Merge branch 'for-2.6.31' of git://git.kernel.org/pub/scm/linux/kernel/git/bart/ide-2.6
[deliverable/linux.git] / drivers / net / wireless / p54 / p54common.c
1 /*
2 * Common code for mac80211 Prism54 drivers
3 *
4 * Copyright (c) 2006, Michael Wu <flamingice@sourmilk.net>
5 * Copyright (c) 2007, Christian Lamparter <chunkeey@web.de>
6 * Copyright 2008, Johannes Berg <johannes@sipsolutions.net>
7 *
8 * Based on:
9 * - the islsm (softmac prism54) driver, which is:
10 * Copyright 2004-2006 Jean-Baptiste Note <jbnote@gmail.com>, et al.
11 * - stlc45xx driver
12 * Copyright (C) 2008 Nokia Corporation and/or its subsidiary(-ies).
13 *
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License version 2 as
16 * published by the Free Software Foundation.
17 */
18
19 #include <linux/init.h>
20 #include <linux/firmware.h>
21 #include <linux/etherdevice.h>
22
23 #include <net/mac80211.h>
24 #ifdef CONFIG_P54_LEDS
25 #include <linux/leds.h>
26 #endif /* CONFIG_P54_LEDS */
27
28 #include "p54.h"
29 #include "p54common.h"
30
31 static int modparam_nohwcrypt;
32 module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
33 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
34 MODULE_AUTHOR("Michael Wu <flamingice@sourmilk.net>");
35 MODULE_DESCRIPTION("Softmac Prism54 common code");
36 MODULE_LICENSE("GPL");
37 MODULE_ALIAS("prism54common");
38
39 static struct ieee80211_rate p54_bgrates[] = {
40 { .bitrate = 10, .hw_value = 0, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
41 { .bitrate = 20, .hw_value = 1, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
42 { .bitrate = 55, .hw_value = 2, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
43 { .bitrate = 110, .hw_value = 3, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
44 { .bitrate = 60, .hw_value = 4, },
45 { .bitrate = 90, .hw_value = 5, },
46 { .bitrate = 120, .hw_value = 6, },
47 { .bitrate = 180, .hw_value = 7, },
48 { .bitrate = 240, .hw_value = 8, },
49 { .bitrate = 360, .hw_value = 9, },
50 { .bitrate = 480, .hw_value = 10, },
51 { .bitrate = 540, .hw_value = 11, },
52 };
53
54 static struct ieee80211_channel p54_bgchannels[] = {
55 { .center_freq = 2412, .hw_value = 1, },
56 { .center_freq = 2417, .hw_value = 2, },
57 { .center_freq = 2422, .hw_value = 3, },
58 { .center_freq = 2427, .hw_value = 4, },
59 { .center_freq = 2432, .hw_value = 5, },
60 { .center_freq = 2437, .hw_value = 6, },
61 { .center_freq = 2442, .hw_value = 7, },
62 { .center_freq = 2447, .hw_value = 8, },
63 { .center_freq = 2452, .hw_value = 9, },
64 { .center_freq = 2457, .hw_value = 10, },
65 { .center_freq = 2462, .hw_value = 11, },
66 { .center_freq = 2467, .hw_value = 12, },
67 { .center_freq = 2472, .hw_value = 13, },
68 { .center_freq = 2484, .hw_value = 14, },
69 };
70
71 static struct ieee80211_supported_band band_2GHz = {
72 .channels = p54_bgchannels,
73 .n_channels = ARRAY_SIZE(p54_bgchannels),
74 .bitrates = p54_bgrates,
75 .n_bitrates = ARRAY_SIZE(p54_bgrates),
76 };
77
78 static struct ieee80211_rate p54_arates[] = {
79 { .bitrate = 60, .hw_value = 4, },
80 { .bitrate = 90, .hw_value = 5, },
81 { .bitrate = 120, .hw_value = 6, },
82 { .bitrate = 180, .hw_value = 7, },
83 { .bitrate = 240, .hw_value = 8, },
84 { .bitrate = 360, .hw_value = 9, },
85 { .bitrate = 480, .hw_value = 10, },
86 { .bitrate = 540, .hw_value = 11, },
87 };
88
89 static struct ieee80211_channel p54_achannels[] = {
90 { .center_freq = 4920 },
91 { .center_freq = 4940 },
92 { .center_freq = 4960 },
93 { .center_freq = 4980 },
94 { .center_freq = 5040 },
95 { .center_freq = 5060 },
96 { .center_freq = 5080 },
97 { .center_freq = 5170 },
98 { .center_freq = 5180 },
99 { .center_freq = 5190 },
100 { .center_freq = 5200 },
101 { .center_freq = 5210 },
102 { .center_freq = 5220 },
103 { .center_freq = 5230 },
104 { .center_freq = 5240 },
105 { .center_freq = 5260 },
106 { .center_freq = 5280 },
107 { .center_freq = 5300 },
108 { .center_freq = 5320 },
109 { .center_freq = 5500 },
110 { .center_freq = 5520 },
111 { .center_freq = 5540 },
112 { .center_freq = 5560 },
113 { .center_freq = 5580 },
114 { .center_freq = 5600 },
115 { .center_freq = 5620 },
116 { .center_freq = 5640 },
117 { .center_freq = 5660 },
118 { .center_freq = 5680 },
119 { .center_freq = 5700 },
120 { .center_freq = 5745 },
121 { .center_freq = 5765 },
122 { .center_freq = 5785 },
123 { .center_freq = 5805 },
124 { .center_freq = 5825 },
125 };
126
127 static struct ieee80211_supported_band band_5GHz = {
128 .channels = p54_achannels,
129 .n_channels = ARRAY_SIZE(p54_achannels),
130 .bitrates = p54_arates,
131 .n_bitrates = ARRAY_SIZE(p54_arates),
132 };
133
134 int p54_parse_firmware(struct ieee80211_hw *dev, const struct firmware *fw)
135 {
136 struct p54_common *priv = dev->priv;
137 struct bootrec_exp_if *exp_if;
138 struct bootrec *bootrec;
139 u32 *data = (u32 *)fw->data;
140 u32 *end_data = (u32 *)fw->data + (fw->size >> 2);
141 u8 *fw_version = NULL;
142 size_t len;
143 int i;
144 int maxlen;
145
146 if (priv->rx_start)
147 return 0;
148
149 while (data < end_data && *data)
150 data++;
151
152 while (data < end_data && !*data)
153 data++;
154
155 bootrec = (struct bootrec *) data;
156
157 while (bootrec->data <= end_data &&
158 (bootrec->data + (len = le32_to_cpu(bootrec->len))) <= end_data) {
159 u32 code = le32_to_cpu(bootrec->code);
160 switch (code) {
161 case BR_CODE_COMPONENT_ID:
162 priv->fw_interface = be32_to_cpup((__be32 *)
163 bootrec->data);
164 switch (priv->fw_interface) {
165 case FW_LM86:
166 case FW_LM20:
167 case FW_LM87: {
168 char *iftype = (char *)bootrec->data;
169 printk(KERN_INFO "%s: p54 detected a LM%c%c "
170 "firmware\n",
171 wiphy_name(dev->wiphy),
172 iftype[2], iftype[3]);
173 break;
174 }
175 case FW_FMAC:
176 default:
177 printk(KERN_ERR "%s: unsupported firmware\n",
178 wiphy_name(dev->wiphy));
179 return -ENODEV;
180 }
181 break;
182 case BR_CODE_COMPONENT_VERSION:
183 /* 24 bytes should be enough for all firmwares */
184 if (strnlen((unsigned char*)bootrec->data, 24) < 24)
185 fw_version = (unsigned char*)bootrec->data;
186 break;
187 case BR_CODE_DESCR: {
188 struct bootrec_desc *desc =
189 (struct bootrec_desc *)bootrec->data;
190 priv->rx_start = le32_to_cpu(desc->rx_start);
191 /* FIXME add sanity checking */
192 priv->rx_end = le32_to_cpu(desc->rx_end) - 0x3500;
193 priv->headroom = desc->headroom;
194 priv->tailroom = desc->tailroom;
195 priv->privacy_caps = desc->privacy_caps;
196 priv->rx_keycache_size = desc->rx_keycache_size;
197 if (le32_to_cpu(bootrec->len) == 11)
198 priv->rx_mtu = le16_to_cpu(desc->rx_mtu);
199 else
200 priv->rx_mtu = (size_t)
201 0x620 - priv->tx_hdr_len;
202 maxlen = priv->tx_hdr_len + /* USB devices */
203 sizeof(struct p54_rx_data) +
204 4 + /* rx alignment */
205 IEEE80211_MAX_FRAG_THRESHOLD;
206 if (priv->rx_mtu > maxlen && PAGE_SIZE == 4096) {
207 printk(KERN_INFO "p54: rx_mtu reduced from %d "
208 "to %d\n", priv->rx_mtu,
209 maxlen);
210 priv->rx_mtu = maxlen;
211 }
212 break;
213 }
214 case BR_CODE_EXPOSED_IF:
215 exp_if = (struct bootrec_exp_if *) bootrec->data;
216 for (i = 0; i < (len * sizeof(*exp_if) / 4); i++)
217 if (exp_if[i].if_id == cpu_to_le16(0x1a))
218 priv->fw_var = le16_to_cpu(exp_if[i].variant);
219 break;
220 case BR_CODE_DEPENDENT_IF:
221 break;
222 case BR_CODE_END_OF_BRA:
223 case LEGACY_BR_CODE_END_OF_BRA:
224 end_data = NULL;
225 break;
226 default:
227 break;
228 }
229 bootrec = (struct bootrec *)&bootrec->data[len];
230 }
231
232 if (fw_version)
233 printk(KERN_INFO "%s: FW rev %s - Softmac protocol %x.%x\n",
234 wiphy_name(dev->wiphy), fw_version,
235 priv->fw_var >> 8, priv->fw_var & 0xff);
236
237 if (priv->fw_var < 0x500)
238 printk(KERN_INFO "%s: you are using an obsolete firmware. "
239 "visit http://wireless.kernel.org/en/users/Drivers/p54 "
240 "and grab one for \"kernel >= 2.6.28\"!\n",
241 wiphy_name(dev->wiphy));
242
243 if (priv->fw_var >= 0x300) {
244 /* Firmware supports QoS, use it! */
245 priv->tx_stats[P54_QUEUE_AC_VO].limit = 3;
246 priv->tx_stats[P54_QUEUE_AC_VI].limit = 4;
247 priv->tx_stats[P54_QUEUE_AC_BE].limit = 3;
248 priv->tx_stats[P54_QUEUE_AC_BK].limit = 2;
249 dev->queues = P54_QUEUE_AC_NUM;
250 }
251
252 if (!modparam_nohwcrypt)
253 printk(KERN_INFO "%s: cryptographic accelerator "
254 "WEP:%s, TKIP:%s, CCMP:%s\n",
255 wiphy_name(dev->wiphy),
256 (priv->privacy_caps & BR_DESC_PRIV_CAP_WEP) ? "YES" :
257 "no", (priv->privacy_caps & (BR_DESC_PRIV_CAP_TKIP |
258 BR_DESC_PRIV_CAP_MICHAEL)) ? "YES" : "no",
259 (priv->privacy_caps & BR_DESC_PRIV_CAP_AESCCMP) ?
