rt2x00: Implement set_tim callback for all drivers
[deliverable/linux.git] / drivers / net / wireless / rt2x00 / rt2400pci.c
1 /*
2 Copyright (C) 2004 - 2009 rt2x00 SourceForge Project
3 <http://rt2x00.serialmonkey.com>
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the
17 Free Software Foundation, Inc.,
18 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 */
20
21 /*
22 Module: rt2400pci
23 Abstract: rt2400pci device specific routines.
24 Supported chipsets: RT2460.
25 */
26
27 #include <linux/delay.h>
28 #include <linux/etherdevice.h>
29 #include <linux/init.h>
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/pci.h>
33 #include <linux/eeprom_93cx6.h>
34
35 #include "rt2x00.h"
36 #include "rt2x00pci.h"
37 #include "rt2400pci.h"
38
39 /*
40 * Register access.
41 * All access to the CSR registers will go through the methods
42 * rt2x00pci_register_read and rt2x00pci_register_write.
43 * BBP and RF register require indirect register access,
44 * and use the CSR registers BBPCSR and RFCSR to achieve this.
45 * These indirect registers work with busy bits,
46 * and we will try maximal REGISTER_BUSY_COUNT times to access
47 * the register while taking a REGISTER_BUSY_DELAY us delay
48 * between each attampt. When the busy bit is still set at that time,
49 * the access attempt is considered to have failed,
50 * and we will print an error.
51 */
52 #define WAIT_FOR_BBP(__dev, __reg) \
53 rt2x00pci_regbusy_read((__dev), BBPCSR, BBPCSR_BUSY, (__reg))
54 #define WAIT_FOR_RF(__dev, __reg) \
55 rt2x00pci_regbusy_read((__dev), RFCSR, RFCSR_BUSY, (__reg))
56
57 static void rt2400pci_bbp_write(struct rt2x00_dev *rt2x00dev,
58 const unsigned int word, const u8 value)
59 {
60 u32 reg;
61
62 mutex_lock(&rt2x00dev->csr_mutex);
63
64 /*
65 * Wait until the BBP becomes available, afterwards we
66 * can safely write the new data into the register.
67 */
68 if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
69 reg = 0;
70 rt2x00_set_field32(&reg, BBPCSR_VALUE, value);
71 rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
72 rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
73 rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 1);
74
75 rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
76 }
77
78 mutex_unlock(&rt2x00dev->csr_mutex);
79 }
80
81 static void rt2400pci_bbp_read(struct rt2x00_dev *rt2x00dev,
82 const unsigned int word, u8 *value)
83 {
84 u32 reg;
85
86 mutex_lock(&rt2x00dev->csr_mutex);
87
88 /*
89 * Wait until the BBP becomes available, afterwards we
90 * can safely write the read request into the register.
91 * After the data has been written, we wait until hardware
92 * returns the correct value, if at any time the register
93 * doesn't become available in time, reg will be 0xffffffff
94 * which means we return 0xff to the caller.
95 */
96 if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
97 reg = 0;
98 rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
99 rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
100 rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 0);
101
102 rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
103
104 WAIT_FOR_BBP(rt2x00dev, &reg);
105 }
106
107 *value = rt2x00_get_field32(reg, BBPCSR_VALUE);
108
109 mutex_unlock(&rt2x00dev->csr_mutex);
110 }
111
112 static void rt2400pci_rf_write(struct rt2x00_dev *rt2x00dev,
113 const unsigned int word, const u32 value)
114 {
115 u32 reg;
116
117 mutex_lock(&rt2x00dev->csr_mutex);
118
119 /*
120 * Wait until the RF becomes available, afterwards we
121 * can safely write the new data into the register.
122 */
123 if (WAIT_FOR_RF(rt2x00dev, &reg)) {
124 reg = 0;
125 rt2x00_set_field32(&reg, RFCSR_VALUE, value);
126 rt2x00_set_field32(&reg, RFCSR_NUMBER_OF_BITS, 20);
127 rt2x00_set_field32(&reg, RFCSR_IF_SELECT, 0);
128 rt2x00_set_field32(&reg, RFCSR_BUSY, 1);
129
130 rt2x00pci_register_write(rt2x00dev, RFCSR, reg);
131 rt2x00_rf_write(rt2x00dev, word, value);
132 }
133
134 mutex_unlock(&rt2x00dev->csr_mutex);
135 }
136
137 static void rt2400pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
138 {
139 struct rt2x00_dev *rt2x00dev = eeprom->data;
140 u32 reg;
141
142 rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
143
144 eeprom->reg_data_in = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_IN);
145 eeprom->reg_data_out = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_OUT);
146 eeprom->reg_data_clock =
147 !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_CLOCK);
148 eeprom->reg_chip_select =
149 !!rt2x00_get_field32(reg, CSR21_EEPROM_CHIP_SELECT);
150 }
151
152 static void rt2400pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
153 {
154 struct rt2x00_dev *rt2x00dev = eeprom->data;
155 u32 reg = 0;
156
157 rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_IN, !!eeprom->reg_data_in);
158 rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_OUT, !!eeprom->reg_data_out);
159 rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_CLOCK,
160 !!eeprom->reg_data_clock);
161 rt2x00_set_field32(&reg, CSR21_EEPROM_CHIP_SELECT,
162 !!eeprom->reg_chip_select);
163
164 rt2x00pci_register_write(rt2x00dev, CSR21, reg);
165 }
166
167 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
168 static const struct rt2x00debug rt2400pci_rt2x00debug = {
169 .owner = THIS_MODULE,
170 .csr = {
171 .read = rt2x00pci_register_read,
172 .write = rt2x00pci_register_write,
173 .flags = RT2X00DEBUGFS_OFFSET,
174 .word_base = CSR_REG_BASE,
175 .word_size = sizeof(u32),
176 .word_count = CSR_REG_SIZE / sizeof(u32),
177 },
178 .eeprom = {
179 .read = rt2x00_eeprom_read,
180 .write = rt2x00_eeprom_write,
181 .word_base = EEPROM_BASE,
182 .word_size = sizeof(u16),
183 .word_count = EEPROM_SIZE / sizeof(u16),
184 },
185 .bbp = {
186 .read = rt2400pci_bbp_read,
187 .write = rt2400pci_bbp_write,
188 .word_base = BBP_BASE,
189 .word_size = sizeof(u8),
190 .word_count = BBP_SIZE / sizeof(u8),
191 },
192 .rf = {
193 .read = rt2x00_rf_read,
194 .write = rt2400pci_rf_write,
195 .word_base = RF_BASE,
196 .word_size = sizeof(u32),
197 .word_count = RF_SIZE / sizeof(u32),
198 },
199 };
200 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
201
202 static int rt2400pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
203 {
204 u32 reg;
205
206 rt2x00pci_register_read(rt2x00dev, GPIOCSR, &reg);
207 return rt2x00_get_field32(reg, GPIOCSR_BIT0);
208 }
209
210 #ifdef CONFIG_RT2X00_LIB_LEDS
211 static void rt2400pci_brightness_set(struct led_classdev *led_cdev,
212 enum led_brightness brightness)
213 {
214 struct rt2x00_led *led =
215 container_of(led_cdev, struct rt2x00_led, led_dev);
216 unsigned int enabled = brightness != LED_OFF;
217 u32 reg;
218
219 rt2x00pci_register_read(led->rt2x00dev, LEDCSR, &reg);
220
221 if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC)
222 rt2x00_set_field32(&reg, LEDCSR_LINK, enabled);
223 else if (led->type == LED_TYPE_ACTIVITY)
224 rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, enabled);
225
226 rt2x00pci_register_write(led->rt2x00dev, LEDCSR, reg);
227 }
228
229 static int rt2400pci_blink_set(struct led_classdev *led_cdev,
230 unsigned long *delay_on,
231 unsigned long *delay_off)
232 {
233 struct rt2x00_led *led =
234 container_of(led_cdev, struct rt2x00_led, led_dev);
235 u32 reg;
236
237 rt2x00pci_register_read(led->rt2x00dev, LEDCSR, &reg);
238 rt2x00_set_field32(&reg, LEDCSR_ON_PERIOD, *delay_on);
239 rt2x00_set_field32(&reg, LEDCSR_OFF_PERIOD, *delay_off);
240 rt2x00pci_register_write(led->rt2x00dev, LEDCSR, reg);
241
242 return 0;
243 }
244
245 static void rt2400pci_init_led(struct rt2x00_dev *rt2x00dev,
246 struct rt2x00_led *led,
247 enum led_type type)
248 {
249 led->rt2x00dev = rt2x00dev;
250 led->type = type;
251 led->led_dev.brightness_set = rt2400pci_brightness_set;
252 led->led_dev.blink_set = rt2400pci_blink_set;
253 led->flags = LED_INITIALIZED;
254 }
255 #endif /* CONFIG_RT2X00_LIB_LEDS */
256
257 /*
258 * Configuration handlers.
