Merge branch 'hwmon-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jdelv...
[deliverable/linux.git] / drivers / net / wireless / p54 / p54common.c
1 /*
2 * Common code for mac80211 Prism54 drivers
3 *
4 * Copyright (c) 2006, Michael Wu <flamingice@sourmilk.net>
5 * Copyright (c) 2007, Christian Lamparter <chunkeey@web.de>
6 * Copyright 2008, Johannes Berg <johannes@sipsolutions.net>
7 *
8 * Based on:
9 * - the islsm (softmac prism54) driver, which is:
10 * Copyright 2004-2006 Jean-Baptiste Note <jbnote@gmail.com>, et al.
11 * - stlc45xx driver
12 * Copyright (C) 2008 Nokia Corporation and/or its subsidiary(-ies).
13 *
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License version 2 as
16 * published by the Free Software Foundation.
17 */
18
19 #include <linux/init.h>
20 #include <linux/firmware.h>
21 #include <linux/etherdevice.h>
22
23 #include <net/mac80211.h>
24 #ifdef CONFIG_P54_LEDS
25 #include <linux/leds.h>
26 #endif /* CONFIG_P54_LEDS */
27
28 #include "p54.h"
29 #include "p54common.h"
30
31 static int modparam_nohwcrypt;
32 module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
33 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
34 MODULE_AUTHOR("Michael Wu <flamingice@sourmilk.net>");
35 MODULE_DESCRIPTION("Softmac Prism54 common code");
36 MODULE_LICENSE("GPL");
37 MODULE_ALIAS("prism54common");
38
39 static struct ieee80211_rate p54_bgrates[] = {
40 { .bitrate = 10, .hw_value = 0, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
41 { .bitrate = 20, .hw_value = 1, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
42 { .bitrate = 55, .hw_value = 2, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
43 { .bitrate = 110, .hw_value = 3, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
44 { .bitrate = 60, .hw_value = 4, },
45 { .bitrate = 90, .hw_value = 5, },
46 { .bitrate = 120, .hw_value = 6, },
47 { .bitrate = 180, .hw_value = 7, },
48 { .bitrate = 240, .hw_value = 8, },
49 { .bitrate = 360, .hw_value = 9, },
50 { .bitrate = 480, .hw_value = 10, },
51 { .bitrate = 540, .hw_value = 11, },
52 };
53
54 static struct ieee80211_channel p54_bgchannels[] = {
55 { .center_freq = 2412, .hw_value = 1, },
56 { .center_freq = 2417, .hw_value = 2, },
57 { .center_freq = 2422, .hw_value = 3, },
58 { .center_freq = 2427, .hw_value = 4, },
59 { .center_freq = 2432, .hw_value = 5, },
60 { .center_freq = 2437, .hw_value = 6, },
61 { .center_freq = 2442, .hw_value = 7, },
62 { .center_freq = 2447, .hw_value = 8, },
63 { .center_freq = 2452, .hw_value = 9, },
64 { .center_freq = 2457, .hw_value = 10, },
65 { .center_freq = 2462, .hw_value = 11, },
66 { .center_freq = 2467, .hw_value = 12, },
67 { .center_freq = 2472, .hw_value = 13, },
68 { .center_freq = 2484, .hw_value = 14, },
69 };
70
71 static struct ieee80211_supported_band band_2GHz = {
72 .channels = p54_bgchannels,
73 .n_channels = ARRAY_SIZE(p54_bgchannels),
74 .bitrates = p54_bgrates,
75 .n_bitrates = ARRAY_SIZE(p54_bgrates),
76 };
77
78 static struct ieee80211_rate p54_arates[] = {
79 { .bitrate = 60, .hw_value = 4, },
80 { .bitrate = 90, .hw_value = 5, },
81 { .bitrate = 120, .hw_value = 6, },
82 { .bitrate = 180, .hw_value = 7, },
83 { .bitrate = 240, .hw_value = 8, },
84 { .bitrate = 360, .hw_value = 9, },
85 { .bitrate = 480, .hw_value = 10, },
86 { .bitrate = 540, .hw_value = 11, },
87 };
88
89 static struct ieee80211_channel p54_achannels[] = {
90 { .center_freq = 4920 },
91 { .center_freq = 4940 },
92 { .center_freq = 4960 },
93 { .center_freq = 4980 },
94 { .center_freq = 5040 },
95 { .center_freq = 5060 },
96 { .center_freq = 5080 },
97 { .center_freq = 5170 },
98 { .center_freq = 5180 },
99 { .center_freq = 5190 },
100 { .center_freq = 5200 },
101 { .center_freq = 5210 },
102 { .center_freq = 5220 },
103 { .center_freq = 5230 },
104 { .center_freq = 5240 },
105 { .center_freq = 5260 },
106 { .center_freq = 5280 },
107 { .center_freq = 5300 },
108 { .center_freq = 5320 },
109 { .center_freq = 5500 },
110 { .center_freq = 5520 },
111 { .center_freq = 5540 },
112 { .center_freq = 5560 },
113 { .center_freq = 5580 },
114 { .center_freq = 5600 },
115 { .center_freq = 5620 },
116 { .center_freq = 5640 },
117 { .center_freq = 5660 },
118 { .center_freq = 5680 },
119 { .center_freq = 5700 },
120 { .center_freq = 5745 },
121 { .center_freq = 5765 },
122 { .center_freq = 5785 },
123 { .center_freq = 5805 },
124 { .center_freq = 5825 },
125 };
126
127 static struct ieee80211_supported_band band_5GHz = {
128 .channels = p54_achannels,
129 .n_channels = ARRAY_SIZE(p54_achannels),
130 .bitrates = p54_arates,
131 .n_bitrates = ARRAY_SIZE(p54_arates),
132 };
133
134 int p54_parse_firmware(struct ieee80211_hw *dev, const struct firmware *fw)
135 {
136 struct p54_common *priv = dev->priv;
137 struct bootrec_exp_if *exp_if;
138 struct bootrec *bootrec;
139 u32 *data = (u32 *)fw->data;
140 u32 *end_data = (u32 *)fw->data + (fw->size >> 2);
141 u8 *fw_version = NULL;
142 size_t len;
143 int i;
144 int maxlen;
145
146 if (priv->rx_start)
147 return 0;
148
149 while (data < end_data && *data)
150 data++;
151
152 while (data < end_data && !*data)
153 data++;
154
155 bootrec = (struct bootrec *) data;
156
157 while (bootrec->data <= end_data &&
158 (bootrec->data + (len = le32_to_cpu(bootrec->len))) <= end_data) {
159 u32 code = le32_to_cpu(bootrec->code);
160 switch (code) {
161 case BR_CODE_COMPONENT_ID:
162 priv->fw_interface = be32_to_cpup((__be32 *)
163 bootrec->data);
164 switch (priv->fw_interface) {
165 case FW_LM86:
166 case FW_LM20:
167 case FW_LM87: {
168 char *iftype = (char *)bootrec->data;
169 printk(KERN_INFO "%s: p54 detected a LM%c%c "
170 "firmware\n",
171 wiphy_name(dev->wiphy),
172 iftype[2], iftype[3]);
173 break;
174 }
175 case FW_FMAC:
176 default:
177 printk(KERN_ERR "%s: unsupported firmware\n",
178 wiphy_name(dev->wiphy));
179 return -ENODEV;
180 }
181 break;
182 case BR_CODE_COMPONENT_VERSION:
183 /* 24 bytes should be enough for all firmwares */
184 if (strnlen((unsigned char*)bootrec->data, 24) < 24)
185 fw_version = (unsigned char*)bootrec->data;
186 break;
187 case BR_CODE_DESCR: {
188 struct bootrec_desc *desc =
189 (struct bootrec_desc *)bootrec->data;
190 priv->rx_start = le32_to_cpu(desc->rx_start);
191 /* FIXME add sanity checking */
192 priv->rx_end = le32_to_cpu(desc->rx_end) - 0x3500;
193 priv->headroom = desc->headroom;
194 priv->tailroom = desc->tailroom;
195 priv->privacy_caps = desc->privacy_caps;
196 priv->rx_keycache_size = desc->rx_keycache_size;
197 if (le32_to_cpu(bootrec->len) == 11)
198 priv->rx_mtu = le16_to_cpu(desc->rx_mtu);
199 else
200 priv->rx_mtu = (size_t)
201 0x620 - priv->tx_hdr_len;
202 maxlen = priv->tx_hdr_len + /* USB devices */
203 sizeof(struct p54_rx_data) +
204 4 + /* rx alignment */
205 IEEE80211_MAX_FRAG_THRESHOLD;
206 if (priv->rx_mtu > maxlen && PAGE_SIZE == 4096) {
207 printk(KERN_INFO "p54: rx_mtu reduced from %d "
208 "to %d\n", priv->rx_mtu,
209 maxlen);
210 priv->rx_mtu = maxlen;
211 }
212 break;
213 }
214 case BR_CODE_EXPOSED_IF:
215 exp_if = (struct bootrec_exp_if *) bootrec->data;
216 for (i = 0; i < (len * sizeof(*exp_if) / 4); i++)
217 if (exp_if[i].if_id == cpu_to_le16(0x1a))
218 priv->fw_var = le16_to_cpu(exp_if[i].variant);
219 break;
220 case BR_CODE_DEPENDENT_IF:
221 break;
222 case BR_CODE_END_OF_BRA:
223 case LEGACY_BR_CODE_END_OF_BRA:
224 end_data = NULL;
225 break;
226 default:
227 break;
228 }
229 bootrec = (struct bootrec *)&bootrec->data[len];
230 }
231
232 if (fw_version)
233 printk(KERN_INFO "%s: FW rev %s - Softmac protocol %x.%x\n",
234 wiphy_name(dev->wiphy), fw_version,
235 priv->fw_var >> 8, priv->fw_var & 0xff);
236
237 if (priv->fw_var < 0x500)
238 printk(KERN_INFO "%s: you are using an obsolete firmware. "
239 "visit http://wireless.kernel.org/en/users/Drivers/p54 "
240 "and grab one for \"kernel >= 2.6.28\"!\n",
241 wiphy_name(dev->wiphy));
242
243 if (priv->fw_var >= 0x300) {
244 /* Firmware supports QoS, use it! */
245 priv->tx_stats[P54_QUEUE_AC_VO].limit = 3;
246 priv->tx_stats[P54_QUEUE_AC_VI].limit = 4;
247 priv->tx_stats[P54_QUEUE_AC_BE].limit = 3;
248 priv->tx_stats[P54_QUEUE_AC_BK].limit = 2;
249 dev->queues = P54_QUEUE_AC_NUM;
250 }
251
252 if (!modparam_nohwcrypt) {
253 printk(KERN_INFO "%s: cryptographic accelerator "
254 "WEP:%s, TKIP:%s, CCMP:%s\n",
255 wiphy_name(dev->wiphy),
256 (priv->privacy_caps & BR_DESC_PRIV_CAP_WEP) ? "YES" :
257 "no", (priv->privacy_caps & (BR_DESC_PRIV_CAP_TKIP |
258 BR_DESC_PRIV_CAP_MICHAEL)) ? "YES" : "no",
259 (priv->privacy_caps & BR_DESC_PRIV_CAP_AESCCMP) ?
260 "YES" : "no");
261
262 if (priv->rx_keycache_size) {
263 /*
264 * NOTE:
265 *
266 * The firmware provides at most 255 (0 - 254) slots
267 * for keys which are then used to offload decryption.
268 * As a result the 255 entry (aka 0xff) can be used
269 * safely by the driver to mark keys that didn't fit
270 * into the full cache. This trick saves us from
271 * keeping a extra list for uploaded keys.