260 "YES" : "no");
261
262 return 0;
263 }
264 EXPORT_SYMBOL_GPL(p54_parse_firmware);
265
266 static int p54_convert_rev0(struct ieee80211_hw *dev,
267 struct pda_pa_curve_data *curve_data)
268 {
269 struct p54_common *priv = dev->priv;
270 struct p54_pa_curve_data_sample *dst;
271 struct pda_pa_curve_data_sample_rev0 *src;
272 size_t cd_len = sizeof(*curve_data) +
273 (curve_data->points_per_channel*sizeof(*dst) + 2) *
274 curve_data->channels;
275 unsigned int i, j;
276 void *source, *target;
277
278 priv->curve_data = kmalloc(sizeof(*priv->curve_data) + cd_len,
279 GFP_KERNEL);
280 if (!priv->curve_data)
281 return -ENOMEM;
282
283 priv->curve_data->entries = curve_data->channels;
284 priv->curve_data->entry_size = sizeof(__le16) +
285 sizeof(*dst) * curve_data->points_per_channel;
286 priv->curve_data->offset = offsetof(struct pda_pa_curve_data, data);
287 priv->curve_data->len = cd_len;
288 memcpy(priv->curve_data->data, curve_data, sizeof(*curve_data));
289 source = curve_data->data;
290 target = ((struct pda_pa_curve_data *) priv->curve_data->data)->data;
291 for (i = 0; i < curve_data->channels; i++) {
292 __le16 *freq = source;
293 source += sizeof(__le16);
294 *((__le16 *)target) = *freq;
295 target += sizeof(__le16);
296 for (j = 0; j < curve_data->points_per_channel; j++) {
297 dst = target;
298 src = source;
299
300 dst->rf_power = src->rf_power;
301 dst->pa_detector = src->pa_detector;
302 dst->data_64qam = src->pcv;
303 /* "invent" the points for the other modulations */
304 #define SUB(x,y) (u8)((x) - (y)) > (x) ? 0 : (x) - (y)
305 dst->data_16qam = SUB(src->pcv, 12);
306 dst->data_qpsk = SUB(dst->data_16qam, 12);
307 dst->data_bpsk = SUB(dst->data_qpsk, 12);
308 dst->data_barker = SUB(dst->data_bpsk, 14);
309 #undef SUB
310 target += sizeof(*dst);
311 source += sizeof(*src);
312 }
313 }
314
315 return 0;
316 }
317
318 static int p54_convert_rev1(struct ieee80211_hw *dev,
319 struct pda_pa_curve_data *curve_data)
320 {
321 struct p54_common *priv = dev->priv;
322 struct p54_pa_curve_data_sample *dst;
323 struct pda_pa_curve_data_sample_rev1 *src;
324 size_t cd_len = sizeof(*curve_data) +
325 (curve_data->points_per_channel*sizeof(*dst) + 2) *
326 curve_data->channels;
327 unsigned int i, j;
328 void *source, *target;
329
330 priv->curve_data = kzalloc(cd_len + sizeof(*priv->curve_data),
331 GFP_KERNEL);
332 if (!priv->curve_data)
333 return -ENOMEM;
334
335 priv->curve_data->entries = curve_data->channels;
336 priv->curve_data->entry_size = sizeof(__le16) +
337 sizeof(*dst) * curve_data->points_per_channel;
338 priv->curve_data->offset = offsetof(struct pda_pa_curve_data, data);
339 priv->curve_data->len = cd_len;
340 memcpy(priv->curve_data->data, curve_data, sizeof(*curve_data));
341 source = curve_data->data;
342 target = ((struct pda_pa_curve_data *) priv->curve_data->data)->data;
343 for (i = 0; i < curve_data->channels; i++) {
344 __le16 *freq = source;
345 source += sizeof(__le16);
346 *((__le16 *)target) = *freq;
347 target += sizeof(__le16);
348 for (j = 0; j < curve_data->points_per_channel; j++) {
349 memcpy(target, source, sizeof(*src));
350
351 target += sizeof(*dst);
352 source += sizeof(*src);
353 }
354 source++;
355 }
356
357 return 0;
358 }
359
360 static const char *p54_rf_chips[] = { "NULL", "Duette3", "Duette2",
361 "Frisbee", "Xbow", "Longbow", "NULL", "NULL" };
362 static int p54_init_xbow_synth(struct ieee80211_hw *dev);
363
364 static void p54_parse_rssical(struct ieee80211_hw *dev, void *data, int len,
365 u16 type)
366 {
367 struct p54_common *priv = dev->priv;
368 int offset = (type == PDR_RSSI_LINEAR_APPROXIMATION_EXTENDED) ? 2 : 0;
369 int entry_size = sizeof(struct pda_rssi_cal_entry) + offset;
370 int num_entries = (type == PDR_RSSI_LINEAR_APPROXIMATION) ? 1 : 2;
371 int i;
372
373 if (len != (entry_size * num_entries)) {
374 printk(KERN_ERR "%s: unknown rssi calibration data packing "
375 " type:(%x) len:%d.\n",
376 wiphy_name(dev->wiphy), type, len);
377
378 print_hex_dump_bytes("rssical:", DUMP_PREFIX_NONE,
379 data, len);
380
381 printk(KERN_ERR "%s: please report this issue.\n",
382 wiphy_name(dev->wiphy));
383 return;
384 }
385
386 for (i = 0; i < num_entries; i++) {
387 struct pda_rssi_cal_entry *cal = data +
388 (offset + i * entry_size);
389 priv->rssical_db[i].mul = (s16) le16_to_cpu(cal->mul);
390 priv->rssical_db[i].add = (s16) le16_to_cpu(cal->add);
391 }
392 }
393
394 static void p54_parse_default_country(struct ieee80211_hw *dev,
395 void *data, int len)
396 {
397 struct pda_country *country;
398
399 if (len != sizeof(*country)) {
400 printk(KERN_ERR "%s: found possible invalid default country "
401 "eeprom entry. (entry size: %d)\n",
402 wiphy_name(dev->wiphy), len);
403
404 print_hex_dump_bytes("country:", DUMP_PREFIX_NONE,
405 data, len);
406
407 printk(KERN_ERR "%s: please report this issue.\n",
408 wiphy_name(dev->wiphy));
409 return;
410 }
411
412 country = (struct pda_country *) data;
413 if (country->flags == PDR_COUNTRY_CERT_CODE_PSEUDO)
414 regulatory_hint(dev->wiphy, country->alpha2);
415 else {
416 /* TODO:
417 * write a shared/common function that converts
418 * "Regulatory domain codes" (802.11-2007 14.8.2.2)
419 * into ISO/IEC 3166-1 alpha2 for regulatory_hint.
420 */
421 }
422 }
423
424 static int p54_convert_output_limits(struct ieee80211_hw *dev,
425 u8 *data, size_t len)
426 {
427 struct p54_common *priv = dev->priv;
428
429 if (len < 2)
430 return -EINVAL;
431
432 if (data[0] != 0) {
433 printk(KERN_ERR "%s: unknown output power db revision:%x\n",
434 wiphy_name(dev->wiphy), data[0]);
435 return -EINVAL;
436 }
437
438 if (2 + data[1] * sizeof(struct pda_channel_output_limit) > len)
439 return -EINVAL;
440
441 priv->output_limit = kmalloc(data[1] *
442 sizeof(struct pda_channel_output_limit) +
443 sizeof(*priv->output_limit), GFP_KERNEL);
444
445 if (!priv->output_limit)
446 return -ENOMEM;
447
448 priv->output_limit->offset = 0;
449 priv->output_limit->entries = data[1];
450 priv->output_limit->entry_size =
451 sizeof(struct pda_channel_output_limit);
452 priv->output_limit->len = priv->output_limit->entry_size *
453 priv->output_limit->entries +
454 priv->output_limit->offset;
455
456 memcpy(priv->output_limit->data, &data[2],
457 data[1] * sizeof(struct pda_channel_output_limit));
458
459 return 0;
460 }
461
462 static struct p54_cal_database *p54_convert_db(struct pda_custom_wrapper *src,
463 size_t total_len)
464 {
465 struct p54_cal_database *dst;
466 size_t payload_len, entries, entry_size, offset;
467
468 payload_len = le16_to_cpu(src->len);
469 entries = le16_to_cpu(src->entries);
470 entry_size = le16_to_cpu(src->entry_size);
471 offset = le16_to_cpu(src->offset);
472 if (((entries * entry_size + offset) != payload_len) ||
473 (payload_len + sizeof(*src) != total_len))
474 return NULL;
475
476 dst = kmalloc(sizeof(*dst) + payload_len, GFP_KERNEL);
477 if (!dst)
478 return NULL;
479
480 dst->entries = entries;
481 dst->entry_size = entry_size;
482 dst->offset = offset;
483 dst->len = payload_len;
484
485 memcpy(dst->data, src->data, payload_len);
486 return dst;
487 }
488
489 int p54_parse_eeprom(struct ieee80211_hw *dev, void *eeprom, int len)
490 {
491 struct p54_common *priv = dev->priv;
492 struct eeprom_pda_wrap *wrap = NULL;
493 struct pda_entry *entry;
494 unsigned int data_len, entry_len;
495 void *tmp;
496 int err;
497 u8 *end = (u8 *)eeprom + len;
498 u16 synth = 0;
499
500 wrap = (struct eeprom_pda_wrap *) eeprom;
501 entry = (void *)wrap->data + le16_to_cpu(wrap->len);
502
503 /* verify that at least the entry length/code fits */
504 while ((u8 *)entry <= end - sizeof(*entry)) {
505 entry_len = le16_to_cpu(entry->len);
506 data_len = ((entry_len - 1) << 1);
507
508 /* abort if entry exceeds whole structure */
509 if ((u8 *)entry + sizeof(*entry) + data_len > end)
510 break;
511
512 switch (le16_to_cpu(entry->code)) {
513 case PDR_MAC_ADDRESS:
514 if (data_len != ETH_ALEN)
515 break;
516 SET_IEEE80211_PERM_ADDR(dev, entry->data);
517 break;
518 case PDR_PRISM_PA_CAL_OUTPUT_POWER_LIMITS:
519 if (priv->output_limit)
520 break;
521 err = p54_convert_output_limits(dev, entry->data,
522 data_len);
523 if (err)
524 goto err;
525 break;
526 case PDR_PRISM_PA_CAL_CURVE_DATA: {
527 struct pda_pa_curve_data *curve_data =
528 (struct pda_pa_curve_data *)entry->data;
529 if (data_len < sizeof(*curve_data)) {
530 err = -EINVAL;
531 goto err;
532 }
533
534 switch (curve_data->cal_method_rev) {
535 case 0:
536 err = p54_convert_rev0(dev, curve_data);
537 break;
538 case 1:
539 err = p54_convert_rev1(dev, curve_data);
540 break;
541 default:
542 printk(KERN_ERR "%s: unknown curve data "
543 "revision %d\n",
544 wiphy_name(dev->wiphy),
545 curve_data->cal_method_rev);
546 err = -ENODEV;
547 break;
548 }
549 if (err)
550 goto err;
551 }
552 break;
553 case PDR_PRISM_ZIF_TX_IQ_CALIBRATION:
554 priv->iq_autocal = kmalloc(data_len, GFP_KERNEL);
555 if (!priv->iq_autocal) {
556 err = -ENOMEM;
557 goto err;
558 }
559
560 memcpy(priv->iq_autocal, entry->data, data_len);
561 priv->iq_autocal_len = data_len / sizeof(struct pda_iq_autocal_entry);
562 break;
563 case PDR_DEFAULT_COUNTRY:
564 p54_parse_default_country(dev, entry->data, data_len);
565 break;
566 case PDR_INTERFACE_LIST:
567 tmp = entry->data;
568 while ((u8 *)tmp < entry->data + data_len) {
569 struct bootrec_exp_if *exp_if = tmp;
570 if (le16_to_cpu(exp_if->if_id) == 0xf)
571 synth = le16_to_cpu(exp_if->variant);
572 tmp += sizeof(struct bootrec_exp_if);
573 }
574 break;
575 case PDR_HARDWARE_PLATFORM_COMPONENT_ID:
576 if (data_len < 2)
577 break;
578 priv->version = *(u8 *)(entry->data + 1);
579 break;
580 case PDR_RSSI_LINEAR_APPROXIMATION:
581 case PDR_RSSI_LINEAR_APPROXIMATION_DUAL_BAND:
582 case PDR_RSSI_LINEAR_APPROXIMATION_EXTENDED:
583 p54_parse_rssical(dev, entry->data, data_len,
584 le16_to_cpu(entry->code));
585 break;
586 case PDR_RSSI_LINEAR_APPROXIMATION_CUSTOM: {
587 __le16 *src = (void *) entry->data;
588 s16 *dst = (void *) &priv->rssical_db;
589 int i;
590
591 if (data_len != sizeof(priv->rssical_db)) {
592 err = -EINVAL;
593 goto err;
594 }
595 for (i = 0; i < sizeof(priv->rssical_db) /
596 sizeof(*src); i++)
597 *(dst++) = (s16) le16_to_cpu(*(src++));
598 }
599 break;
600 case PDR_PRISM_PA_CAL_OUTPUT_POWER_LIMITS_CUSTOM: {
601 struct pda_custom_wrapper *pda = (void *) entry->data;
602 if (priv->output_limit || data_len < sizeof(*pda))
603 break;
604 priv->output_limit = p54_convert_db(pda, data_len);
605 }
606 break;
607 case PDR_PRISM_PA_CAL_CURVE_DATA_CUSTOM: {
608 struct pda_custom_wrapper *pda = (void *) entry->data;
609 if (priv->curve_data || data_len < sizeof(*pda))
610 break;
611 priv->curve_data = p54_convert_db(pda, data_len);
612 }
613 break;
614 case PDR_END:
615 /* make it overrun */
616 entry_len = len;
617 break;
618 case PDR_MANUFACTURING_PART_NUMBER:
619 case PDR_PDA_VERSION:
620 case PDR_NIC_SERIAL_NUMBER:
621 case PDR_REGULATORY_DOMAIN_LIST:
622 case PDR_TEMPERATURE_TYPE:
623 case PDR_PRISM_PCI_IDENTIFIER:
624 case PDR_COUNTRY_INFORMATION:
625 case PDR_OEM_NAME:
626 case PDR_PRODUCT_NAME:
627 case PDR_UTF8_OEM_NAME:
628 case PDR_UTF8_PRODUCT_NAME:
629 case PDR_COUNTRY_LIST:
630 case PDR_ANTENNA_GAIN:
631 case PDR_PRISM_INDIGO_PA_CALIBRATION_DATA:
632 case PDR_REGULATORY_POWER_LIMITS:
633 case PDR_RADIATED_TRANSMISSION_CORRECTION:
634 case PDR_PRISM_TX_IQ_CALIBRATION:
635 case PDR_BASEBAND_REGISTERS:
636 case PDR_PER_CHANNEL_BASEBAND_REGISTERS:
637 break;
638 default:
639 printk(KERN_INFO "%s: unknown eeprom code : 0x%x\n",
640 wiphy_name(dev->wiphy),
641 le16_to_cpu(entry->code));
642 break;
643 }
644
645 entry = (void *)entry + (entry_len + 1)*2;
646 }
647
648 if (!synth || !priv->iq_autocal || !priv->output_limit ||
649 !priv->curve_data) {
650 printk(KERN_ERR "%s: not all required entries found in eeprom!\n",
651 wiphy_name(dev->wiphy));
652 err = -EINVAL;
653 goto err;
654 }
655
656 priv->rxhw = synth & PDR_SYNTH_FRONTEND_MASK;
657 if (priv->rxhw == PDR_SYNTH_FRONTEND_XBOW)
658 p54_init_xbow_synth(dev);
659 if (!(synth & PDR_SYNTH_24_GHZ_DISABLED))
660 dev->wiphy->bands[IEEE80211_BAND_2GHZ] = &band_2GHz;
661 if (!(synth & PDR_SYNTH_5_GHZ_DISABLED))
662 dev->wiphy->bands[IEEE80211_BAND_5GHZ] = &band_5GHz;
663 if ((synth & PDR_SYNTH_RX_DIV_MASK) == PDR_SYNTH_RX_DIV_SUPPORTED)
664 priv->rx_diversity_mask = 3;
665 if ((synth & PDR_SYNTH_TX_DIV_MASK) == PDR_SYNTH_TX_DIV_SUPPORTED)
666 priv->tx_diversity_mask = 3;
667
668 if (!is_valid_ether_addr(dev->wiphy->perm_addr)) {
669 u8 perm_addr[ETH_ALEN];
670
671 printk(KERN_WARNING "%s: Invalid hwaddr! Using randomly generated MAC addr\n",
672 wiphy_name(dev->wiphy));
673 random_ether_addr(perm_addr);
674 SET_IEEE80211_PERM_ADDR(dev, perm_addr);
675 }
676
677 printk(KERN_INFO "%s: hwaddr %pM, MAC:isl38%02x RF:%s\n",
678 wiphy_name(dev->wiphy),
679 dev->wiphy->perm_addr,
680 priv->version, p54_rf_chips[priv->rxhw]);
681
682 return 0;
683
684 err:
685 if (priv->iq_autocal) {
686 kfree(priv->iq_autocal);
687 priv->iq_autocal = NULL;
688 }
689
690 if (priv->output_limit) {
691 kfree(priv->output_limit);
692 priv->output_limit = NULL;
693 }
694
695 if (priv->curve_data) {
696 kfree(priv->curve_data);
697 priv->curve_data = NULL;
698 }
699
700 printk(KERN_ERR "%s: eeprom parse failed!\n",
701 wiphy_name(dev->wiphy));
702 return err;
703 }
704 EXPORT_SYMBOL_GPL(p54_parse_eeprom);
705
706 static int p54_rssi_to_dbm(struct ieee80211_hw *dev, int rssi)
707 {
708 struct p54_common *priv = dev->priv;
709 int band = dev->conf.channel->band;
710
711 if (priv->rxhw != PDR_SYNTH_FRONTEND_LONGBOW)
712 return ((rssi * priv->rssical_db[band].mul) / 64 +
713 priv->rssical_db[band].add) / 4;
714 else
715 /*
716 * TODO: find the correct formula
717 */
718 return ((rssi * priv->rssical_db[band].mul) / 64 +
719 priv->rssical_db[band].add) / 4;
720 }
721
722 static int p54_rx_data(struct ieee80211_hw *dev, struct sk_buff *skb)
723 {
724 struct p54_common *priv = dev->priv;
725 struct p54_rx_data *hdr = (struct p54_rx_data *) skb->data;
726 struct ieee80211_rx_status rx_status = {0};
727 u16 freq = le16_to_cpu(hdr->freq);
728 size_t header_len = sizeof(*hdr);
729 u32 tsf32;
730 u8 rate = hdr->rate & 0xf;
731
732 /*
733 * If the device is in a unspecified state we have to
734 * ignore all data frames. Else we could end up with a
735 * nasty crash.