259 */
260 static void rt2400pci_config_filter(struct rt2x00_dev *rt2x00dev,
261 const unsigned int filter_flags)
262 {
263 u32 reg;
264
265 /*
266 * Start configuration steps.
267 * Note that the version error will always be dropped
268 * since there is no filter for it at this time.
269 */
270 rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
271 rt2x00_set_field32(&reg, RXCSR0_DROP_CRC,
272 !(filter_flags & FIF_FCSFAIL));
273 rt2x00_set_field32(&reg, RXCSR0_DROP_PHYSICAL,
274 !(filter_flags & FIF_PLCPFAIL));
275 rt2x00_set_field32(&reg, RXCSR0_DROP_CONTROL,
276 !(filter_flags & FIF_CONTROL));
277 rt2x00_set_field32(&reg, RXCSR0_DROP_NOT_TO_ME,
278 !(filter_flags & FIF_PROMISC_IN_BSS));
279 rt2x00_set_field32(&reg, RXCSR0_DROP_TODS,
280 !(filter_flags & FIF_PROMISC_IN_BSS) &&
281 !rt2x00dev->intf_ap_count);
282 rt2x00_set_field32(&reg, RXCSR0_DROP_VERSION_ERROR, 1);
283 rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
284 }
285
286 static void rt2400pci_config_intf(struct rt2x00_dev *rt2x00dev,
287 struct rt2x00_intf *intf,
288 struct rt2x00intf_conf *conf,
289 const unsigned int flags)
290 {
291 unsigned int bcn_preload;
292 u32 reg;
293
294 if (flags & CONFIG_UPDATE_TYPE) {
295 /*
296 * Enable beacon config
297 */
298 bcn_preload = PREAMBLE + GET_DURATION(IEEE80211_HEADER, 20);
299 rt2x00pci_register_read(rt2x00dev, BCNCSR1, &reg);
300 rt2x00_set_field32(&reg, BCNCSR1_PRELOAD, bcn_preload);
301 rt2x00pci_register_write(rt2x00dev, BCNCSR1, reg);
302
303 /*
304 * Enable synchronisation.
305 */
306 rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
307 rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
308 rt2x00_set_field32(&reg, CSR14_TSF_SYNC, conf->sync);
309 rt2x00_set_field32(&reg, CSR14_TBCN, 1);
310 rt2x00pci_register_write(rt2x00dev, CSR14, reg);
311 }
312
313 if (flags & CONFIG_UPDATE_MAC)
314 rt2x00pci_register_multiwrite(rt2x00dev, CSR3,
315 conf->mac, sizeof(conf->mac));
316
317 if (flags & CONFIG_UPDATE_BSSID)
318 rt2x00pci_register_multiwrite(rt2x00dev, CSR5,
319 conf->bssid, sizeof(conf->bssid));
320 }
321
322 static void rt2400pci_config_erp(struct rt2x00_dev *rt2x00dev,
323 struct rt2x00lib_erp *erp)
324 {
325 int preamble_mask;
326 u32 reg;
327
328 /*
329 * When short preamble is enabled, we should set bit 0x08
330 */
331 preamble_mask = erp->short_preamble << 3;
332
333 rt2x00pci_register_read(rt2x00dev, TXCSR1, &reg);
334 rt2x00_set_field32(&reg, TXCSR1_ACK_TIMEOUT, erp->ack_timeout);
335 rt2x00_set_field32(&reg, TXCSR1_ACK_CONSUME_TIME,
336 erp->ack_consume_time);
337 rt2x00_set_field32(&reg, TXCSR1_TSF_OFFSET, IEEE80211_HEADER);
338 rt2x00_set_field32(&reg, TXCSR1_AUTORESPONDER, 1);
339 rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);
340
341 rt2x00pci_register_read(rt2x00dev, ARCSR2, &reg);
342 rt2x00_set_field32(&reg, ARCSR2_SIGNAL, 0x00);
343 rt2x00_set_field32(&reg, ARCSR2_SERVICE, 0x04);
344 rt2x00_set_field32(&reg, ARCSR2_LENGTH, GET_DURATION(ACK_SIZE, 10));
345 rt2x00pci_register_write(rt2x00dev, ARCSR2, reg);
346
347 rt2x00pci_register_read(rt2x00dev, ARCSR3, &reg);
348 rt2x00_set_field32(&reg, ARCSR3_SIGNAL, 0x01 | preamble_mask);
349 rt2x00_set_field32(&reg, ARCSR3_SERVICE, 0x04);
350 rt2x00_set_field32(&reg, ARCSR2_LENGTH, GET_DURATION(ACK_SIZE, 20));
351 rt2x00pci_register_write(rt2x00dev, ARCSR3, reg);
352
353 rt2x00pci_register_read(rt2x00dev, ARCSR4, &reg);
354 rt2x00_set_field32(&reg, ARCSR4_SIGNAL, 0x02 | preamble_mask);
355 rt2x00_set_field32(&reg, ARCSR4_SERVICE, 0x04);
356 rt2x00_set_field32(&reg, ARCSR2_LENGTH, GET_DURATION(ACK_SIZE, 55));
357 rt2x00pci_register_write(rt2x00dev, ARCSR4, reg);
358
359 rt2x00pci_register_read(rt2x00dev, ARCSR5, &reg);
360 rt2x00_set_field32(&reg, ARCSR5_SIGNAL, 0x03 | preamble_mask);
361 rt2x00_set_field32(&reg, ARCSR5_SERVICE, 0x84);
362 rt2x00_set_field32(&reg, ARCSR2_LENGTH, GET_DURATION(ACK_SIZE, 110));
363 rt2x00pci_register_write(rt2x00dev, ARCSR5, reg);
364
365 rt2x00pci_register_write(rt2x00dev, ARCSR1, erp->basic_rates);
366
367 rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
368 rt2x00_set_field32(&reg, CSR11_SLOT_TIME, erp->slot_time);
369 rt2x00pci_register_write(rt2x00dev, CSR11, reg);
370
371 rt2x00pci_register_read(rt2x00dev, CSR12, &reg);
372 rt2x00_set_field32(&reg, CSR12_BEACON_INTERVAL, erp->beacon_int * 16);
373 rt2x00_set_field32(&reg, CSR12_CFP_MAX_DURATION, erp->beacon_int * 16);
374 rt2x00pci_register_write(rt2x00dev, CSR12, reg);
375
376 rt2x00pci_register_read(rt2x00dev, CSR18, &reg);
377 rt2x00_set_field32(&reg, CSR18_SIFS, erp->sifs);
378 rt2x00_set_field32(&reg, CSR18_PIFS, erp->pifs);
379 rt2x00pci_register_write(rt2x00dev, CSR18, reg);
380
381 rt2x00pci_register_read(rt2x00dev, CSR19, &reg);
382 rt2x00_set_field32(&reg, CSR19_DIFS, erp->difs);
383 rt2x00_set_field32(&reg, CSR19_EIFS, erp->eifs);
384 rt2x00pci_register_write(rt2x00dev, CSR19, reg);
385 }
386
387 static void rt2400pci_config_ant(struct rt2x00_dev *rt2x00dev,
388 struct antenna_setup *ant)
389 {
390 u8 r1;
391 u8 r4;
392
393 /*
394 * We should never come here because rt2x00lib is supposed
395 * to catch this and send us the correct antenna explicitely.
