL_MULTICAST 0x0004
1823 #define MWL8K_ENABLE_RX_BROADCAST 0x0008
1824
1825 static struct mwl8k_cmd_pkt *
1826 __mwl8k_cmd_mac_multicast_adr(struct ieee80211_hw *hw, int allmulti,
1827 int mc_count, struct dev_addr_list *mclist)
1828 {
1829 struct mwl8k_priv *priv = hw->priv;
1830 struct mwl8k_cmd_mac_multicast_adr *cmd;
1831 int size;
1832
1833 if (allmulti || mc_count > priv->num_mcaddrs) {
1834 allmulti = 1;
1835 mc_count = 0;
1836 }
1837
1838 size = sizeof(*cmd) + mc_count * ETH_ALEN;
1839
1840 cmd = kzalloc(size, GFP_ATOMIC);
1841 if (cmd == NULL)
1842 return NULL;
1843
1844 cmd->header.code = cpu_to_le16(MWL8K_CMD_MAC_MULTICAST_ADR);
1845 cmd->header.length = cpu_to_le16(size);
1846 cmd->action = cpu_to_le16(MWL8K_ENABLE_RX_DIRECTED |
1847 MWL8K_ENABLE_RX_BROADCAST);
1848
1849 if (allmulti) {
1850 cmd->action |= cpu_to_le16(MWL8K_ENABLE_RX_ALL_MULTICAST);
1851 } else if (mc_count) {
1852 int i;
1853
1854 cmd->action |= cpu_to_le16(MWL8K_ENABLE_RX_MULTICAST);
1855 cmd->numaddr = cpu_to_le16(mc_count);
1856 for (i = 0; i < mc_count && mclist; i++) {
1857 if (mclist->da_addrlen != ETH_ALEN) {
1858 kfree(cmd);
1859 return NULL;
1860 }
1861 memcpy(cmd->addr[i], mclist->da_addr, ETH_ALEN);
1862 mclist = mclist->next;
1863 }
1864 }
1865
1866 return &cmd->header;
1867 }
1868
1869 /*
1870 * CMD_802_11_GET_STAT.
1871 */
1872 struct mwl8k_cmd_802_11_get_stat {
1873 struct mwl8k_cmd_pkt header;
1874 __le32 stats[64];
1875 } __attribute__((packed));
1876
1877 #define MWL8K_STAT_ACK_FAILURE 9
1878 #define MWL8K_STAT_RTS_FAILURE 12
1879 #define MWL8K_STAT_FCS_ERROR 24
1880 #define MWL8K_STAT_RTS_SUCCESS 11
1881
1882 static int mwl8k_cmd_802_11_get_stat(struct ieee80211_hw *hw,
1883 struct ieee80211_low_level_stats *stats)
1884 {
1885 struct mwl8k_cmd_802_11_get_stat *cmd;
1886 int rc;
1887
1888 cmd = kzalloc(sizeof(*cmd), GFP_KERNEL);
1889 if (cmd == NULL)
1890 return -ENOMEM;
1891
1892 cmd->header.code = cpu_to_le16(MWL8K_CMD_GET_STAT);
1893 cmd->header.length = cpu_to_le16(sizeof(*cmd));
1894
1895 rc = mwl8k_post_cmd(hw, &cmd->header);
1896 if (!rc) {
1897 stats->dot11ACKFailureCount =
1898 le32_to_cpu(cmd->stats[MWL8K_STAT_ACK_FAILURE]);
1899 stats->dot11RTSFailureCount =
1900 le32_to_cpu(cmd->stats[MWL8K_STAT_RTS_FAILURE]);
1901 stats->dot11FCSErrorCount =
1902 le32_to_cpu(cmd->stats[MWL8K_STAT_FCS_ERROR]);
1903 stats->dot11RTSSuccessCount =
1904 le32_to_cpu(cmd->stats[MWL8K_STAT_RTS_SUCCESS]);
1905 }
1906 kfree(cmd);
1907
1908 return rc;
1909 }
1910
1911 /*
1912 * CMD_802_11_RADIO_CONTROL.
1913 */
1914 struct mwl8k_cmd_802_11_radio_control {
1915 struct mwl8k_cmd_pkt header;
1916 __le16 action;
1917 __le16 control;
1918 __le16 radio_on;
1919 } __attribute__((packed));
1920
1921 static int
1922 mwl8k_cmd_802_11_radio_control(struct ieee80211_hw *hw, bool enable, bool force)
1923 {
1924 struct mwl8k_priv *priv = hw->priv;
1925 struct mwl8k_cmd_802_11_radio_control *cmd;
1926 int rc;
1927
1928 if (enable == priv->radio_on && !force)
1929 return 0;
1930
1931 cmd = kzalloc(sizeof(*cmd), GFP_KERNEL);
1932 if (cmd == NULL)
1933 return -ENOMEM;
1934
1935 cmd->header.code = cpu_to_le16(MWL8K_CMD_RADIO_CONTROL);
1936 cmd->header.length = cpu_to_le16(sizeof(*cmd));
1937 cmd->action = cpu_to_le16(MWL8K_CMD_SET);
1938 cmd->control = cpu_to_le16(priv->radio_short_preamble ? 3 : 1);
1939 cmd->radio_on = cpu_to_le16(enable ? 0x0001 : 0x0000);
1940
1941 rc = mwl8k_post_cmd(hw, &cmd->header);
1942 kfree(cmd);
1943
1944 if (!rc)
1945 priv->radio_on = enable;
1946
1947 return rc;
1948 }
1949
1950 static int mwl8k_cmd_802_11_radio_disable(struct ieee80211_hw *hw)
1951 {
1952 return mwl8k_cmd_802_11_radio_control(hw, 0, 0);
1953 }
1954
1955 static int mwl8k_cmd_802_11_radio_enable(struct ieee80211_hw *hw)
1956 {
1957 return mwl8k_cmd_802_11_radio_control(hw, 1, 0);
1958 }
1959
1960 static int
1961 mwl8k_set_radio_preamble(struct ieee80211_hw *hw, bool short_preamble)
1962 {
1963 struct mwl8k_priv *priv;
1964
1965 if (hw == NULL || hw->priv == NULL)
1966 return -EINVAL;
1967 priv = hw->priv;
1968
1969 priv->radio_short_preamble = short_preamble;
1970
1971 return mwl8k_cmd_802_11_radio_control(hw, 1, 1);
1972 }
1973
1974 /*
1975 * CMD_802_11_RF_TX_POWER.
1976 */
1977 #define MWL8K_TX_POWER_LEVEL_TOTAL 8
1978
1979 struct mwl8k_cmd_802_11_rf_tx_power {
1980 struct mwl8k_cmd_pkt header;
1981 __le16 action;
1982 __le16 support_level;
1983 __le16 current_level;
1984 __le16 reserved;
1985 __le16 power_level_list[MWL8K_TX_POWER_LEVEL_TOTAL];
1986 } __attribute__((packed));
1987
1988 static int mwl8k_cmd_802_11_rf_tx_power(struct ieee80211_hw *hw, int dBm)
1989 {
1990 struct mwl8k_cmd_802_11_rf_tx_power *cmd;
1991 int rc;
1992
1993 cmd = kzalloc(sizeof(*cmd), GFP_KERNEL);
1994 if (cmd == NULL)
1995 return -ENOMEM;
1996
1997 cmd->header.code = cpu_to_le16(MWL8K_CMD_RF_TX_POWER);
1998 cmd->header.length = cpu_to_le16(sizeof(*cmd));
1999 cmd->action = cpu_to_le16(MWL8K_CMD_SET);
2000 cmd->support_level = cpu_to_le16(dBm);
2001
2002 rc = mwl8k_post_cmd(hw, &cmd->header);
2003 kfree(cmd);
2004
2005 return rc;
2006 }
2007
2008 /*
2009 * CMD_RF_ANTENNA.
2010 */
2011 struct mwl8k_cmd_rf_antenna {
2012 struct mwl8k_cmd_pkt header;
2013 __le16 antenna;
2014 __le16 mode;
2015 } __attribute__((packed));
2016
2017 #define MWL8K_RF_ANTENNA_RX 1
2018 #define MWL8K_RF_ANTENNA_TX 2
2019
2020 static int
2021 mwl8k_cmd_rf_antenna(struct ieee80211_hw *hw, int antenna, int mask)
2022 {
2023 struct mwl8k_cmd_rf_antenna *cmd;
2024 int rc;
2025
2026 cmd = kzalloc(sizeof(*cmd), GFP_KERNEL);
2027 if (cmd == NULL)
2028 return -ENOMEM;
2029
2030 cmd->header.code = cpu_to_le16(MWL8K_CMD_RF_ANTENNA);
2031 cmd->header.length = cpu_to_le16(sizeof(*cmd));
2032 cmd->antenna = cpu_to_le16(antenna);
2033 cmd->mode = cpu_to_le16(mask);
2034
2035 rc = mwl8k_post_cmd(hw, &cmd->header);
2036 kfree(cmd);
2037
2038 return rc;
2039 }
2040
2041 /*
2042 * CMD_SET_PRE_SCAN.