736 */
737 if (unlikely(priv->mode == NL80211_IFTYPE_UNSPECIFIED))
738 return 0;
739
740 if (!(hdr->flags & cpu_to_le16(P54_HDR_FLAG_DATA_IN_FCS_GOOD))) {
741 return 0;
742 }
743
744 if (hdr->decrypt_status == P54_DECRYPT_OK)
745 rx_status.flag |= RX_FLAG_DECRYPTED;
746 if ((hdr->decrypt_status == P54_DECRYPT_FAIL_MICHAEL) ||
747 (hdr->decrypt_status == P54_DECRYPT_FAIL_TKIP))
748 rx_status.flag |= RX_FLAG_MMIC_ERROR;
749
750 rx_status.signal = p54_rssi_to_dbm(dev, hdr->rssi);
751 rx_status.noise = priv->noise;
752 /* XX correct? */
753 rx_status.qual = (100 * hdr->rssi) / 127;
754 if (hdr->rate & 0x10)
755 rx_status.flag |= RX_FLAG_SHORTPRE;
756 if (dev->conf.channel->band == IEEE80211_BAND_5GHZ)
757 rx_status.rate_idx = (rate < 4) ? 0 : rate - 4;
758 else
759 rx_status.rate_idx = rate;
760
761 rx_status.freq = freq;
762 rx_status.band = dev->conf.channel->band;
763 rx_status.antenna = hdr->antenna;
764
765 tsf32 = le32_to_cpu(hdr->tsf32);
766 if (tsf32 < priv->tsf_low32)
767 priv->tsf_high32++;
768 rx_status.mactime = ((u64)priv->tsf_high32) << 32 | tsf32;
769 priv->tsf_low32 = tsf32;
770
771 rx_status.flag |= RX_FLAG_TSFT;
772
773 if (hdr->flags & cpu_to_le16(P54_HDR_FLAG_DATA_ALIGN))
774 header_len += hdr->align[0];
775
776 skb_pull(skb, header_len);
777 skb_trim(skb, le16_to_cpu(hdr->len));
778
779 ieee80211_rx_irqsafe(dev, skb, &rx_status);
780
781 queue_delayed_work(dev->workqueue, &priv->work,
782 msecs_to_jiffies(P54_STATISTICS_UPDATE));
783
784 return -1;
785 }
786
787 static void inline p54_wake_free_queues(struct ieee80211_hw *dev)
788 {
789 struct p54_common *priv = dev->priv;
790 int i;
791
792 if (priv->mode == NL80211_IFTYPE_UNSPECIFIED)
793 return ;
794
795 for (i = 0; i < dev->queues; i++)
796 if (priv->tx_stats[i + P54_QUEUE_DATA].len <
797 priv->tx_stats[i + P54_QUEUE_DATA].limit)
798 ieee80211_wake_queue(dev, i);
799 }
800
801 void p54_free_skb(struct ieee80211_hw *dev, struct sk_buff *skb)
802 {
803 struct p54_common *priv = dev->priv;
804 struct ieee80211_tx_info *info;
805 struct p54_tx_info *range;
806 unsigned long flags;
807 u32 freed = 0, last_addr = priv->rx_start;
808
809 if (unlikely(!skb || !dev || !skb_queue_len(&priv->tx_queue)))
810 return;
811
812 /*
813 * don't try to free an already unlinked skb
814 */
815 if (unlikely((!skb->next) || (!skb->prev)))
816 return;
817
818 spin_lock_irqsave(&priv->tx_queue.lock, flags);
819 info = IEEE80211_SKB_CB(skb);
820 range = (void *)info->rate_driver_data;
821 if (skb->prev != (struct sk_buff *)&priv->tx_queue) {
822 struct ieee80211_tx_info *ni;
823 struct p54_tx_info *mr;
824
825 ni = IEEE80211_SKB_CB(skb->prev);
826 mr = (struct p54_tx_info *)ni->rate_driver_data;
827 last_addr = mr->end_addr;
828 }
829 if (skb->next != (struct sk_buff *)&priv->tx_queue) {
830 struct ieee80211_tx_info *ni;
831 struct p54_tx_info *mr;
832
833 ni = IEEE80211_SKB_CB(skb->next);
834 mr = (struct p54_tx_info *)ni->rate_driver_data;
835 freed = mr->start_addr - last_addr;
836 } else
837 freed = priv->rx_end - last_addr;
838 __skb_unlink(skb, &priv->tx_queue);
839 spin_unlock_irqrestore(&priv->tx_queue.lock, flags);
840 dev_kfree_skb_any(skb);
841
842 if (freed >= priv->headroom + sizeof(struct p54_hdr) + 48 +
843 IEEE80211_MAX_RTS_THRESHOLD + priv->tailroom)
844 p54_wake_free_queues(dev);
845 }
846 EXPORT_SYMBOL_GPL(p54_free_skb);
847
848 static struct sk_buff *p54_find_tx_entry(struct ieee80211_hw *dev,
849 __le32 req_id)
850 {
851 struct p54_common *priv = dev->priv;
852 struct sk_buff *entry;
853 unsigned long flags;
854
855 spin_lock_irqsave(&priv->tx_queue.lock, flags);
856 entry = priv->tx_queue.next;
857 while (entry != (struct sk_buff *)&priv->tx_queue) {
858 struct p54_hdr *hdr = (struct p54_hdr *) entry->data;
859
860 if (hdr->req_id == req_id) {
861 spin_unlock_irqrestore(&priv->tx_queue.lock, flags);
862 return entry;
863 }
864 entry = entry->next;
865 }
866 spin_unlock_irqrestore(&priv->tx_queue.lock, flags);
867 return NULL;
868 }
869
870 static void p54_rx_frame_sent(struct ieee80211_hw *dev, struct sk_buff *skb)
871 {
872 struct p54_common *priv = dev->priv;
873 struct p54_hdr *hdr = (struct p54_hdr *) skb->data;
874 struct p54_frame_sent *payload = (struct p54_frame_sent *) hdr->data;
875 struct sk_buff *entry;
876 u32 addr = le32_to_cpu(hdr->req_id) - priv->headroom;
877 struct p54_tx_info *range = NULL;
878 u32 freed = 0;
879 u32 last_addr = priv->rx_start;
880 unsigned long flags;
881 int count, idx;
882
883 spin_lock_irqsave(&priv->tx_queue.lock, flags);
884 entry = (struct sk_buff *) priv->tx_queue.next;
885 while (entry != (struct sk_buff *)&priv->tx_queue) {
886 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(entry);
887 struct p54_hdr *entry_hdr;
888 struct p54_tx_data *entry_data;
889 unsigned int pad = 0, frame_len;
890
891 range = (void *)info->rate_driver_data;
892 if (range->start_addr != addr) {
893 last_addr = range->end_addr;
894 entry = entry->next;
895 continue;
896 }
897
898 if (entry->next != (struct sk_buff *)&priv->tx_queue) {
899 struct ieee80211_tx_info *ni;
900 struct p54_tx_info *mr;
901
902 ni = IEEE80211_SKB_CB(entry->next);
903 mr = (struct p54_tx_info *)ni->rate_driver_data;
904 freed = mr->start_addr - last_addr;
905 } else
906 freed = priv->rx_end - last_addr;
907
908 last_addr = range->end_addr;
909 __skb_unlink(entry, &priv->tx_queue);
910 spin_unlock_irqrestore(&priv->tx_queue.lock, flags);
911
912 frame_len = entry->len;
913 entry_hdr = (struct p54_hdr *) entry->data;
914 entry_data = (struct p54_tx_data *) entry_hdr->data;
915 priv->tx_stats[entry_data->hw_queue].len--;
916 priv->stats.dot11ACKFailureCount += payload->tries - 1;
917
918 /*
919 * Frames in P54_QUEUE_FWSCAN and P54_QUEUE_BEACON are
920 * generated by the driver. Therefore tx_status is bogus
921 * and we don't want to confuse the mac80211 stack.
922 */
923 if (unlikely(entry_data->hw_queue < P54_QUEUE_FWSCAN)) {
924 if (entry_data->hw_queue == P54_QUEUE_BEACON)
925 priv->cached_beacon = NULL;
926
927 kfree_skb(entry);
928 goto out;
929 }
930
931 /*
932 * Clear manually, ieee80211_tx_info_clear_status would
933 * clear the counts too and we need them.