272 */
273
274 priv->used_rxkeys = kzalloc(BITS_TO_LONGS(
275 priv->rx_keycache_size), GFP_KERNEL);
276
277 if (!priv->used_rxkeys)
278 return -ENOMEM;
279 }
280 }
281
282 return 0;
283 }
284 EXPORT_SYMBOL_GPL(p54_parse_firmware);
285
286 static int p54_convert_rev0(struct ieee80211_hw *dev,
287 struct pda_pa_curve_data *curve_data)
288 {
289 struct p54_common *priv = dev->priv;
290 struct p54_pa_curve_data_sample *dst;
291 struct pda_pa_curve_data_sample_rev0 *src;
292 size_t cd_len = sizeof(*curve_data) +
293 (curve_data->points_per_channel*sizeof(*dst) + 2) *
294 curve_data->channels;
295 unsigned int i, j;
296 void *source, *target;
297
298 priv->curve_data = kmalloc(sizeof(*priv->curve_data) + cd_len,
299 GFP_KERNEL);
300 if (!priv->curve_data)
301 return -ENOMEM;
302
303 priv->curve_data->entries = curve_data->channels;
304 priv->curve_data->entry_size = sizeof(__le16) +
305 sizeof(*dst) * curve_data->points_per_channel;
306 priv->curve_data->offset = offsetof(struct pda_pa_curve_data, data);
307 priv->curve_data->len = cd_len;
308 memcpy(priv->curve_data->data, curve_data, sizeof(*curve_data));
309 source = curve_data->data;
310 target = ((struct pda_pa_curve_data *) priv->curve_data->data)->data;
311 for (i = 0; i < curve_data->channels; i++) {
312 __le16 *freq = source;
313 source += sizeof(__le16);
314 *((__le16 *)target) = *freq;
315 target += sizeof(__le16);
316 for (j = 0; j < curve_data->points_per_channel; j++) {
317 dst = target;
318 src = source;
319
320 dst->rf_power = src->rf_power;
321 dst->pa_detector = src->pa_detector;
322 dst->data_64qam = src->pcv;
323 /* "invent" the points for the other modulations */
324 #define SUB(x,y) (u8)((x) - (y)) > (x) ? 0 : (x) - (y)
325 dst->data_16qam = SUB(src->pcv, 12);
326 dst->data_qpsk = SUB(dst->data_16qam, 12);
327 dst->data_bpsk = SUB(dst->data_qpsk, 12);
328 dst->data_barker = SUB(dst->data_bpsk, 14);
329 #undef SUB
330 target += sizeof(*dst);
331 source += sizeof(*src);
332 }
333 }
334
335 return 0;
336 }
337
338 static int p54_convert_rev1(struct ieee80211_hw *dev,
339 struct pda_pa_curve_data *curve_data)
340 {
341 struct p54_common *priv = dev->priv;
342 struct p54_pa_curve_data_sample *dst;
343 struct pda_pa_curve_data_sample_rev1 *src;
344 size_t cd_len = sizeof(*curve_data) +
345 (curve_data->points_per_channel*sizeof(*dst) + 2) *
346 curve_data->channels;
347 unsigned int i, j;
348 void *source, *target;
349
350 priv->curve_data = kzalloc(cd_len + sizeof(*priv->curve_data),
351 GFP_KERNEL);
352 if (!priv->curve_data)
353 return -ENOMEM;
354
355 priv->curve_data->entries = curve_data->channels;
356 priv->curve_data->entry_size = sizeof(__le16) +
357 sizeof(*dst) * curve_data->points_per_channel;
358 priv->curve_data->offset = offsetof(struct pda_pa_curve_data, data);
359 priv->curve_data->len = cd_len;
360 memcpy(priv->curve_data->data, curve_data, sizeof(*curve_data));
361 source = curve_data->data;
362 target = ((struct pda_pa_curve_data *) priv->curve_data->data)->data;
363 for (i = 0; i < curve_data->channels; i++) {
364 __le16 *freq = source;
365 source += sizeof(__le16);
366 *((__le16 *)target) = *freq;
367 target += sizeof(__le16);
368 for (j = 0; j < curve_data->points_per_channel; j++) {
369 memcpy(target, source, sizeof(*src));
370
371 target += sizeof(*dst);
372 source += sizeof(*src);
373 }
374 source++;
375 }
376
377 return 0;
378 }
379
380 static const char *p54_rf_chips[] = { "NULL", "Duette3", "Duette2",
381 "Frisbee", "Xbow", "Longbow", "NULL", "NULL" };
382 static int p54_init_xbow_synth(struct ieee80211_hw *dev);
383
384 static void p54_parse_rssical(struct ieee80211_hw *dev, void *data, int len,
385 u16 type)
386 {
387 struct p54_common *priv = dev->priv;
388 int offset = (type == PDR_RSSI_LINEAR_APPROXIMATION_EXTENDED) ? 2 : 0;
389 int entry_size = sizeof(struct pda_rssi_cal_entry) + offset;
390 int num_entries = (type == PDR_RSSI_LINEAR_APPROXIMATION) ? 1 : 2;
391 int i;
392
393 if (len != (entry_size * num_entries)) {
394 printk(KERN_ERR "%s: unknown rssi calibration data packing "
395 " type:(%x) len:%d.\n",
396 wiphy_name(dev->wiphy), type, len);
397
398 print_hex_dump_bytes("rssical:", DUMP_PREFIX_NONE,
399 data, len);
400
401 printk(KERN_ERR "%s: please report this issue.\n",
402 wiphy_name(dev->wiphy));
403 return;
404 }
405
406 for (i = 0; i < num_entries; i++) {
407 struct pda_rssi_cal_entry *cal = data +
408 (offset + i * entry_size);
409 priv->rssical_db[i].mul = (s16) le16_to_cpu(cal->mul);
410 priv->rssical_db[i].add = (s16) le16_to_cpu(cal->add);
411 }
412 }
413
414 static void p54_parse_default_country(struct ieee80211_hw *dev,
415 void *data, int len)
416 {
417 struct pda_country *country;
418
419 if (len != sizeof(*country)) {
420 printk(KERN_ERR "%s: found possible invalid default country "
421 "eeprom entry. (entry size: %d)\n",
422 wiphy_name(dev->wiphy), len);
423
424 print_hex_dump_bytes("country:", DUMP_PREFIX_NONE,
425 data, len);
426
427 printk(KERN_ERR "%s: please report this issue.\n",
428 wiphy_name(dev->wiphy));
429 return;
430 }
431
432 country = (struct pda_country *) data;
433 if (country->flags == PDR_COUNTRY_CERT_CODE_PSEUDO)
434 regulatory_hint(dev->wiphy, country->alpha2);
435 else {
436 /* TODO:
437 * write a shared/common function that converts
438 * "Regulatory domain codes" (802.11-2007 14.8.2.2)
439 * into ISO/IEC 3166-1 alpha2 for regulatory_hint.
440 */
441 }
442 }
443
444 static int p54_convert_output_limits(struct ieee80211_hw *dev,
445 u8 *data, size_t len)
446 {
447 struct p54_common *priv = dev->priv;
448
449 if (len < 2)
450 return -EINVAL;
451
452 if (data[0] != 0) {
453 printk(KERN_ERR "%s: unknown output power db revision:%x\n",
454 wiphy_name(dev->wiphy), data[0]);
455 return -EINVAL;
456 }
457
458 if (2 + data[1] * sizeof(struct pda_channel_output_limit) > len)
459 return -EINVAL;
460
461 priv->output_limit = kmalloc(data[1] *
462 sizeof(struct pda_channel_output_limit) +
463 sizeof(*priv->output_limit), GFP_KERNEL);
464
465 if (!priv->output_limit)
466 return -ENOMEM;
467
468 priv->output_limit->offset = 0;
469 priv->output_limit->entries = data[1];
470 priv->output_limit->entry_size =
471 sizeof(struct pda_channel_output_limit);
472 priv->output_limit->len = priv->output_limit->entry_size *
473 priv->output_limit->entries +
474 priv->output_limit->offset;
475
476 memcpy(priv->output_limit->data, &data[2],
477 data[1] * sizeof(struct pda_channel_output_limit));
478
479 return 0;
480 }
481
482 static struct p54_cal_database *p54_convert_db(struct pda_custom_wrapper *src,
483 size_t total_len)
484 {
485 struct p54_cal_database *dst;
486 size_t payload_len, entries, entry_size, offset;
487
488 payload_len = le16_to_cpu(src->len);
489 entries = le16_to_cpu(src->entries);
490 entry_size = le16_to_cpu(src->entry_size);
491 offset = le16_to_cpu(src->offset);
492 if (((entries * entry_size + offset) != payload_len) ||
493 (payload_len + sizeof(*src) != total_len))
494 return NULL;
495
496 dst = kmalloc(sizeof(*dst) + payload_len, GFP_KERNEL);
497 if (!dst)
498 return NULL;
499
500 dst->entries = entries;
501 dst->entry_size = entry_size;
502 dst->offset = offset;
503 dst->len = payload_len;
504
505 memcpy(dst->data, src->data, payload_len);
506 return dst;
507 }
508
509 int p54_parse_eeprom(struct ieee80211_hw *dev, void *eeprom, int len)
510 {
511 struct p54_common *priv = dev->priv;
512 struct eeprom_pda_wrap *wrap = NULL;
513 struct pda_entry *entry;
514 unsigned int data_len, entry_len;
515 void *tmp;
516 int err;
517 u8 *end = (u8 *)eeprom + len;
518 u16 synth = 0;
519
520 wrap = (struct eeprom_pda_wrap *) eeprom;
521 entry = (void *)wrap->data + le16_to_cpu(wrap->len);
522
523 /* verify that at least the entry length/code fits */
524 while ((u8 *)entry <= end - sizeof(*entry)) {
525 entry_len = le16_to_cpu(entry->len);
526 data_len = ((entry_len - 1) << 1);
527
528 /* abort if entry exceeds whole structure */
529 if ((u8 *)entry + sizeof(*entry) + data_len > end)
530 break;
531
532 switch (le16_to_cpu(entry->code)) {
533 case PDR_MAC_ADDRESS:
534 if (data_len != ETH_ALEN)
535 break;
536 SET_IEEE80211_PERM_ADDR(dev, entry->data);
537 break;
538 case PDR_PRISM_PA_CAL_OUTPUT_POWER_LIMITS:
539 if (priv->output_limit)
540 break;
541 err = p54_convert_output_limits(dev, entry->data,
542 data_len);
543 if (err)
544 goto err;
545 break;
546 case PDR_PRISM_PA_CAL_CURVE_DATA: {
547 struct pda_pa_curve_data *curve_data =
548 (struct pda_pa_curve_data *)entry->data;
549 if (data_len < sizeof(*curve_data)) {
550 err = -EINVAL;
551 goto err;
552 }
553
554 switch (curve_data->cal_method_rev) {
555 case 0:
556 err = p54_convert_rev0(dev, curve_data);
557 break;
558 case 1:
559 err = p54_convert_rev1(dev, curve_data);
560 break;
561 default:
562 printk(KERN_ERR "%s: unknown curve data "
563 "revision %d\n",
564 wiphy_name(dev->wiphy),
565 curve_data->cal_method_rev);
566 err = -ENODEV;
567 break;
568 }
569 if (err)
570 goto err;
571 }
572 break;
573 case PDR_PRISM_ZIF_TX_IQ_CALIBRATION:
574 priv->iq_autocal = kmalloc(data_len, GFP_KERNEL);
575 if (!priv->iq_autocal) {
576 err = -ENOMEM;
577 goto err;
578 }
579
580 memcpy(priv->iq_autocal, entry->data, data_len);
581 priv->iq_autocal_len = data_len / sizeof(struct pda_iq_autocal_entry);
582 break;
583 case PDR_DEFAULT_COUNTRY:
584 p54_parse_default_country(dev, entry->data, data_len);
585 break;
586 case PDR_INTERFACE_LIST:
587 tmp = entry->data;
588 while ((u8 *)tmp < entry->data + data_len) {
589 struct bootrec_exp_if *exp_if = tmp;
590 if (le16_to_cpu(exp_if->if_id) == 0xf)
591 synth = le16_to_cpu(exp_if->variant);
592 tmp += sizeof(struct bootrec_exp_if);
593 }
594 break;
595 case PDR_HARDWARE_PLATFORM_COMPONENT_ID:
596 if (data_len < 2)
597 break;
598 priv->version = *(u8 *)(entry->data + 1);
599 break;
600 case PDR_RSSI_LINEAR_APPROXIMATION:
601 case PDR_RSSI_LINEAR_APPROXIMATION_DUAL_BAND:
602 case PDR_RSSI_LINEAR_APPROXIMATION_EXTENDED:
603 p54_parse_rssical(dev, entry->data, data_len,
604 le16_to_cpu(entry->code));
605 break;
606 case PDR_RSSI_LINEAR_APPROXIMATION_CUSTOM: {
607 __le16 *src = (void *) entry->data;
608 s16 *dst = (void *) &priv->rssical_db;
609 int i;
610
611 if (data_len != sizeof(priv->rssical_db)) {
612 err = -EINVAL;
613 goto err;
614 }
615 for (i = 0; i < sizeof(priv->rssical_db) /
616 sizeof(*src); i++)
617 *(dst++) = (s16) le16_to_cpu(*(src++));
618 }
619 break;
620 case PDR_PRISM_PA_CAL_OUTPUT_POWER_LIMITS_CUSTOM: {
621 struct pda_custom_wrapper *pda = (void *) entry->data;
622 if (priv->output_limit || data_len < sizeof(*pda))
623 break;
624 priv->output_limit = p54_convert_db(pda, data_len);
625 }
626 break;
627 case PDR_PRISM_PA_CAL_CURVE_DATA_CUSTOM: {
628 struct pda_custom_wrapper *pda = (void *) entry->data;
629 if (priv->curve_data || data_len < sizeof(*pda))
630 break;
631 priv->curve_data = p54_convert_db(pda, data_len);
632 }
633 break;
634 case PDR_END:
635 /* make it overrun */
636 entry_len = len;
637 break;
638 case PDR_MANUFACTURING_PART_NUMBER:
639 case PDR_PDA_VERSION:
640 case PDR_NIC_SERIAL_NUMBER:
641 case PDR_REGULATORY_DOMAIN_LIST:
642 case PDR_TEMPERATURE_TYPE:
643 case PDR_PRISM_PCI_IDENTIFIER:
644 case PDR_COUNTRY_INFORMATION:
645 case PDR_OEM_NAME:
646 case PDR_PRODUCT_NAME:
647 case PDR_UTF8_OEM_NAME:
648 case PDR_UTF8_PRODUCT_NAME:
649 case PDR_COUNTRY_LIST:
650 case PDR_ANTENNA_GAIN:
651 case PDR_PRISM_INDIGO_PA_CALIBRATION_DATA:
652 case PDR_REGULATORY_POWER_LIMITS:
653 case PDR_RADIATED_TRANSMISSION_CORRECTION:
654 case PDR_PRISM_TX_IQ_CALIBRATION:
655 case PDR_BASEBAND_REGISTERS:
656 case PDR_PER_CHANNEL_BASEBAND_REGISTERS:
657 break;
658 default:
659 printk(KERN_INFO "%s: unknown eeprom code : 0x%x\n",
660 wiphy_name(dev->wiphy),
661 le16_to_cpu(entry->code));
662 break;
663 }
664
665 entry = (void *)entry + (entry_len + 1)*2;
666 }
667
668 if (!synth || !priv->iq_autocal || !priv->output_limit ||
669 !priv->curve_data) {
670 printk(KERN_ERR "%s: not all required entries found in eeprom!\n",
671 wiphy_name(dev->wiphy));
672 err = -EINVAL;
673 goto err;
674 }
675
676 priv->rxhw = synth & PDR_SYNTH_FRONTEND_MASK;
677 if (priv->rxhw == PDR_SYNTH_FRONTEND_XBOW)
678 p54_init_xbow_synth(dev);
679 if (!(synth & PDR_SYNTH_24_GHZ_DISABLED))
680 dev->wiphy->bands[IEEE80211_BAND_2GHZ] = &band_2GHz;
681 if (!(synth & PDR_SYNTH_5_GHZ_DISABLED))
682 dev->wiphy->bands[IEEE80211_BAND_5GHZ] = &band_5GHz;
683 if ((synth & PDR_SYNTH_RX_DIV_MASK) == PDR_SYNTH_RX_DIV_SUPPORTED)
684 priv->rx_diversity_mask = 3;
685 if ((synth & PDR_SYNTH_TX_DIV_MASK) == PDR_SYNTH_TX_DIV_SUPPORTED)
686 priv->tx_diversity_mask = 3;
687
688 if (!is_valid_ether_addr(dev->wiphy->perm_addr)) {
689 u8 perm_addr[ETH_ALEN];
690
691 printk(KERN_WARNING "%s: Invalid hwaddr! Using randomly generated MAC addr\n",
692 wiphy_name(dev->wiphy));
693 random_ether_addr(perm_addr);
694 SET_IEEE80211_PERM_ADDR(dev, perm_addr);
695 }
696
697 printk(KERN_INFO "%s: hwaddr %pM, MAC:isl38%02x RF:%s\n",
698 wiphy_name(dev->wiphy),
699 dev->wiphy->perm_addr,
700 priv->version, p54_rf_chips[priv->rxhw]);
701
702 return 0;
703
704 err:
705 if (priv->iq_autocal) {
706 kfree(priv->iq_autocal);
707 priv->iq_autocal = NULL;
708 }
709
710 if (priv->output_limit) {
711 kfree(priv->output_limit);
712 priv->output_limit = NULL;
713 }
714
715 if (priv->curve_data) {
716 kfree(priv->curve_data);
717 priv->curve_data = NULL;
718 }
719
720 printk(KERN_ERR "%s: eeprom parse failed!\n",
721 wiphy_name(dev->wiphy));
722 return err;
723 }
724 EXPORT_SYMBOL_GPL(p54_parse_eeprom);
725
726 static int p54_rssi_to_dbm(struct ieee80211_hw *dev, int rssi)
727 {
728 struct p54_common *priv = dev->priv;
729 int band = dev->conf.channel->band;
730
731 if (priv->rxhw != PDR_SYNTH_FRONTEND_LONGBOW)
732 return ((rssi * priv->rssical_db[band].mul) / 64 +
733 priv->rssical_db[band].add) / 4;
734 else
735 /*
736 * TODO: find the correct formula
737 */
738 return ((rssi * priv->rssical_db[band].mul) / 64 +
739 priv->rssical_db[band].add) / 4;
740 }
741
742 static int p54_rx_data(struct ieee80211_hw *dev, struct sk_buff *skb)
743 {
744 struct p54_common *priv = dev->priv;
745 struct p54_rx_data *hdr = (struct p54_rx_data *) skb->data;
746 struct ieee80211_rx_status rx_status = {0};
747 u16 freq = le16_to_cpu(hdr->freq);
748 size_t header_len = sizeof(*hdr);
749 u32 tsf32;
750 u8 rate = hdr->rate & 0xf;
751
752 /*
753 * If the device is in a unspecified state we have to
754 * ignore all data frames. Else we could end up with a
755 * nasty crash.