2043 */
2044 struct mwl8k_cmd_set_pre_scan {
2045 struct mwl8k_cmd_pkt header;
2046 } __attribute__((packed));
2047
2048 static int mwl8k_cmd_set_pre_scan(struct ieee80211_hw *hw)
2049 {
2050 struct mwl8k_cmd_set_pre_scan *cmd;
2051 int rc;
2052
2053 cmd = kzalloc(sizeof(*cmd), GFP_KERNEL);
2054 if (cmd == NULL)
2055 return -ENOMEM;
2056
2057 cmd->header.code = cpu_to_le16(MWL8K_CMD_SET_PRE_SCAN);
2058 cmd->header.length = cpu_to_le16(sizeof(*cmd));
2059
2060 rc = mwl8k_post_cmd(hw, &cmd->header);
2061 kfree(cmd);
2062
2063 return rc;
2064 }
2065
2066 /*
2067 * CMD_SET_POST_SCAN.
2068 */
2069 struct mwl8k_cmd_set_post_scan {
2070 struct mwl8k_cmd_pkt header;
2071 __le32 isibss;
2072 __u8 bssid[ETH_ALEN];
2073 } __attribute__((packed));
2074
2075 static int
2076 mwl8k_cmd_set_post_scan(struct ieee80211_hw *hw, __u8 *mac)
2077 {
2078 struct mwl8k_cmd_set_post_scan *cmd;
2079 int rc;
2080
2081 cmd = kzalloc(sizeof(*cmd), GFP_KERNEL);
2082 if (cmd == NULL)
2083 return -ENOMEM;
2084
2085 cmd->header.code = cpu_to_le16(MWL8K_CMD_SET_POST_SCAN);
2086 cmd->header.length = cpu_to_le16(sizeof(*cmd));
2087 cmd->isibss = 0;
2088 memcpy(cmd->bssid, mac, ETH_ALEN);
2089
2090 rc = mwl8k_post_cmd(hw, &cmd->header);
2091 kfree(cmd);
2092
2093 return rc;
2094 }
2095
2096 /*
2097 * CMD_SET_RF_CHANNEL.
2098 */
2099 struct mwl8k_cmd_set_rf_channel {
2100 struct mwl8k_cmd_pkt header;
2101 __le16 action;
2102 __u8 current_channel;
2103 __le32 channel_flags;
2104 } __attribute__((packed));
2105
2106 static int mwl8k_cmd_set_rf_channel(struct ieee80211_hw *hw,
2107 struct ieee80211_channel *channel)
2108 {
2109 struct mwl8k_cmd_set_rf_channel *cmd;
2110 int rc;
2111
2112 cmd = kzalloc(sizeof(*cmd), GFP_KERNEL);
2113 if (cmd == NULL)
2114 return -ENOMEM;
2115
2116 cmd->header.code = cpu_to_le16(MWL8K_CMD_SET_RF_CHANNEL);
2117 cmd->header.length = cpu_to_le16(sizeof(*cmd));
2118 cmd->action = cpu_to_le16(MWL8K_CMD_SET);
2119 cmd->current_channel = channel->hw_value;
2120 if (channel->band == IEEE80211_BAND_2GHZ)
2121 cmd->channel_flags = cpu_to_le32(0x00000081);
2122 else
2123 cmd->channel_flags = cpu_to_le32(0x00000000);
2124
2125 rc = mwl8k_post_cmd(hw, &cmd->header);
2126 kfree(cmd);
2127
2128 return rc;
2129 }
2130
2131 /*
2132 * CMD_SET_SLOT.
2133 */
2134 struct mwl8k_cmd_set_slot {
2135 struct mwl8k_cmd_pkt header;
2136 __le16 action;
2137 __u8 short_slot;
2138 } __attribute__((packed));
2139
2140 static int mwl8k_cmd_set_slot(struct ieee80211_hw *hw, bool short_slot_time)
2141 {
2142 struct mwl8k_cmd_set_slot *cmd;
2143 int rc;
2144
2145 cmd = kzalloc(sizeof(*cmd), GFP_KERNEL);
2146 if (cmd == NULL)
2147 return -ENOMEM;
2148
2149 cmd->header.code = cpu_to_le16(MWL8K_CMD_SET_SLOT);
2150 cmd->header.length = cpu_to_le16(sizeof(*cmd));
2151 cmd->action = cpu_to_le16(MWL8K_CMD_SET);
2152 cmd->short_slot = short_slot_time;
2153
2154 rc = mwl8k_post_cmd(hw, &cmd->header);
2155 kfree(cmd);
2156
2157 return rc;
2158 }
2159
2160 /*
2161 * CMD_MIMO_CONFIG.
2162 */
2163 struct mwl8k_cmd_mimo_config {
2164 struct mwl8k_cmd_pkt header;
2165 __le32 action;
2166 __u8 rx_antenna_map;
2167 __u8 tx_antenna_map;
2168 } __attribute__((packed));
2169
2170 static int mwl8k_cmd_mimo_config(struct ieee80211_hw *hw, __u8 rx, __u8 tx)
2171 {
2172 struct mwl8k_cmd_mimo_config *cmd;
2173 int rc;
2174
2175 cmd = kzalloc(sizeof(*cmd), GFP_KERNEL);
2176 if (cmd == NULL)
2177 return -ENOMEM;
2178
2179 cmd->header.code = cpu_to_le16(MWL8K_CMD_MIMO_CONFIG);
2180 cmd->header.length = cpu_to_le16(sizeof(*cmd));
2181 cmd->action = cpu_to_le32((u32)MWL8K_CMD_SET);
2182 cmd->rx_antenna_map = rx;
2183 cmd->tx_antenna_map = tx;
2184
2185 rc = mwl8k_post_cmd(hw, &cmd->header);
2186 kfree(cmd);
2187
2188 return rc;
2189 }
2190
2191 /*
2192 * CMD_ENABLE_SNIFFER.
2193 */
2194 struct mwl8k_cmd_enable_sniffer {
2195 struct mwl8k_cmd_pkt header;
2196 __le32 action;
2197 } __attribute__((packed));
2198
2199 static int mwl8k_enable_sniffer(struct ieee80211_hw *hw, bool enable)
2200 {
2201 struct mwl8k_cmd_enable_sniffer *cmd;
2202 int rc;
2203
2204 cmd = kzalloc(sizeof(*cmd), GFP_KERNEL);
2205 if (cmd == NULL)
2206 return -ENOMEM;
2207
2208 cmd->header.code = cpu_to_le16(MWL8K_CMD_ENABLE_SNIFFER);
2209 cmd->header.length = cpu_to_le16(sizeof(*cmd));
2210 cmd->action = cpu_to_le32(!!enable);
2211
2212 rc = mwl8k_post_cmd(hw, &cmd->header);
2213 kfree(cmd);
2214
2215 return rc;
2216 }
2217
2218 /*
2219 * CMD_SET_MAC_ADDR.
2220 */
2221 struct mwl8k_cmd_set_mac_addr {
2222 struct mwl8k_cmd_pkt header;
2223 union {
2224 struct {
2225 __le16 mac_type;
2226 __u8 mac_addr[ETH_ALEN];
2227 } mbss;
2228 __u8 mac_addr[ETH_ALEN];
2229 };
2230 } __attribute__((packed));
2231
2232 static int mwl8k_set_mac_addr(struct ieee80211_hw *hw, u8 *mac)
2233 {
2234 struct mwl8k_priv *priv = hw->priv;
2235 struct mwl8k_cmd_set_mac_addr *cmd;
2236 int rc;
2237
2238 cmd = kzalloc(sizeof(*cmd), GFP_KERNEL);
2239 if (cmd == NULL)
2240 return -ENOMEM;
2241
2242 cmd->header.code = cpu_to_le16(MWL8K_CMD_SET_MAC_ADDR);
2243 cmd->header.length = cpu_to_le16(sizeof(*cmd));
2244 if (priv->ap_fw) {
2245 cmd->mbss.mac_type = 0;
2246 memcpy(cmd->mbss.mac_addr, mac, ETH_ALEN);
2247 } else {
2248 memcpy(cmd->mac_addr, mac, ETH_ALEN);
2249 }
2250
2251 rc = mwl8k_post_cmd(hw, &cmd->header);
2252 kfree(cmd);
2253
2254 return rc;
2255 }
2256
2257
2258 /*
2259 * CMD_SET_RATEADAPT_MODE.
2260 */
2261 struct mwl8k_cmd_set_rate_adapt_mode {
2262 struct mwl8k_cmd_pkt header;
2263 __le16 action;
2264 __le16 mode;
2265 } __attribute__((packed));
2266
2267 static int mwl8k_cmd_setrateadaptmode(struct ieee80211_hw *hw, __u16 mode)
2268 {
2269 struct mwl8k_cmd_set_rate_adapt_mode *cmd;
2270 int rc;
2271
2272 cmd = kzalloc(sizeof(*cmd), GFP_KERNEL);
2273 if (cmd == NULL)
2274 return -ENOMEM;
2275
2276 cmd->header.code = cpu_to_le16(MWL8K_CMD_SET_RATEADAPT_MODE);
2277 cmd->header.length = cpu_to_le16(sizeof(*cmd));
2278 cmd->action = cpu_to_le16(MWL8K_CMD_SET);
2279 cmd->mode = cpu_to_le16(mode);
2280
2281 rc = mwl8k_post_cmd(hw, &cmd->header);
2282 kfree(cmd);
2283
2284 return rc;
2285 }
2286
2287 /*
2288 * CMD_SET_WMM_MODE.