396 */
397 BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
398 ant->tx == ANTENNA_SW_DIVERSITY);
399
400 rt2400pci_bbp_read(rt2x00dev, 4, &r4);
401 rt2400pci_bbp_read(rt2x00dev, 1, &r1);
402
403 /*
404 * Configure the TX antenna.
405 */
406 switch (ant->tx) {
407 case ANTENNA_HW_DIVERSITY:
408 rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 1);
409 break;
410 case ANTENNA_A:
411 rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 0);
412 break;
413 case ANTENNA_B:
414 default:
415 rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 2);
416 break;
417 }
418
419 /*
420 * Configure the RX antenna.
421 */
422 switch (ant->rx) {
423 case ANTENNA_HW_DIVERSITY:
424 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 1);
425 break;
426 case ANTENNA_A:
427 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 0);
428 break;
429 case ANTENNA_B:
430 default:
431 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 2);
432 break;
433 }
434
435 rt2400pci_bbp_write(rt2x00dev, 4, r4);
436 rt2400pci_bbp_write(rt2x00dev, 1, r1);
437 }
438
439 static void rt2400pci_config_channel(struct rt2x00_dev *rt2x00dev,
440 struct rf_channel *rf)
441 {
442 /*
443 * Switch on tuning bits.
444 */
445 rt2x00_set_field32(&rf->rf1, RF1_TUNER, 1);
446 rt2x00_set_field32(&rf->rf3, RF3_TUNER, 1);
447
448 rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
449 rt2400pci_rf_write(rt2x00dev, 2, rf->rf2);
450 rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
451
452 /*
453 * RF2420 chipset don't need any additional actions.
454 */
455 if (rt2x00_rf(&rt2x00dev->chip, RF2420))
456 return;
457
458 /*
459 * For the RT2421 chipsets we need to write an invalid
460 * reference clock rate to activate auto_tune.
461 * After that we set the value back to the correct channel.
462 */
463 rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
464 rt2400pci_rf_write(rt2x00dev, 2, 0x000c2a32);
465 rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
466
467 msleep(1);
468
469 rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
470 rt2400pci_rf_write(rt2x00dev, 2, rf->rf2);
471 rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
472
473 msleep(1);
474
475 /*
476 * Switch off tuning bits.
477 */
478 rt2x00_set_field32(&rf->rf1, RF1_TUNER, 0);
479 rt2x00_set_field32(&rf->rf3, RF3_TUNER, 0);
480
481 rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
482 rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
483
484 /*
485 * Clear false CRC during channel switch.
486 */
487 rt2x00pci_register_read(rt2x00dev, CNT0, &rf->rf1);
488 }
489
490 static void rt2400pci_config_txpower(struct rt2x00_dev *rt2x00dev, int txpower)
491 {
492 rt2400pci_bbp_write(rt2x00dev, 3, TXPOWER_TO_DEV(txpower));
493 }
494
495 static void rt2400pci_config_retry_limit(struct rt2x00_dev *rt2x00dev,
496 struct rt2x00lib_conf *libconf)
497 {
498 u32 reg;
499
500 rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
501 rt2x00_set_field32(&reg, CSR11_LONG_RETRY,
502 libconf->conf->long_frame_max_tx_count);
503 rt2x00_set_field32(&reg, CSR11_SHORT_RETRY,
504 libconf->conf->short_frame_max_tx_count);
505 rt2x00pci_register_write(rt2x00dev, CSR11, reg);
506 }
507
508 static void rt2400pci_config_ps(struct rt2x00_dev *rt2x00dev,
509 struct rt2x00lib_conf *libconf)
510 {
511 enum dev_state state =
512 (libconf->conf->flags & IEEE80211_CONF_PS) ?
513 STATE_SLEEP : STATE_AWAKE;
514 u32 reg;
515
516 if (state == STATE_SLEEP) {
517 rt2x00pci_register_read(rt2x00dev, CSR20, &reg);
518 rt2x00_set_field32(&reg, CSR20_DELAY_AFTER_TBCN,
519 (rt2x00dev->beacon_int - 20) * 16);
520 rt2x00_set_field32(&reg, CSR20_TBCN_BEFORE_WAKEUP,
521 libconf->conf->listen_interval - 1);
522
523 /* We must first disable autowake before it can be enabled */
524 rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 0);
525 rt2x00pci_register_write(rt2x00dev, CSR20, reg);
526
527 rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 1);
528 rt2x00pci_register_write(rt2x00dev, CSR20, reg);
529 }
530
531 rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
532 }
533
534 static void rt2400pci_config(struct rt2x00_dev *rt2x00dev,
535 struct rt2x00lib_conf *libconf,
536 const unsigned int flags)
537 {
538 if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
539 rt2400pci_config_channel(rt2x00dev, &libconf->rf);
540 if (flags & IEEE80211_CONF_CHANGE_POWER)
541 rt2400pci_config_txpower(rt2x00dev,
542 libconf->conf->power_level);
543 if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
544 rt2400pci_config_retry_limit(rt2x00dev, libconf);
545 if (flags & IEEE80211_CONF_CHANGE_PS)
546 rt2400pci_config_ps(rt2x00dev, libconf);
547 }
548
549 static void rt2400pci_config_cw(struct rt2x00_dev *rt2x00dev,
550 const int cw_min, const int cw_max)
551 {
552 u32 reg;
553
554 rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
555 rt2x00_set_field32(&reg, CSR11_CWMIN, cw_min);
556 rt2x00_set_field32(&reg, CSR11_CWMAX, cw_max);
557 rt2x00pci_register_write(rt2x00dev, CSR11, reg);
558 }
559
560 /*
561 * Link tuning
562 */
563 static void rt2400pci_link_stats(struct rt2x00_dev *rt2x00dev,
564 struct link_qual *qual)
565 {
566 u32 reg;
567 u8 bbp;
568
569 /*
570 * Update FCS error count from register.
571 */
572 rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
573 qual->rx_failed = rt2x00_get_field32(reg, CNT0_FCS_ERROR);
574
575 /*
576 * Update False CCA count from register.