934 */
935 memset(&info->status.ampdu_ack_len, 0,
936 sizeof(struct ieee80211_tx_info) -
937 offsetof(struct ieee80211_tx_info, status.ampdu_ack_len));
938 BUILD_BUG_ON(offsetof(struct ieee80211_tx_info,
939 status.ampdu_ack_len) != 23);
940
941 if (entry_hdr->flags & cpu_to_le16(P54_HDR_FLAG_DATA_ALIGN))
942 pad = entry_data->align[0];
943
944 /* walk through the rates array and adjust the counts */
945 count = payload->tries;
946 for (idx = 0; idx < 4; idx++) {
947 if (count >= info->status.rates[idx].count) {
948 count -= info->status.rates[idx].count;
949 } else if (count > 0) {
950 info->status.rates[idx].count = count;
951 count = 0;
952 } else {
953 info->status.rates[idx].idx = -1;
954 info->status.rates[idx].count = 0;
955 }
956 }
957
958 if (!(info->flags & IEEE80211_TX_CTL_NO_ACK) &&
959 (!payload->status))
960 info->flags |= IEEE80211_TX_STAT_ACK;
961 if (payload->status & P54_TX_PSM_CANCELLED)
962 info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
963 info->status.ack_signal = p54_rssi_to_dbm(dev,
964 (int)payload->ack_rssi);
965
966 /* Undo all changes to the frame. */
967 switch (entry_data->key_type) {
968 case P54_CRYPTO_TKIPMICHAEL: {
969 u8 *iv = (u8 *)(entry_data->align + pad +
970 entry_data->crypt_offset);
971
972 /* Restore the original TKIP IV. */
973 iv[2] = iv[0];
974 iv[0] = iv[1];
975 iv[1] = (iv[0] | 0x20) & 0x7f; /* WEPSeed - 8.3.2.2 */
976
977 frame_len -= 12; /* remove TKIP_MMIC + TKIP_ICV */
978 break;
979 }
980 case P54_CRYPTO_AESCCMP:
981 frame_len -= 8; /* remove CCMP_MIC */
982 break;
983 case P54_CRYPTO_WEP:
984 frame_len -= 4; /* remove WEP_ICV */
985 break;
986 }
987 skb_trim(entry, frame_len);
988 skb_pull(entry, sizeof(*hdr) + pad + sizeof(*entry_data));
989 ieee80211_tx_status_irqsafe(dev, entry);
990 goto out;
991 }
992 spin_unlock_irqrestore(&priv->tx_queue.lock, flags);
993
994 out:
995 if (freed >= priv->headroom + sizeof(struct p54_hdr) + 48 +
996 IEEE80211_MAX_RTS_THRESHOLD + priv->tailroom)
997 p54_wake_free_queues(dev);
998 }
999
1000 static void p54_rx_eeprom_readback(struct ieee80211_hw *dev,
1001 struct sk_buff *skb)
1002 {
1003 struct p54_hdr *hdr = (struct p54_hdr *) skb->data;
1004 struct p54_eeprom_lm86 *eeprom = (struct p54_eeprom_lm86 *) hdr->data;
1005 struct p54_common *priv = dev->priv;
1006
1007 if (!priv->eeprom)
1008 return ;
1009
1010 if (priv->fw_var >= 0x509) {
1011 memcpy(priv->eeprom, eeprom->v2.data,
1012 le16_to_cpu(eeprom->v2.len));
1013 } else {
1014 memcpy(priv->eeprom, eeprom->v1.data,
1015 le16_to_cpu(eeprom->v1.len));
1016 }
1017
1018 complete(&priv->eeprom_comp);
1019 }
1020
1021 static void p54_rx_stats(struct ieee80211_hw *dev, struct sk_buff *skb)
1022 {
1023 struct p54_common *priv = dev->priv;
1024 struct p54_hdr *hdr = (struct p54_hdr *) skb->data;
1025 struct p54_statistics *stats = (struct p54_statistics *) hdr->data;
1026 u32 tsf32;
1027
1028 if (unlikely(priv->mode == NL80211_IFTYPE_UNSPECIFIED))
1029 return ;
1030
1031 tsf32 = le32_to_cpu(stats->tsf32);
1032 if (tsf32 < priv->tsf_low32)
1033 priv->tsf_high32++;
1034 priv->tsf_low32 = tsf32;
1035
1036 priv->stats.dot11RTSFailureCount = le32_to_cpu(stats->rts_fail);
1037 priv->stats.dot11RTSSuccessCount = le32_to_cpu(stats->rts_success);
1038 priv->stats.dot11FCSErrorCount = le32_to_cpu(stats->rx_bad_fcs);
1039
1040 priv->noise = p54_rssi_to_dbm(dev, le32_to_cpu(stats->noise));
1041
1042 p54_free_skb(dev, p54_find_tx_entry(dev, hdr->req_id));
1043 }
1044
1045 static void p54_rx_trap(struct ieee80211_hw *dev, struct sk_buff *skb)
1046 {
1047 struct p54_hdr *hdr = (struct p54_hdr *) skb->data;
1048 struct p54_trap *trap = (struct p54_trap *) hdr->data;
1049 u16 event = le16_to_cpu(trap->event);
1050 u16 freq = le16_to_cpu(trap->frequency);
1051
1052 switch (event) {
1053 case P54_TRAP_BEACON_TX:
1054 break;
1055 case P54_TRAP_RADAR:
1056 printk(KERN_INFO "%s: radar (freq:%d MHz)\n",
1057 wiphy_name(dev->wiphy), freq);
1058 break;
1059 case P54_TRAP_NO_BEACON:
1060 break;
1061 case P54_TRAP_SCAN:
1062 break;
1063 case P54_TRAP_TBTT:
1064 break;
1065 case P54_TRAP_TIMER:
1066 break;
1067 default:
1068 printk(KERN_INFO "%s: received event:%x freq:%d\n",
1069 wiphy_name(dev->wiphy), event, freq);
1070 break;
1071 }
1072 }
1073
1074 static int p54_rx_control(struct ieee80211_hw *dev, struct sk_buff *skb)
1075 {
1076 struct p54_hdr *hdr = (struct p54_hdr *) skb->data;
1077
1078 switch (le16_to_cpu(hdr->type)) {
1079 case P54_CONTROL_TYPE_TXDONE:
1080 p54_rx_frame_sent(dev, skb);
1081 break;
1082 case P54_CONTROL_TYPE_TRAP:
1083 p54_rx_trap(dev, skb);
1084 break;
1085 case P54_CONTROL_TYPE_BBP:
1086 break;
1087 case P54_CONTROL_TYPE_STAT_READBACK:
1088 p54_rx_stats(dev, skb);
1089 break;
1090 case P54_CONTROL_TYPE_EEPROM_READBACK:
1091 p54_rx_eeprom_readback(dev, skb);
1092 break;
1093 default:
1094 printk(KERN_DEBUG "%s: not handling 0x%02x type control frame\n",
1095 wiphy_name(dev->wiphy), le16_to_cpu(hdr->type));
1096 break;
1097 }
1098
1099 return 0;
1100 }
1101
1102 /* returns zero if skb can be reused */
1103 int p54_rx(struct ieee80211_hw *dev, struct sk_buff *skb)
1104 {
1105 u16 type = le16_to_cpu(*((__le16 *)skb->data));
1106
1107 if (type & P54_HDR_FLAG_CONTROL)
1108 return p54_rx_control(dev, skb);
1109 else
1110 return p54_rx_data(dev, skb);
1111 }
1112 EXPORT_SYMBOL_GPL(p54_rx);
1113
1114 /*
1115 * So, the firmware is somewhat stupid and doesn't know what places in its
1116 * memory incoming data should go to. By poking around in the firmware, we
1117 * can find some unused memory to upload our packets to. However, data that we
1118 * want the card to TX needs to stay intact until the card has told us that
1119 * it is done with it. This function finds empty places we can upload to and
1120 * marks allocated areas as reserved if necessary. p54_rx_frame_sent or
1121 * p54_free_skb frees allocated areas.
1122 */
1123 static int p54_assign_address(struct ieee80211_hw *dev, struct sk_buff *skb,
1124 struct p54_hdr *data, u32 len)
1125 {
1126 struct p54_common *priv = dev->priv;
1127 struct sk_buff *entry;
1128 struct sk_buff *target_skb = NULL;
1129 struct ieee80211_tx_info *info;
1130 struct p54_tx_info *range;
1131 u32 last_addr = priv->rx_start;
1132 u32 largest_hole = 0;
1133 u32 target_addr = priv->rx_start;
1134 unsigned long flags;
1135 unsigned int left;
1136 len = (len + priv->headroom + priv->tailroom + 3) & ~0x3;
1137
1138 if (!skb)
1139 return -EINVAL;
1140
1141 spin_lock_irqsave(&priv->tx_queue.lock, flags);
1142
1143 left = skb_queue_len(&priv->tx_queue);
1144 if (unlikely(left >= 28)) {
1145 /*
1146 * The tx_queue is nearly full!
1147 * We have throttle normal data traffic, because we must
1148 * have a few spare slots for control frames left.
1149 */
1150 ieee80211_stop_queues(dev);
1151 queue_delayed_work(dev->workqueue, &priv->work,
1152 msecs_to_jiffies(P54_TX_TIMEOUT));
1153
1154 if (unlikely(left == 32)) {
1155 /*
1156 * The tx_queue is now really full.
1157 *
1158 * TODO: check if the device has crashed and reset it.
1159 */
1160 spin_unlock_irqrestore(&priv->tx_queue.lock, flags);
1161 return -ENOSPC;
1162 }
1163 }
1164
1165 entry = priv->tx_queue.next;
1166 while (left--) {
1167 u32 hole_size;
1168 info = IEEE80211_SKB_CB(entry);
1169 range = (void *)info->rate_driver_data;
1170 hole_size = range->start_addr - last_addr;
1171 if (!target_skb && hole_size >= len) {
1172 target_skb = entry->prev;
1173 hole_size -= len;
1174 target_addr = last_addr;
1175 }
1176 largest_hole = max(largest_hole, hole_size);
1177 last_addr = range->end_addr;
1178 entry = entry->next;
1179 }
1180 if (!target_skb && priv->rx_end - last_addr >= len) {
1181 target_skb = priv->tx_queue.prev;
1182 largest_hole = max(largest_hole, priv->rx_end - last_addr - len);
1183 if (!skb_queue_empty(&priv->tx_queue)) {
1184 info = IEEE80211_SKB_CB(target_skb);
1185 range = (void *)info->rate_driver_data;
1186 target_addr = range->end_addr;
1187 }
1188 } else
1189 largest_hole = max(largest_hole, priv->rx_end - last_addr);
1190
1191 if (!target_skb) {
1192 spin_unlock_irqrestore(&priv->tx_queue.lock, flags);
1193 ieee80211_stop_queues(dev);
1194 return -ENOSPC;
1195 }
1196
1197 info = IEEE80211_SKB_CB(skb);
1198 range = (void *)info->rate_driver_data;
1199 range->start_addr = target_addr;
1200 range->end_addr = target_addr + len;
1201 __skb_queue_after(&priv->tx_queue, target_skb, skb);
1202 spin_unlock_irqrestore(&priv->tx_queue.lock, flags);
1203
1204 if (largest_hole < priv->headroom + sizeof(struct p54_hdr) +
1205 48 + IEEE80211_MAX_RTS_THRESHOLD + priv->tailroom)
1206 ieee80211_stop_queues(dev);
1207
1208 data->req_id = cpu_to_le32(target_addr + priv->headroom);
1209 return 0;
1210 }
1211
1212 static struct sk_buff *p54_alloc_skb(struct ieee80211_hw *dev, u16 hdr_flags,
1213 u16 payload_len, u16 type, gfp_t memflags)
1214 {
1215 struct p54_common *priv = dev->priv;
1216 struct p54_hdr *hdr;
1217 struct sk_buff *skb;
1218 size_t frame_len = sizeof(*hdr) + payload_len;
1219
1220 if (frame_len > P54_MAX_CTRL_FRAME_LEN)
1221 return NULL;
1222
1223 skb = __dev_alloc_skb(priv->tx_hdr_len + frame_len, memflags);
1224 if (!skb)
1225 return NULL;
1226 skb_reserve(skb, priv->tx_hdr_len);
1227
1228 hdr = (struct p54_hdr *) skb_put(skb, sizeof(*hdr));
1229 hdr->flags = cpu_to_le16(hdr_flags);
1230 hdr->len = cpu_to_le16(payload_len);
1231 hdr->type = cpu_to_le16(type);
1232 hdr->tries = hdr->rts_tries = 0;
1233
1234 if (p54_assign_address(dev, skb, hdr, frame_len)) {
1235 kfree_skb(skb);
1236 return NULL;
1237 }
1238 return skb;
1239 }
1240
1241 int p54_read_eeprom(struct ieee80211_hw *dev)
1242 {
1243 struct p54_common *priv = dev->priv;
1244 struct p54_eeprom_lm86 *eeprom_hdr;
1245 struct sk_buff *skb;
1246 size_t eeprom_size = 0x2020, offset = 0, blocksize, maxblocksize;
1247 int ret = -ENOMEM;
1248 void *eeprom = NULL;
1249
1250 maxblocksize = EEPROM_READBACK_LEN;
1251 if (priv->fw_var >= 0x509)
1252 maxblocksize -= 0xc;
1253 else
1254 maxblocksize -= 0x4;
1255
1256 skb = p54_alloc_skb(dev, P54_HDR_FLAG_CONTROL, sizeof(*eeprom_hdr) +
1257 maxblocksize, P54_CONTROL_TYPE_EEPROM_READBACK,
1258 GFP_KERNEL);
1259 if (!skb)
1260 goto free;
1261 priv->eeprom = kzalloc(EEPROM_READBACK_LEN, GFP_KERNEL);
1262 if (!priv->eeprom)
1263 goto free;
1264 eeprom = kzalloc(eeprom_size, GFP_KERNEL);
1265 if (!eeprom)
1266 goto free;
1267
1268 eeprom_hdr = (struct p54_eeprom_lm86 *) skb_put(skb,
1269 sizeof(*eeprom_hdr) + maxblocksize);
1270
1271 while (eeprom_size) {
1272 blocksize = min(eeprom_size, maxblocksize);
1273 if (priv->fw_var < 0x509) {
1274 eeprom_hdr->v1.offset = cpu_to_le16(offset);
1275 eeprom_hdr->v1.len = cpu_to_le16(blocksize);
1276 } else {
1277 eeprom_hdr->v2.offset = cpu_to_le32(offset);
1278 eeprom_hdr->v2.len = cpu_to_le16(blocksize);
1279 eeprom_hdr->v2.magic2 = 0xf;
1280 memcpy(eeprom_hdr->v2.magic, (const char *)"LOCK", 4);
1281 }
1282 priv->tx(dev, skb);
1283
1284 if (!wait_for_completion_interruptible_timeout(&priv->eeprom_comp, HZ)) {
1285 printk(KERN_ERR "%s: device does not respond!\n",
1286 wiphy_name(dev->wiphy));
1287 ret = -EBUSY;
1288 goto free;
1289 }
1290
1291 memcpy(eeprom + offset, priv->eeprom, blocksize);
1292 offset += blocksize;
1293 eeprom_size -= blocksize;
1294 }
1295
1296 ret = p54_parse_eeprom(dev, eeprom, offset);
1297 free:
1298 kfree(priv->eeprom);
1299 priv->eeprom = NULL;
1300 p54_free_skb(dev, skb);
1301 kfree(eeprom);
1302
1303 return ret;
1304 }
1305 EXPORT_SYMBOL_GPL(p54_read_eeprom);
1306
1307 static int p54_set_tim(struct ieee80211_hw *dev, struct ieee80211_sta *sta,
1308 bool set)
1309 {
1310 struct p54_common *priv = dev->priv;
1311 struct sk_buff *skb;
1312 struct p54_tim *tim;
1313
1314 skb = p54_alloc_skb(dev, P54_HDR_FLAG_CONTROL_OPSET, sizeof(*tim),
1315 P54_CONTROL_TYPE_TIM, GFP_ATOMIC);
1316 if (!skb)
1317 return -ENOMEM;
1318
1319 tim = (struct p54_tim *) skb_put(skb, sizeof(*tim));
1320 tim->count = 1;
1321 tim->entry[0] = cpu_to_le16(set ? (sta->aid | 0x8000) : sta->aid);
1322 priv->tx(dev, skb);
1323 return 0;
1324 }
1325
1326 static int p54_sta_unlock(struct ieee80211_hw *dev, u8 *addr)
1327 {
1328 struct p54_common *priv = dev->priv;
1329 struct sk_buff *skb;
1330 struct p54_sta_unlock *sta;
1331
1332 skb = p54_alloc_skb(dev, P54_HDR_FLAG_CONTROL_OPSET, sizeof(*sta),
1333 P54_CONTROL_TYPE_PSM_STA_UNLOCK, GFP_ATOMIC);
1334 if (!skb)
1335 return -ENOMEM;
1336
1337 sta = (struct p54_sta_unlock *)skb_put(skb, sizeof(*sta));
1338 memcpy(sta->addr, addr, ETH_ALEN);
1339 priv->tx(dev, skb);
1340 return 0;
1341 }
1342
1343 static void p54_sta_notify(struct ieee80211_hw *dev, struct ieee80211_vif *vif,
1344 enum sta_notify_cmd notify_cmd,
1345 struct ieee80211_sta *sta)
1346 {
1347 switch (notify_cmd) {
1348 case STA_NOTIFY_ADD:
1349 case STA_NOTIFY_REMOVE:
1350 /*
1351 * Notify the firmware that we don't want or we don't
1352 * need to buffer frames for this station anymore.