2289 */
2290 struct mwl8k_cmd_set_wmm {
2291 struct mwl8k_cmd_pkt header;
2292 __le16 action;
2293 } __attribute__((packed));
2294
2295 static int mwl8k_set_wmm(struct ieee80211_hw *hw, bool enable)
2296 {
2297 struct mwl8k_priv *priv = hw->priv;
2298 struct mwl8k_cmd_set_wmm *cmd;
2299 int rc;
2300
2301 cmd = kzalloc(sizeof(*cmd), GFP_KERNEL);
2302 if (cmd == NULL)
2303 return -ENOMEM;
2304
2305 cmd->header.code = cpu_to_le16(MWL8K_CMD_SET_WMM_MODE);
2306 cmd->header.length = cpu_to_le16(sizeof(*cmd));
2307 cmd->action = cpu_to_le16(!!enable);
2308
2309 rc = mwl8k_post_cmd(hw, &cmd->header);
2310 kfree(cmd);
2311
2312 if (!rc)
2313 priv->wmm_enabled = enable;
2314
2315 return rc;
2316 }
2317
2318 /*
2319 * CMD_SET_RTS_THRESHOLD.
2320 */
2321 struct mwl8k_cmd_rts_threshold {
2322 struct mwl8k_cmd_pkt header;
2323 __le16 action;
2324 __le16 threshold;
2325 } __attribute__((packed));
2326
2327 static int mwl8k_rts_threshold(struct ieee80211_hw *hw,
2328 u16 action, u16 threshold)
2329 {
2330 struct mwl8k_cmd_rts_threshold *cmd;
2331 int rc;
2332
2333 cmd = kzalloc(sizeof(*cmd), GFP_KERNEL);
2334 if (cmd == NULL)
2335 return -ENOMEM;
2336
2337 cmd->header.code = cpu_to_le16(MWL8K_CMD_RTS_THRESHOLD);
2338 cmd->header.length = cpu_to_le16(sizeof(*cmd));
2339 cmd->action = cpu_to_le16(action);
2340 cmd->threshold = cpu_to_le16(threshold);
2341
2342 rc = mwl8k_post_cmd(hw, &cmd->header);
2343 kfree(cmd);
2344
2345 return rc;
2346 }
2347
2348 /*
2349 * CMD_SET_EDCA_PARAMS.
2350 */
2351 struct mwl8k_cmd_set_edca_params {
2352 struct mwl8k_cmd_pkt header;
2353
2354 /* See MWL8K_SET_EDCA_XXX below */
2355 __le16 action;
2356
2357 /* TX opportunity in units of 32 us */
2358 __le16 txop;
2359
2360 union {
2361 struct {
2362 /* Log exponent of max contention period: 0...15 */
2363 __le32 log_cw_max;
2364
2365 /* Log exponent of min contention period: 0...15 */
2366 __le32 log_cw_min;
2367
2368 /* Adaptive interframe spacing in units of 32us */
2369 __u8 aifs;
2370
2371 /* TX queue to configure */
2372 __u8 txq;
2373 } ap;
2374 struct {
2375 /* Log exponent of max contention period: 0...15 */
2376 __u8 log_cw_max;
2377
2378 /* Log exponent of min contention period: 0...15 */
2379 __u8 log_cw_min;
2380
2381 /* Adaptive interframe spacing in units of 32us */
2382 __u8 aifs;
2383
2384 /* TX queue to configure */
2385 __u8 txq;
2386 } sta;
2387 };
2388 } __attribute__((packed));
2389
2390 #define MWL8K_SET_EDCA_CW 0x01
2391 #define MWL8K_SET_EDCA_TXOP 0x02
2392 #define MWL8K_SET_EDCA_AIFS 0x04
2393
2394 #define MWL8K_SET_EDCA_ALL (MWL8K_SET_EDCA_CW | \
2395 MWL8K_SET_EDCA_TXOP | \
2396 MWL8K_SET_EDCA_AIFS)
2397
2398 static int
2399 mwl8k_set_edca_params(struct ieee80211_hw *hw, __u8 qnum,
2400 __u16 cw_min, __u16 cw_max,
2401 __u8 aifs, __u16 txop)
2402 {
2403 struct mwl8k_priv *priv = hw->priv;
2404 struct mwl8k_cmd_set_edca_params *cmd;
2405 int rc;
2406
2407 cmd = kzalloc(sizeof(*cmd), GFP_KERNEL);
2408 if (cmd == NULL)
2409 return -ENOMEM;
2410
2411 /*
2412 * Queues 0 (BE) and 1 (BK) are swapped in hardware for
2413 * this call.
2414 */
2415 qnum ^= !(qnum >> 1);
2416
2417 cmd->header.code = cpu_to_le16(MWL8K_CMD_SET_EDCA_PARAMS);
2418 cmd->header.length = cpu_to_le16(sizeof(*cmd));
2419 cmd->action = cpu_to_le16(MWL8K_SET_EDCA_ALL);
2420 cmd->txop = cpu_to_le16(txop);
2421 if (priv->ap_fw) {
2422 cmd->ap.log_cw_max = cpu_to_le32(ilog2(cw_max + 1));
2423 cmd->ap.log_cw_min = cpu_to_le32(ilog2(cw_min + 1));
2424 cmd->ap.aifs = aifs;
2425 cmd->ap.txq = qnum;
2426 } else {
2427 cmd->sta.log_cw_max = (u8)ilog2(cw_max + 1);
2428 cmd->sta.log_cw_min = (u8)ilog2(cw_min + 1);
2429 cmd->sta.aifs = aifs;
2430 cmd->sta.txq = qnum;
2431 }
2432
2433 rc = mwl8k_post_cmd(hw, &cmd->header);
2434 kfree(cmd);
2435
2436 return rc;
2437 }
2438
2439 /*
2440 * CMD_FINALIZE_JOIN.
2441 */
2442
2443 /* FJ beacon buffer size is compiled into the firmware. */
2444 #define MWL8K_FJ_BEACON_MAXLEN 128
2445
2446 struct mwl8k_cmd_finalize_join {
2447 struct mwl8k_cmd_pkt header;
2448 __le32 sleep_interval; /* Number of beacon periods to sleep */
2449 __u8 beacon_data[MWL8K_FJ_BEACON_MAXLEN];
2450 } __attribute__((packed));
2451
2452 static int mwl8k_finalize_join(struct ieee80211_hw *hw, void *frame,
2453 __u16 framelen, __u16 dtim)
2454 {
2455 struct mwl8k_cmd_finalize_join *cmd;
2456 struct ieee80211_mgmt *payload = frame;
2457 u16 hdrlen;
2458 u32 payload_len;
2459 int rc;
2460
2461 if (frame == NULL)
2462 return -EINVAL;
2463
2464 cmd = kzalloc(sizeof(*cmd), GFP_KERNEL);
2465 if (cmd == NULL)
2466 return -ENOMEM;
2467
2468 cmd->header.code = cpu_to_le16(MWL8K_CMD_SET_FINALIZE_JOIN);
2469 cmd->header.length = cpu_to_le16(sizeof(*cmd));
2470 cmd->sleep_interval = cpu_to_le32(dtim ? dtim : 1);
2471
2472 hdrlen = ieee80211_hdrlen(payload->frame_control);
2473
2474 payload_len = framelen > hdrlen ? framelen - hdrlen : 0;
2475
2476 /* XXX TBD Might just have to abort and return an error */
2477 if (payload_len > MWL8K_FJ_BEACON_MAXLEN)
2478 printk(KERN_ERR "%s(): WARNING: Incomplete beacon "
2479 "sent to firmware. Sz=%u MAX=%u\n", __func__,
2480 payload_len, MWL8K_FJ_BEACON_MAXLEN);
2481
2482 if (payload_len > MWL8K_FJ_BEACON_MAXLEN)
2483 payload_len = MWL8K_FJ_BEACON_MAXLEN;
2484
2485 if (payload && payload_len)
2486 memcpy(cmd->beacon_data, &payload->u.beacon, payload_len);
2487
2488 rc = mwl8k_post_cmd(hw, &cmd->header);
2489 kfree(cmd);
2490 return rc;
2491 }
2492
2493 /*
2494 * CMD_UPDATE_STADB.