577 */
578 rt2400pci_bbp_read(rt2x00dev, 39, &bbp);
579 qual->false_cca = bbp;
580 }
581
582 static inline void rt2400pci_set_vgc(struct rt2x00_dev *rt2x00dev,
583 struct link_qual *qual, u8 vgc_level)
584 {
585 rt2400pci_bbp_write(rt2x00dev, 13, vgc_level);
586 qual->vgc_level = vgc_level;
587 qual->vgc_level_reg = vgc_level;
588 }
589
590 static void rt2400pci_reset_tuner(struct rt2x00_dev *rt2x00dev,
591 struct link_qual *qual)
592 {
593 rt2400pci_set_vgc(rt2x00dev, qual, 0x08);
594 }
595
596 static void rt2400pci_link_tuner(struct rt2x00_dev *rt2x00dev,
597 struct link_qual *qual, const u32 count)
598 {
599 /*
600 * The link tuner should not run longer then 60 seconds,
601 * and should run once every 2 seconds.
602 */
603 if (count > 60 || !(count & 1))
604 return;
605
606 /*
607 * Base r13 link tuning on the false cca count.
608 */
609 if ((qual->false_cca > 512) && (qual->vgc_level < 0x20))
610 rt2400pci_set_vgc(rt2x00dev, qual, ++qual->vgc_level);
611 else if ((qual->false_cca < 100) && (qual->vgc_level > 0x08))
612 rt2400pci_set_vgc(rt2x00dev, qual, --qual->vgc_level);
613 }
614
615 /*
616 * Initialization functions.
617 */
618 static bool rt2400pci_get_entry_state(struct queue_entry *entry)
619 {
620 struct queue_entry_priv_pci *entry_priv = entry->priv_data;
621 u32 word;
622
623 if (entry->queue->qid == QID_RX) {
624 rt2x00_desc_read(entry_priv->desc, 0, &word);
625
626 return rt2x00_get_field32(word, RXD_W0_OWNER_NIC);
627 } else {
628 rt2x00_desc_read(entry_priv->desc, 0, &word);
629
630 return (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
631 rt2x00_get_field32(word, TXD_W0_VALID));
632 }
633 }
634
635 static void rt2400pci_clear_entry(struct queue_entry *entry)
636 {
637 struct queue_entry_priv_pci *entry_priv = entry->priv_data;
638 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
639 u32 word;
640
641 if (entry->queue->qid == QID_RX) {
642 rt2x00_desc_read(entry_priv->desc, 2, &word);
643 rt2x00_set_field32(&word, RXD_W2_BUFFER_LENGTH, entry->skb->len);
644 rt2x00_desc_write(entry_priv->desc, 2, word);
645
646 rt2x00_desc_read(entry_priv->desc, 1, &word);
647 rt2x00_set_field32(&word, RXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
648 rt2x00_desc_write(entry_priv->desc, 1, word);
649
650 rt2x00_desc_read(entry_priv->desc, 0, &word);
651 rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
652 rt2x00_desc_write(entry_priv->desc, 0, word);
653 } else {
654 rt2x00_desc_read(entry_priv->desc, 0, &word);
655 rt2x00_set_field32(&word, TXD_W0_VALID, 0);
656 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
657 rt2x00_desc_write(entry_priv->desc, 0, word);
658 }
659 }
660
661 static int rt2400pci_init_queues(struct rt2x00_dev *rt2x00dev)
662 {
663 struct queue_entry_priv_pci *entry_priv;
664 u32 reg;
665
666 /*
667 * Initialize registers.
668 */
669 rt2x00pci_register_read(rt2x00dev, TXCSR2, &reg);
670 rt2x00_set_field32(&reg, TXCSR2_TXD_SIZE, rt2x00dev->tx[0].desc_size);
671 rt2x00_set_field32(&reg, TXCSR2_NUM_TXD, rt2x00dev->tx[1].limit);
672 rt2x00_set_field32(&reg, TXCSR2_NUM_ATIM, rt2x00dev->bcn[1].limit);
673 rt2x00_set_field32(&reg, TXCSR2_NUM_PRIO, rt2x00dev->tx[0].limit);
674 rt2x00pci_register_write(rt2x00dev, TXCSR2, reg);
675
676 entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
677 rt2x00pci_register_read(rt2x00dev, TXCSR3, &reg);
678 rt2x00_set_field32(&reg, TXCSR3_TX_RING_REGISTER,
679 entry_priv->desc_dma);
680 rt2x00pci_register_write(rt2x00dev, TXCSR3, reg);
681
682 entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
683 rt2x00pci_register_read(rt2x00dev, TXCSR5, &reg);
684 rt2x00_set_field32(&reg, TXCSR5_PRIO_RING_REGISTER,
685 entry_priv->desc_dma);
686 rt2x00pci_register_write(rt2x00dev, TXCSR5, reg);
687
688 entry_priv = rt2x00dev->bcn[1].entries[0].priv_data;
689 rt2x00pci_register_read(rt2x00dev, TXCSR4, &reg);
690 rt2x00_set_field32(&reg, TXCSR4_ATIM_RING_REGISTER,
691 entry_priv->desc_dma);
692 rt2x00pci_register_write(rt2x00dev, TXCSR4, reg);
693
694 entry_priv = rt2x00dev->bcn[0].entries[0].priv_data;
695 rt2x00pci_register_read(rt2x00dev, TXCSR6, &reg);
696 rt2x00_set_field32(&reg, TXCSR6_BEACON_RING_REGISTER,
697 entry_priv->desc_dma);
698 rt2x00pci_register_write(rt2x00dev, TXCSR6, reg);
699
700 rt2x00pci_register_read(rt2x00dev, RXCSR1, &reg);
701 rt2x00_set_field32(&reg, RXCSR1_RXD_SIZE, rt2x00dev->rx->desc_size);
702 rt2x00_set_field32(&reg, RXCSR1_NUM_RXD, rt2x00dev->rx->limit);
703 rt2x00pci_register_write(rt2x00dev, RXCSR1, reg);
704
705 entry_priv = rt2x00dev->rx->entries[0].priv_data;
706 rt2x00pci_register_read(rt2x00dev, RXCSR2, &reg);
707 rt2x00_set_field32(&reg, RXCSR2_RX_RING_REGISTER,
708 entry_priv->desc_dma);
709 rt2x00pci_register_write(rt2x00dev, RXCSR2, reg);
710
711 return 0;
712 }
713
714 static int rt2400pci_init_registers(struct rt2x00_dev *rt2x00dev)
715 {
716 u32 reg;
717
718 rt2x00pci_register_write(rt2x00dev, PSCSR0, 0x00020002);
719 rt2x00pci_register_write(rt2x00dev, PSCSR1, 0x00000002);
720 rt2x00pci_register_write(rt2x00dev, PSCSR2, 0x00023f20);
721 rt2x00pci_register_write(rt2x00dev, PSCSR3, 0x00000002);
722
723 rt2x00pci_register_read(rt2x00dev, TIMECSR, &reg);
724 rt2x00_set_field32(&reg, TIMECSR_US_COUNT, 33);
725 rt2x00_set_field32(&reg, TIMECSR_US_64_COUNT, 63);
726 rt2x00_set_field32(&reg, TIMECSR_BEACON_EXPECT, 0);
727 rt2x00pci_register_write(rt2x00dev, TIMECSR, reg);
728
729 rt2x00pci_register_read(rt2x00dev, CSR9, &reg);
730 rt2x00_set_field32(&reg, CSR9_MAX_FRAME_UNIT,
731 (rt2x00dev->rx->data_size / 128));
732 rt2x00pci_register_write(rt2x00dev, CSR9, reg);
733
734 rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
735 rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
736 rt2x00_set_field32(&reg, CSR14_TSF_SYNC, 0);
737 rt2x00_set_field32(&reg, CSR14_TBCN, 0);
738 rt2x00_set_field32(&reg, CSR14_TCFP, 0);
739 rt2x00_set_field32(&reg, CSR14_TATIMW, 0);
740 rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