756 */
757 if (unlikely(priv->mode == NL80211_IFTYPE_UNSPECIFIED))
758 return 0;
759
760 if (!(hdr->flags & cpu_to_le16(P54_HDR_FLAG_DATA_IN_FCS_GOOD))) {
761 return 0;
762 }
763
764 if (hdr->decrypt_status == P54_DECRYPT_OK)
765 rx_status.flag |= RX_FLAG_DECRYPTED;
766 if ((hdr->decrypt_status == P54_DECRYPT_FAIL_MICHAEL) ||
767 (hdr->decrypt_status == P54_DECRYPT_FAIL_TKIP))
768 rx_status.flag |= RX_FLAG_MMIC_ERROR;
769
770 rx_status.signal = p54_rssi_to_dbm(dev, hdr->rssi);
771 rx_status.noise = priv->noise;
772 if (hdr->rate & 0x10)
773 rx_status.flag |= RX_FLAG_SHORTPRE;
774 if (dev->conf.channel->band == IEEE80211_BAND_5GHZ)
775 rx_status.rate_idx = (rate < 4) ? 0 : rate - 4;
776 else
777 rx_status.rate_idx = rate;
778
779 rx_status.freq = freq;
780 rx_status.band = dev->conf.channel->band;
781 rx_status.antenna = hdr->antenna;
782
783 tsf32 = le32_to_cpu(hdr->tsf32);
784 if (tsf32 < priv->tsf_low32)
785 priv->tsf_high32++;
786 rx_status.mactime = ((u64)priv->tsf_high32) << 32 | tsf32;
787 priv->tsf_low32 = tsf32;
788
789 rx_status.flag |= RX_FLAG_TSFT;
790
791 if (hdr->flags & cpu_to_le16(P54_HDR_FLAG_DATA_ALIGN))
792 header_len += hdr->align[0];
793
794 skb_pull(skb, header_len);
795 skb_trim(skb, le16_to_cpu(hdr->len));
796
797 ieee80211_rx_irqsafe(dev, skb, &rx_status);
798
799 queue_delayed_work(dev->workqueue, &priv->work,
800 msecs_to_jiffies(P54_STATISTICS_UPDATE));
801
802 return -1;
803 }
804
805 static void inline p54_wake_free_queues(struct ieee80211_hw *dev)
806 {
807 struct p54_common *priv = dev->priv;
808 int i;
809
810 if (priv->mode == NL80211_IFTYPE_UNSPECIFIED)
811 return ;
812
813 for (i = 0; i < dev->queues; i++)
814 if (priv->tx_stats[i + P54_QUEUE_DATA].len <
815 priv->tx_stats[i + P54_QUEUE_DATA].limit)
816 ieee80211_wake_queue(dev, i);
817 }
818
819 void p54_free_skb(struct ieee80211_hw *dev, struct sk_buff *skb)
820 {
821 struct p54_common *priv = dev->priv;
822 struct ieee80211_tx_info *info;
823 struct p54_tx_info *range;
824 unsigned long flags;
825
826 if (unlikely(!skb || !dev || skb_queue_empty(&priv->tx_queue)))
827 return;
828
829 /* There used to be a check here to see if the SKB was on the
830 * TX queue or not. This can never happen because all SKBs we
831 * see here successfully went through p54_assign_address()
832 * which means the SKB is on the ->tx_queue.
833 */
834
835 spin_lock_irqsave(&priv->tx_queue.lock, flags);
836 info = IEEE80211_SKB_CB(skb);
837 range = (void *)info->rate_driver_data;
838 if (!skb_queue_is_first(&priv->tx_queue, skb)) {
839 struct ieee80211_tx_info *ni;
840 struct p54_tx_info *mr;
841
842 ni = IEEE80211_SKB_CB(skb_queue_prev(&priv->tx_queue, skb));
843 mr = (struct p54_tx_info *)ni->rate_driver_data;
844 }
845 if (!skb_queue_is_last(&priv->tx_queue, skb)) {
846 struct ieee80211_tx_info *ni;
847 struct p54_tx_info *mr;
848
849 ni = IEEE80211_SKB_CB(skb_queue_next(&priv->tx_queue, skb));
850 mr = (struct p54_tx_info *)ni->rate_driver_data;
851 }
852 __skb_unlink(skb, &priv->tx_queue);
853 spin_unlock_irqrestore(&priv->tx_queue.lock, flags);
854 dev_kfree_skb_any(skb);
855 p54_wake_free_queues(dev);
856 }
857 EXPORT_SYMBOL_GPL(p54_free_skb);
858
859 static struct sk_buff *p54_find_tx_entry(struct ieee80211_hw *dev,
860 __le32 req_id)
861 {
862 struct p54_common *priv = dev->priv;
863 struct sk_buff *entry;
864 unsigned long flags;
865
866 spin_lock_irqsave(&priv->tx_queue.lock, flags);
867 skb_queue_walk(&priv->tx_queue, entry) {
868 struct p54_hdr *hdr = (struct p54_hdr *) entry->data;
869
870 if (hdr->req_id == req_id) {
871 spin_unlock_irqrestore(&priv->tx_queue.lock, flags);
872 return entry;
873 }
874 }
875 spin_unlock_irqrestore(&priv->tx_queue.lock, flags);
876 return NULL;
877 }
878
879 static void p54_rx_frame_sent(struct ieee80211_hw *dev, struct sk_buff *skb)
880 {
881 struct p54_common *priv = dev->priv;
882 struct p54_hdr *hdr = (struct p54_hdr *) skb->data;
883 struct p54_frame_sent *payload = (struct p54_frame_sent *) hdr->data;
884 struct sk_buff *entry;
885 u32 addr = le32_to_cpu(hdr->req_id) - priv->headroom;
886 struct p54_tx_info *range = NULL;
887 unsigned long flags;
888 int count, idx;
889
890 spin_lock_irqsave(&priv->tx_queue.lock, flags);
891 skb_queue_walk(&priv->tx_queue, entry) {
892 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(entry);
893 struct p54_hdr *entry_hdr;
894 struct p54_tx_data *entry_data;
895 unsigned int pad = 0, frame_len;
896
897 range = (void *)info->rate_driver_data;
898 if (range->start_addr != addr)
899 continue;
900
901 if (!skb_queue_is_last(&priv->tx_queue, entry)) {
902 struct ieee80211_tx_info *ni;
903 struct p54_tx_info *mr;
904
905 ni = IEEE80211_SKB_CB(skb_queue_next(&priv->tx_queue,
906 entry));
907 mr = (struct p54_tx_info *)ni->rate_driver_data;
908 }
909
910 __skb_unlink(entry, &priv->tx_queue);
911 spin_unlock_irqrestore(&priv->tx_queue.lock, flags);
912
913 frame_len = entry->len;
914 entry_hdr = (struct p54_hdr *) entry->data;
915 entry_data = (struct p54_tx_data *) entry_hdr->data;
916 priv->tx_stats[entry_data->hw_queue].len--;
917 priv->stats.dot11ACKFailureCount += payload->tries - 1;
918
919 /*
920 * Frames in P54_QUEUE_FWSCAN and P54_QUEUE_BEACON are
921 * generated by the driver. Therefore tx_status is bogus
922 * and we don't want to confuse the mac80211 stack.
923 */
924 if (unlikely(entry_data->hw_queue < P54_QUEUE_FWSCAN)) {
925 if (entry_data->hw_queue == P54_QUEUE_BEACON)
926 priv->cached_beacon = NULL;
927
928 kfree_skb(entry);
929 goto out;
930 }
931
932 /*
933 * Clear manually, ieee80211_tx_info_clear_status would
934 * clear the counts too and we need them.