2495 */
2496 struct mwl8k_cmd_update_sta_db {
2497 struct mwl8k_cmd_pkt header;
2498
2499 /* See STADB_ACTION_TYPE */
2500 __le32 action;
2501
2502 /* Peer MAC address */
2503 __u8 peer_addr[ETH_ALEN];
2504
2505 __le32 reserved;
2506
2507 /* Peer info - valid during add/update. */
2508 struct peer_capability_info peer_info;
2509 } __attribute__((packed));
2510
2511 static int mwl8k_cmd_update_sta_db(struct ieee80211_hw *hw,
2512 struct ieee80211_vif *vif, __u32 action)
2513 {
2514 struct mwl8k_vif *mv_vif = MWL8K_VIF(vif);
2515 struct ieee80211_bss_conf *info = &mv_vif->bss_info;
2516 struct mwl8k_cmd_update_sta_db *cmd;
2517 struct peer_capability_info *peer_info;
2518 struct ieee80211_rate *bitrates = mv_vif->legacy_rates;
2519 int rc;
2520 __u8 count, *rates;
2521
2522 cmd = kzalloc(sizeof(*cmd), GFP_KERNEL);
2523 if (cmd == NULL)
2524 return -ENOMEM;
2525
2526 cmd->header.code = cpu_to_le16(MWL8K_CMD_UPDATE_STADB);
2527 cmd->header.length = cpu_to_le16(sizeof(*cmd));
2528
2529 cmd->action = cpu_to_le32(action);
2530 peer_info = &cmd->peer_info;
2531 memcpy(cmd->peer_addr, mv_vif->bssid, ETH_ALEN);
2532
2533 switch (action) {
2534 case MWL8K_STA_DB_ADD_ENTRY:
2535 case MWL8K_STA_DB_MODIFY_ENTRY:
2536 /* Build peer_info block */
2537 peer_info->peer_type = MWL8K_PEER_TYPE_ACCESSPOINT;
2538 peer_info->basic_caps = cpu_to_le16(info->assoc_capability);
2539 peer_info->interop = 1;
2540 peer_info->amsdu_enabled = 0;
2541
2542 rates = peer_info->legacy_rates;
2543 for (count = 0; count < mv_vif->legacy_nrates; count++)
2544 rates[count] = bitrates[count].hw_value;
2545
2546 rc = mwl8k_post_cmd(hw, &cmd->header);
2547 if (rc == 0)
2548 mv_vif->peer_id = peer_info->station_id;
2549
2550 break;
2551
2552 case MWL8K_STA_DB_DEL_ENTRY:
2553 case MWL8K_STA_DB_FLUSH:
2554 default:
2555 rc = mwl8k_post_cmd(hw, &cmd->header);
2556 if (rc == 0)
2557 mv_vif->peer_id = 0;
2558 break;
2559 }
2560 kfree(cmd);
2561
2562 return rc;
2563 }
2564
2565 /*
2566 * CMD_SET_AID.
2567 */
2568 #define MWL8K_RATE_INDEX_MAX_ARRAY 14
2569
2570 #define MWL8K_FRAME_PROT_DISABLED 0x00
2571 #define MWL8K_FRAME_PROT_11G 0x07
2572 #define MWL8K_FRAME_PROT_11N_HT_40MHZ_ONLY 0x02
2573 #define MWL8K_FRAME_PROT_11N_HT_ALL 0x06
2574
2575 struct mwl8k_cmd_update_set_aid {
2576 struct mwl8k_cmd_pkt header;
2577 __le16 aid;
2578
2579 /* AP's MAC address (BSSID) */
2580 __u8 bssid[ETH_ALEN];
2581 __le16 protection_mode;
2582 __u8 supp_rates[MWL8K_RATE_INDEX_MAX_ARRAY];
2583 } __attribute__((packed));
2584
2585 static int mwl8k_cmd_set_aid(struct ieee80211_hw *hw,
2586 struct ieee80211_vif *vif)
2587 {
2588 struct mwl8k_vif *mv_vif = MWL8K_VIF(vif);
2589 struct ieee80211_bss_conf *info = &mv_vif->bss_info;
2590 struct mwl8k_cmd_update_set_aid *cmd;
2591 struct ieee80211_rate *bitrates = mv_vif->legacy_rates;
2592 int count;
2593 u16 prot_mode;
2594 int rc;
2595
2596 cmd = kzalloc(sizeof(*cmd), GFP_KERNEL);
2597 if (cmd == NULL)
2598 return -ENOMEM;
2599
2600 cmd->header.code = cpu_to_le16(MWL8K_CMD_SET_AID);
2601 cmd->header.length = cpu_to_le16(sizeof(*cmd));
2602 cmd->aid = cpu_to_le16(info->aid);
2603
2604 memcpy(cmd->bssid, mv_vif->bssid, ETH_ALEN);
2605
2606 if (info->use_cts_prot) {
2607 prot_mode = MWL8K_FRAME_PROT_11G;
2608 } else {
2609 switch (info->ht_operation_mode &
2610 IEEE80211_HT_OP_MODE_PROTECTION) {
2611 case IEEE80211_HT_OP_MODE_PROTECTION_20MHZ:
2612 prot_mode = MWL8K_FRAME_PROT_11N_HT_40MHZ_ONLY;
2613 break;
2614 case IEEE80211_HT_OP_MODE_PROTECTION_NONHT_MIXED:
2615 prot_mode = MWL8K_FRAME_PROT_11N_HT_ALL;
2616 break;
2617 default:
2618 prot_mode = MWL8K_FRAME_PROT_DISABLED;
2619 break;
2620 }
2621 }
2622 cmd->protection_mode = cpu_to_le16(prot_mode);
2623
2624 for (count = 0; count < mv_vif->legacy_nrates; count++)
2625 cmd->supp_rates[count] = bitrates[count].hw_value;
2626
2627 rc = mwl8k_post_cmd(hw, &cmd->header);
2628 kfree(cmd);
2629
2630 return rc;
2631 }
2632
2633 /*
2634 * CMD_SET_RATE.
2635 */
2636 struct mwl8k_cmd_update_rateset {
2637 struct mwl8k_cmd_pkt header;
2638 __u8 legacy_rates[MWL8K_RATE_INDEX_MAX_ARRAY];
2639
2640 /* Bitmap for supported MCS codes. */
2641 __u8 mcs_set[MWL8K_IEEE_LEGACY_DATA_RATES];
2642 __u8 reserved[MWL8K_IEEE_LEGACY_DATA_RATES];
2643 } __attribute__((packed));
2644
2645 static int mwl8k_update_rateset(struct ieee80211_hw *hw,
2646 struct ieee80211_vif *vif)
2647 {
2648 struct mwl8k_vif *mv_vif = MWL8K_VIF(vif);
2649 struct mwl8k_cmd_update_rateset *cmd;
2650 struct ieee80211_rate *bitrates = mv_vif->legacy_rates;
2651 int count;
2652 int rc;
2653
2654 cmd = kzalloc(sizeof(*cmd), GFP_KERNEL);
2655 if (cmd == NULL)
2656 return -ENOMEM;
2657
2658 cmd->header.code = cpu_to_le16(MWL8K_CMD_SET_RATE);
2659 cmd->header.length = cpu_to_le16(sizeof(*cmd));
2660
2661 for (count = 0; count < mv_vif->legacy_nrates; count++)
2662 cmd->legacy_rates[count] = bitrates[count].hw_value;
2663
2664 rc = mwl8k_post_cmd(hw, &cmd->header);
2665 kfree(cmd);
2666
2667 return rc;
2668 }
2669
2670 /*
2671 * CMD_USE_FIXED_RATE.
2672 */
2673 #define MWL8K_RATE_TABLE_SIZE 8
2674 #define MWL8K_UCAST_RATE 0
2675 #define MWL8K_USE_AUTO_RATE 0x0002
2676
2677 struct mwl8k_rate_entry {
2678 /* Set to 1 if HT rate, 0 if legacy. */
2679 __le32 is_ht_rate;
2680
2681 /* Set to 1 to use retry_count field. */
2682 __le32 enable_retry;
2683
2684 /* Specified legacy rate or MCS. */
2685 __le32 rate;
2686
2687 /* Number of allowed retries. */
2688 __le32 retry_count;
2689 } __attribute__((packed));
2690
2691 struct mwl8k_rate_table {
2692 /* 1 to allow specified rate and below */
2693 __le32 allow_rate_drop;
2694 __le32 num_rates;
2695 struct mwl8k_rate_entry rate_entry[MWL8K_RATE_TABLE_SIZE];
2696 } __attribute__((packed));
2697
2698 struct mwl8k_cmd_use_fixed_rate {
2699 struct mwl8k_cmd_pkt header;
2700 __le32 action;
2701 struct mwl8k_rate_table rate_table;
2702
2703 /* Unicast, Broadcast or Multicast */
2704 __le32 rate_type;
2705 __le32 reserved1;
2706 __le32 reserved2;
2707 } __attribute__((packed));
2708
2709 static int mwl8k_cmd_use_fixed_rate(struct ieee80211_hw *hw,
2710 u32 action, u32 rate_type, struct mwl8k_rate_table *rate_table)
2711 {
2712 struct mwl8k_cmd_use_fixed_rate *cmd;
2713 int count;
2714 int rc;
2715
2716 cmd = kzalloc(sizeof(*cmd), GFP_KERNEL);
2717 if (cmd == NULL)
2718 return -ENOMEM;
2719
2720 cmd->header.code = cpu_to_le16(MWL8K_CMD_USE_FIXED_RATE);
2721 cmd->header.length = cpu_to_le16(sizeof(*cmd));
2722
2723 cmd->action = cpu_to_le32(action);
2724 cmd->rate_type = cpu_to_le32(rate_type);
2725
2726 if (rate_table != NULL) {
2727 /*
2728 * Copy over each field manually so that endian
2729 * conversion can be done.