741 rt2x00_set_field32(&reg, CSR14_CFP_COUNT_PRELOAD, 0);
742 rt2x00_set_field32(&reg, CSR14_TBCM_PRELOAD, 0);
743 rt2x00pci_register_write(rt2x00dev, CSR14, reg);
744
745 rt2x00pci_register_write(rt2x00dev, CNT3, 0x3f080000);
746
747 rt2x00pci_register_read(rt2x00dev, ARCSR0, &reg);
748 rt2x00_set_field32(&reg, ARCSR0_AR_BBP_DATA0, 133);
749 rt2x00_set_field32(&reg, ARCSR0_AR_BBP_ID0, 134);
750 rt2x00_set_field32(&reg, ARCSR0_AR_BBP_DATA1, 136);
751 rt2x00_set_field32(&reg, ARCSR0_AR_BBP_ID1, 135);
752 rt2x00pci_register_write(rt2x00dev, ARCSR0, reg);
753
754 rt2x00pci_register_read(rt2x00dev, RXCSR3, &reg);
755 rt2x00_set_field32(&reg, RXCSR3_BBP_ID0, 3); /* Tx power.*/
756 rt2x00_set_field32(&reg, RXCSR3_BBP_ID0_VALID, 1);
757 rt2x00_set_field32(&reg, RXCSR3_BBP_ID1, 32); /* Signal */
758 rt2x00_set_field32(&reg, RXCSR3_BBP_ID1_VALID, 1);
759 rt2x00_set_field32(&reg, RXCSR3_BBP_ID2, 36); /* Rssi */
760 rt2x00_set_field32(&reg, RXCSR3_BBP_ID2_VALID, 1);
761 rt2x00pci_register_write(rt2x00dev, RXCSR3, reg);
762
763 rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0x3f3b3100);
764
765 if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
766 return -EBUSY;
767
768 rt2x00pci_register_write(rt2x00dev, MACCSR0, 0x00217223);
769 rt2x00pci_register_write(rt2x00dev, MACCSR1, 0x00235518);
770
771 rt2x00pci_register_read(rt2x00dev, MACCSR2, &reg);
772 rt2x00_set_field32(&reg, MACCSR2_DELAY, 64);
773 rt2x00pci_register_write(rt2x00dev, MACCSR2, reg);
774
775 rt2x00pci_register_read(rt2x00dev, RALINKCSR, &reg);
776 rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA0, 17);
777 rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID0, 154);
778 rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA1, 0);
779 rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID1, 154);
780 rt2x00pci_register_write(rt2x00dev, RALINKCSR, reg);
781
782 rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
783 rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 1);
784 rt2x00_set_field32(&reg, CSR1_BBP_RESET, 0);
785 rt2x00_set_field32(&reg, CSR1_HOST_READY, 0);
786 rt2x00pci_register_write(rt2x00dev, CSR1, reg);
787
788 rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
789 rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 0);
790 rt2x00_set_field32(&reg, CSR1_HOST_READY, 1);
791 rt2x00pci_register_write(rt2x00dev, CSR1, reg);
792
793 /*
794 * We must clear the FCS and FIFO error count.
795 * These registers are cleared on read,
796 * so we may pass a useless variable to store the value.
797 */
798 rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
799 rt2x00pci_register_read(rt2x00dev, CNT4, &reg);
800
801 return 0;
802 }
803
804 static int rt2400pci_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
805 {
806 unsigned int i;
807 u8 value;
808
809 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
810 rt2400pci_bbp_read(rt2x00dev, 0, &value);
811 if ((value != 0xff) && (value != 0x00))
812 return 0;
813 udelay(REGISTER_BUSY_DELAY);
814 }
815
816 ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
817 return -EACCES;
818 }
819
820 static int rt2400pci_init_bbp(struct rt2x00_dev *rt2x00dev)
821 {
822 unsigned int i;
823 u16 eeprom;
824 u8 reg_id;
825 u8 value;
826
827 if (unlikely(rt2400pci_wait_bbp_ready(rt2x00dev)))
828 return -EACCES;
829
830 rt2400pci_bbp_write(rt2x00dev, 1, 0x00);
831 rt2400pci_bbp_write(rt2x00dev, 3, 0x27);
832 rt2400pci_bbp_write(rt2x00dev, 4, 0x08);
833 rt2400pci_bbp_write(rt2x00dev, 10, 0x0f);
834 rt2400pci_bbp_write(rt2x00dev, 15, 0x72);
835 rt2400pci_bbp_write(rt2x00dev, 16, 0x74);
836 rt2400pci_bbp_write(rt2x00dev, 17, 0x20);
837 rt2400pci_bbp_write(rt2x00dev, 18, 0x72);
838 rt2400pci_bbp_write(rt2x00dev, 19, 0x0b);
839 rt2400pci_bbp_write(rt2x00dev, 20, 0x00);
840 rt2400pci_bbp_write(rt2x00dev, 28, 0x11);
841 rt2400pci_bbp_write(rt2x00dev, 29, 0x04);
842 rt2400pci_bbp_write(rt2x00dev, 30, 0x21);
843 rt2400pci_bbp_write(rt2x00dev, 31, 0x00);
844
845 for (i = 0; i < EEPROM_BBP_SIZE; i++) {
846 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
847
848 if (eeprom != 0xffff && eeprom != 0x0000) {
849 reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
850 value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
851 rt2400pci_bbp_write(rt2x00dev, reg_id, value);
852 }
853 }
854
855 return 0;
856 }
857
858 /*
859 * Device state switch handlers.
860 */
861 static void rt2400pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
862 enum dev_state state)
863 {
864 u32 reg;
865
866 rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
867 rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX,
868 (state == STATE_RADIO_RX_OFF) ||
869 (state == STATE_RADIO_RX_OFF_LINK));
870 rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
871 }
872
873 static void rt2400pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
874 enum dev_state state)
875 {
876 int mask = (state == STATE_RADIO_IRQ_OFF);
877 u32 reg;
878
879 /*
880 * When interrupts are being enabled, the interrupt registers
881 * should clear the register to assure a clean state.
882 */
883 if (state == STATE_RADIO_IRQ_ON) {
884 rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
885 rt2x00pci_register_write(rt2x00dev, CSR7, reg);
886 }
887
888 /*
889 * Only toggle the interrupts bits we are going to use.
890 * Non-checked interrupt bits are disabled by default.
891 */
892 rt2x00pci_register_read(rt2x00dev, CSR8, &reg);
893 rt2x00_set_field32(&reg, CSR8_TBCN_EXPIRE, mask);
894 rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, mask);
895 rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, mask);
896 rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, mask);
897 rt2x00_set_field32(&reg, CSR8_RXDONE, mask);
898 rt2x00pci_register_write(rt2x00dev, CSR8, reg);
899 }
900
901 static int rt2400pci_enable_radio(struct rt2x00_dev *rt2x00dev)
902 {
903 /*
904 * Initialize all registers.