935 */
936 memset(&info->status.ampdu_ack_len, 0,
937 sizeof(struct ieee80211_tx_info) -
938 offsetof(struct ieee80211_tx_info, status.ampdu_ack_len));
939 BUILD_BUG_ON(offsetof(struct ieee80211_tx_info,
940 status.ampdu_ack_len) != 23);
941
942 if (entry_hdr->flags & cpu_to_le16(P54_HDR_FLAG_DATA_ALIGN))
943 pad = entry_data->align[0];
944
945 /* walk through the rates array and adjust the counts */
946 count = payload->tries;
947 for (idx = 0; idx < 4; idx++) {
948 if (count >= info->status.rates[idx].count) {
949 count -= info->status.rates[idx].count;
950 } else if (count > 0) {
951 info->status.rates[idx].count = count;
952 count = 0;
953 } else {
954 info->status.rates[idx].idx = -1;
955 info->status.rates[idx].count = 0;
956 }
957 }
958
959 if (!(info->flags & IEEE80211_TX_CTL_NO_ACK) &&
960 (!payload->status))
961 info->flags |= IEEE80211_TX_STAT_ACK;
962 if (payload->status & P54_TX_PSM_CANCELLED)
963 info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
964 info->status.ack_signal = p54_rssi_to_dbm(dev,
965 (int)payload->ack_rssi);
966
967 /* Undo all changes to the frame. */
968 switch (entry_data->key_type) {
969 case P54_CRYPTO_TKIPMICHAEL: {
970 u8 *iv = (u8 *)(entry_data->align + pad +
971 entry_data->crypt_offset);
972
973 /* Restore the original TKIP IV. */
974 iv[2] = iv[0];
975 iv[0] = iv[1];
976 iv[1] = (iv[0] | 0x20) & 0x7f; /* WEPSeed - 8.3.2.2 */
977
978 frame_len -= 12; /* remove TKIP_MMIC + TKIP_ICV */
979 break;
980 }
981 case P54_CRYPTO_AESCCMP:
982 frame_len -= 8; /* remove CCMP_MIC */
983 break;
984 case P54_CRYPTO_WEP:
985 frame_len -= 4; /* remove WEP_ICV */
986 break;
987 }
988 skb_trim(entry, frame_len);
989 skb_pull(entry, sizeof(*hdr) + pad + sizeof(*entry_data));
990 ieee80211_tx_status_irqsafe(dev, entry);
991 goto out;
992 }
993 spin_unlock_irqrestore(&priv->tx_queue.lock, flags);
994
995 out:
996 p54_wake_free_queues(dev);
997 }
998
999 static void p54_rx_eeprom_readback(struct ieee80211_hw *dev,
1000 struct sk_buff *skb)
1001 {
1002 struct p54_hdr *hdr = (struct p54_hdr *) skb->data;
1003 struct p54_eeprom_lm86 *eeprom = (struct p54_eeprom_lm86 *) hdr->data;
1004 struct p54_common *priv = dev->priv;
1005
1006 if (!priv->eeprom)
1007 return ;
1008
1009 if (priv->fw_var >= 0x509) {
1010 memcpy(priv->eeprom, eeprom->v2.data,
1011 le16_to_cpu(eeprom->v2.len));
1012 } else {
1013 memcpy(priv->eeprom, eeprom->v1.data,
1014 le16_to_cpu(eeprom->v1.len));
1015 }
1016
1017 complete(&priv->eeprom_comp);
1018 }
1019
1020 static void p54_rx_stats(struct ieee80211_hw *dev, struct sk_buff *skb)
1021 {
1022 struct p54_common *priv = dev->priv;
1023 struct p54_hdr *hdr = (struct p54_hdr *) skb->data;
1024 struct p54_statistics *stats = (struct p54_statistics *) hdr->data;
1025 u32 tsf32;
1026
1027 if (unlikely(priv->mode == NL80211_IFTYPE_UNSPECIFIED))
1028 return ;
1029
1030 tsf32 = le32_to_cpu(stats->tsf32);
1031 if (tsf32 < priv->tsf_low32)
1032 priv->tsf_high32++;
1033 priv->tsf_low32 = tsf32;
1034
1035 priv->stats.dot11RTSFailureCount = le32_to_cpu(stats->rts_fail);
1036 priv->stats.dot11RTSSuccessCount = le32_to_cpu(stats->rts_success);
1037 priv->stats.dot11FCSErrorCount = le32_to_cpu(stats->rx_bad_fcs);
1038
1039 priv->noise = p54_rssi_to_dbm(dev, le32_to_cpu(stats->noise));
1040
1041 p54_free_skb(dev, p54_find_tx_entry(dev, hdr->req_id));
1042 }
1043
1044 static void p54_rx_trap(struct ieee80211_hw *dev, struct sk_buff *skb)
1045 {
1046 struct p54_common *priv = dev->priv;
1047 struct p54_hdr *hdr = (struct p54_hdr *) skb->data;
1048 struct p54_trap *trap = (struct p54_trap *) hdr->data;
1049 u16 event = le16_to_cpu(trap->event);
1050 u16 freq = le16_to_cpu(trap->frequency);
1051
1052 switch (event) {
1053 case P54_TRAP_BEACON_TX:
1054 break;
1055 case P54_TRAP_RADAR:
1056 printk(KERN_INFO "%s: radar (freq:%d MHz)\n",
1057 wiphy_name(dev->wiphy), freq);
1058 break;
1059 case P54_TRAP_NO_BEACON:
1060 if (priv->vif)
1061 ieee80211_beacon_loss(priv->vif);
1062 break;
1063 case P54_TRAP_SCAN:
1064 break;
1065 case P54_TRAP_TBTT:
1066 break;
1067 case P54_TRAP_TIMER:
1068 break;
1069 default:
1070 printk(KERN_INFO "%s: received event:%x freq:%d\n",
1071 wiphy_name(dev->wiphy), event, freq);
1072 break;
1073 }
1074 }
1075
1076 static int p54_rx_control(struct ieee80211_hw *dev, struct sk_buff *skb)
1077 {
1078 struct p54_hdr *hdr = (struct p54_hdr *) skb->data;
1079
1080 switch (le16_to_cpu(hdr->type)) {
1081 case P54_CONTROL_TYPE_TXDONE:
1082 p54_rx_frame_sent(dev, skb);
1083 break;
1084 case P54_CONTROL_TYPE_TRAP:
1085 p54_rx_trap(dev, skb);
1086 break;
1087 case P54_CONTROL_TYPE_BBP:
1088 break;
1089 case P54_CONTROL_TYPE_STAT_READBACK:
1090 p54_rx_stats(dev, skb);
1091 break;
1092 case P54_CONTROL_TYPE_EEPROM_READBACK:
1093 p54_rx_eeprom_readback(dev, skb);
1094 break;
1095 default:
1096 printk(KERN_DEBUG "%s: not handling 0x%02x type control frame\n",
1097 wiphy_name(dev->wiphy), le16_to_cpu(hdr->type));
1098 break;
1099 }
1100
1101 return 0;
1102 }
1103
1104 /* returns zero if skb can be reused */
1105 int p54_rx(struct ieee80211_hw *dev, struct sk_buff *skb)
1106 {
1107 u16 type = le16_to_cpu(*((__le16 *)skb->data));
1108
1109 if (type & P54_HDR_FLAG_CONTROL)
1110 return p54_rx_control(dev, skb);
1111 else
1112 return p54_rx_data(dev, skb);
1113 }
1114 EXPORT_SYMBOL_GPL(p54_rx);
1115
1116 /*
1117 * So, the firmware is somewhat stupid and doesn't know what places in its
1118 * memory incoming data should go to. By poking around in the firmware, we
1119 * can find some unused memory to upload our packets to. However, data that we
1120 * want the card to TX needs to stay intact until the card has told us that
1121 * it is done with it. This function finds empty places we can upload to and
1122 * marks allocated areas as reserved if necessary. p54_rx_frame_sent or
1123 * p54_free_skb frees allocated areas.
1124 */
1125 static int p54_assign_address(struct ieee80211_hw *dev, struct sk_buff *skb,
1126 struct p54_hdr *data, u32 len)
1127 {
1128 struct p54_common *priv = dev->priv;
1129 struct sk_buff *entry;
1130 struct sk_buff *target_skb = NULL;
1131 struct ieee80211_tx_info *info;
1132 struct p54_tx_info *range;
1133 u32 last_addr = priv->rx_start;
1134 u32 largest_hole = 0;
1135 u32 target_addr = priv->rx_start;
1136 unsigned long flags;
1137 unsigned int left;
1138 len = (len + priv->headroom + priv->tailroom + 3) & ~0x3;
1139
1140 if (!skb)
1141 return -EINVAL;
1142
1143 spin_lock_irqsave(&priv->tx_queue.lock, flags);
1144
1145 left = skb_queue_len(&priv->tx_queue);
1146 if (unlikely(left >= 28)) {
1147 /*
1148 * The tx_queue is nearly full!
1149 * We have throttle normal data traffic, because we must
1150 * have a few spare slots for control frames left.
1151 */
1152 ieee80211_stop_queues(dev);
1153 queue_delayed_work(dev->workqueue, &priv->work,
1154 msecs_to_jiffies(P54_TX_TIMEOUT));
1155
1156 if (unlikely(left == 32)) {
1157 /*
1158 * The tx_queue is now really full.
1159 *
1160 * TODO: check if the device has crashed and reset it.
1161 */
1162 spin_unlock_irqrestore(&priv->tx_queue.lock, flags);
1163 return -ENOSPC;
1164 }
1165 }
1166
1167 skb_queue_walk(&priv->tx_queue, entry) {
1168 u32 hole_size;
1169 info = IEEE80211_SKB_CB(entry);
1170 range = (void *)info->rate_driver_data;
1171 hole_size = range->start_addr - last_addr;
1172 if (!target_skb && hole_size >= len) {
1173 target_skb = skb_queue_prev(&priv->tx_queue, entry);
1174 hole_size -= len;
1175 target_addr = last_addr;
1176 }
1177 largest_hole = max(largest_hole, hole_size);
1178 last_addr = range->end_addr;
1179 }
1180 if (!target_skb && priv->rx_end - last_addr >= len) {
1181 target_skb = skb_peek_tail(&priv->tx_queue);
1182 largest_hole = max(largest_hole, priv->rx_end - last_addr - len);
1183 if (!skb_queue_empty(&priv->tx_queue)) {
1184 info = IEEE80211_SKB_CB(target_skb);
1185 range = (void *)info->rate_driver_data;
1186 target_addr = range->end_addr;
1187 }
1188 } else
1189 largest_hole = max(largest_hole, priv->rx_end - last_addr);
1190
1191 if (!target_skb) {
1192 spin_unlock_irqrestore(&priv->tx_queue.lock, flags);
1193 ieee80211_stop_queues(dev);
1194 return -ENOSPC;
1195 }
1196
1197 info = IEEE80211_SKB_CB(skb);
1198 range = (void *)info->rate_driver_data;
1199 range->start_addr = target_addr;
1200 range->end_addr = target_addr + len;
1201 __skb_queue_after(&priv->tx_queue, target_skb, skb);
1202 spin_unlock_irqrestore(&priv->tx_queue.lock, flags);
1203
1204 if (largest_hole < priv->headroom + sizeof(struct p54_hdr) +
1205 48 + IEEE80211_MAX_RTS_THRESHOLD + priv->tailroom)
1206 ieee80211_stop_queues(dev);
1207
1208 data->req_id = cpu_to_le32(target_addr + priv->headroom);
1209 return 0;
1210 }
1211
1212 static struct sk_buff *p54_alloc_skb(struct ieee80211_hw *dev, u16 hdr_flags,
1213 u16 payload_len, u16 type, gfp_t memflags)
1214 {
1215 struct p54_common *priv = dev->priv;
1216 struct p54_hdr *hdr;
1217 struct sk_buff *skb;
1218 size_t frame_len = sizeof(*hdr) + payload_len;
1219
1220 if (frame_len > P54_MAX_CTRL_FRAME_LEN)
1221 return NULL;
1222
1223 skb = __dev_alloc_skb(priv->tx_hdr_len + frame_len, memflags);
1224 if (!skb)
1225 return NULL;
1226 skb_reserve(skb, priv->tx_hdr_len);
1227
1228 hdr = (struct p54_hdr *) skb_put(skb, sizeof(*hdr));
1229 hdr->flags = cpu_to_le16(hdr_flags);
1230 hdr->len = cpu_to_le16(payload_len);
1231 hdr->type = cpu_to_le16(type);
1232 hdr->tries = hdr->rts_tries = 0;
1233
1234 if (p54_assign_address(dev, skb, hdr, frame_len)) {
1235 kfree_skb(skb);
1236 return NULL;
1237 }
1238 return skb;
1239 }
1240
1241 int p54_read_eeprom(struct ieee80211_hw *dev)
1242 {
1243 struct p54_common *priv = dev->priv;
1244 struct p54_eeprom_lm86 *eeprom_hdr;
1245 struct sk_buff *skb;
1246 size_t eeprom_size = 0x2020, offset = 0, blocksize, maxblocksize;
1247 int ret = -ENOMEM;
1248 void *eeprom = NULL;
1249
1250 maxblocksize = EEPROM_READBACK_LEN;
1251 if (priv->fw_var >= 0x509)
1252 maxblocksize -= 0xc;
1253 else
1254 maxblocksize -= 0x4;
1255
1256 skb = p54_alloc_skb(dev, P54_HDR_FLAG_CONTROL, sizeof(*eeprom_hdr) +
1257 maxblocksize, P54_CONTROL_TYPE_EEPROM_READBACK,
1258 GFP_KERNEL);
1259 if (!skb)
1260 goto free;
1261 priv->eeprom = kzalloc(EEPROM_READBACK_LEN, GFP_KERNEL);
1262 if (!priv->eeprom)
1263 goto free;
1264 eeprom = kzalloc(eeprom_size, GFP_KERNEL);
1265 if (!eeprom)
1266 goto free;
1267
1268 eeprom_hdr = (struct p54_eeprom_lm86 *) skb_put(skb,
1269 sizeof(*eeprom_hdr) + maxblocksize);
1270
1271 while (eeprom_size) {
1272 blocksize = min(eeprom_size, maxblocksize);
1273 if (priv->fw_var < 0x509) {
1274 eeprom_hdr->v1.offset = cpu_to_le16(offset);
1275 eeprom_hdr->v1.len = cpu_to_le16(blocksize);
1276 } else {
1277 eeprom_hdr->v2.offset = cpu_to_le32(offset);
1278 eeprom_hdr->v2.len = cpu_to_le16(blocksize);
1279 eeprom_hdr->v2.magic2 = 0xf;
1280 memcpy(eeprom_hdr->v2.magic, (const char *)"LOCK", 4);
1281 }
1282 priv->tx(dev, skb);
1283
1284 if (!wait_for_completion_interruptible_timeout(&priv->eeprom_comp, HZ)) {
1285 printk(KERN_ERR "%s: device does not respond!\n",
1286 wiphy_name(dev->wiphy));
1287 ret = -EBUSY;
1288 goto free;
1289 }
1290
1291 memcpy(eeprom + offset, priv->eeprom, blocksize);
1292 offset += blocksize;
1293 eeprom_size -= blocksize;
1294 }
1295
1296 ret = p54_parse_eeprom(dev, eeprom, offset);
1297 free:
1298 kfree(priv->eeprom);
1299 priv->eeprom = NULL;
1300 p54_free_skb(dev, skb);
1301 kfree(eeprom);
1302
1303 return ret;
1304 }
1305 EXPORT_SYMBOL_GPL(p54_read_eeprom);
1306
1307 static int p54_set_tim(struct ieee80211_hw *dev, struct ieee80211_sta *sta,
1308 bool set)
1309 {
1310 struct p54_common *priv = dev->priv;
1311 struct sk_buff *skb;
1312 struct p54_tim *tim;
1313
1314 skb = p54_alloc_skb(dev, P54_HDR_FLAG_CONTROL_OPSET, sizeof(*tim),
1315 P54_CONTROL_TYPE_TIM, GFP_ATOMIC);
1316 if (!skb)
1317 return -ENOMEM;
1318
1319 tim = (struct p54_tim *) skb_put(skb, sizeof(*tim));
1320 tim->count = 1;
1321 tim->entry[0] = cpu_to_le16(set ? (sta->aid | 0x8000) : sta->aid);
1322 priv->tx(dev, skb);
1323 return 0;
1324 }
1325
1326 static int p54_sta_unlock(struct ieee80211_hw *dev, u8 *addr)
1327 {
1328 struct p54_common *priv = dev->priv;
1329 struct sk_buff *skb;
1330 struct p54_sta_unlock *sta;
1331
1332 skb = p54_alloc_skb(dev, P54_HDR_FLAG_CONTROL_OPSET, sizeof(*sta),
1333 P54_CONTROL_TYPE_PSM_STA_UNLOCK, GFP_ATOMIC);
1334 if (!skb)
1335 return -ENOMEM;
1336
1337 sta = (struct p54_sta_unlock *)skb_put(skb, sizeof(*sta));
1338 memcpy(sta->addr, addr, ETH_ALEN);
1339 priv->tx(dev, skb);
1340 return 0;
1341 }
1342
1343 static void p54_sta_notify(struct ieee80211_hw *dev, struct ieee80211_vif *vif,
1344 enum sta_notify_cmd notify_cmd,
1345 struct ieee80211_sta *sta)
1346 {
1347 switch (notify_cmd) {
1348 case STA_NOTIFY_ADD:
1349 case STA_NOTIFY_REMOVE:
1350 /*
1351 * Notify the firmware that we don't want or we don't
1352 * need to buffer frames for this station anymore.