2730 */
2731 cmd->rate_table.allow_rate_drop =
2732 cpu_to_le32(rate_table->allow_rate_drop);
2733 cmd->rate_table.num_rates =
2734 cpu_to_le32(rate_table->num_rates);
2735
2736 for (count = 0; count < rate_table->num_rates; count++) {
2737 struct mwl8k_rate_entry *dst =
2738 &cmd->rate_table.rate_entry[count];
2739 struct mwl8k_rate_entry *src =
2740 &rate_table->rate_entry[count];
2741
2742 dst->is_ht_rate = cpu_to_le32(src->is_ht_rate);
2743 dst->enable_retry = cpu_to_le32(src->enable_retry);
2744 dst->rate = cpu_to_le32(src->rate);
2745 dst->retry_count = cpu_to_le32(src->retry_count);
2746 }
2747 }
2748
2749 rc = mwl8k_post_cmd(hw, &cmd->header);
2750 kfree(cmd);
2751
2752 return rc;
2753 }
2754
2755
2756 /*
2757 * Interrupt handling.
2758 */
2759 static irqreturn_t mwl8k_interrupt(int irq, void *dev_id)
2760 {
2761 struct ieee80211_hw *hw = dev_id;
2762 struct mwl8k_priv *priv = hw->priv;
2763 u32 status;
2764
2765 status = ioread32(priv->regs + MWL8K_HIU_A2H_INTERRUPT_STATUS);
2766 iowrite32(~status, priv->regs + MWL8K_HIU_A2H_INTERRUPT_STATUS);
2767
2768 if (!status)
2769 return IRQ_NONE;
2770
2771 if (status & MWL8K_A2H_INT_TX_DONE)
2772 tasklet_schedule(&priv->tx_reclaim_task);
2773
2774 if (status & MWL8K_A2H_INT_RX_READY) {
2775 while (rxq_process(hw, 0, 1))
2776 rxq_refill(hw, 0, 1);
2777 }
2778
2779 if (status & MWL8K_A2H_INT_OPC_DONE) {
2780 if (priv->hostcmd_wait != NULL)
2781 complete(priv->hostcmd_wait);
2782 }
2783
2784 if (status & MWL8K_A2H_INT_QUEUE_EMPTY) {
2785 if (!mutex_is_locked(&priv->fw_mutex) &&
2786 priv->radio_on && priv->pending_tx_pkts)
2787 mwl8k_tx_start(priv);
2788 }
2789
2790 return IRQ_HANDLED;
2791 }
2792
2793
2794 /*
2795 * Core driver operations.
2796 */
2797 static int mwl8k_tx(struct ieee80211_hw *hw, struct sk_buff *skb)
2798 {
2799 struct mwl8k_priv *priv = hw->priv;
2800 int index = skb_get_queue_mapping(skb);
2801 int rc;
2802
2803 if (priv->current_channel == NULL) {
2804 printk(KERN_DEBUG "%s: dropped TX frame since radio "
2805 "disabled\n", wiphy_name(hw->wiphy));
2806 dev_kfree_skb(skb);
2807 return NETDEV_TX_OK;
2808 }
2809
2810 rc = mwl8k_txq_xmit(hw, index, skb);
2811
2812 return rc;
2813 }
2814
2815 static int mwl8k_start(struct ieee80211_hw *hw)
2816 {
2817 struct mwl8k_priv *priv = hw->priv;
2818 int rc;
2819
2820 rc = request_irq(priv->pdev->irq, &mwl8k_interrupt,
2821 IRQF_SHARED, MWL8K_NAME, hw);
2822 if (rc) {
2823 printk(KERN_ERR "%s: failed to register IRQ handler\n",
2824 wiphy_name(hw->wiphy));
2825 return -EIO;
2826 }
2827
2828 /* Enable tx reclaim tasklet */
2829 tasklet_enable(&priv->tx_reclaim_task);
2830
2831 /* Enable interrupts */
2832 iowrite32(MWL8K_A2H_EVENTS, priv->regs + MWL8K_HIU_A2H_INTERRUPT_MASK);
2833
2834 rc = mwl8k_fw_lock(hw);
2835 if (!rc) {
2836 rc = mwl8k_cmd_802_11_radio_enable(hw);
2837
2838 if (!priv->ap_fw) {
2839 if (!rc)
2840 rc = mwl8k_enable_sniffer(hw, 0);
2841
2842 if (!rc)
2843 rc = mwl8k_cmd_set_pre_scan(hw);
2844
2845 if (!rc)
2846 rc = mwl8k_cmd_set_post_scan(hw,
2847 "\x00\x00\x00\x00\x00\x00");
2848 }
2849
2850 if (!rc)
2851 rc = mwl8k_cmd_setrateadaptmode(hw, 0);
2852
2853 if (!rc)
2854 rc = mwl8k_set_wmm(hw, 0);
2855
2856 mwl8k_fw_unlock(hw);
2857 }
2858
2859 if (rc) {
2860 iowrite32(0, priv->regs + MWL8K_HIU_A2H_INTERRUPT_MASK);
2861 free_irq(priv->pdev->irq, hw);
2862 tasklet_disable(&priv->tx_reclaim_task);
2863 }
2864
2865 return rc;
2866 }
2867
2868 static void mwl8k_stop(struct ieee80211_hw *hw)
2869 {
2870 struct mwl8k_priv *priv = hw->priv;
2871 int i;
2872
2873 mwl8k_cmd_802_11_radio_disable(hw);
2874
2875 ieee80211_stop_queues(hw);
2876
2877 /* Disable interrupts */
2878 iowrite32(0, priv->regs + MWL8K_HIU_A2H_INTERRUPT_MASK);
2879 free_irq(priv->pdev->irq, hw);
2880
2881 /* Stop finalize join worker */
2882 cancel_work_sync(&priv->finalize_join_worker);
2883 if (priv->beacon_skb != NULL)
2884 dev_kfree_skb(priv->beacon_skb);
2885
2886 /* Stop tx reclaim tasklet */
2887 tasklet_disable(&priv->tx_reclaim_task);
2888
2889 /* Return all skbs to mac80211 */
2890 for (i = 0; i < MWL8K_TX_QUEUES; i++)
2891 mwl8k_txq_reclaim(hw, i, 1);
2892 }
2893
2894 static int mwl8k_add_interface(struct ieee80211_hw *hw,
2895 struct ieee80211_if_init_conf *conf)
2896 {
2897 struct mwl8k_priv *priv = hw->priv;
2898 struct mwl8k_vif *mwl8k_vif;
2899
2900 /*
2901 * We only support one active interface at a time.
2902 */
2903 if (priv->vif != NULL)
2904 return -EBUSY;
2905
2906 /*
2907 * We only support managed interfaces for now.
2908 */
2909 if (conf->type != NL80211_IFTYPE_STATION)
2910 return -EINVAL;
2911
2912 /*
2913 * Reject interface creation if sniffer mode is active, as
2914 * STA operation is mutually exclusive with hardware sniffer
2915 * mode.