905 */
906 if (unlikely(rt2400pci_init_queues(rt2x00dev) ||
907 rt2400pci_init_registers(rt2x00dev) ||
908 rt2400pci_init_bbp(rt2x00dev)))
909 return -EIO;
910
911 return 0;
912 }
913
914 static void rt2400pci_disable_radio(struct rt2x00_dev *rt2x00dev)
915 {
916 /*
917 * Disable power
918 */
919 rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0);
920 }
921
922 static int rt2400pci_set_state(struct rt2x00_dev *rt2x00dev,
923 enum dev_state state)
924 {
925 u32 reg;
926 unsigned int i;
927 char put_to_sleep;
928 char bbp_state;
929 char rf_state;
930
931 put_to_sleep = (state != STATE_AWAKE);
932
933 rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
934 rt2x00_set_field32(&reg, PWRCSR1_SET_STATE, 1);
935 rt2x00_set_field32(&reg, PWRCSR1_BBP_DESIRE_STATE, state);
936 rt2x00_set_field32(&reg, PWRCSR1_RF_DESIRE_STATE, state);
937 rt2x00_set_field32(&reg, PWRCSR1_PUT_TO_SLEEP, put_to_sleep);
938 rt2x00pci_register_write(rt2x00dev, PWRCSR1, reg);
939
940 /*
941 * Device is not guaranteed to be in the requested state yet.
942 * We must wait until the register indicates that the
943 * device has entered the correct state.
944 */
945 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
946 rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
947 bbp_state = rt2x00_get_field32(reg, PWRCSR1_BBP_CURR_STATE);
948 rf_state = rt2x00_get_field32(reg, PWRCSR1_RF_CURR_STATE);
949 if (bbp_state == state && rf_state == state)
950 return 0;
951 msleep(10);
952 }
953
954 return -EBUSY;
955 }
956
957 static int rt2400pci_set_device_state(struct rt2x00_dev *rt2x00dev,
958 enum dev_state state)
959 {
960 int retval = 0;
961
962 switch (state) {
963 case STATE_RADIO_ON:
964 retval = rt2400pci_enable_radio(rt2x00dev);
965 break;
966 case STATE_RADIO_OFF:
967 rt2400pci_disable_radio(rt2x00dev);
968 break;
969 case STATE_RADIO_RX_ON:
970 case STATE_RADIO_RX_ON_LINK:
971 case STATE_RADIO_RX_OFF:
972 case STATE_RADIO_RX_OFF_LINK:
973 rt2400pci_toggle_rx(rt2x00dev, state);
974 break;
975 case STATE_RADIO_IRQ_ON:
976 case STATE_RADIO_IRQ_OFF:
977 rt2400pci_toggle_irq(rt2x00dev, state);
978 break;
979 case STATE_DEEP_SLEEP:
980 case STATE_SLEEP:
981 case STATE_STANDBY:
982 case STATE_AWAKE:
983 retval = rt2400pci_set_state(rt2x00dev, state);
984 break;
985 default:
986 retval = -ENOTSUPP;
987 break;
988 }
989
990 if (unlikely(retval))
991 ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
992 state, retval);
993
994 return retval;
995 }
996
997 /*
998 * TX descriptor initialization
999 */
1000 static void rt2400pci_write_tx_desc(struct rt2x00_dev *rt2x00dev,
1001 struct sk_buff *skb,
1002 struct txentry_desc *txdesc)
1003 {
1004 struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
1005 struct queue_entry_priv_pci *entry_priv = skbdesc->entry->priv_data;
1006 __le32 *txd = skbdesc->desc;
1007 u32 word;
1008
1009 /*
1010 * Start writing the descriptor words.
1011 */
1012 rt2x00_desc_read(entry_priv->desc, 1, &word);
1013 rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
1014 rt2x00_desc_write(entry_priv->desc, 1, word);
1015
1016 rt2x00_desc_read(txd, 2, &word);
1017 rt2x00_set_field32(&word, TXD_W2_BUFFER_LENGTH, skb->len);
1018 rt2x00_set_field32(&word, TXD_W2_DATABYTE_COUNT, skb->len);
1019 rt2x00_desc_write(txd, 2, word);
1020
1021 rt2x00_desc_read(txd, 3, &word);
1022 rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL, txdesc->signal);
1023 rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL_REGNUM, 5);
1024 rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL_BUSY, 1);
1025 rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE, txdesc->service);
1026 rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE_REGNUM, 6);
1027 rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE_BUSY, 1);
1028 rt2x00_desc_write(txd, 3, word);
1029
1030 rt2x00_desc_read(txd, 4, &word);
1031 rt2x00_set_field32(&word, TXD_W4_PLCP_LENGTH_LOW, txdesc->length_low);
1032 rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW_REGNUM, 8);
1033 rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW_BUSY, 1);
1034 rt2x00_set_field32(&word, TXD_W4_PLCP_LENGTH_HIGH, txdesc->length_high);
1035 rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH_REGNUM, 7);
1036 rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH_BUSY, 1);
1037 rt2x00_desc_write(txd, 4, word);
1038
1039 rt2x00_desc_read(txd, 0, &word);
1040 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
1041 rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1042 rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1043 test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1044 rt2x00_set_field32(&word, TXD_W0_ACK,
1045 test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1046 rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1047 test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1048 rt2x00_set_field32(&word, TXD_W0_RTS,
1049 test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags));
1050 rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->ifs);
1051 rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1052 test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
1053 rt2x00_desc_write(txd, 0, word);
1054 }
1055
1056 /*
1057 * TX data initialization
1058 */
1059 static void rt2400pci_write_beacon(struct queue_entry *entry)
1060 {
1061 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1062 struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1063 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1064 u32 word;
1065 u32 reg;
1066
1067 /*
1068 * Disable beaconing while we are reloading the beacon data,
1069 * otherwise we might be sending out invalid data.
1070 */
1071 rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
1072 rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
1073 rt2x00_set_field32(&reg, CSR14_TBCN, 0);
1074 rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
1075 rt2x00pci_register_write(rt2x00dev, CSR14, reg);
1076
1077 /*
1078 * Replace rt2x00lib allocated descriptor with the
1079 * pointer to the _real_ hardware descriptor.
1080 * After that, map the beacon to DMA and update the
1081 * descriptor.
1082 */
1083 memcpy(entry_priv->desc, skbdesc->desc, skbdesc->desc_len);
1084 skbdesc->desc = entry_priv->desc;
1085
1086 rt2x00queue_map_txskb(rt2x00dev, entry->skb);
1087
1088 rt2x00_desc_read(entry_priv->desc, 1, &word);
1089 rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
1090 rt2x00_desc_write(entry_priv->desc, 1, word);
1091 }
1092
1093 static void rt2400pci_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
1094 const enum data_queue_qid queue)
1095 {
1096 u32 reg;
1097
1098 if (queue == QID_BEACON) {
1099 rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
1100 if (!rt2x00_get_field32(reg, CSR14_BEACON_GEN)) {
1101 rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
1102 rt2x00_set_field32(&reg, CSR14_TBCN, 1);
1103 rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
1104 rt2x00pci_register_write(rt2x00dev, CSR14, reg);
1105 }
1106 return;
1107 }
1108
1109 rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
1110 rt2x00_set_field32(&reg, TXCSR0_KICK_PRIO, (queue == QID_AC_BE));
1111 rt2x00_set_field32(&reg, TXCSR0_KICK_TX, (queue == QID_AC_BK));
1112 rt2x00_set_field32(&reg, TXCSR0_KICK_ATIM, (queue == QID_ATIM));
1113 rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
1114 }
1115
1116 static void rt2400pci_kill_tx_queue(struct rt2x00_dev *rt2x00dev,
1117 const enum data_queue_qid qid)
1118 {
1119 u32 reg;
1120
1121 if (qid == QID_BEACON) {
1122 rt2x00pci_register_write(rt2x00dev, CSR14, 0);
1123 } else {
1124 rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
1125 rt2x00_set_field32(&reg, TXCSR0_ABORT, 1);
1126 rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
1127 }
1128 }
1129
1130 /*
1131 * RX control handlers
1132 */
1133 static void rt2400pci_fill_rxdone(struct queue_entry *entry,
1134 struct rxdone_entry_desc *rxdesc)
1135 {
1136 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1137 struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1138 u32 word0;
1139 u32 word2;
1140 u32 word3;
1141 u32 word4;
1142 u64 tsf;
1143 u32 rx_low;
1144 u32 rx_high;
1145
1146 rt2x00_desc_read(entry_priv->desc, 0, &word0);
1147 rt2x00_desc_read(entry_priv->desc, 2, &word2);
1148 rt2x00_desc_read(entry_priv->desc, 3, &word3);
1149 rt2x00_desc_read(entry_priv->desc, 4, &word4);
1150
1151 if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1152 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1153 if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
1154 rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
1155
1156 /*
1157 * We only get the lower 32bits from the timestamp,
1158 * to get the full 64bits we must complement it with
1159 * the timestamp from get_tsf().