1353 */
1354
1355 p54_sta_unlock(dev, sta->addr);
1356 break;
1357 case STA_NOTIFY_AWAKE:
1358 /* update the firmware's filter table */
1359 p54_sta_unlock(dev, sta->addr);
1360 break;
1361 default:
1362 break;
1363 }
1364 }
1365
1366 static int p54_tx_cancel(struct ieee80211_hw *dev, struct sk_buff *entry)
1367 {
1368 struct p54_common *priv = dev->priv;
1369 struct sk_buff *skb;
1370 struct p54_hdr *hdr;
1371 struct p54_txcancel *cancel;
1372
1373 skb = p54_alloc_skb(dev, P54_HDR_FLAG_CONTROL_OPSET, sizeof(*cancel),
1374 P54_CONTROL_TYPE_TXCANCEL, GFP_ATOMIC);
1375 if (!skb)
1376 return -ENOMEM;
1377
1378 hdr = (void *)entry->data;
1379 cancel = (struct p54_txcancel *)skb_put(skb, sizeof(*cancel));
1380 cancel->req_id = hdr->req_id;
1381 priv->tx(dev, skb);
1382 return 0;
1383 }
1384
1385 static int p54_tx_fill(struct ieee80211_hw *dev, struct sk_buff *skb,
1386 struct ieee80211_tx_info *info, u8 *queue, size_t *extra_len,
1387 u16 *flags, u16 *aid)
1388 {
1389 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1390 struct p54_common *priv = dev->priv;
1391 int ret = 1;
1392
1393 switch (priv->mode) {
1394 case NL80211_IFTYPE_MONITOR:
1395 /*
1396 * We have to set P54_HDR_FLAG_DATA_OUT_PROMISC for
1397 * every frame in promiscuous/monitor mode.
1398 * see STSW45x0C LMAC API - page 12.
1399 */
1400 *aid = 0;
1401 *flags = P54_HDR_FLAG_DATA_OUT_PROMISC;
1402 *queue += P54_QUEUE_DATA;
1403 break;
1404 case NL80211_IFTYPE_STATION:
1405 *aid = 1;
1406 if (unlikely(ieee80211_is_mgmt(hdr->frame_control))) {
1407 *queue = P54_QUEUE_MGMT;
1408 ret = 0;
1409 } else
1410 *queue += P54_QUEUE_DATA;
1411 break;
1412 case NL80211_IFTYPE_AP:
1413 case NL80211_IFTYPE_ADHOC:
1414 case NL80211_IFTYPE_MESH_POINT:
1415 if (info->flags & IEEE80211_TX_CTL_SEND_AFTER_DTIM) {
1416 *aid = 0;
1417 *queue = P54_QUEUE_CAB;
1418 return 0;
1419 }
1420
1421 if (unlikely(ieee80211_is_mgmt(hdr->frame_control))) {
1422 if (ieee80211_is_probe_resp(hdr->frame_control)) {
1423 *aid = 0;
1424 *queue = P54_QUEUE_MGMT;
1425 *flags = P54_HDR_FLAG_DATA_OUT_TIMESTAMP |
1426 P54_HDR_FLAG_DATA_OUT_NOCANCEL;
1427 return 0;
1428 } else if (ieee80211_is_beacon(hdr->frame_control)) {
1429 *aid = 0;
1430
1431 if (info->flags & IEEE80211_TX_CTL_INJECTED) {
1432 /*
1433 * Injecting beacons on top of a AP is
1434 * not a good idea... nevertheless,
1435 * it should be doable.
1436 */
1437
1438 *queue += P54_QUEUE_DATA;
1439 return 1;
1440 }
1441
1442 *flags = P54_HDR_FLAG_DATA_OUT_TIMESTAMP;
1443 *queue = P54_QUEUE_BEACON;
1444 *extra_len = IEEE80211_MAX_TIM_LEN;
1445 return 0;
1446 } else {
1447 *queue = P54_QUEUE_MGMT;
1448 ret = 0;
1449 }
1450 } else
1451 *queue += P54_QUEUE_DATA;
1452
1453 if (info->control.sta)
1454 *aid = info->control.sta->aid;
1455
1456 if (info->flags & IEEE80211_TX_CTL_CLEAR_PS_FILT)
1457 *flags |= P54_HDR_FLAG_DATA_OUT_NOCANCEL;
1458 break;
1459 }
1460 return ret;
1461 }
1462
1463 static u8 p54_convert_algo(enum ieee80211_key_alg alg)
1464 {
1465 switch (alg) {
1466 case ALG_WEP:
1467 return P54_CRYPTO_WEP;
1468 case ALG_TKIP:
1469 return P54_CRYPTO_TKIPMICHAEL;
1470 case ALG_CCMP:
1471 return P54_CRYPTO_AESCCMP;
1472 default:
1473 return 0;
1474 }
1475 }
1476
1477 static int p54_tx(struct ieee80211_hw *dev, struct sk_buff *skb)
1478 {
1479 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1480 struct ieee80211_tx_queue_stats *current_queue;
1481 struct p54_common *priv = dev->priv;
1482 struct p54_hdr *hdr;
1483 struct p54_tx_data *txhdr;
1484 size_t padding, len, tim_len = 0;
1485 int i, j, ridx, ret;
1486 u16 hdr_flags = 0, aid = 0;
1487 u8 rate, queue, crypt_offset = 0;
1488 u8 cts_rate = 0x20;
1489 u8 rc_flags;
1490 u8 calculated_tries[4];
1491 u8 nrates = 0, nremaining = 8;
1492
1493 queue = skb_get_queue_mapping(skb);
1494
1495 ret = p54_tx_fill(dev, skb, info, &queue, &tim_len, &hdr_flags, &aid);
1496 current_queue = &priv->tx_stats[queue];
1497 if (unlikely((current_queue->len > current_queue->limit) && ret))
1498 return NETDEV_TX_BUSY;
1499 current_queue->len++;
1500 current_queue->count++;
1501 if ((current_queue->len == current_queue->limit) && ret)
1502 ieee80211_stop_queue(dev, skb_get_queue_mapping(skb));
1503
1504 padding = (unsigned long)(skb->data - (sizeof(*hdr) + sizeof(*txhdr))) & 3;
1505 len = skb->len;
1506
1507 if (info->control.hw_key) {
1508 crypt_offset = ieee80211_get_hdrlen_from_skb(skb);
1509 if (info->control.hw_key->alg == ALG_TKIP) {
1510 u8 *iv = (u8 *)(skb->data + crypt_offset);
1511 /*
1512 * The firmware excepts that the IV has to have
1513 * this special format
1514 */
1515 iv[1] = iv[0];
1516 iv[0] = iv[2];
1517 iv[2] = 0;
1518 }
1519 }
1520
1521 txhdr = (struct p54_tx_data *) skb_push(skb, sizeof(*txhdr) + padding);
1522 hdr = (struct p54_hdr *) skb_push(skb, sizeof(*hdr));
1523
1524 if (padding)
1525 hdr_flags |= P54_HDR_FLAG_DATA_ALIGN;
1526 hdr->type = cpu_to_le16(aid);
1527 hdr->rts_tries = info->control.rates[0].count;
1528
1529 /*
1530 * we register the rates in perfect order, and
1531 * RTS/CTS won't happen on 5 GHz
1532 */
1533 cts_rate = info->control.rts_cts_rate_idx;
1534
1535 memset(&txhdr->rateset, 0, sizeof(txhdr->rateset));
1536
1537 /* see how many rates got used */
1538 for (i = 0; i < 4; i++) {
1539 if (info->control.rates[i].idx < 0)
1540 break;
1541 nrates++;
1542 }
1543
1544 /* limit tries to 8/nrates per rate */
1545 for (i = 0; i < nrates; i++) {
1546 /*
1547 * The magic expression here is equivalent to 8/nrates for
1548 * all values that matter, but avoids division and jumps.
1549 * Note that nrates can only take the values 1 through 4.
1550 */
1551 calculated_tries[i] = min_t(int, ((15 >> nrates) | 1) + 1,
1552 info->control.rates[i].count);
1553 nremaining -= calculated_tries[i];
1554 }
1555
1556 /* if there are tries left, distribute from back to front */
1557 for (i = nrates - 1; nremaining > 0 && i >= 0; i--) {
1558 int tmp = info->control.rates[i].count - calculated_tries[i];
1559
1560 if (tmp <= 0)
1561 continue;
1562 /* RC requested more tries at this rate */
1563
1564 tmp = min_t(int, tmp, nremaining);
1565 calculated_tries[i] += tmp;
1566 nremaining -= tmp;
1567 }
1568
1569 ridx = 0;
1570 for (i = 0; i < nrates && ridx < 8; i++) {
1571 /* we register the rates in perfect order */
1572 rate = info->control.rates[i].idx;
1573 if (info->band == IEEE80211_BAND_5GHZ)
1574 rate += 4;
1575
1576 /* store the count we actually calculated for TX status */
1577 info->control.rates[i].count = calculated_tries[i];
1578
1579 rc_flags = info->control.rates[i].flags;
1580 if (rc_flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE) {
1581 rate |= 0x10;
1582 cts_rate |= 0x10;
1583 }
1584 if (rc_flags & IEEE80211_TX_RC_USE_RTS_CTS)
1585 rate |= 0x40;
1586 else if (rc_flags & IEEE80211_TX_RC_USE_CTS_PROTECT)
1587 rate |= 0x20;
1588 for (j = 0; j < calculated_tries[i] && ridx < 8; j++) {
1589 txhdr->rateset[ridx] = rate;
1590 ridx++;
1591 }
1592 }
1593
1594 if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ)
1595 hdr_flags |= P54_HDR_FLAG_DATA_OUT_SEQNR;
1596
1597 /* TODO: enable bursting */
1598 hdr->flags = cpu_to_le16(hdr_flags);
1599 hdr->tries = ridx;
1600 txhdr->rts_rate_idx = 0;
1601 if (info->control.hw_key) {
1602 txhdr->key_type = p54_convert_algo(info->control.hw_key->alg);
1603 txhdr->key_len = min((u8)16, info->control.hw_key->keylen);
1604 memcpy(txhdr->key, info->control.hw_key->key, txhdr->key_len);
1605 if (info->control.hw_key->alg == ALG_TKIP) {
1606 if (unlikely(skb_tailroom(skb) < 12))
1607 goto err;
1608 /* reserve space for the MIC key */
1609 len += 8;
1610 memcpy(skb_put(skb, 8), &(info->control.hw_key->key
1611 [NL80211_TKIP_DATA_OFFSET_TX_MIC_KEY]), 8);
1612 }
1613 /* reserve some space for ICV */
1614 len += info->control.hw_key->icv_len;
1615 memset(skb_put(skb, info->control.hw_key->icv_len), 0,
1616 info->control.hw_key->icv_len);
1617 } else {
1618 txhdr->key_type = 0;
1619 txhdr->key_len = 0;
1620 }
1621 txhdr->crypt_offset = crypt_offset;
1622 txhdr->hw_queue = queue;
1623 txhdr->backlog = current_queue->len;
1624 memset(txhdr->durations, 0, sizeof(txhdr->durations));
1625 txhdr->tx_antenna = ((info->antenna_sel_tx == 0) ?