2916 */
2917 if (priv->sniffer_enabled) {
2918 printk(KERN_INFO "%s: unable to create STA "
2919 "interface due to sniffer mode being enabled\n",
2920 wiphy_name(hw->wiphy));
2921 return -EINVAL;
2922 }
2923
2924 /* Clean out driver private area */
2925 mwl8k_vif = MWL8K_VIF(conf->vif);
2926 memset(mwl8k_vif, 0, sizeof(*mwl8k_vif));
2927
2928 /* Set and save the mac address */
2929 mwl8k_set_mac_addr(hw, conf->mac_addr);
2930 memcpy(mwl8k_vif->mac_addr, conf->mac_addr, ETH_ALEN);
2931
2932 /* Back pointer to parent config block */
2933 mwl8k_vif->priv = priv;
2934
2935 /* Setup initial PHY parameters */
2936 memcpy(mwl8k_vif->legacy_rates,
2937 priv->rates, sizeof(mwl8k_vif->legacy_rates));
2938 mwl8k_vif->legacy_nrates = ARRAY_SIZE(priv->rates);
2939
2940 /* Set Initial sequence number to zero */
2941 mwl8k_vif->seqno = 0;
2942
2943 priv->vif = conf->vif;
2944 priv->current_channel = NULL;
2945
2946 return 0;
2947 }
2948
2949 static void mwl8k_remove_interface(struct ieee80211_hw *hw,
2950 struct ieee80211_if_init_conf *conf)
2951 {
2952 struct mwl8k_priv *priv = hw->priv;
2953
2954 if (priv->vif == NULL)
2955 return;
2956
2957 mwl8k_set_mac_addr(hw, "\x00\x00\x00\x00\x00\x00");
2958
2959 priv->vif = NULL;
2960 }
2961
2962 static int mwl8k_config(struct ieee80211_hw *hw, u32 changed)
2963 {
2964 struct ieee80211_conf *conf = &hw->conf;
2965 struct mwl8k_priv *priv = hw->priv;
2966 int rc;
2967
2968 if (conf->flags & IEEE80211_CONF_IDLE) {
2969 mwl8k_cmd_802_11_radio_disable(hw);
2970 priv->current_channel = NULL;
2971 return 0;
2972 }
2973
2974 rc = mwl8k_fw_lock(hw);
2975 if (rc)
2976 return rc;
2977
2978 rc = mwl8k_cmd_802_11_radio_enable(hw);
2979 if (rc)
2980 goto out;
2981
2982 rc = mwl8k_cmd_set_rf_channel(hw, conf->channel);
2983 if (rc)
2984 goto out;
2985
2986 priv->current_channel = conf->channel;
2987
2988 if (conf->power_level > 18)
2989 conf->power_level = 18;
2990 rc = mwl8k_cmd_802_11_rf_tx_power(hw, conf->power_level);
2991 if (rc)
2992 goto out;
2993
2994 if (priv->ap_fw) {
2995 rc = mwl8k_cmd_rf_antenna(hw, MWL8K_RF_ANTENNA_RX, 0x7);
2996 if (!rc)
2997 rc = mwl8k_cmd_rf_antenna(hw, MWL8K_RF_ANTENNA_TX, 0x7);
2998 } else {
2999 rc = mwl8k_cmd_mimo_config(hw, 0x7, 0x7);
3000 }
3001
3002 out:
3003 mwl8k_fw_unlock(hw);
3004
3005 return rc;
3006 }
3007
3008 static void mwl8k_bss_info_changed(struct ieee80211_hw *hw,
3009 struct ieee80211_vif *vif,
3010 struct ieee80211_bss_conf *info,
3011 u32 changed)
3012 {
3013 struct mwl8k_priv *priv = hw->priv;
3014 struct mwl8k_vif *mwl8k_vif = MWL8K_VIF(vif);
3015 int rc;
3016
3017 if (changed & BSS_CHANGED_BSSID)
3018 memcpy(mwl8k_vif->bssid, info->bssid, ETH_ALEN);
3019
3020 if ((changed & BSS_CHANGED_ASSOC) == 0)
3021 return;
3022
3023 priv->capture_beacon = false;
3024
3025 rc = mwl8k_fw_lock(hw);
3026 if (rc)
3027 return;
3028
3029 if (info->assoc) {
3030 memcpy(&mwl8k_vif->bss_info, info,
3031 sizeof(struct ieee80211_bss_conf));
3032
3033 /* Install rates */
3034 rc = mwl8k_update_rateset(hw, vif);
3035 if (rc)
3036 goto out;
3037
3038 /* Turn on rate adaptation */
3039 rc = mwl8k_cmd_use_fixed_rate(hw, MWL8K_USE_AUTO_RATE,
3040 MWL8K_UCAST_RATE, NULL);
3041 if (rc)
3042 goto out;
3043
3044 /* Set radio preamble */
3045 rc = mwl8k_set_radio_preamble(hw, info->use_short_preamble);
3046 if (rc)
3047 goto out;
3048
3049 /* Set slot time */
3050 rc = mwl8k_cmd_set_slot(hw, info->use_short_slot);
3051 if (rc)
3052 goto out;
3053
3054 /* Update peer rate info */
3055 rc = mwl8k_cmd_update_sta_db(hw, vif,
3056 MWL8K_STA_DB_MODIFY_ENTRY);
3057 if (rc)
3058 goto out;
3059
3060 /* Set AID */
3061 rc = mwl8k_cmd_set_aid(hw, vif);
3062 if (rc)
3063 goto out;
3064
3065 /*
3066 * Finalize the join. Tell rx handler to process
3067 * next beacon from our BSSID.
3068 */
3069 memcpy(priv->capture_bssid, mwl8k_vif->bssid, ETH_ALEN);
3070 priv->capture_beacon = true;
3071 } else {
3072 rc = mwl8k_cmd_update_sta_db(hw, vif, MWL8K_STA_DB_DEL_ENTRY);
3073 memset(&mwl8k_vif->bss_info, 0,
3074 sizeof(struct ieee80211_bss_conf));
3075 memset(mwl8k_vif->bssid, 0, ETH_ALEN);
3076 }
3077
3078 out:
3079 mwl8k_fw_unlock(hw);
3080 }
3081
3082 static u64 mwl8k_prepare_multicast(struct ieee80211_hw *hw,
3083 int mc_count, struct dev_addr_list *mclist)
3084 {
3085 struct mwl8k_cmd_pkt *cmd;
3086
3087 /*
3088 * Synthesize and return a command packet that programs the
3089 * hardware multicast address filter. At this point we don't
3090 * know whether FIF_ALLMULTI is being requested, but if it is,
3091 * we'll end up throwing this packet away and creating a new
3092 * one in mwl8k_configure_filter().
3093 */
3094 cmd = __mwl8k_cmd_mac_multicast_adr(hw, 0, mc_count, mclist);
3095
3096 return (unsigned long)cmd;
3097 }
3098
3099 static int
3100 mwl8k_configure_filter_sniffer(struct ieee80211_hw *hw,
3101 unsigned int changed_flags,
3102 unsigned int *total_flags)
3103 {
3104 struct mwl8k_priv *priv = hw->priv;
3105
3106 /*
3107 * Hardware sniffer mode is mutually exclusive with STA
3108 * operation, so refuse to enable sniffer mode if a STA
3109 * interface is active.
3110 */
3111 if (priv->vif != NULL) {
3112 if (net_ratelimit())
3113 printk(KERN_INFO "%s: not enabling sniffer "
3114 "mode because STA interface is active\n",
3115 wiphy_name(hw->wiphy));
3116 return 0;
3117 }
3118
3119 if (!priv->sniffer_enabled) {
3120 if (mwl8k_enable_sniffer(hw, 1))
3121 return 0;
3122 priv->sniffer_enabled = true;
3123 }
3124
3125 *total_flags &= FIF_PROMISC_IN_BSS | FIF_ALLMULTI |
3126 FIF_BCN_PRBRESP_PROMISC | FIF_CONTROL |
3127 FIF_OTHER_BSS;
3128
3129 return 1;
3130 }
3131
3132 static void mwl8k_configure_filter(struct ieee80211_hw *hw,
3133 unsigned int changed_flags,
3134 unsigned int *total_flags,
3135 u64 multicast)
3136 {
3137 struct mwl8k_priv *priv = hw->priv;
3138 struct mwl8k_cmd_pkt *cmd = (void *)(unsigned long)multicast;
3139
3140 /*
3141 * AP firmware doesn't allow fine-grained control over
3142 * the receive filter.
3143 */
3144 if (priv->ap_fw) {
3145 *total_flags &= FIF_ALLMULTI | FIF_BCN_PRBRESP_PROMISC;
3146 kfree(cmd);
3147 return;
3148 }
3149
3150 /*
3151 * Enable hardware sniffer mode if FIF_CONTROL or
3152 * FIF_OTHER_BSS is requested.
3153 */
3154 if (*total_flags & (FIF_CONTROL | FIF_OTHER_BSS) &&
3155 mwl8k_configure_filter_sniffer(hw, changed_flags, total_flags)) {
3156 kfree(cmd);
3157 return;
3158 }
3159
3160 /* Clear unsupported feature flags */
3161 *total_flags &= FIF_ALLMULTI | FIF_BCN_PRBRESP_PROMISC;
3162
3163 if (mwl8k_fw_lock(hw))
3164 return;
3165
3166 if (priv->sniffer_enabled) {
3167 mwl8k_enable_sniffer(hw, 0);
3168 priv->sniffer_enabled = false;
3169 }
3170
3171 if (changed_flags & FIF_BCN_PRBRESP_PROMISC) {
3172 if (*total_flags & FIF_BCN_PRBRESP_PROMISC) {
3173 /*
3174 * Disable the BSS filter.
3175 */
3176 mwl8k_cmd_set_pre_scan(hw);
3177 } else {
3178 u8 *bssid;
3179
3180 /*
3181 * Enable the BSS filter.
3182 *
3183 * If there is an active STA interface, use that
3184 * interface's BSSID, otherwise use a dummy one
3185 * (where the OUI part needs to be nonzero for
3186 * the BSSID to be accepted by POST_SCAN).
3187 */
3188 bssid = "\x01\x00\x00\x00\x00\x00";
3189 if (priv->vif != NULL)
3190 bssid = MWL8K_VIF(priv->vif)->bssid;
3191
3192 mwl8k_cmd_set_post_scan(hw, bssid);
3193 }
3194 }
3195
3196 /*
3197 * If FIF_ALLMULTI is being requested, throw away the command
3198 * packet that ->prepare_multicast() built and replace it with
3199 * a command packet that enables reception of all multicast
3200 * packets.