1353 */
1354
1355 p54_sta_unlock(dev, sta->addr);
1356 break;
1357 case STA_NOTIFY_AWAKE:
1358 /* update the firmware's filter table */
1359 p54_sta_unlock(dev, sta->addr);
1360 break;
1361 default:
1362 break;
1363 }
1364 }
1365
1366 static int p54_tx_cancel(struct ieee80211_hw *dev, struct sk_buff *entry)
1367 {
1368 struct p54_common *priv = dev->priv;
1369 struct sk_buff *skb;
1370 struct p54_hdr *hdr;
1371 struct p54_txcancel *cancel;
1372
1373 skb = p54_alloc_skb(dev, P54_HDR_FLAG_CONTROL_OPSET, sizeof(*cancel),
1374 P54_CONTROL_TYPE_TXCANCEL, GFP_ATOMIC);
1375 if (!skb)
1376 return -ENOMEM;
1377
1378 hdr = (void *)entry->data;
1379 cancel = (struct p54_txcancel *)skb_put(skb, sizeof(*cancel));
1380 cancel->req_id = hdr->req_id;
1381 priv->tx(dev, skb);
1382 return 0;
1383 }
1384
1385 static int p54_tx_fill(struct ieee80211_hw *dev, struct sk_buff *skb,
1386 struct ieee80211_tx_info *info, u8 *queue, size_t *extra_len,
1387 u16 *flags, u16 *aid)
1388 {
1389 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1390 struct p54_common *priv = dev->priv;
1391 int ret = 1;
1392
1393 switch (priv->mode) {
1394 case NL80211_IFTYPE_MONITOR:
1395 /*
1396 * We have to set P54_HDR_FLAG_DATA_OUT_PROMISC for
1397 * every frame in promiscuous/monitor mode.
1398 * see STSW45x0C LMAC API - page 12.
1399 */
1400 *aid = 0;
1401 *flags = P54_HDR_FLAG_DATA_OUT_PROMISC;
1402 *queue += P54_QUEUE_DATA;
1403 break;
1404 case NL80211_IFTYPE_STATION:
1405 *aid = 1;
1406 if (unlikely(ieee80211_is_mgmt(hdr->frame_control))) {
1407 *queue = P54_QUEUE_MGMT;
1408 ret = 0;
1409 } else
1410 *queue += P54_QUEUE_DATA;
1411 break;
1412 case NL80211_IFTYPE_AP:
1413 case NL80211_IFTYPE_ADHOC:
1414 case NL80211_IFTYPE_MESH_POINT:
1415 if (info->flags & IEEE80211_TX_CTL_SEND_AFTER_DTIM) {
1416 *aid = 0;
1417 *queue = P54_QUEUE_CAB;
1418 return 0;
1419 }
1420
1421 if (unlikely(ieee80211_is_mgmt(hdr->frame_control))) {
1422 if (ieee80211_is_probe_resp(hdr->frame_control)) {
1423 *aid = 0;
1424 *queue = P54_QUEUE_MGMT;
1425 *flags = P54_HDR_FLAG_DATA_OUT_TIMESTAMP |
1426 P54_HDR_FLAG_DATA_OUT_NOCANCEL;
1427 return 0;
1428 } else if (ieee80211_is_beacon(hdr->frame_control)) {
1429 *aid = 0;
1430
1431 if (info->flags & IEEE80211_TX_CTL_INJECTED) {
1432 /*
1433 * Injecting beacons on top of a AP is
1434 * not a good idea... nevertheless,
1435 * it should be doable.
1436 */
1437
1438 *queue += P54_QUEUE_DATA;
1439 return 1;
1440 }
1441
1442 *flags = P54_HDR_FLAG_DATA_OUT_TIMESTAMP;
1443 *queue = P54_QUEUE_BEACON;
1444 *extra_len = IEEE80211_MAX_TIM_LEN;
1445 return 0;
1446 } else {
1447 *queue = P54_QUEUE_MGMT;
1448 ret = 0;
1449 }
1450 } else
1451 *queue += P54_QUEUE_DATA;
1452
1453 if (info->control.sta)
1454 *aid = info->control.sta->aid;
1455 else
1456 *flags |= P54_HDR_FLAG_DATA_OUT_NOCANCEL;
1457 break;
1458 }
1459 return ret;
1460 }
1461
1462 static u8 p54_convert_algo(enum ieee80211_key_alg alg)
1463 {
1464 switch (alg) {
1465 case ALG_WEP:
1466 return P54_CRYPTO_WEP;
1467 case ALG_TKIP:
1468 return P54_CRYPTO_TKIPMICHAEL;
1469 case ALG_CCMP:
1470 return P54_CRYPTO_AESCCMP;
1471 default:
1472 return 0;
1473 }
1474 }
1475
1476 static int p54_tx(struct ieee80211_hw *dev, struct sk_buff *skb)
1477 {
1478 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1479 struct ieee80211_tx_queue_stats *current_queue;
1480 struct p54_common *priv = dev->priv;
1481 struct p54_hdr *hdr;
1482 struct p54_tx_data *txhdr;
1483 size_t padding, len, tim_len = 0;
1484 int i, j, ridx, ret;
1485 u16 hdr_flags = 0, aid = 0;
1486 u8 rate, queue, crypt_offset = 0;
1487 u8 cts_rate = 0x20;
1488 u8 rc_flags;
1489 u8 calculated_tries[4];
1490 u8 nrates = 0, nremaining = 8;
1491
1492 queue = skb_get_queue_mapping(skb);
1493
1494 ret = p54_tx_fill(dev, skb, info, &queue, &tim_len, &hdr_flags, &aid);
1495 current_queue = &priv->tx_stats[queue];
1496 if (unlikely((current_queue->len > current_queue->limit) && ret))
1497 return NETDEV_TX_BUSY;
1498 current_queue->len++;
1499 current_queue->count++;
1500 if ((current_queue->len == current_queue->limit) && ret)
1501 ieee80211_stop_queue(dev, skb_get_queue_mapping(skb));
1502
1503 padding = (unsigned long)(skb->data - (sizeof(*hdr) + sizeof(*txhdr))) & 3;
1504 len = skb->len;
1505
1506 if (info->control.hw_key) {
1507 crypt_offset = ieee80211_get_hdrlen_from_skb(skb);
1508 if (info->control.hw_key->alg == ALG_TKIP) {
1509 u8 *iv = (u8 *)(skb->data + crypt_offset);
1510 /*
1511 * The firmware excepts that the IV has to have
1512 * this special format
1513 */
1514 iv[1] = iv[0];
1515 iv[0] = iv[2];
1516 iv[2] = 0;
1517 }
1518 }
1519
1520 txhdr = (struct p54_tx_data *) skb_push(skb, sizeof(*txhdr) + padding);
1521 hdr = (struct p54_hdr *) skb_push(skb, sizeof(*hdr));
1522
1523 if (padding)
1524 hdr_flags |= P54_HDR_FLAG_DATA_ALIGN;
1525 hdr->type = cpu_to_le16(aid);
1526 hdr->rts_tries = info->control.rates[0].count;
1527
1528 /*
1529 * we register the rates in perfect order, and
1530 * RTS/CTS won't happen on 5 GHz
1531 */
1532 cts_rate = info->control.rts_cts_rate_idx;
1533
1534 memset(&txhdr->rateset, 0, sizeof(txhdr->rateset));
1535
1536 /* see how many rates got used */
1537 for (i = 0; i < 4; i++) {
1538 if (info->control.rates[i].idx < 0)
1539 break;
1540 nrates++;
1541 }
1542
1543 /* limit tries to 8/nrates per rate */
1544 for (i = 0; i < nrates; i++) {
1545 /*
1546 * The magic expression here is equivalent to 8/nrates for
1547 * all values that matter, but avoids division and jumps.
1548 * Note that nrates can only take the values 1 through 4.
1549 */
1550 calculated_tries[i] = min_t(int, ((15 >> nrates) | 1) + 1,
1551 info->control.rates[i].count);
1552 nremaining -= calculated_tries[i];
1553 }
1554
1555 /* if there are tries left, distribute from back to front */
1556 for (i = nrates - 1; nremaining > 0 && i >= 0; i--) {
1557 int tmp = info->control.rates[i].count - calculated_tries[i];
1558
1559 if (tmp <= 0)
1560 continue;
1561 /* RC requested more tries at this rate */
1562
1563 tmp = min_t(int, tmp, nremaining);
1564 calculated_tries[i] += tmp;
1565 nremaining -= tmp;
1566 }
1567
1568 ridx = 0;
1569 for (i = 0; i < nrates && ridx < 8; i++) {
1570 /* we register the rates in perfect order */
1571 rate = info->control.rates[i].idx;
1572 if (info->band == IEEE80211_BAND_5GHZ)
1573 rate += 4;
1574
1575 /* store the count we actually calculated for TX status */
1576 info->control.rates[i].count = calculated_tries[i];
1577
1578 rc_flags = info->control.rates[i].flags;
1579 if (rc_flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE) {
1580 rate |= 0x10;
1581 cts_rate |= 0x10;
1582 }
1583 if (rc_flags & IEEE80211_TX_RC_USE_RTS_CTS)
1584 rate |= 0x40;
1585 else if (rc_flags & IEEE80211_TX_RC_USE_CTS_PROTECT)
1586 rate |= 0x20;
1587 for (j = 0; j < calculated_tries[i] && ridx < 8; j++) {
1588 txhdr->rateset[ridx] = rate;
1589 ridx++;
1590 }
1591 }
1592
1593 if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ)
1594 hdr_flags |= P54_HDR_FLAG_DATA_OUT_SEQNR;
1595
1596 /* TODO: enable bursting */
1597 hdr->flags = cpu_to_le16(hdr_flags);
1598 hdr->tries = ridx;
1599 txhdr->rts_rate_idx = 0;
1600 if (info->control.hw_key) {
1601 txhdr->key_type = p54_convert_algo(info->control.hw_key->alg);
1602 txhdr->key_len = min((u8)16, info->control.hw_key->keylen);
1603 memcpy(txhdr->key, info->control.hw_key->key, txhdr->key_len);
1604 if (info->control.hw_key->alg == ALG_TKIP) {
1605 if (unlikely(skb_tailroom(skb) < 12))
1606 goto err;
1607 /* reserve space for the MIC key */
1608 len += 8;
1609 memcpy(skb_put(skb, 8), &(info->control.hw_key->key
1610 [NL80211_TKIP_DATA_OFFSET_TX_MIC_KEY]), 8);
1611 }
1612 /* reserve some space for ICV */
1613 len += info->control.hw_key->icv_len;
1614 memset(skb_put(skb, info->control.hw_key->icv_len), 0,
1615 info->control.hw_key->icv_len);
1616 } else {
1617 txhdr->key_type = 0;
1618 txhdr->key_len = 0;
1619 }
1620 txhdr->crypt_offset = crypt_offset;
1621 txhdr->hw_queue = queue;
1622 txhdr->backlog = current_queue->len;
1623 memset(txhdr->durations, 0, sizeof(txhdr->durations));
1624 txhdr->tx_antenna = ((info->antenna_sel_tx == 0) ?