1626 2 : info->antenna_sel_tx - 1) & priv->tx_diversity_mask;
1627 if (priv->rxhw == PDR_SYNTH_FRONTEND_LONGBOW) {
1628 txhdr->longbow.cts_rate = cts_rate;
1629 txhdr->longbow.output_power = cpu_to_le16(priv->output_power);
1630 } else {
1631 txhdr->normal.output_power = priv->output_power;
1632 txhdr->normal.cts_rate = cts_rate;
1633 }
1634 if (padding)
1635 txhdr->align[0] = padding;
1636
1637 hdr->len = cpu_to_le16(len);
1638 /* modifies skb->cb and with it info, so must be last! */
1639 if (unlikely(p54_assign_address(dev, skb, hdr, skb->len + tim_len)))
1640 goto err;
1641 priv->tx(dev, skb);
1642
1643 queue_delayed_work(dev->workqueue, &priv->work,
1644 msecs_to_jiffies(P54_TX_FRAME_LIFETIME));
1645
1646 return NETDEV_TX_OK;
1647
1648 err:
1649 skb_pull(skb, sizeof(*hdr) + sizeof(*txhdr) + padding);
1650 current_queue->len--;
1651 current_queue->count--;
1652 return NETDEV_TX_BUSY;
1653 }
1654
1655 static int p54_setup_mac(struct ieee80211_hw *dev)
1656 {
1657 struct p54_common *priv = dev->priv;
1658 struct sk_buff *skb;
1659 struct p54_setup_mac *setup;
1660 u16 mode;
1661
1662 skb = p54_alloc_skb(dev, P54_HDR_FLAG_CONTROL_OPSET, sizeof(*setup),
1663 P54_CONTROL_TYPE_SETUP, GFP_ATOMIC);
1664 if (!skb)
1665 return -ENOMEM;
1666
1667 setup = (struct p54_setup_mac *) skb_put(skb, sizeof(*setup));
1668 if (dev->conf.radio_enabled) {
1669 switch (priv->mode) {
1670 case NL80211_IFTYPE_STATION:
1671 mode = P54_FILTER_TYPE_STATION;
1672 break;
1673 case NL80211_IFTYPE_AP:
1674 mode = P54_FILTER_TYPE_AP;
1675 break;
1676 case NL80211_IFTYPE_ADHOC:
1677 case NL80211_IFTYPE_MESH_POINT:
1678 mode = P54_FILTER_TYPE_IBSS;
1679 break;
1680 case NL80211_IFTYPE_MONITOR:
1681 mode = P54_FILTER_TYPE_PROMISCUOUS;
1682 break;
1683 default:
1684 mode = P54_FILTER_TYPE_HIBERNATE;
1685 break;
1686 }
1687
1688 /*
1689 * "TRANSPARENT and PROMISCUOUS are mutually exclusive"
1690 * STSW45X0C LMAC API - page 12
1691 */
1692 if (((priv->filter_flags & FIF_PROMISC_IN_BSS) ||
1693 (priv->filter_flags & FIF_OTHER_BSS)) &&
1694 (mode != P54_FILTER_TYPE_PROMISCUOUS))
1695 mode |= P54_FILTER_TYPE_TRANSPARENT;
1696 } else
1697 mode = P54_FILTER_TYPE_HIBERNATE;
1698
1699 setup->mac_mode = cpu_to_le16(mode);
1700 memcpy(setup->mac_addr, priv->mac_addr, ETH_ALEN);
1701 memcpy(setup->bssid, priv->bssid, ETH_ALEN);
1702 setup->rx_antenna = 2 & priv->rx_diversity_mask; /* automatic */
1703 setup->rx_align = 0;
1704 if (priv->fw_var < 0x500) {
1705 setup->v1.basic_rate_mask = cpu_to_le32(priv->basic_rate_mask);
1706 memset(setup->v1.rts_rates, 0, 8);
1707 setup->v1.rx_addr = cpu_to_le32(priv->rx_end);
1708 setup->v1.max_rx = cpu_to_le16(priv->rx_mtu);
1709 setup->v1.rxhw = cpu_to_le16(priv->rxhw);
1710 setup->v1.wakeup_timer = cpu_to_le16(priv->wakeup_timer);
1711 setup->v1.unalloc0 = cpu_to_le16(0);
1712 } else {
1713 setup->v2.rx_addr = cpu_to_le32(priv->rx_end);
1714 setup->v2.max_rx = cpu_to_le16(priv->rx_mtu);
1715 setup->v2.rxhw = cpu_to_le16(priv->rxhw);
1716 setup->v2.timer = cpu_to_le16(priv->wakeup_timer);
1717 setup->v2.truncate = cpu_to_le16(48896);
1718 setup->v2.basic_rate_mask = cpu_to_le32(priv->basic_rate_mask);
1719 setup->v2.sbss_offset = 0;
1720 setup->v2.mcast_window = 0;
1721 setup->v2.rx_rssi_threshold = 0;
1722 setup->v2.rx_ed_threshold = 0;
1723 setup->v2.ref_clock = cpu_to_le32(644245094);
1724 setup->v2.lpf_bandwidth = cpu_to_le16(65535);
1725 setup->v2.osc_start_delay = cpu_to_le16(65535);
1726 }
1727 priv->tx(dev, skb);
1728 return 0;
1729 }
1730
1731 static int p54_scan(struct ieee80211_hw *dev, u16 mode, u16 dwell)
1732 {
1733 struct p54_common *priv = dev->priv;
1734 struct sk_buff *skb;
1735 struct p54_hdr *hdr;
1736 struct p54_scan_head *head;
1737 struct p54_iq_autocal_entry *iq_autocal;
1738 union p54_scan_body_union *body;
1739 struct p54_scan_tail_rate *rate;
1740 struct pda_rssi_cal_entry *rssi;
1741 unsigned int i;
1742 void *entry;
1743 int band = dev->conf.channel->band;
1744 __le16 freq = cpu_to_le16(dev->conf.channel->center_freq);
1745
1746 skb = p54_alloc_skb(dev, P54_HDR_FLAG_CONTROL_OPSET, sizeof(*head) +
1747 2 + sizeof(*iq_autocal) + sizeof(*body) +
1748 sizeof(*rate) + 2 * sizeof(*rssi),
1749 P54_CONTROL_TYPE_SCAN, GFP_ATOMIC);
1750 if (!skb)
1751 return -ENOMEM;
1752
1753 head = (struct p54_scan_head *) skb_put(skb, sizeof(*head));
1754 memset(head->scan_params, 0, sizeof(head->scan_params));
1755 head->mode = cpu_to_le16(mode);
1756 head->dwell = cpu_to_le16(dwell);
1757 head->freq = freq;
1758
1759 if (priv->rxhw == PDR_SYNTH_FRONTEND_LONGBOW) {
1760 __le16 *pa_power_points = (__le16 *) skb_put(skb, 2);
1761 *pa_power_points = cpu_to_le16(0x0c);
1762 }
1763
1764 iq_autocal = (void *) skb_put(skb, sizeof(*iq_autocal));
1765 for (i = 0; i < priv->iq_autocal_len; i++) {
1766 if (priv->iq_autocal[i].freq != freq)
1767 continue;
1768
1769 memcpy(iq_autocal, &priv->iq_autocal[i].params,
1770 sizeof(struct p54_iq_autocal_entry));
1771 break;
1772 }
1773 if (i == priv->iq_autocal_len)
1774 goto err;
1775
1776 if (priv->rxhw == PDR_SYNTH_FRONTEND_LONGBOW)
1777 body = (void *) skb_put(skb, sizeof(body->longbow));
1778 else
1779 body = (void *) skb_put(skb, sizeof(body->normal));
1780
1781 for (i = 0; i < priv->output_limit->entries; i++) {
1782 __le16 *entry_freq = (void *) (priv->output_limit->data +
1783 priv->output_limit->entry_size * i);
1784
1785 if (*entry_freq != freq)
1786 continue;
1787
1788 if (priv->rxhw == PDR_SYNTH_FRONTEND_LONGBOW) {
1789 memcpy(&body->longbow.power_limits,
1790 (void *) entry_freq + sizeof(__le16),
1791 priv->output_limit->entry_size);
1792 } else {
1793 struct pda_channel_output_limit *limits =
1794 (void *) entry_freq;
1795
1796 body->normal.val_barker = 0x38;
1797 body->normal.val_bpsk = body->normal.dup_bpsk =
1798 limits->val_bpsk;
1799 body->normal.val_qpsk = body->normal.dup_qpsk =
1800 limits->val_qpsk;
1801 body->normal.val_16qam = body->normal.dup_16qam =
1802 limits->val_16qam;
1803 body->normal.val_64qam = body->normal.dup_64qam =
1804 limits->val_64qam;
1805 }
1806 break;
1807 }
1808 if (i == priv->output_limit->entries)
1809 goto err;
1810
1811 entry = (void *)(priv->curve_data->data + priv->curve_data->offset);
1812 for (i = 0; i < priv->curve_data->entries; i++) {
1813 if (*((__le16 *)entry) != freq) {
1814 entry += priv->curve_data->entry_size;
1815 continue;
1816 }
1817
1818 if (priv->rxhw == PDR_SYNTH_FRONTEND_LONGBOW) {
1819 memcpy(&body->longbow.curve_data,
1820 (void *) entry + sizeof(__le16),
1821 priv->curve_data->entry_size);
1822 } else {
1823 struct p54_scan_body *chan = &body->normal;
1824 struct pda_pa_curve_data *curve_data =
1825 (void *) priv->curve_data->data;
1826
1827 entry += sizeof(__le16);
1828 chan->pa_points_per_curve = 8;
1829 memset(chan->curve_data, 0, sizeof(*chan->curve_data));
1830 memcpy(chan->curve_data, entry,
1831 sizeof(struct p54_pa_curve_data_sample) *
1832 min((u8)8, curve_data->points_per_channel));
1833 }
1834 break;
1835 }
1836 if (i == priv->curve_data->entries)
1837 goto err;
1838
1839 if ((priv->fw_var >= 0x500) && (priv->fw_var < 0x509)) {
1840 rate = (void *) skb_put(skb, sizeof(*rate));
1841 rate->basic_rate_mask = cpu_to_le32(priv->basic_rate_mask);
1842 for (i = 0; i < sizeof(rate->rts_rates); i++)
1843 rate->rts_rates[i] = i;
1844 }
1845
1846 rssi = (struct pda_rssi_cal_entry *) skb_put(skb, sizeof(*rssi));
1847 rssi->mul = cpu_to_le16(priv->rssical_db[band].mul);
1848 rssi->add = cpu_to_le16(priv->rssical_db[band].add);
1849 if (priv->rxhw == PDR_SYNTH_FRONTEND_LONGBOW) {
1850 /* Longbow frontend needs ever more */
1851 rssi = (void *) skb_put(skb, sizeof(*rssi));
1852 rssi->mul = cpu_to_le16(priv->rssical_db[band].longbow_unkn);
1853 rssi->add = cpu_to_le16(priv->rssical_db[band].longbow_unk2);
1854 }
1855
1856 if (priv->fw_var >= 0x509) {
1857 rate = (void *) skb_put(skb, sizeof(*rate));
1858 rate->basic_rate_mask = cpu_to_le32(priv->basic_rate_mask);
1859 for (i = 0; i < sizeof(rate->rts_rates); i++)
1860 rate->rts_rates[i] = i;
1861 }
1862
1863 hdr = (struct p54_hdr *) skb->data;
1864 hdr->len = cpu_to_le16(skb->len - sizeof(*hdr));
1865
1866 priv->tx(dev, skb);
1867 return 0;
1868
1869 err:
1870 printk(KERN_ERR "%s: frequency change failed\n", wiphy_name(dev->wiphy));
1871 p54_free_skb(dev, skb);
1872 return -EINVAL;
1873 }
1874
1875 static int p54_set_leds(struct ieee80211_hw *dev)
1876 {
1877 struct p54_common *priv = dev->priv;
1878 struct sk_buff *skb;
1879 struct p54_led *led;
1880
1881 skb = p54_alloc_skb(dev, P54_HDR_FLAG_CONTROL_OPSET, sizeof(*led),
1882 P54_CONTROL_TYPE_LED, GFP_ATOMIC);
1883 if (!skb)
1884 return -ENOMEM;
1885
1886 led = (struct p54_led *) skb_put(skb, sizeof(*led));
1887 led->flags = cpu_to_le16(0x0003);
1888 led->mask[0] = led->mask[1] = cpu_to_le16(priv->softled_state);
1889 led->delay[0] = cpu_to_le16(1);
1890 led->delay[1] = cpu_to_le16(0);
1891 priv->tx(dev, skb);
1892 return 0;
1893 }
1894
1895 #define P54_SET_QUEUE(queue, ai_fs, cw_min, cw_max, _txop) \
1896 do { \
1897 queue.aifs = cpu_to_le16(ai_fs); \
1898 queue.cwmin = cpu_to_le16(cw_min); \
1899 queue.cwmax = cpu_to_le16(cw_max); \
1900 queue.txop = cpu_to_le16(_txop); \
1901 } while(0)
1902
1903 static int p54_set_edcf(struct ieee80211_hw *dev)
1904 {
1905 struct p54_common *priv = dev->priv;
1906 struct sk_buff *skb;
1907 struct p54_edcf *edcf;
1908
1909 skb = p54_alloc_skb(dev, P54_HDR_FLAG_CONTROL_OPSET, sizeof(*edcf),
1910 P54_CONTROL_TYPE_DCFINIT, GFP_ATOMIC);
1911 if (!skb)
1912 return -ENOMEM;
1913
1914 edcf = (struct p54_edcf *)skb_put(skb, sizeof(*edcf));
1915 if (priv->use_short_slot) {
1916 edcf->slottime = 9;
1917 edcf->sifs = 0x10;
1918 edcf->eofpad = 0x00;
1919 } else {
1920 edcf->slottime = 20;
1921 edcf->sifs = 0x0a;
1922 edcf->eofpad = 0x06;
1923 }
1924 /* (see prism54/isl_oid.h for further details) */
1925 edcf->frameburst = cpu_to_le16(0);
1926 edcf->round_trip_delay = cpu_to_le16(0);
1927 edcf->flags = 0;
1928 memset(edcf->mapping, 0, sizeof(edcf->mapping));
1929 memcpy(edcf->queue, priv->qos_params, sizeof(edcf->queue));
1930 priv->tx(dev, skb);
1931 return 0;
1932 }
1933
1934 static int p54_set_ps(struct ieee80211_hw *dev)
1935 {
1936 struct p54_common *priv = dev->priv;
1937 struct sk_buff *skb;
1938 struct p54_psm *psm;
1939 u16 mode;
1940 int i;
1941
1942 if (dev->conf.flags & IEEE80211_CONF_PS)
1943 mode = P54_PSM | P54_PSM_BEACON_TIMEOUT | P54_PSM_DTIM |
1944 P54_PSM_CHECKSUM | P54_PSM_MCBC;
1945 else
1946 mode = P54_PSM_CAM;
1947
1948 skb = p54_alloc_skb(dev, P54_HDR_FLAG_CONTROL_OPSET, sizeof(*psm),
1949 P54_CONTROL_TYPE_PSM, GFP_ATOMIC);
1950 if (!skb)
1951 return -ENOMEM;
1952
1953 psm = (struct p54_psm *)skb_put(skb, sizeof(*psm));
1954 psm->mode = cpu_to_le16(mode);
1955 psm->aid = cpu_to_le16(priv->aid);
1956 for (i = 0; i < ARRAY_SIZE(psm->intervals); i++) {
1957 psm->intervals[i].interval =
1958 cpu_to_le16(dev->conf.listen_interval);
1959 psm->intervals[i].periods = cpu_to_le16(1);
1960 }
1961
1962 psm->beacon_rssi_skip_max = 200;
1963 psm->rssi_delta_threshold = 0;
1964 psm->nr = 10;
1965 psm->exclude[0] = 0;
1966
1967 priv->tx(dev, skb);
1968
1969 return 0;
1970 }
1971
1972 static int p54_beacon_tim(struct sk_buff *skb)
1973 {
1974 /*
1975 * the good excuse for this mess is ... the firmware.