1160 * Note that when a wraparound of the lower 32bits
1161 * has occurred between the frame arrival and the get_tsf()
1162 * call, we must decrease the higher 32bits with 1 to get
1163 * to correct value.
1164 */
1165 tsf = rt2x00dev->ops->hw->get_tsf(rt2x00dev->hw);
1166 rx_low = rt2x00_get_field32(word4, RXD_W4_RX_END_TIME);
1167 rx_high = upper_32_bits(tsf);
1168
1169 if ((u32)tsf <= rx_low)
1170 rx_high--;
1171
1172 /*
1173 * Obtain the status about this packet.
1174 * The signal is the PLCP value, and needs to be stripped
1175 * of the preamble bit (0x08).
1176 */
1177 rxdesc->timestamp = ((u64)rx_high << 32) | rx_low;
1178 rxdesc->signal = rt2x00_get_field32(word2, RXD_W2_SIGNAL) & ~0x08;
1179 rxdesc->rssi = rt2x00_get_field32(word2, RXD_W3_RSSI) -
1180 entry->queue->rt2x00dev->rssi_offset;
1181 rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1182
1183 rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
1184 if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
1185 rxdesc->dev_flags |= RXDONE_MY_BSS;
1186 }
1187
1188 /*
1189 * Interrupt functions.
1190 */
1191 static void rt2400pci_txdone(struct rt2x00_dev *rt2x00dev,
1192 const enum data_queue_qid queue_idx)
1193 {
1194 struct data_queue *queue = rt2x00queue_get_queue(rt2x00dev, queue_idx);
1195 struct queue_entry_priv_pci *entry_priv;
1196 struct queue_entry *entry;
1197 struct txdone_entry_desc txdesc;
1198 u32 word;
1199
1200 while (!rt2x00queue_empty(queue)) {
1201 entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
1202 entry_priv = entry->priv_data;
1203 rt2x00_desc_read(entry_priv->desc, 0, &word);
1204
1205 if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
1206 !rt2x00_get_field32(word, TXD_W0_VALID))
1207 break;
1208
1209 /*
1210 * Obtain the status about this packet.
1211 */
1212 txdesc.flags = 0;
1213 switch (rt2x00_get_field32(word, TXD_W0_RESULT)) {
1214 case 0: /* Success */
1215 case 1: /* Success with retry */
1216 __set_bit(TXDONE_SUCCESS, &txdesc.flags);
1217 break;
1218 case 2: /* Failure, excessive retries */
1219 __set_bit(TXDONE_EXCESSIVE_RETRY, &txdesc.flags);
1220 /* Don't break, this is a failed frame! */
1221 default: /* Failure */
1222 __set_bit(TXDONE_FAILURE, &txdesc.flags);
1223 }
1224 txdesc.retry = rt2x00_get_field32(word, TXD_W0_RETRY_COUNT);
1225
1226 rt2x00lib_txdone(entry, &txdesc);
1227 }
1228 }
1229
1230 static irqreturn_t rt2400pci_interrupt(int irq, void *dev_instance)
1231 {
1232 struct rt2x00_dev *rt2x00dev = dev_instance;
1233 u32 reg;
1234
1235 /*
1236 * Get the interrupt sources & saved to local variable.
1237 * Write register value back to clear pending interrupts.
1238 */
1239 rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
1240 rt2x00pci_register_write(rt2x00dev, CSR7, reg);
1241
1242 if (!reg)
1243 return IRQ_NONE;
1244
1245 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
1246 return IRQ_HANDLED;
1247
1248 /*
1249 * Handle interrupts, walk through all bits
1250 * and run the tasks, the bits are checked in order of
1251 * priority.
1252 */
1253
1254 /*
1255 * 1 - Beacon timer expired interrupt.
1256 */
1257 if (rt2x00_get_field32(reg, CSR7_TBCN_EXPIRE))
1258 rt2x00lib_beacondone(rt2x00dev);
1259
1260 /*
1261 * 2 - Rx ring done interrupt.
1262 */
1263 if (rt2x00_get_field32(reg, CSR7_RXDONE))
1264 rt2x00pci_rxdone(rt2x00dev);
1265
1266 /*
1267 * 3 - Atim ring transmit done interrupt.
1268 */
1269 if (rt2x00_get_field32(reg, CSR7_TXDONE_ATIMRING))
1270 rt2400pci_txdone(rt2x00dev, QID_ATIM);
1271
1272 /*
1273 * 4 - Priority ring transmit done interrupt.
1274 */
1275 if (rt2x00_get_field32(reg, CSR7_TXDONE_PRIORING))
1276 rt2400pci_txdone(rt2x00dev, QID_AC_BE);
1277
1278 /*
1279 * 5 - Tx ring transmit done interrupt.
1280 */
1281 if (rt2x00_get_field32(reg, CSR7_TXDONE_TXRING))
1282 rt2400pci_txdone(rt2x00dev, QID_AC_BK);
1283
1284 return IRQ_HANDLED;
1285 }
1286
1287 /*
1288 * Device probe functions.
1289 */
1290 static int rt2400pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1291 {
1292 struct eeprom_93cx6 eeprom;
1293 u32 reg;
1294 u16 word;
1295 u8 *mac;
1296
1297 rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
1298
1299 eeprom.data = rt2x00dev;
1300 eeprom.register_read = rt2400pci_eepromregister_read;
1301 eeprom.register_write = rt2400pci_eepromregister_write;
1302 eeprom.width = rt2x00_get_field32(reg, CSR21_TYPE_93C46) ?
1303 PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
1304 eeprom.reg_data_in = 0;
1305 eeprom.reg_data_out = 0;
1306 eeprom.reg_data_clock = 0;
1307 eeprom.reg_chip_select = 0;
1308
1309 eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
1310 EEPROM_SIZE / sizeof(u16));
1311
1312 /*
1313 * Start validation of the data that has been read.
1314 */
1315 mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1316 if (!is_valid_ether_addr(mac)) {
1317 random_ether_addr(mac);
1318 EEPROM(rt2x00dev, "MAC: %pM\n", mac);
1319 }
1320
1321 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
1322 if (word == 0xffff) {
1323 ERROR(rt2x00dev, "Invalid EEPROM data detected.\n");
1324 return -EINVAL;
1325 }
1326
1327 return 0;
1328 }
1329
1330 static int rt2400pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
1331 {
1332 u32 reg;
1333 u16 value;
1334 u16 eeprom;
1335
1336 /*
1337 * Read EEPROM word for configuration.