3201 */
3202 if (*total_flags & FIF_ALLMULTI) {
3203 kfree(cmd);
3204 cmd = __mwl8k_cmd_mac_multicast_adr(hw, 1, 0, NULL);
3205 }
3206
3207 if (cmd != NULL) {
3208 mwl8k_post_cmd(hw, cmd);
3209 kfree(cmd);
3210 }
3211
3212 mwl8k_fw_unlock(hw);
3213 }
3214
3215 static int mwl8k_set_rts_threshold(struct ieee80211_hw *hw, u32 value)
3216 {
3217 return mwl8k_rts_threshold(hw, MWL8K_CMD_SET, value);
3218 }
3219
3220 static int mwl8k_conf_tx(struct ieee80211_hw *hw, u16 queue,
3221 const struct ieee80211_tx_queue_params *params)
3222 {
3223 struct mwl8k_priv *priv = hw->priv;
3224 int rc;
3225
3226 rc = mwl8k_fw_lock(hw);
3227 if (!rc) {
3228 if (!priv->wmm_enabled)
3229 rc = mwl8k_set_wmm(hw, 1);
3230
3231 if (!rc)
3232 rc = mwl8k_set_edca_params(hw, queue,
3233 params->cw_min,
3234 params->cw_max,
3235 params->aifs,
3236 params->txop);
3237
3238 mwl8k_fw_unlock(hw);
3239 }
3240
3241 return rc;
3242 }
3243
3244 static int mwl8k_get_tx_stats(struct ieee80211_hw *hw,
3245 struct ieee80211_tx_queue_stats *stats)
3246 {
3247 struct mwl8k_priv *priv = hw->priv;
3248 struct mwl8k_tx_queue *txq;
3249 int index;
3250
3251 spin_lock_bh(&priv->tx_lock);
3252 for (index = 0; index < MWL8K_TX_QUEUES; index++) {
3253 txq = priv->txq + index;
3254 memcpy(&stats[index], &txq->stats,
3255 sizeof(struct ieee80211_tx_queue_stats));
3256 }
3257 spin_unlock_bh(&priv->tx_lock);
3258
3259 return 0;
3260 }
3261
3262 static int mwl8k_get_stats(struct ieee80211_hw *hw,
3263 struct ieee80211_low_level_stats *stats)
3264 {
3265 return mwl8k_cmd_802_11_get_stat(hw, stats);
3266 }
3267
3268 static const struct ieee80211_ops mwl8k_ops = {
3269 .tx = mwl8k_tx,
3270 .start = mwl8k_start,
3271 .stop = mwl8k_stop,
3272 .add_interface = mwl8k_add_interface,
3273 .remove_interface = mwl8k_remove_interface,
3274 .config = mwl8k_config,
3275 .bss_info_changed = mwl8k_bss_info_changed,
3276 .prepare_multicast = mwl8k_prepare_multicast,
3277 .configure_filter = mwl8k_configure_filter,
3278 .set_rts_threshold = mwl8k_set_rts_threshold,
3279 .conf_tx = mwl8k_conf_tx,
3280 .get_tx_stats = mwl8k_get_tx_stats,
3281 .get_stats = mwl8k_get_stats,
3282 };
3283
3284 static void mwl8k_tx_reclaim_handler(unsigned long data)
3285 {
3286 int i;
3287 struct ieee80211_hw *hw = (struct ieee80211_hw *) data;
3288 struct mwl8k_priv *priv = hw->priv;
3289
3290 spin_lock_bh(&priv->tx_lock);
3291 for (i = 0; i < MWL8K_TX_QUEUES; i++)
3292 mwl8k_txq_reclaim(hw, i, 0);
3293
3294 if (priv->tx_wait != NULL && !priv->pending_tx_pkts) {
3295 complete(priv->tx_wait);
3296 priv->tx_wait = NULL;
3297 }
3298 spin_unlock_bh(&priv->tx_lock);
3299 }
3300
3301 static void mwl8k_finalize_join_worker(struct work_struct *work)
3302 {
3303 struct mwl8k_priv *priv =
3304 container_of(work, struct mwl8k_priv, finalize_join_worker);
3305 struct sk_buff *skb = priv->beacon_skb;
3306 u8 dtim = MWL8K_VIF(priv->vif)->bss_info.dtim_period;
3307
3308 mwl8k_finalize_join(priv->hw, skb->data, skb->len, dtim);
3309 dev_kfree_skb(skb);
3310
3311 priv->beacon_skb = NULL;
3312 }
3313
3314 enum {
3315 MWL8687 = 0,
3316 MWL8366,
3317 };
3318
3319 static struct mwl8k_device_info mwl8k_info_tbl[] __devinitdata = {
3320 {
3321 .part_name = "88w8687",
3322 .helper_image = "mwl8k/helper_8687.fw",
3323 .fw_image = "mwl8k/fmimage_8687.fw",
3324 .rxd_ops = &rxd_8687_ops,
3325 .modes = BIT(NL80211_IFTYPE_STATION),
3326 },
3327 {
3328 .part_name = "88w8366",
3329 .helper_image = "mwl8k/helper_8366.fw",
3330 .fw_image = "mwl8k/fmimage_8366.fw",
3331 .rxd_ops = &rxd_8366_ops,
3332 .modes = 0,
3333 },
3334 };
3335
3336 static DEFINE_PCI_DEVICE_TABLE(mwl8k_pci_id_table) = {
3337 { PCI_VDEVICE(MARVELL, 0x2a2b), .driver_data = MWL8687, },
3338 { PCI_VDEVICE(MARVELL, 0x2a30), .driver_data = MWL8687, },
3339 { PCI_VDEVICE(MARVELL, 0x2a40), .driver_data = MWL8366, },
3340 { },
3341 };
3342 MODULE_DEVICE_TABLE(pci, mwl8k_pci_id_table);
3343
3344 static int __devinit mwl8k_probe(struct pci_dev *pdev,
3345 const struct pci_device_id *id)
3346 {
3347 static int printed_version = 0;
3348 struct ieee80211_hw *hw;
3349 struct mwl8k_priv *priv;
3350 int rc;
3351 int i;
3352
3353 if (!printed_version) {
3354 printk(KERN_INFO "%s version %s\n", MWL8K_DESC, MWL8K_VERSION);
3355 printed_version = 1;
3356 }
3357
3358 rc = pci_enable_device(pdev);
3359 if (rc) {
3360 printk(KERN_ERR "%s: Cannot enable new PCI device\n",
3361 MWL8K_NAME);
3362 return rc;
3363 }
3364
3365 rc = pci_request_regions(pdev, MWL8K_NAME);
3366 if (rc) {
3367 printk(KERN_ERR "%s: Cannot obtain PCI resources\n",
3368 MWL8K_NAME);
3369 return rc;
3370 }
3371
3372 pci_set_master(pdev);
3373
3374 hw = ieee80211_alloc_hw(sizeof(*priv), &mwl8k_ops);
3375 if (hw == NULL) {
3376 printk(KERN_ERR "%s: ieee80211 alloc failed\n", MWL8K_NAME);
3377 rc = -ENOMEM;
3378 goto err_free_reg;
3379 }
3380
3381 priv = hw->priv;
3382 priv->hw = hw;
3383 priv->pdev = pdev;
3384 priv->device_info = &mwl8k_info_tbl[id->driver_data];
3385 priv->rxd_ops = priv->device_info->rxd_ops;
3386 priv->sniffer_enabled = false;
3387 priv->wmm_enabled = false;
3388 priv->pending_tx_pkts = 0;
3389
3390 SET_IEEE80211_DEV(hw, &pdev->dev);
3391 pci_set_drvdata(pdev, hw);
3392
3393 priv->sram = pci_iomap(pdev, 0, 0x10000);
3394 if (priv->sram == NULL) {
3395 printk(KERN_ERR "%s: Cannot map device SRAM\n",
3396 wiphy_name(hw->wiphy));
3397 goto err_iounmap;
3398 }
3399
3400 /*
3401 * If BAR0 is a 32 bit BAR, the register BAR will be BAR1.
3402 * If BAR0 is a 64 bit BAR, the register BAR will be BAR2.
3403 */
3404 priv->regs = pci_iomap(pdev, 1, 0x10000);
3405 if (priv->regs == NULL) {
3406 priv->regs = pci_iomap(pdev, 2, 0x10000);
3407 if (priv->regs == NULL) {
3408 printk(KERN_ERR "%s: Cannot map device registers\n",
3409 wiphy_name(hw->wiphy));
3410 goto err_iounmap;
3411 }
3412 }
3413
3414 memcpy(priv->channels, mwl8k_channels, sizeof(mwl8k_channels));
3415 priv->band.band = IEEE80211_BAND_2GHZ;
3416 priv->band.channels = priv->channels;
3417 priv->band.n_channels = ARRAY_SIZE(mwl8k_channels);
3418 priv->band.bitrates = priv->rates;
3419 priv->band.n_bitrates = ARRAY_SIZE(mwl8k_rates);
3420 hw->wiphy->bands[IEEE80211_BAND_2GHZ] = &priv->band;
3421
3422 BUILD_BUG_ON(sizeof(priv->rates) != sizeof(mwl8k_rates));
3423 memcpy(priv->rates, mwl8k_rates, sizeof(mwl8k_rates));
3424
3425 /*
3426 * Extra headroom is the size of the required DMA header
3427 * minus the size of the smallest 802.11 frame (CTS frame).