1976 * The dummy TIM MUST be at the end of the beacon frame,
1977 * because it'll be overwritten!
1978 */
1979
1980 struct ieee80211_mgmt *mgmt = (void *)skb->data;
1981 u8 *pos, *end;
1982
1983 if (skb->len <= sizeof(mgmt))
1984 return -EINVAL;
1985
1986 pos = (u8 *)mgmt->u.beacon.variable;
1987 end = skb->data + skb->len;
1988 while (pos < end) {
1989 if (pos + 2 + pos[1] > end)
1990 return -EINVAL;
1991
1992 if (pos[0] == WLAN_EID_TIM) {
1993 u8 dtim_len = pos[1];
1994 u8 dtim_period = pos[3];
1995 u8 *next = pos + 2 + dtim_len;
1996
1997 if (dtim_len < 3)
1998 return -EINVAL;
1999
2000 memmove(pos, next, end - next);
2001
2002 if (dtim_len > 3)
2003 skb_trim(skb, skb->len - (dtim_len - 3));
2004
2005 pos = end - (dtim_len + 2);
2006
2007 /* add the dummy at the end */
2008 pos[0] = WLAN_EID_TIM;
2009 pos[1] = 3;
2010 pos[2] = 0;
2011 pos[3] = dtim_period;
2012 pos[4] = 0;
2013 return 0;
2014 }
2015 pos += 2 + pos[1];
2016 }
2017 return 0;
2018 }
2019
2020 static int p54_beacon_update(struct ieee80211_hw *dev,
2021 struct ieee80211_vif *vif)
2022 {
2023 struct p54_common *priv = dev->priv;
2024 struct sk_buff *beacon;
2025 int ret;
2026
2027 if (priv->cached_beacon) {
2028 p54_tx_cancel(dev, priv->cached_beacon);
2029 /* wait for the last beacon the be freed */
2030 msleep(10);
2031 }
2032
2033 beacon = ieee80211_beacon_get(dev, vif);
2034 if (!beacon)
2035 return -ENOMEM;
2036 ret = p54_beacon_tim(beacon);
2037 if (ret)
2038 return ret;
2039 ret = p54_tx(dev, beacon);
2040 if (ret)
2041 return ret;
2042 priv->cached_beacon = beacon;
2043 priv->tsf_high32 = 0;
2044 priv->tsf_low32 = 0;
2045
2046 return 0;
2047 }
2048
2049 static int p54_start(struct ieee80211_hw *dev)
2050 {
2051 struct p54_common *priv = dev->priv;
2052 int err;
2053
2054 mutex_lock(&priv->conf_mutex);
2055 err = priv->open(dev);
2056 if (err)
2057 goto out;
2058 P54_SET_QUEUE(priv->qos_params[0], 0x0002, 0x0003, 0x0007, 47);
2059 P54_SET_QUEUE(priv->qos_params[1], 0x0002, 0x0007, 0x000f, 94);
2060 P54_SET_QUEUE(priv->qos_params[2], 0x0003, 0x000f, 0x03ff, 0);
2061 P54_SET_QUEUE(priv->qos_params[3], 0x0007, 0x000f, 0x03ff, 0);
2062 err = p54_set_edcf(dev);
2063 if (err)
2064 goto out;
2065
2066 memset(priv->bssid, ~0, ETH_ALEN);
2067 priv->mode = NL80211_IFTYPE_MONITOR;
2068 err = p54_setup_mac(dev);
2069 if (err) {
2070 priv->mode = NL80211_IFTYPE_UNSPECIFIED;
2071 goto out;
2072 }
2073
2074 queue_delayed_work(dev->workqueue, &priv->work, 0);
2075
2076 priv->softled_state = 0;
2077 err = p54_set_leds(dev);
2078
2079 out:
2080 mutex_unlock(&priv->conf_mutex);
2081 return err;
2082 }
2083
2084 static void p54_stop(struct ieee80211_hw *dev)
2085 {
2086 struct p54_common *priv = dev->priv;
2087
2088 mutex_lock(&priv->conf_mutex);
2089 priv->mode = NL80211_IFTYPE_UNSPECIFIED;
2090 priv->softled_state = 0;
2091 p54_set_leds(dev);
2092
2093 #ifdef CONFIG_P54_LEDS
2094 cancel_delayed_work_sync(&priv->led_work);
2095 #endif /* CONFIG_P54_LEDS */
2096 cancel_delayed_work_sync(&priv->work);
2097 if (priv->cached_beacon)
2098 p54_tx_cancel(dev, priv->cached_beacon);
2099
2100 priv->stop(dev);
2101 skb_queue_purge(&priv->tx_queue);
2102 priv->cached_beacon = NULL;
2103 priv->tsf_high32 = priv->tsf_low32 = 0;
2104 mutex_unlock(&priv->conf_mutex);
2105 }
2106
2107 static int p54_add_interface(struct ieee80211_hw *dev,
2108 struct ieee80211_if_init_conf *conf)
2109 {
2110 struct p54_common *priv = dev->priv;
2111
2112 mutex_lock(&priv->conf_mutex);
2113 if (priv->mode != NL80211_IFTYPE_MONITOR) {
2114 mutex_unlock(&priv->conf_mutex);
2115 return -EOPNOTSUPP;
2116 }
2117
2118 priv->vif = conf->vif;
2119
2120 switch (conf->type) {
2121 case NL80211_IFTYPE_STATION:
2122 case NL80211_IFTYPE_ADHOC:
2123 case NL80211_IFTYPE_AP:
2124 case NL80211_IFTYPE_MESH_POINT:
2125 priv->mode = conf->type;
2126 break;
2127 default:
2128 mutex_unlock(&priv->conf_mutex);
2129 return -EOPNOTSUPP;
2130 }
2131
2132 memcpy(priv->mac_addr, conf->mac_addr, ETH_ALEN);
2133 p54_setup_mac(dev);
2134 mutex_unlock(&priv->conf_mutex);
2135 return 0;
2136 }
2137
2138 static void p54_remove_interface(struct ieee80211_hw *dev,
2139 struct ieee80211_if_init_conf *conf)
2140 {
2141 struct p54_common *priv = dev->priv;
2142
2143 mutex_lock(&priv->conf_mutex);
2144 priv->vif = NULL;
2145 if (priv->cached_beacon)
2146 p54_tx_cancel(dev, priv->cached_beacon);
2147 priv->mode = NL80211_IFTYPE_MONITOR;
2148 memset(priv->mac_addr, 0, ETH_ALEN);
2149 memset(priv->bssid, 0, ETH_ALEN);
2150 p54_setup_mac(dev);
2151 mutex_unlock(&priv->conf_mutex);
2152 }
2153
2154 static int p54_config(struct ieee80211_hw *dev, u32 changed)
2155 {
2156 int ret = 0;
2157 struct p54_common *priv = dev->priv;
2158 struct ieee80211_conf *conf = &dev->conf;
2159
2160 mutex_lock(&priv->conf_mutex);
2161 if (changed & IEEE80211_CONF_CHANGE_POWER)
2162 priv->output_power = conf->power_level << 2;
2163 if (changed & IEEE80211_CONF_CHANGE_RADIO_ENABLED) {
2164 ret = p54_setup_mac(dev);
2165 if (ret)
2166 goto out;
2167 }
2168 if (changed & IEEE80211_CONF_CHANGE_CHANNEL) {
2169 ret = p54_scan(dev, P54_SCAN_EXIT, 0);
2170 if (ret)
2171 goto out;
2172 }
2173 if (changed & IEEE80211_CONF_CHANGE_PS) {
2174 ret = p54_set_ps(dev);
2175 if (ret)
2176 goto out;
2177 }
2178
2179 out:
2180 mutex_unlock(&priv->conf_mutex);
2181 return ret;
2182 }
2183
2184 static void p54_configure_filter(struct ieee80211_hw *dev,
2185 unsigned int changed_flags,
2186 unsigned int *total_flags,
2187 int mc_count, struct dev_mc_list *mclist)
2188 {
2189 struct p54_common *priv = dev->priv;
2190
2191 *total_flags &= FIF_PROMISC_IN_BSS |
2192 FIF_OTHER_BSS;
2193
2194 priv->filter_flags = *total_flags;
2195
2196 if (changed_flags & (FIF_PROMISC_IN_BSS | FIF_OTHER_BSS))
2197 p54_setup_mac(dev);
2198 }
2199
2200 static int p54_conf_tx(struct ieee80211_hw *dev, u16 queue,
2201 const struct ieee80211_tx_queue_params *params)
2202 {
2203 struct p54_common *priv = dev->priv;
2204 int ret;
2205
2206 mutex_lock(&priv->conf_mutex);
2207 if ((params) && !(queue > 4)) {
2208 P54_SET_QUEUE(priv->qos_params[queue], params->aifs,
2209 params->cw_min, params->cw_max, params->txop);
2210 ret = p54_set_edcf(dev);
2211 } else
2212 ret = -EINVAL;
2213 mutex_unlock(&priv->conf_mutex);
2214 return ret;
2215 }
2216
2217 static int p54_init_xbow_synth(struct ieee80211_hw *dev)
2218 {
2219 struct p54_common *priv = dev->priv;
2220 struct sk_buff *skb;
2221 struct p54_xbow_synth *xbow;
2222
2223 skb = p54_alloc_skb(dev, P54_HDR_FLAG_CONTROL_OPSET, sizeof(*xbow),
2224 P54_CONTROL_TYPE_XBOW_SYNTH_CFG, GFP_KERNEL);
2225 if (!skb)
2226 return -ENOMEM;
2227
2228 xbow = (struct p54_xbow_synth *)skb_put(skb, sizeof(*xbow));
2229 xbow->magic1 = cpu_to_le16(0x1);
2230 xbow->magic2 = cpu_to_le16(0x2);
2231 xbow->freq = cpu_to_le16(5390);
2232 memset(xbow->padding, 0, sizeof(xbow->padding));
2233 priv->tx(dev, skb);
2234 return 0;
2235 }
2236
2237 static void p54_work(struct work_struct *work)
2238 {
2239 struct p54_common *priv = container_of(work, struct p54_common,
2240 work.work);
2241 struct ieee80211_hw *dev = priv->hw;
2242 struct sk_buff *skb;
2243
2244 if (unlikely(priv->mode == NL80211_IFTYPE_UNSPECIFIED))
2245 return ;
2246
2247 /*
2248 * TODO: walk through tx_queue and do the following tasks
2249 * 1. initiate bursts.
2250 * 2. cancel stuck frames / reset the device if necessary.
2251 */
2252
2253 skb = p54_alloc_skb(dev, P54_HDR_FLAG_CONTROL,
2254 sizeof(struct p54_statistics),
2255 P54_CONTROL_TYPE_STAT_READBACK, GFP_KERNEL);
2256 if (!skb)
2257 return ;
2258
2259 priv->tx(dev, skb);
2260 }
2261
2262 static int p54_get_stats(struct ieee80211_hw *dev,
2263 struct ieee80211_low_level_stats *stats)
2264 {
2265 struct p54_common *priv = dev->priv;
2266
2267 memcpy(stats, &priv->stats, sizeof(*stats));
2268 return 0;
2269 }
2270
2271 static int p54_get_tx_stats(struct ieee80211_hw *dev,
2272 struct ieee80211_tx_queue_stats *stats)
2273 {
2274 struct p54_common *priv = dev->priv;
2275
2276 memcpy(stats, &priv->tx_stats[P54_QUEUE_DATA],
2277 sizeof(stats[0]) * dev->queues);
2278 return 0;
2279 }
2280
2281 static void p54_bss_info_changed(struct ieee80211_hw *dev,
2282 struct ieee80211_vif *vif,
2283 struct ieee80211_bss_conf *info,
2284 u32 changed)
2285 {
2286 struct p54_common *priv = dev->priv;
2287 int ret;
2288
2289 mutex_lock(&priv->conf_mutex);
2290 if (changed & BSS_CHANGED_BSSID) {
2291 memcpy(priv->bssid, info->bssid, ETH_ALEN);
2292 ret = p54_setup_mac(dev);
2293 if (ret)
2294 goto out;
2295 }
2296
2297 if (changed & BSS_CHANGED_BEACON) {
2298 ret = p54_scan(dev, P54_SCAN_EXIT, 0);
2299 if (ret)
2300 goto out;
2301 ret = p54_setup_mac(dev);
2302 if (ret)
2303 goto out;
2304 ret = p54_beacon_update(dev, vif);
2305 if (ret)
2306 goto out;
2307 }
2308 /* XXX: this mimics having two callbacks... clean up */
2309 out:
2310 mutex_unlock(&priv->conf_mutex);
2311
2312 if (changed & (BSS_CHANGED_ERP_SLOT | BSS_CHANGED_BEACON)) {
2313 priv->use_short_slot = info->use_short_slot;
2314 p54_set_edcf(dev);
2315 }
2316 if (changed & BSS_CHANGED_BASIC_RATES) {
2317 if (dev->conf.channel->band == IEEE80211_BAND_5GHZ)
2318 priv->basic_rate_mask = (info->basic_rates << 4);
2319 else
2320 priv->basic_rate_mask = info->basic_rates;
2321 p54_setup_mac(dev);
2322 if (priv->fw_var >= 0x500)
2323 p54_scan(dev, P54_SCAN_EXIT, 0);
2324 }
2325 if (changed & BSS_CHANGED_ASSOC) {
2326 if (info->assoc) {
2327 priv->aid = info->aid;
2328 priv->wakeup_timer = info->beacon_int *
2329 info->dtim_period * 5;
2330 p54_setup_mac(dev);
2331 }
2332 }
2333 }
2334
2335 static int p54_set_key(struct ieee80211_hw *dev, enum set_key_cmd cmd,
2336 struct ieee80211_vif *vif, struct ieee80211_sta *sta,
2337 struct ieee80211_key_conf *key)
2338 {
2339 struct p54_common *priv = dev->priv;
2340 struct sk_buff *skb;
2341 struct p54_keycache *rxkey;
2342 int slot, ret = 0;
2343 u8 algo = 0;
2344
2345 if (modparam_nohwcrypt)
2346 return -EOPNOTSUPP;
2347
2348 mutex_lock(&priv->conf_mutex);
2349 if (cmd == SET_KEY) {
2350 switch (key->alg) {
2351 case ALG_TKIP:
2352 if (!(priv->privacy_caps & (BR_DESC_PRIV_CAP_MICHAEL |
2353 BR_DESC_PRIV_CAP_TKIP))) {
2354 ret = -EOPNOTSUPP;
2355 goto out_unlock;
2356 }
2357 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
2358 algo = P54_CRYPTO_TKIPMICHAEL;
2359 break;
2360 case ALG_WEP:
2361 if (!(priv->privacy_caps & BR_DESC_PRIV_CAP_WEP)) {
2362 ret = -EOPNOTSUPP;
2363 goto out_unlock;
2364 }
2365 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
2366 algo = P54_CRYPTO_WEP;
2367 break;
2368 case ALG_CCMP:
2369 if (!(priv->privacy_caps & BR_DESC_PRIV_CAP_AESCCMP)) {
2370 ret = -EOPNOTSUPP;
2371 goto out_unlock;
2372 }
2373 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
2374 algo = P54_CRYPTO_AESCCMP;
2375 break;
2376 default:
2377 ret = -EOPNOTSUPP;
2378 goto out_unlock;
2379 }
2380 slot = bitmap_find_free_region(priv->used_rxkeys,
2381 priv->rx_keycache_size, 0);
2382
2383 if (slot < 0) {
2384 /*
2385 * The device supports the choosen algorithm, but the
2386 * firmware does not provide enough key slots to store
2387 * all of them.