1625 2 : info->antenna_sel_tx - 1) & priv->tx_diversity_mask;
1626 if (priv->rxhw == PDR_SYNTH_FRONTEND_LONGBOW) {
1627 txhdr->longbow.cts_rate = cts_rate;
1628 txhdr->longbow.output_power = cpu_to_le16(priv->output_power);
1629 } else {
1630 txhdr->normal.output_power = priv->output_power;
1631 txhdr->normal.cts_rate = cts_rate;
1632 }
1633 if (padding)
1634 txhdr->align[0] = padding;
1635
1636 hdr->len = cpu_to_le16(len);
1637 /* modifies skb->cb and with it info, so must be last! */
1638 if (unlikely(p54_assign_address(dev, skb, hdr, skb->len + tim_len)))
1639 goto err;
1640 priv->tx(dev, skb);
1641
1642 queue_delayed_work(dev->workqueue, &priv->work,
1643 msecs_to_jiffies(P54_TX_FRAME_LIFETIME));
1644
1645 return NETDEV_TX_OK;
1646
1647 err:
1648 skb_pull(skb, sizeof(*hdr) + sizeof(*txhdr) + padding);
1649 current_queue->len--;
1650 current_queue->count--;
1651 return NETDEV_TX_BUSY;
1652 }
1653
1654 static int p54_setup_mac(struct ieee80211_hw *dev)
1655 {
1656 struct p54_common *priv = dev->priv;
1657 struct sk_buff *skb;
1658 struct p54_setup_mac *setup;
1659 u16 mode;
1660
1661 skb = p54_alloc_skb(dev, P54_HDR_FLAG_CONTROL_OPSET, sizeof(*setup),
1662 P54_CONTROL_TYPE_SETUP, GFP_ATOMIC);
1663 if (!skb)
1664 return -ENOMEM;
1665
1666 setup = (struct p54_setup_mac *) skb_put(skb, sizeof(*setup));
1667 if (dev->conf.radio_enabled) {
1668 switch (priv->mode) {
1669 case NL80211_IFTYPE_STATION:
1670 mode = P54_FILTER_TYPE_STATION;
1671 break;
1672 case NL80211_IFTYPE_AP:
1673 mode = P54_FILTER_TYPE_AP;
1674 break;
1675 case NL80211_IFTYPE_ADHOC:
1676 case NL80211_IFTYPE_MESH_POINT:
1677 mode = P54_FILTER_TYPE_IBSS;
1678 break;
1679 case NL80211_IFTYPE_MONITOR:
1680 mode = P54_FILTER_TYPE_PROMISCUOUS;
1681 break;
1682 default:
1683 mode = P54_FILTER_TYPE_HIBERNATE;
1684 break;
1685 }
1686
1687 /*
1688 * "TRANSPARENT and PROMISCUOUS are mutually exclusive"
1689 * STSW45X0C LMAC API - page 12
1690 */
1691 if (((priv->filter_flags & FIF_PROMISC_IN_BSS) ||
1692 (priv->filter_flags & FIF_OTHER_BSS)) &&
1693 (mode != P54_FILTER_TYPE_PROMISCUOUS))
1694 mode |= P54_FILTER_TYPE_TRANSPARENT;
1695 } else
1696 mode = P54_FILTER_TYPE_HIBERNATE;
1697
1698 setup->mac_mode = cpu_to_le16(mode);
1699 memcpy(setup->mac_addr, priv->mac_addr, ETH_ALEN);
1700 memcpy(setup->bssid, priv->bssid, ETH_ALEN);
1701 setup->rx_antenna = 2 & priv->rx_diversity_mask; /* automatic */
1702 setup->rx_align = 0;
1703 if (priv->fw_var < 0x500) {
1704 setup->v1.basic_rate_mask = cpu_to_le32(priv->basic_rate_mask);
1705 memset(setup->v1.rts_rates, 0, 8);
1706 setup->v1.rx_addr = cpu_to_le32(priv->rx_end);
1707 setup->v1.max_rx = cpu_to_le16(priv->rx_mtu);
1708 setup->v1.rxhw = cpu_to_le16(priv->rxhw);
1709 setup->v1.wakeup_timer = cpu_to_le16(priv->wakeup_timer);
1710 setup->v1.unalloc0 = cpu_to_le16(0);
1711 } else {
1712 setup->v2.rx_addr = cpu_to_le32(priv->rx_end);
1713 setup->v2.max_rx = cpu_to_le16(priv->rx_mtu);
1714 setup->v2.rxhw = cpu_to_le16(priv->rxhw);
1715 setup->v2.timer = cpu_to_le16(priv->wakeup_timer);
1716 setup->v2.truncate = cpu_to_le16(48896);
1717 setup->v2.basic_rate_mask = cpu_to_le32(priv->basic_rate_mask);
1718 setup->v2.sbss_offset = 0;
1719 setup->v2.mcast_window = 0;
1720 setup->v2.rx_rssi_threshold = 0;
1721 setup->v2.rx_ed_threshold = 0;
1722 setup->v2.ref_clock = cpu_to_le32(644245094);
1723 setup->v2.lpf_bandwidth = cpu_to_le16(65535);
1724 setup->v2.osc_start_delay = cpu_to_le16(65535);
1725 }
1726 priv->tx(dev, skb);
1727 return 0;
1728 }
1729
1730 static int p54_scan(struct ieee80211_hw *dev, u16 mode, u16 dwell)
1731 {
1732 struct p54_common *priv = dev->priv;
1733 struct sk_buff *skb;
1734 struct p54_hdr *hdr;
1735 struct p54_scan_head *head;
1736 struct p54_iq_autocal_entry *iq_autocal;
1737 union p54_scan_body_union *body;
1738 struct p54_scan_tail_rate *rate;
1739 struct pda_rssi_cal_entry *rssi;
1740 unsigned int i;
1741 void *entry;
1742 int band = dev->conf.channel->band;
1743 __le16 freq = cpu_to_le16(dev->conf.channel->center_freq);
1744
1745 skb = p54_alloc_skb(dev, P54_HDR_FLAG_CONTROL_OPSET, sizeof(*head) +
1746 2 + sizeof(*iq_autocal) + sizeof(*body) +
1747 sizeof(*rate) + 2 * sizeof(*rssi),
1748 P54_CONTROL_TYPE_SCAN, GFP_ATOMIC);
1749 if (!skb)
1750 return -ENOMEM;
1751
1752 head = (struct p54_scan_head *) skb_put(skb, sizeof(*head));
1753 memset(head->scan_params, 0, sizeof(head->scan_params));
1754 head->mode = cpu_to_le16(mode);
1755 head->dwell = cpu_to_le16(dwell);
1756 head->freq = freq;
1757
1758 if (priv->rxhw == PDR_SYNTH_FRONTEND_LONGBOW) {
1759 __le16 *pa_power_points = (__le16 *) skb_put(skb, 2);
1760 *pa_power_points = cpu_to_le16(0x0c);
1761 }
1762
1763 iq_autocal = (void *) skb_put(skb, sizeof(*iq_autocal));
1764 for (i = 0; i < priv->iq_autocal_len; i++) {
1765 if (priv->iq_autocal[i].freq != freq)
1766 continue;
1767
1768 memcpy(iq_autocal, &priv->iq_autocal[i].params,
1769 sizeof(struct p54_iq_autocal_entry));
1770 break;
1771 }
1772 if (i == priv->iq_autocal_len)
1773 goto err;
1774
1775 if (priv->rxhw == PDR_SYNTH_FRONTEND_LONGBOW)
1776 body = (void *) skb_put(skb, sizeof(body->longbow));
1777 else
1778 body = (void *) skb_put(skb, sizeof(body->normal));
1779
1780 for (i = 0; i < priv->output_limit->entries; i++) {
1781 __le16 *entry_freq = (void *) (priv->output_limit->data +
1782 priv->output_limit->entry_size * i);
1783
1784 if (*entry_freq != freq)
1785 continue;
1786
1787 if (priv->rxhw == PDR_SYNTH_FRONTEND_LONGBOW) {
1788 memcpy(&body->longbow.power_limits,
1789 (void *) entry_freq + sizeof(__le16),
1790 priv->output_limit->entry_size);
1791 } else {
1792 struct pda_channel_output_limit *limits =
1793 (void *) entry_freq;
1794
1795 body->normal.val_barker = 0x38;
1796 body->normal.val_bpsk = body->normal.dup_bpsk =
1797 limits->val_bpsk;
1798 body->normal.val_qpsk = body->normal.dup_qpsk =
1799 limits->val_qpsk;
1800 body->normal.val_16qam = body->normal.dup_16qam =
1801 limits->val_16qam;
1802 body->normal.val_64qam = body->normal.dup_64qam =
1803 limits->val_64qam;
1804 }
1805 break;
1806 }
1807 if (i == priv->output_limit->entries)
1808 goto err;
1809
1810 entry = (void *)(priv->curve_data->data + priv->curve_data->offset);
1811 for (i = 0; i < priv->curve_data->entries; i++) {
1812 if (*((__le16 *)entry) != freq) {
1813 entry += priv->curve_data->entry_size;
1814 continue;
1815 }
1816
1817 if (priv->rxhw == PDR_SYNTH_FRONTEND_LONGBOW) {
1818 memcpy(&body->longbow.curve_data,
1819 (void *) entry + sizeof(__le16),
1820 priv->curve_data->entry_size);
1821 } else {
1822 struct p54_scan_body *chan = &body->normal;
1823 struct pda_pa_curve_data *curve_data =
1824 (void *) priv->curve_data->data;
1825
1826 entry += sizeof(__le16);
1827 chan->pa_points_per_curve = 8;
1828 memset(chan->curve_data, 0, sizeof(*chan->curve_data));
1829 memcpy(chan->curve_data, entry,
1830 sizeof(struct p54_pa_curve_data_sample) *
1831 min((u8)8, curve_data->points_per_channel));
1832 }
1833 break;
1834 }
1835 if (i == priv->curve_data->entries)
1836 goto err;
1837
1838 if ((priv->fw_var >= 0x500) && (priv->fw_var < 0x509)) {
1839 rate = (void *) skb_put(skb, sizeof(*rate));
1840 rate->basic_rate_mask = cpu_to_le32(priv->basic_rate_mask);
1841 for (i = 0; i < sizeof(rate->rts_rates); i++)
1842 rate->rts_rates[i] = i;
1843 }
1844
1845 rssi = (struct pda_rssi_cal_entry *) skb_put(skb, sizeof(*rssi));
1846 rssi->mul = cpu_to_le16(priv->rssical_db[band].mul);
1847 rssi->add = cpu_to_le16(priv->rssical_db[band].add);
1848 if (priv->rxhw == PDR_SYNTH_FRONTEND_LONGBOW) {
1849 /* Longbow frontend needs ever more */
1850 rssi = (void *) skb_put(skb, sizeof(*rssi));
1851 rssi->mul = cpu_to_le16(priv->rssical_db[band].longbow_unkn);
1852 rssi->add = cpu_to_le16(priv->rssical_db[band].longbow_unk2);
1853 }
1854
1855 if (priv->fw_var >= 0x509) {
1856 rate = (void *) skb_put(skb, sizeof(*rate));
1857 rate->basic_rate_mask = cpu_to_le32(priv->basic_rate_mask);
1858 for (i = 0; i < sizeof(rate->rts_rates); i++)
1859 rate->rts_rates[i] = i;
1860 }
1861
1862 hdr = (struct p54_hdr *) skb->data;
1863 hdr->len = cpu_to_le16(skb->len - sizeof(*hdr));
1864
1865 priv->tx(dev, skb);
1866 return 0;
1867
1868 err:
1869 printk(KERN_ERR "%s: frequency change failed\n", wiphy_name(dev->wiphy));
1870 p54_free_skb(dev, skb);
1871 return -EINVAL;
1872 }
1873
1874 static int p54_set_leds(struct ieee80211_hw *dev)
1875 {
1876 struct p54_common *priv = dev->priv;
1877 struct sk_buff *skb;
1878 struct p54_led *led;
1879
1880 skb = p54_alloc_skb(dev, P54_HDR_FLAG_CONTROL_OPSET, sizeof(*led),
1881 P54_CONTROL_TYPE_LED, GFP_ATOMIC);
1882 if (!skb)
1883 return -ENOMEM;
1884
1885 led = (struct p54_led *) skb_put(skb, sizeof(*led));
1886 led->flags = cpu_to_le16(0x0003);
1887 led->mask[0] = led->mask[1] = cpu_to_le16(priv->softled_state);
1888 led->delay[0] = cpu_to_le16(1);
1889 led->delay[1] = cpu_to_le16(0);
1890 priv->tx(dev, skb);
1891 return 0;
1892 }
1893
1894 #define P54_SET_QUEUE(queue, ai_fs, cw_min, cw_max, _txop) \
1895 do { \
1896 queue.aifs = cpu_to_le16(ai_fs); \
1897 queue.cwmin = cpu_to_le16(cw_min); \
1898 queue.cwmax = cpu_to_le16(cw_max); \
1899 queue.txop = cpu_to_le16(_txop); \
1900 } while(0)
1901
1902 static int p54_set_edcf(struct ieee80211_hw *dev)
1903 {
1904 struct p54_common *priv = dev->priv;
1905 struct sk_buff *skb;
1906 struct p54_edcf *edcf;
1907
1908 skb = p54_alloc_skb(dev, P54_HDR_FLAG_CONTROL_OPSET, sizeof(*edcf),
1909 P54_CONTROL_TYPE_DCFINIT, GFP_ATOMIC);
1910 if (!skb)
1911 return -ENOMEM;
1912
1913 edcf = (struct p54_edcf *)skb_put(skb, sizeof(*edcf));
1914 if (priv->use_short_slot) {
1915 edcf->slottime = 9;
1916 edcf->sifs = 0x10;
1917 edcf->eofpad = 0x00;
1918 } else {
1919 edcf->slottime = 20;
1920 edcf->sifs = 0x0a;
1921 edcf->eofpad = 0x06;
1922 }
1923 /* (see prism54/isl_oid.h for further details) */
1924 edcf->frameburst = cpu_to_le16(0);
1925 edcf->round_trip_delay = cpu_to_le16(0);
1926 edcf->flags = 0;
1927 memset(edcf->mapping, 0, sizeof(edcf->mapping));
1928 memcpy(edcf->queue, priv->qos_params, sizeof(edcf->queue));
1929 priv->tx(dev, skb);
1930 return 0;
1931 }
1932
1933 static int p54_set_ps(struct ieee80211_hw *dev)
1934 {
1935 struct p54_common *priv = dev->priv;
1936 struct sk_buff *skb;
1937 struct p54_psm *psm;
1938 u16 mode;
1939 int i;
1940
1941 if (dev->conf.flags & IEEE80211_CONF_PS)
1942 mode = P54_PSM | P54_PSM_DTIM | P54_PSM_MCBC;
1943 else
1944 mode = P54_PSM_CAM;
1945
1946 skb = p54_alloc_skb(dev, P54_HDR_FLAG_CONTROL_OPSET, sizeof(*psm),
1947 P54_CONTROL_TYPE_PSM, GFP_ATOMIC);
1948 if (!skb)
1949 return -ENOMEM;
1950
1951 psm = (struct p54_psm *)skb_put(skb, sizeof(*psm));
1952 psm->mode = cpu_to_le16(mode);
1953 psm->aid = cpu_to_le16(priv->aid);
1954 for (i = 0; i < ARRAY_SIZE(psm->intervals); i++) {
1955 psm->intervals[i].interval =
1956 cpu_to_le16(dev->conf.listen_interval);
1957 psm->intervals[i].periods = cpu_to_le16(1);
1958 }
1959
1960 psm->beacon_rssi_skip_max = 60;
1961 psm->rssi_delta_threshold = 0;
1962 psm->nr = 0;
1963
1964 priv->tx(dev, skb);
1965
1966 return 0;
1967 }
1968
1969 static int p54_beacon_tim(struct sk_buff *skb)
1970 {
1971 /*
1972 * the good excuse for this mess is ... the firmware.