3428 */
3429 hw->extra_tx_headroom =
3430 sizeof(struct mwl8k_dma_data) - sizeof(struct ieee80211_cts);
3431
3432 hw->channel_change_time = 10;
3433
3434 hw->queues = MWL8K_TX_QUEUES;
3435
3436 hw->wiphy->interface_modes = priv->device_info->modes;
3437
3438 /* Set rssi and noise values to dBm */
3439 hw->flags |= IEEE80211_HW_SIGNAL_DBM | IEEE80211_HW_NOISE_DBM;
3440 hw->vif_data_size = sizeof(struct mwl8k_vif);
3441 priv->vif = NULL;
3442
3443 /* Set default radio state and preamble */
3444 priv->radio_on = 0;
3445 priv->radio_short_preamble = 0;
3446
3447 /* Finalize join worker */
3448 INIT_WORK(&priv->finalize_join_worker, mwl8k_finalize_join_worker);
3449
3450 /* TX reclaim tasklet */
3451 tasklet_init(&priv->tx_reclaim_task,
3452 mwl8k_tx_reclaim_handler, (unsigned long)hw);
3453 tasklet_disable(&priv->tx_reclaim_task);
3454
3455 /* Power management cookie */
3456 priv->cookie = pci_alloc_consistent(priv->pdev, 4, &priv->cookie_dma);
3457 if (priv->cookie == NULL)
3458 goto err_iounmap;
3459
3460 rc = mwl8k_rxq_init(hw, 0);
3461 if (rc)
3462 goto err_iounmap;
3463 rxq_refill(hw, 0, INT_MAX);
3464
3465 mutex_init(&priv->fw_mutex);
3466 priv->fw_mutex_owner = NULL;
3467 priv->fw_mutex_depth = 0;
3468 priv->hostcmd_wait = NULL;
3469
3470 spin_lock_init(&priv->tx_lock);
3471
3472 priv->tx_wait = NULL;
3473
3474 for (i = 0; i < MWL8K_TX_QUEUES; i++) {
3475 rc = mwl8k_txq_init(hw, i);
3476 if (rc)
3477 goto err_free_queues;
3478 }
3479
3480 iowrite32(0, priv->regs + MWL8K_HIU_A2H_INTERRUPT_STATUS);
3481 iowrite32(0, priv->regs + MWL8K_HIU_A2H_INTERRUPT_MASK);
3482 iowrite32(0, priv->regs + MWL8K_HIU_A2H_INTERRUPT_CLEAR_SEL);
3483 iowrite32(0xffffffff, priv->regs + MWL8K_HIU_A2H_INTERRUPT_STATUS_MASK);
3484
3485 rc = request_irq(priv->pdev->irq, &mwl8k_interrupt,
3486 IRQF_SHARED, MWL8K_NAME, hw);
3487 if (rc) {
3488 printk(KERN_ERR "%s: failed to register IRQ handler\n",
3489 wiphy_name(hw->wiphy));
3490 goto err_free_queues;
3491 }
3492
3493 /* Reset firmware and hardware */
3494 mwl8k_hw_reset(priv);
3495
3496 /* Ask userland hotplug daemon for the device firmware */
3497 rc = mwl8k_request_firmware(priv);
3498 if (rc) {
3499 printk(KERN_ERR "%s: Firmware files not found\n",
3500 wiphy_name(hw->wiphy));
3501 goto err_free_irq;
3502 }
3503
3504 /* Load firmware into hardware */
3505 rc = mwl8k_load_firmware(hw);
3506 if (rc) {
3507 printk(KERN_ERR "%s: Cannot start firmware\n",
3508 wiphy_name(hw->wiphy));
3509 goto err_stop_firmware;
3510 }
3511
3512 /* Reclaim memory once firmware is successfully loaded */
3513 mwl8k_release_firmware(priv);
3514
3515 /*
3516 * Temporarily enable interrupts. Initial firmware host
3517 * commands use interrupts and avoids polling. Disable
3518 * interrupts when done.
3519 */
3520 iowrite32(MWL8K_A2H_EVENTS, priv->regs + MWL8K_HIU_A2H_INTERRUPT_MASK);
3521
3522 /* Get config data, mac addrs etc */
3523 if (priv->ap_fw) {
3524 rc = mwl8k_cmd_get_hw_spec_ap(hw);
3525 if (!rc)
3526 rc = mwl8k_cmd_set_hw_spec(hw);
3527 } else {
3528 rc = mwl8k_cmd_get_hw_spec_sta(hw);
3529 }
3530 if (rc) {
3531 printk(KERN_ERR "%s: Cannot initialise firmware\n",
3532 wiphy_name(hw->wiphy));
3533 goto err_stop_firmware;
3534 }
3535
3536 /* Turn radio off */
3537 rc = mwl8k_cmd_802_11_radio_disable(hw);
3538 if (rc) {
3539 printk(KERN_ERR "%s: Cannot disable\n", wiphy_name(hw->wiphy));
3540 goto err_stop_firmware;
3541 }
3542
3543 /* Clear MAC address */
3544 rc = mwl8k_set_mac_addr(hw, "\x00\x00\x00\x00\x00\x00");
3545 if (rc) {
3546 printk(KERN_ERR "%s: Cannot clear MAC address\n",
3547 wiphy_name(hw->wiphy));
3548 goto err_stop_firmware;
3549 }
3550
3551 /* Disable interrupts */
3552 iowrite32(0, priv->regs + MWL8K_HIU_A2H_INTERRUPT_MASK);
3553 free_irq(priv->pdev->irq, hw);
3554
3555 rc = ieee80211_register_hw(hw);
3556 if (rc) {
3557 printk(KERN_ERR "%s: Cannot register device\n",
3558 wiphy_name(hw->wiphy));
3559 goto err_stop_firmware;
3560 }
3561
3562 printk(KERN_INFO "%s: %s v%d, %pM, %s firmware %u.%u.%u.%u\n",
3563 wiphy_name(hw->wiphy), priv->device_info->part_name,
3564 priv->hw_rev, hw->wiphy->perm_addr,
3565 priv->ap_fw ? "AP" : "STA",
3566 (priv->fw_rev >> 24) & 0xff, (priv->fw_rev >> 16) & 0xff,
3567 (priv->fw_rev >> 8) & 0xff, priv->fw_rev & 0xff);
3568
3569 return 0;
3570
3571 err_stop_firmware:
3572 mwl8k_hw_reset(priv);
3573 mwl8k_release_firmware(priv);
3574
3575 err_free_irq:
3576 iowrite32(0, priv->regs + MWL8K_HIU_A2H_INTERRUPT_MASK);
3577 free_irq(priv->pdev->irq, hw);
3578
3579 err_free_queues:
3580 for (i = 0; i < MWL8K_TX_QUEUES; i++)
3581 mwl8k_txq_deinit(hw, i);
3582 mwl8k_rxq_deinit(hw, 0);
3583
3584 err_iounmap:
3585 if (priv->cookie != NULL)
3586 pci_free_consistent(priv->pdev, 4,
3587 priv->cookie, priv->cookie_dma);
3588
3589 if (priv->regs != NULL)
3590 pci_iounmap(pdev, priv->regs);
3591
3592 if (priv->sram != NULL)
3593 pci_iounmap(pdev, priv->sram);
3594
3595 pci_set_drvdata(pdev, NULL);
3596 ieee80211_free_hw(hw);
3597
3598 err_free_reg:
3599 pci_release_regions(pdev);
3600 pci_disable_device(pdev);
3601
3602 return rc;
3603 }
3604
3605 static void __devexit mwl8k_shutdown(struct pci_dev *pdev)
3606 {
3607 printk(KERN_ERR "===>%s(%u)\n", __func__, __LINE__);
3608 }
3609
3610 static void __devexit mwl8k_remove(struct pci_dev *pdev)
3611 {
3612 struct ieee80211_hw *hw = pci_get_drvdata(pdev);
3613 struct mwl8k_priv *priv;
3614 int i;
3615
3616 if (hw == NULL)
3617 return;
3618 priv = hw->priv;
3619
3620 ieee80211_stop_queues(hw);
3621
3622 ieee80211_unregister_hw(hw);
3623
3624 /* Remove tx reclaim tasklet */
3625 tasklet_kill(&priv->tx_reclaim_task);
3626
3627 /* Stop hardware */
3628 mwl8k_hw_reset(priv);
3629
3630 /* Return all skbs to mac80211 */
3631 for (i = 0; i < MWL8K_TX_QUEUES; i++)
3632 mwl8k_txq_reclaim(hw, i, 1);
3633
3634 for (i = 0; i < MWL8K_TX_QUEUES; i++)
3635 mwl8k_txq_deinit(hw, i);
3636
3637 mwl8k_rxq_deinit(hw, 0);
3638
3639 pci_free_consistent(priv->pdev, 4, priv->cookie, priv->cookie_dma);
3640
3641 pci_iounmap(pdev, priv->regs);
3642 pci_iounmap(pdev, priv->sram);
3643 pci_set_drvdata(pdev, NULL);
3644 ieee80211_free_hw(hw);
3645 pci_release_regions(pdev);
3646 pci_disable_device(pdev);
3647 }
3648
3649 static struct pci_driver mwl8k_driver = {
3650 .name = MWL8K_NAME,
3651 .id_table = mwl8k_pci_id_table,
3652 .probe = mwl8k_probe,
3653 .remove = __devexit_p(mwl8k_remove),
3654 .shutdown = __devexit_p(mwl8k_shutdown),
3655 };
3656
3657 static int __init mwl8k_init(void)
3658 {
3659 return pci_register_driver(&mwl8k_driver);
3660 }
3661
3662 static void __exit mwl8k_exit(void)
3663 {
3664 pci_unregister_driver(&mwl8k_driver);
3665 }
3666
3667 module_init(mwl8k_init);
3668 module_exit(mwl8k_exit);
3669
3670 MODULE_DESCRIPTION(MWL8K_DESC);
3671 MODULE_VERSION(MWL8K_VERSION);
3672 MODULE_AUTHOR("Lennert Buytenhek <buytenh@marvell.com>");
3673 MODULE_LICENSE("GPL");
This page took 0.34124 seconds and 6 git commands to generate.