2388 * But encryption offload for outgoing frames is always
2389 * possible, so we just pretend that the upload was
2390 * successful and do the decryption in software.
2391 */
2392
2393 /* mark the key as invalid. */
2394 key->hw_key_idx = 0xff;
2395 goto out_unlock;
2396 }
2397 } else {
2398 slot = key->hw_key_idx;
2399
2400 if (slot == 0xff) {
2401 /* This key was not uploaded into the rx key cache. */
2402
2403 goto out_unlock;
2404 }
2405
2406 bitmap_release_region(priv->used_rxkeys, slot, 0);
2407 algo = 0;
2408 }
2409
2410 skb = p54_alloc_skb(dev, P54_HDR_FLAG_CONTROL_OPSET, sizeof(*rxkey),
2411 P54_CONTROL_TYPE_RX_KEYCACHE, GFP_KERNEL);
2412 if (!skb) {
2413 bitmap_release_region(priv->used_rxkeys, slot, 0);
2414 ret = -ENOSPC;
2415 goto out_unlock;
2416 }
2417
2418 rxkey = (struct p54_keycache *)skb_put(skb, sizeof(*rxkey));
2419 rxkey->entry = slot;
2420 rxkey->key_id = key->keyidx;
2421 rxkey->key_type = algo;
2422 if (sta)
2423 memcpy(rxkey->mac, sta->addr, ETH_ALEN);
2424 else
2425 memset(rxkey->mac, ~0, ETH_ALEN);
2426 if (key->alg != ALG_TKIP) {
2427 rxkey->key_len = min((u8)16, key->keylen);
2428 memcpy(rxkey->key, key->key, rxkey->key_len);
2429 } else {
2430 rxkey->key_len = 24;
2431 memcpy(rxkey->key, key->key, 16);
2432 memcpy(&(rxkey->key[16]), &(key->key
2433 [NL80211_TKIP_DATA_OFFSET_RX_MIC_KEY]), 8);
2434 }
2435
2436 priv->tx(dev, skb);
2437 key->hw_key_idx = slot;
2438
2439 out_unlock:
2440 mutex_unlock(&priv->conf_mutex);
2441 return ret;
2442 }
2443
2444 #ifdef CONFIG_P54_LEDS
2445 static void p54_update_leds(struct work_struct *work)
2446 {
2447 struct p54_common *priv = container_of(work, struct p54_common,
2448 led_work.work);
2449 int err, i, tmp, blink_delay = 400;
2450 bool rerun = false;
2451
2452 /* Don't toggle the LED, when the device is down. */
2453 if (priv->mode == NL80211_IFTYPE_UNSPECIFIED)
2454 return ;
2455
2456 for (i = 0; i < ARRAY_SIZE(priv->leds); i++)
2457 if (priv->leds[i].toggled) {
2458 priv->softled_state |= BIT(i);
2459
2460 tmp = 70 + 200 / (priv->leds[i].toggled);
2461 if (tmp < blink_delay)
2462 blink_delay = tmp;
2463
2464 if (priv->leds[i].led_dev.brightness == LED_OFF)
2465 rerun = true;
2466
2467 priv->leds[i].toggled =
2468 !!priv->leds[i].led_dev.brightness;
2469 } else
2470 priv->softled_state &= ~BIT(i);
2471
2472 err = p54_set_leds(priv->hw);
2473 if (err && net_ratelimit())
2474 printk(KERN_ERR "%s: failed to update LEDs.\n",
2475 wiphy_name(priv->hw->wiphy));
2476
2477 if (rerun)
2478 queue_delayed_work(priv->hw->workqueue, &priv->led_work,
2479 msecs_to_jiffies(blink_delay));
2480 }
2481
2482 static void p54_led_brightness_set(struct led_classdev *led_dev,
2483 enum led_brightness brightness)
2484 {
2485 struct p54_led_dev *led = container_of(led_dev, struct p54_led_dev,
2486 led_dev);
2487 struct ieee80211_hw *dev = led->hw_dev;
2488 struct p54_common *priv = dev->priv;
2489
2490 if (priv->mode == NL80211_IFTYPE_UNSPECIFIED)
2491 return ;
2492
2493 if (brightness) {
2494 led->toggled++;
2495 queue_delayed_work(priv->hw->workqueue, &priv->led_work,
2496 HZ/10);
2497 }
2498 }
2499
2500 static int p54_register_led(struct ieee80211_hw *dev,
2501 unsigned int led_index,
2502 char *name, char *trigger)
2503 {
2504 struct p54_common *priv = dev->priv;
2505 struct p54_led_dev *led = &priv->leds[led_index];
2506 int err;
2507
2508 if (led->registered)
2509 return -EEXIST;
2510
2511 snprintf(led->name, sizeof(led->name), "p54-%s::%s",
2512 wiphy_name(dev->wiphy), name);
2513 led->hw_dev = dev;
2514 led->index = led_index;
2515 led->led_dev.name = led->name;
2516 led->led_dev.default_trigger = trigger;
2517 led->led_dev.brightness_set = p54_led_brightness_set;
2518
2519 err = led_classdev_register(wiphy_dev(dev->wiphy), &led->led_dev);
2520 if (err)
2521 printk(KERN_ERR "%s: Failed to register %s LED.\n",
2522 wiphy_name(dev->wiphy), name);
2523 else
2524 led->registered = 1;
2525
2526 return err;
2527 }
2528
2529 static int p54_init_leds(struct ieee80211_hw *dev)
2530 {
2531 struct p54_common *priv = dev->priv;
2532 int err;
2533
2534 /*
2535 * TODO:
2536 * Figure out if the EEPROM contains some hints about the number
2537 * of available/programmable LEDs of the device.
2538 */
2539
2540 INIT_DELAYED_WORK(&priv->led_work, p54_update_leds);
2541
2542 err = p54_register_led(dev, 0, "assoc",
2543 ieee80211_get_assoc_led_name(dev));
2544 if (err)
2545 return err;
2546
2547 err = p54_register_led(dev, 1, "tx",
2548 ieee80211_get_tx_led_name(dev));
2549 if (err)
2550 return err;
2551
2552 err = p54_register_led(dev, 2, "rx",
2553 ieee80211_get_rx_led_name(dev));
2554 if (err)
2555 return err;
2556
2557 err = p54_register_led(dev, 3, "radio",
2558 ieee80211_get_radio_led_name(dev));
2559 if (err)
2560 return err;
2561
2562 err = p54_set_leds(dev);
2563 return err;
2564 }
2565
2566 static void p54_unregister_leds(struct ieee80211_hw *dev)
2567 {
2568 struct p54_common *priv = dev->priv;
2569 int i;
2570
2571 for (i = 0; i < ARRAY_SIZE(priv->leds); i++)
2572 if (priv->leds[i].registered)
2573 led_classdev_unregister(&priv->leds[i].led_dev);
2574 }
2575 #endif /* CONFIG_P54_LEDS */
2576
2577 static const struct ieee80211_ops p54_ops = {
2578 .tx = p54_tx,
2579 .start = p54_start,
2580 .stop = p54_stop,
2581 .add_interface = p54_add_interface,
2582 .remove_interface = p54_remove_interface,
2583 .set_tim = p54_set_tim,
2584 .sta_notify = p54_sta_notify,
2585 .set_key = p54_set_key,
2586 .config = p54_config,
2587 .bss_info_changed = p54_bss_info_changed,
2588 .configure_filter = p54_configure_filter,
2589 .conf_tx = p54_conf_tx,
2590 .get_stats = p54_get_stats,
2591 .get_tx_stats = p54_get_tx_stats
2592 };
2593
2594 struct ieee80211_hw *p54_init_common(size_t priv_data_len)
2595 {
2596 struct ieee80211_hw *dev;
2597 struct p54_common *priv;
2598
2599 dev = ieee80211_alloc_hw(priv_data_len, &p54_ops);
2600 if (!dev)
2601 return NULL;
2602
2603 priv = dev->priv;
2604 priv->hw = dev;
2605 priv->mode = NL80211_IFTYPE_UNSPECIFIED;
2606 priv->basic_rate_mask = 0x15f;
2607 skb_queue_head_init(&priv->tx_queue);
2608 dev->flags = IEEE80211_HW_RX_INCLUDES_FCS |
2609 IEEE80211_HW_SIGNAL_DBM |
2610 IEEE80211_HW_NOISE_DBM;
2611
2612 dev->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION) |
2613 BIT(NL80211_IFTYPE_ADHOC) |
2614 BIT(NL80211_IFTYPE_AP) |
2615 BIT(NL80211_IFTYPE_MESH_POINT);
2616
2617 dev->channel_change_time = 1000; /* TODO: find actual value */
2618 priv->tx_stats[P54_QUEUE_BEACON].limit = 1;
2619 priv->tx_stats[P54_QUEUE_FWSCAN].limit = 1;
2620 priv->tx_stats[P54_QUEUE_MGMT].limit = 3;
2621 priv->tx_stats[P54_QUEUE_CAB].limit = 3;
2622 priv->tx_stats[P54_QUEUE_DATA].limit = 5;
2623 dev->queues = 1;
2624 priv->noise = -94;
2625 /*
2626 * We support at most 8 tries no matter which rate they're at,
2627 * we cannot support max_rates * max_rate_tries as we set it
2628 * here, but setting it correctly to 4/2 or so would limit us
2629 * artificially if the RC algorithm wants just two rates, so
2630 * let's say 4/7, we'll redistribute it at TX time, see the
2631 * comments there.
2632 */
2633 dev->max_rates = 4;
2634 dev->max_rate_tries = 7;
2635 dev->extra_tx_headroom = sizeof(struct p54_hdr) + 4 +
2636 sizeof(struct p54_tx_data);
2637
2638 mutex_init(&priv->conf_mutex);
2639 init_completion(&priv->eeprom_comp);
2640 INIT_DELAYED_WORK(&priv->work, p54_work);
2641
2642 return dev;
2643 }
2644 EXPORT_SYMBOL_GPL(p54_init_common);
2645
2646 int p54_register_common(struct ieee80211_hw *dev, struct device *pdev)
2647 {
2648 int err;
2649
2650 err = ieee80211_register_hw(dev);
2651 if (err) {
2652 dev_err(pdev, "Cannot register device (%d).\n", err);
2653 return err;
2654 }
2655
2656 #ifdef CONFIG_P54_LEDS
2657 err = p54_init_leds(dev);
2658 if (err)
2659 return err;
2660 #endif /* CONFIG_P54_LEDS */
2661
2662 dev_info(pdev, "is registered as '%s'\n", wiphy_name(dev->wiphy));
2663 return 0;
2664 }
2665 EXPORT_SYMBOL_GPL(p54_register_common);
2666
2667 void p54_free_common(struct ieee80211_hw *dev)
2668 {
2669 struct p54_common *priv = dev->priv;
2670 kfree(priv->iq_autocal);
2671 kfree(priv->output_limit);
2672 kfree(priv->curve_data);
2673 kfree(priv->used_rxkeys);
2674
2675 #ifdef CONFIG_P54_LEDS
2676 p54_unregister_leds(dev);
2677 #endif /* CONFIG_P54_LEDS */
2678 }
2679 EXPORT_SYMBOL_GPL(p54_free_common);
This page took 0.083362 seconds and 6 git commands to generate.