1973 * The dummy TIM MUST be at the end of the beacon frame,
1974 * because it'll be overwritten!
1975 */
1976
1977 struct ieee80211_mgmt *mgmt = (void *)skb->data;
1978 u8 *pos, *end;
1979
1980 if (skb->len <= sizeof(mgmt))
1981 return -EINVAL;
1982
1983 pos = (u8 *)mgmt->u.beacon.variable;
1984 end = skb->data + skb->len;
1985 while (pos < end) {
1986 if (pos + 2 + pos[1] > end)
1987 return -EINVAL;
1988
1989 if (pos[0] == WLAN_EID_TIM) {
1990 u8 dtim_len = pos[1];
1991 u8 dtim_period = pos[3];
1992 u8 *next = pos + 2 + dtim_len;
1993
1994 if (dtim_len < 3)
1995 return -EINVAL;
1996
1997 memmove(pos, next, end - next);
1998
1999 if (dtim_len > 3)
2000 skb_trim(skb, skb->len - (dtim_len - 3));
2001
2002 pos = end - (dtim_len + 2);
2003
2004 /* add the dummy at the end */
2005 pos[0] = WLAN_EID_TIM;
2006 pos[1] = 3;
2007 pos[2] = 0;
2008 pos[3] = dtim_period;
2009 pos[4] = 0;
2010 return 0;
2011 }
2012 pos += 2 + pos[1];
2013 }
2014 return 0;
2015 }
2016
2017 static int p54_beacon_update(struct ieee80211_hw *dev,
2018 struct ieee80211_vif *vif)
2019 {
2020 struct p54_common *priv = dev->priv;
2021 struct sk_buff *beacon;
2022 int ret;
2023
2024 if (priv->cached_beacon) {
2025 p54_tx_cancel(dev, priv->cached_beacon);
2026 /* wait for the last beacon the be freed */
2027 msleep(10);
2028 }
2029
2030 beacon = ieee80211_beacon_get(dev, vif);
2031 if (!beacon)
2032 return -ENOMEM;
2033 ret = p54_beacon_tim(beacon);
2034 if (ret)
2035 return ret;
2036 ret = p54_tx(dev, beacon);
2037 if (ret)
2038 return ret;
2039 priv->cached_beacon = beacon;
2040 priv->tsf_high32 = 0;
2041 priv->tsf_low32 = 0;
2042
2043 return 0;
2044 }
2045
2046 static int p54_start(struct ieee80211_hw *dev)
2047 {
2048 struct p54_common *priv = dev->priv;
2049 int err;
2050
2051 mutex_lock(&priv->conf_mutex);
2052 err = priv->open(dev);
2053 if (err)
2054 goto out;
2055 P54_SET_QUEUE(priv->qos_params[0], 0x0002, 0x0003, 0x0007, 47);
2056 P54_SET_QUEUE(priv->qos_params[1], 0x0002, 0x0007, 0x000f, 94);
2057 P54_SET_QUEUE(priv->qos_params[2], 0x0003, 0x000f, 0x03ff, 0);
2058 P54_SET_QUEUE(priv->qos_params[3], 0x0007, 0x000f, 0x03ff, 0);
2059 err = p54_set_edcf(dev);
2060 if (err)
2061 goto out;
2062
2063 memset(priv->bssid, ~0, ETH_ALEN);
2064 priv->mode = NL80211_IFTYPE_MONITOR;
2065 err = p54_setup_mac(dev);
2066 if (err) {
2067 priv->mode = NL80211_IFTYPE_UNSPECIFIED;
2068 goto out;
2069 }
2070
2071 queue_delayed_work(dev->workqueue, &priv->work, 0);
2072
2073 priv->softled_state = 0;
2074 err = p54_set_leds(dev);
2075
2076 out:
2077 mutex_unlock(&priv->conf_mutex);
2078 return err;
2079 }
2080
2081 static void p54_stop(struct ieee80211_hw *dev)
2082 {
2083 struct p54_common *priv = dev->priv;
2084 struct sk_buff *skb;
2085
2086 mutex_lock(&priv->conf_mutex);
2087 priv->mode = NL80211_IFTYPE_UNSPECIFIED;
2088 priv->softled_state = 0;
2089 p54_set_leds(dev);
2090
2091 cancel_delayed_work_sync(&priv->work);
2092 if (priv->cached_beacon)
2093 p54_tx_cancel(dev, priv->cached_beacon);
2094
2095 priv->stop(dev);
2096 while ((skb = skb_dequeue(&priv->tx_queue)))
2097 kfree_skb(skb);
2098 priv->cached_beacon = NULL;
2099 priv->tsf_high32 = priv->tsf_low32 = 0;
2100 mutex_unlock(&priv->conf_mutex);
2101 }
2102
2103 static int p54_add_interface(struct ieee80211_hw *dev,
2104 struct ieee80211_if_init_conf *conf)
2105 {
2106 struct p54_common *priv = dev->priv;
2107
2108 mutex_lock(&priv->conf_mutex);
2109 if (priv->mode != NL80211_IFTYPE_MONITOR) {
2110 mutex_unlock(&priv->conf_mutex);
2111 return -EOPNOTSUPP;
2112 }
2113
2114 switch (conf->type) {
2115 case NL80211_IFTYPE_STATION:
2116 case NL80211_IFTYPE_ADHOC:
2117 case NL80211_IFTYPE_AP:
2118 case NL80211_IFTYPE_MESH_POINT:
2119 priv->mode = conf->type;
2120 break;
2121 default:
2122 mutex_unlock(&priv->conf_mutex);
2123 return -EOPNOTSUPP;
2124 }
2125
2126 memcpy(priv->mac_addr, conf->mac_addr, ETH_ALEN);
2127 p54_setup_mac(dev);
2128 mutex_unlock(&priv->conf_mutex);
2129 return 0;
2130 }
2131
2132 static void p54_remove_interface(struct ieee80211_hw *dev,
2133 struct ieee80211_if_init_conf *conf)
2134 {
2135 struct p54_common *priv = dev->priv;
2136
2137 mutex_lock(&priv->conf_mutex);
2138 if (priv->cached_beacon)
2139 p54_tx_cancel(dev, priv->cached_beacon);
2140 priv->mode = NL80211_IFTYPE_MONITOR;
2141 memset(priv->mac_addr, 0, ETH_ALEN);
2142 memset(priv->bssid, 0, ETH_ALEN);
2143 p54_setup_mac(dev);
2144 mutex_unlock(&priv->conf_mutex);
2145 }
2146
2147 static int p54_config(struct ieee80211_hw *dev, u32 changed)
2148 {
2149 int ret = 0;
2150 struct p54_common *priv = dev->priv;
2151 struct ieee80211_conf *conf = &dev->conf;
2152
2153 mutex_lock(&priv->conf_mutex);
2154 if (changed & IEEE80211_CONF_CHANGE_POWER)
2155 priv->output_power = conf->power_level << 2;
2156 if (changed & IEEE80211_CONF_CHANGE_RADIO_ENABLED) {
2157 ret = p54_setup_mac(dev);
2158 if (ret)
2159 goto out;
2160 }
2161 if (changed & IEEE80211_CONF_CHANGE_CHANNEL) {
2162 ret = p54_scan(dev, P54_SCAN_EXIT, 0);
2163 if (ret)
2164 goto out;
2165 }
2166 if (changed & IEEE80211_CONF_CHANGE_PS) {
2167 ret = p54_set_ps(dev);
2168 if (ret)
2169 goto out;
2170 }
2171
2172 out:
2173 mutex_unlock(&priv->conf_mutex);
2174 return ret;
2175 }
2176
2177 static int p54_config_interface(struct ieee80211_hw *dev,
2178 struct ieee80211_vif *vif,
2179 struct ieee80211_if_conf *conf)
2180 {
2181 struct p54_common *priv = dev->priv;
2182 int ret = 0;
2183
2184 mutex_lock(&priv->conf_mutex);
2185 if (conf->changed & IEEE80211_IFCC_BSSID) {
2186 memcpy(priv->bssid, conf->bssid, ETH_ALEN);
2187 ret = p54_setup_mac(dev);
2188 if (ret)
2189 goto out;
2190 }
2191
2192 if (conf->changed & IEEE80211_IFCC_BEACON) {
2193 ret = p54_scan(dev, P54_SCAN_EXIT, 0);
2194 if (ret)
2195 goto out;
2196 ret = p54_setup_mac(dev);
2197 if (ret)
2198 goto out;
2199 ret = p54_beacon_update(dev, vif);
2200 if (ret)
2201 goto out;
2202 ret = p54_set_edcf(dev);
2203 if (ret)
2204 goto out;
2205 }
2206
2207 out:
2208 mutex_unlock(&priv->conf_mutex);
2209 return ret;
2210 }
2211
2212 static void p54_configure_filter(struct ieee80211_hw *dev,
2213 unsigned int changed_flags,
2214 unsigned int *total_flags,
2215 int mc_count, struct dev_mc_list *mclist)
2216 {
2217 struct p54_common *priv = dev->priv;
2218
2219 *total_flags &= FIF_PROMISC_IN_BSS |
2220 FIF_OTHER_BSS;
2221
2222 priv->filter_flags = *total_flags;
2223
2224 if (changed_flags & (FIF_PROMISC_IN_BSS | FIF_OTHER_BSS))
2225 p54_setup_mac(dev);
2226 }
2227
2228 static int p54_conf_tx(struct ieee80211_hw *dev, u16 queue,
2229 const struct ieee80211_tx_queue_params *params)
2230 {
2231 struct p54_common *priv = dev->priv;
2232 int ret;
2233
2234 mutex_lock(&priv->conf_mutex);
2235 if ((params) && !(queue > 4)) {
2236 P54_SET_QUEUE(priv->qos_params[queue], params->aifs,
2237 params->cw_min, params->cw_max, params->txop);
2238 ret = p54_set_edcf(dev);
2239 } else
2240 ret = -EINVAL;
2241 mutex_unlock(&priv->conf_mutex);
2242 return ret;
2243 }
2244
2245 static int p54_init_xbow_synth(struct ieee80211_hw *dev)
2246 {
2247 struct p54_common *priv = dev->priv;
2248 struct sk_buff *skb;
2249 struct p54_xbow_synth *xbow;
2250
2251 skb = p54_alloc_skb(dev, P54_HDR_FLAG_CONTROL_OPSET, sizeof(*xbow),
2252 P54_CONTROL_TYPE_XBOW_SYNTH_CFG, GFP_KERNEL);
2253 if (!skb)
2254 return -ENOMEM;
2255
2256 xbow = (struct p54_xbow_synth *)skb_put(skb, sizeof(*xbow));
2257 xbow->magic1 = cpu_to_le16(0x1);
2258 xbow->magic2 = cpu_to_le16(0x2);
2259 xbow->freq = cpu_to_le16(5390);
2260 memset(xbow->padding, 0, sizeof(xbow->padding));
2261 priv->tx(dev, skb);
2262 return 0;
2263 }
2264
2265 static void p54_work(struct work_struct *work)
2266 {
2267 struct p54_common *priv = container_of(work, struct p54_common,
2268 work.work);
2269 struct ieee80211_hw *dev = priv->hw;
2270 struct sk_buff *skb;
2271
2272 if (unlikely(priv->mode == NL80211_IFTYPE_UNSPECIFIED))
2273 return ;
2274
2275 /*
2276 * TODO: walk through tx_queue and do the following tasks
2277 * 1. initiate bursts.
2278 * 2. cancel stuck frames / reset the device if necessary.
2279 */
2280
2281 skb = p54_alloc_skb(dev, P54_HDR_FLAG_CONTROL,
2282 sizeof(struct p54_statistics),
2283 P54_CONTROL_TYPE_STAT_READBACK, GFP_KERNEL);
2284 if (!skb)
2285 return ;
2286
2287 priv->tx(dev, skb);
2288 }
2289
2290 static int p54_get_stats(struct ieee80211_hw *dev,
2291 struct ieee80211_low_level_stats *stats)
2292 {
2293 struct p54_common *priv = dev->priv;
2294
2295 memcpy(stats, &priv->stats, sizeof(*stats));
2296 return 0;
2297 }
2298
2299 static int p54_get_tx_stats(struct ieee80211_hw *dev,
2300 struct ieee80211_tx_queue_stats *stats)
2301 {
2302 struct p54_common *priv = dev->priv;
2303
2304 memcpy(stats, &priv->tx_stats[P54_QUEUE_DATA],
2305 sizeof(stats[0]) * dev->queues);
2306 return 0;
2307 }
2308
2309 static void p54_bss_info_changed(struct ieee80211_hw *dev,
2310 struct ieee80211_vif *vif,
2311 struct ieee80211_bss_conf *info,
2312 u32 changed)
2313 {
2314 struct p54_common *priv = dev->priv;
2315
2316 if (changed & BSS_CHANGED_ERP_SLOT) {
2317 priv->use_short_slot = info->use_short_slot;
2318 p54_set_edcf(dev);
2319 }
2320 if (changed & BSS_CHANGED_BASIC_RATES) {
2321 if (dev->conf.channel->band == IEEE80211_BAND_5GHZ)
2322 priv->basic_rate_mask = (info->basic_rates << 4);
2323 else
2324 priv->basic_rate_mask = info->basic_rates;
2325 p54_setup_mac(dev);
2326 if (priv->fw_var >= 0x500)
2327 p54_scan(dev, P54_SCAN_EXIT, 0);
2328 }
2329 if (changed & BSS_CHANGED_ASSOC) {
2330 if (info->assoc) {
2331 priv->aid = info->aid;
2332 priv->wakeup_timer = info->beacon_int *
2333 info->dtim_period * 5;
2334 p54_setup_mac(dev);
2335 }
2336 }
2337
2338 }
2339
2340 static int p54_set_key(struct ieee80211_hw *dev, enum set_key_cmd cmd,
2341 struct ieee80211_vif *vif, struct ieee80211_sta *sta,
2342 struct ieee80211_key_conf *key)
2343 {
2344 struct p54_common *priv = dev->priv;
2345 struct sk_buff *skb;
2346 struct p54_keycache *rxkey;
2347 u8 algo = 0;
2348
2349 if (modparam_nohwcrypt)
2350 return -EOPNOTSUPP;
2351
2352 if (cmd == DISABLE_KEY)
2353 algo = 0;
2354 else {
2355 switch (key->alg) {
2356 case ALG_TKIP:
2357 if (!(priv->privacy_caps & (BR_DESC_PRIV_CAP_MICHAEL |
2358 BR_DESC_PRIV_CAP_TKIP)))
2359 return -EOPNOTSUPP;
2360 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
2361 algo = P54_CRYPTO_TKIPMICHAEL;
2362 break;
2363 case ALG_WEP:
2364 if (!(priv->privacy_caps & BR_DESC_PRIV_CAP_WEP))
2365 return -EOPNOTSUPP;
2366 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
2367 algo = P54_CRYPTO_WEP;
2368 break;
2369 case ALG_CCMP:
2370 if (!(priv->privacy_caps & BR_DESC_PRIV_CAP_AESCCMP))
2371 return -EOPNOTSUPP;
2372 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
2373 algo = P54_CRYPTO_AESCCMP;
2374 break;
2375 default:
2376 return -EOPNOTSUPP;
2377 }
2378 }
2379
2380 if (key->keyidx > priv->rx_keycache_size) {
2381 /*
2382 * The device supports the choosen algorithm, but the firmware
2383 * does not provide enough key slots to store all of them.
2384 * So, incoming frames have to be decoded by the mac80211 stack,
2385 * but we can still offload encryption for outgoing frames.
2386 */
2387
2388 return 0;
2389 }
2390
2391 mutex_lock(&priv->conf_mutex);
2392 skb = p54_alloc_skb(dev, P54_HDR_FLAG_CONTROL_OPSET, sizeof(*rxkey),
2393 P54_CONTROL_TYPE_RX_KEYCACHE, GFP_ATOMIC);
2394 if (!skb) {
2395 mutex_unlock(&priv->conf_mutex);
2396 return -ENOMEM;
2397 }
2398
2399 /* TODO: some devices have 4 more free slots for rx keys */
2400 rxkey = (struct p54_keycache *)skb_put(skb, sizeof(*rxkey));
2401 rxkey->entry = key->keyidx;
2402 rxkey->key_id = key->keyidx;
2403 rxkey->key_type = algo;
2404 if (sta)
2405 memcpy(rxkey->mac, sta->addr, ETH_ALEN);
2406 else
2407 memset(rxkey->mac, ~0, ETH_ALEN);
2408 if (key->alg != ALG_TKIP) {
2409 rxkey->key_len = min((u8)16, key->keylen);
2410 memcpy(rxkey->key, key->key, rxkey->key_len);
2411 } else {
2412 rxkey->key_len = 24;
2413 memcpy(rxkey->key, key->key, 16);
2414 memcpy(&(rxkey->key[16]), &(key->key
2415 [NL80211_TKIP_DATA_OFFSET_RX_MIC_KEY]), 8);
2416 }
2417
2418 priv->tx(dev, skb);
2419 mutex_unlock(&priv->conf_mutex);
2420 return 0;
2421 }
2422
2423 #ifdef CONFIG_P54_LEDS
2424 static void p54_led_brightness_set(struct led_classdev *led_dev,
2425 enum led_brightness brightness)
2426 {
2427 struct p54_led_dev *led = container_of(led_dev, struct p54_led_dev,
2428 led_dev);
2429 struct ieee80211_hw *dev = led->hw_dev;
2430 struct p54_common *priv = dev->priv;
2431 int err;
2432
2433 /* Don't toggle the LED, when the device is down. */
2434 if (priv->mode == NL80211_IFTYPE_UNSPECIFIED)
2435 return ;
2436
2437 if (brightness != LED_OFF)
2438 priv->softled_state |= BIT(led->index);
2439 else
2440 priv->softled_state &= ~BIT(led->index);
2441
2442 err = p54_set_leds(dev);
2443 if (err && net_ratelimit())
2444 printk(KERN_ERR "%s: failed to update %s LED.\n",
2445 wiphy_name(dev->wiphy), led_dev->name);
2446 }
2447
2448 static int p54_register_led(struct ieee80211_hw *dev,
2449 struct p54_led_dev *led,
2450 unsigned int led_index,
2451 char *name, char *trigger)
2452 {
2453 int err;
2454
2455 if (led->registered)
2456 return -EEXIST;
2457
2458 snprintf(led->name, sizeof(led->name), "p54-%s::%s",
2459 wiphy_name(dev->wiphy), name);
2460 led->hw_dev = dev;
2461 led->index = led_index;
2462 led->led_dev.name = led->name;
2463 led->led_dev.default_trigger = trigger;
2464 led->led_dev.brightness_set = p54_led_brightness_set;
2465
2466 err = led_classdev_register(wiphy_dev(dev->wiphy), &led->led_dev);
2467 if (err)
2468 printk(KERN_ERR "%s: Failed to register %s LED.\n",
2469 wiphy_name(dev->wiphy), name);
2470 else
2471 led->registered = 1;
2472
2473 return err;
2474 }
2475
2476 static int p54_init_leds(struct ieee80211_hw *dev)
2477 {
2478 struct p54_common *priv = dev->priv;
2479 int err;
2480
2481 /*
2482 * TODO:
2483 * Figure out if the EEPROM contains some hints about the number
2484 * of available/programmable LEDs of the device.
2485 * But for now, we can assume that we have two programmable LEDs.
2486 */
2487
2488 err = p54_register_led(dev, &priv->assoc_led, 0, "assoc",
2489 ieee80211_get_assoc_led_name(dev));
2490 if (err)
2491 return err;
2492
2493 err = p54_register_led(dev, &priv->tx_led, 1, "tx",
2494 ieee80211_get_tx_led_name(dev));
2495 if (err)
2496 return err;
2497
2498 err = p54_set_leds(dev);
2499 return err;
2500 }
2501
2502 static void p54_unregister_leds(struct ieee80211_hw *dev)
2503 {
2504 struct p54_common *priv = dev->priv;
2505
2506 if (priv->tx_led.registered)
2507 led_classdev_unregister(&priv->tx_led.led_dev);
2508 if (priv->assoc_led.registered)
2509 led_classdev_unregister(&priv->assoc_led.led_dev);
2510 }
2511 #endif /* CONFIG_P54_LEDS */
2512
2513 static const struct ieee80211_ops p54_ops = {
2514 .tx = p54_tx,
2515 .start = p54_start,
2516 .stop = p54_stop,
2517 .add_interface = p54_add_interface,
2518 .remove_interface = p54_remove_interface,
2519 .set_tim = p54_set_tim,
2520 .sta_notify = p54_sta_notify,
2521 .set_key = p54_set_key,
2522 .config = p54_config,
2523 .config_interface = p54_config_interface,
2524 .bss_info_changed = p54_bss_info_changed,
2525 .configure_filter = p54_configure_filter,
2526 .conf_tx = p54_conf_tx,
2527 .get_stats = p54_get_stats,
2528 .get_tx_stats = p54_get_tx_stats
2529 };
2530
2531 struct ieee80211_hw *p54_init_common(size_t priv_data_len)
2532 {
2533 struct ieee80211_hw *dev;
2534 struct p54_common *priv;
2535
2536 dev = ieee80211_alloc_hw(priv_data_len, &p54_ops);
2537 if (!dev)
2538 return NULL;
2539
2540 priv = dev->priv;
2541 priv->hw = dev;
2542 priv->mode = NL80211_IFTYPE_UNSPECIFIED;
2543 priv->basic_rate_mask = 0x15f;
2544 skb_queue_head_init(&priv->tx_queue);
2545 dev->flags = IEEE80211_HW_RX_INCLUDES_FCS |
2546 IEEE80211_HW_SIGNAL_DBM |
2547 IEEE80211_HW_NOISE_DBM;
2548
2549 dev->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION) |
2550 BIT(NL80211_IFTYPE_ADHOC) |
2551 BIT(NL80211_IFTYPE_AP) |
2552 BIT(NL80211_IFTYPE_MESH_POINT);
2553
2554 dev->channel_change_time = 1000; /* TODO: find actual value */
2555 priv->tx_stats[P54_QUEUE_BEACON].limit = 1;
2556 priv->tx_stats[P54_QUEUE_FWSCAN].limit = 1;
2557 priv->tx_stats[P54_QUEUE_MGMT].limit = 3;
2558 priv->tx_stats[P54_QUEUE_CAB].limit = 3;
2559 priv->tx_stats[P54_QUEUE_DATA].limit = 5;
2560 dev->queues = 1;
2561 priv->noise = -94;
2562 /*
2563 * We support at most 8 tries no matter which rate they're at,
2564 * we cannot support max_rates * max_rate_tries as we set it
2565 * here, but setting it correctly to 4/2 or so would limit us
2566 * artificially if the RC algorithm wants just two rates, so
2567 * let's say 4/7, we'll redistribute it at TX time, see the
2568 * comments there.
2569 */
2570 dev->max_rates = 4;
2571 dev->max_rate_tries = 7;
2572 dev->extra_tx_headroom = sizeof(struct p54_hdr) + 4 +
2573 sizeof(struct p54_tx_data);
2574
2575 mutex_init(&priv->conf_mutex);
2576 init_completion(&priv->eeprom_comp);
2577 INIT_DELAYED_WORK(&priv->work, p54_work);
2578
2579 return dev;
2580 }
2581 EXPORT_SYMBOL_GPL(p54_init_common);
2582
2583 int p54_register_common(struct ieee80211_hw *dev, struct device *pdev)
2584 {
2585 int err;
2586
2587 err = ieee80211_register_hw(dev);
2588 if (err) {
2589 dev_err(pdev, "Cannot register device (%d).\n", err);
2590 return err;
2591 }
2592
2593 #ifdef CONFIG_P54_LEDS
2594 err = p54_init_leds(dev);
2595 if (err)
2596 return err;
2597 #endif /* CONFIG_P54_LEDS */
2598
2599 dev_info(pdev, "is registered as '%s'\n", wiphy_name(dev->wiphy));
2600 return 0;
2601 }
2602 EXPORT_SYMBOL_GPL(p54_register_common);
2603
2604 void p54_free_common(struct ieee80211_hw *dev)
2605 {
2606 struct p54_common *priv = dev->priv;
2607 kfree(priv->iq_autocal);
2608 kfree(priv->output_limit);
2609 kfree(priv->curve_data);
2610
2611 #ifdef CONFIG_P54_LEDS
2612 p54_unregister_leds(dev);
2613 #endif /* CONFIG_P54_LEDS */
2614 }
2615 EXPORT_SYMBOL_GPL(p54_free_common);
2616
2617 static int __init p54_init(void)
2618 {
2619 return 0;
2620 }
2621
2622 static void __exit p54_exit(void)
2623 {
2624 }
2625
2626 module_init(p54_init);
2627 module_exit(p54_exit);
This page took 0.213909 seconds and 6 git commands to generate.