1338 */
1339 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
1340
1341 /*
1342 * Identify RF chipset.
1343 */
1344 value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1345 rt2x00pci_register_read(rt2x00dev, CSR0, &reg);
1346 rt2x00_set_chip_rf(rt2x00dev, value, reg);
1347
1348 if (!rt2x00_rf(&rt2x00dev->chip, RF2420) &&
1349 !rt2x00_rf(&rt2x00dev->chip, RF2421)) {
1350 ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
1351 return -ENODEV;
1352 }
1353
1354 /*
1355 * Identify default antenna configuration.
1356 */
1357 rt2x00dev->default_ant.tx =
1358 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1359 rt2x00dev->default_ant.rx =
1360 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1361
1362 /*
1363 * When the eeprom indicates SW_DIVERSITY use HW_DIVERSITY instead.
1364 * I am not 100% sure about this, but the legacy drivers do not
1365 * indicate antenna swapping in software is required when
1366 * diversity is enabled.
1367 */
1368 if (rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY)
1369 rt2x00dev->default_ant.tx = ANTENNA_HW_DIVERSITY;
1370 if (rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY)
1371 rt2x00dev->default_ant.rx = ANTENNA_HW_DIVERSITY;
1372
1373 /*
1374 * Store led mode, for correct led behaviour.
1375 */
1376 #ifdef CONFIG_RT2X00_LIB_LEDS
1377 value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
1378
1379 rt2400pci_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
1380 if (value == LED_MODE_TXRX_ACTIVITY ||
1381 value == LED_MODE_DEFAULT ||
1382 value == LED_MODE_ASUS)
1383 rt2400pci_init_led(rt2x00dev, &rt2x00dev->led_qual,
1384 LED_TYPE_ACTIVITY);
1385 #endif /* CONFIG_RT2X00_LIB_LEDS */
1386
1387 /*
1388 * Detect if this device has an hardware controlled radio.
1389 */
1390 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
1391 __set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
1392
1393 /*
1394 * Check if the BBP tuning should be enabled.
1395 */
1396 if (!rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_AGCVGC_TUNING))
1397 __set_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags);
1398
1399 return 0;
1400 }
1401
1402 /*
1403 * RF value list for RF2420 & RF2421
1404 * Supports: 2.4 GHz
1405 */
1406 static const struct rf_channel rf_vals_b[] = {
1407 { 1, 0x00022058, 0x000c1fda, 0x00000101, 0 },
1408 { 2, 0x00022058, 0x000c1fee, 0x00000101, 0 },
1409 { 3, 0x00022058, 0x000c2002, 0x00000101, 0 },
1410 { 4, 0x00022058, 0x000c2016, 0x00000101, 0 },
1411 { 5, 0x00022058, 0x000c202a, 0x00000101, 0 },
1412 { 6, 0x00022058, 0x000c203e, 0x00000101, 0 },
1413 { 7, 0x00022058, 0x000c2052, 0x00000101, 0 },
1414 { 8, 0x00022058, 0x000c2066, 0x00000101, 0 },
1415 { 9, 0x00022058, 0x000c207a, 0x00000101, 0 },
1416 { 10, 0x00022058, 0x000c208e, 0x00000101, 0 },
1417 { 11, 0x00022058, 0x000c20a2, 0x00000101, 0 },
1418 { 12, 0x00022058, 0x000c20b6, 0x00000101, 0 },
1419 { 13, 0x00022058, 0x000c20ca, 0x00000101, 0 },
1420 { 14, 0x00022058, 0x000c20fa, 0x00000101, 0 },
1421 };
1422
1423 static int rt2400pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
1424 {
1425 struct hw_mode_spec *spec = &rt2x00dev->spec;
1426 struct channel_info *info;
1427 char *tx_power;
1428 unsigned int i;
1429
1430 /*
1431 * Initialize all hw fields.
1432 */
1433 rt2x00dev->hw->flags = IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
1434 IEEE80211_HW_SIGNAL_DBM |
1435 IEEE80211_HW_SUPPORTS_PS |
1436 IEEE80211_HW_PS_NULLFUNC_STACK;
1437 rt2x00dev->hw->extra_tx_headroom = 0;
1438
1439 SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
1440 SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
1441 rt2x00_eeprom_addr(rt2x00dev,
1442 EEPROM_MAC_ADDR_0));
1443
1444 /*
1445 * Initialize hw_mode information.
1446 */
1447 spec->supported_bands = SUPPORT_BAND_2GHZ;
1448 spec->supported_rates = SUPPORT_RATE_CCK;
1449
1450 spec->num_channels = ARRAY_SIZE(rf_vals_b);
1451 spec->channels = rf_vals_b;
1452
1453 /*
1454 * Create channel information array
1455 */
1456 info = kzalloc(spec->num_channels * sizeof(*info), GFP_KERNEL);
1457 if (!info)
1458 return -ENOMEM;
1459
1460 spec->channels_info = info;
1461
1462 tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
1463 for (i = 0; i < 14; i++)
1464 info[i].tx_power1 = TXPOWER_FROM_DEV(tx_power[i]);
1465
1466 return 0;
1467 }
1468
1469 static int rt2400pci_probe_hw(struct rt2x00_dev *rt2x00dev)
1470 {
1471 int retval;
1472
1473 /*
1474 * Allocate eeprom data.
1475 */
1476 retval = rt2400pci_validate_eeprom(rt2x00dev);
1477 if (retval)
1478 return retval;
1479
1480 retval = rt2400pci_init_eeprom(rt2x00dev);
1481 if (retval)
1482 return retval;
1483
1484 /*
1485 * Initialize hw specifications.
1486 */
1487 retval = rt2400pci_probe_hw_mode(rt2x00dev);
1488 if (retval)
1489 return retval;
1490
1491 /*
1492 * This device requires the atim queue and DMA-mapped skbs.
1493 */
1494 __set_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags);
1495 __set_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags);
1496
1497 /*
1498 * Set the rssi offset.
1499 */
1500 rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
1501
1502 return 0;
1503 }
1504
1505 /*
1506 * IEEE80211 stack callback functions.
1507 */
1508 static int rt2400pci_conf_tx(struct ieee80211_hw *hw, u16 queue,
1509 const struct ieee80211_tx_queue_params *params)
1510 {
1511 struct rt2x00_dev *rt2x00dev = hw->priv;
1512
1513 /*
1514 * We don't support variating cw_min and cw_max variables
1515 * per queue. So by default we only configure the TX queue,
1516 * and ignore all other configurations.
1517 */
1518 if (queue != 0)
1519 return -EINVAL;
1520
1521 if (rt2x00mac_conf_tx(hw, queue, params))
1522 return -EINVAL;
1523
1524 /*
1525 * Write configuration to register.
1526 */
1527 rt2400pci_config_cw(rt2x00dev,
1528 rt2x00dev->tx->cw_min, rt2x00dev->tx->cw_max);
1529
1530 return 0;
1531 }
1532
1533 static u64 rt2400pci_get_tsf(struct ieee80211_hw *hw)
1534 {
1535 struct rt2x00_dev *rt2x00dev = hw->priv;
1536 u64 tsf;
1537 u32 reg;
1538
1539 rt2x00pci_register_read(rt2x00dev, CSR17, &reg);
1540 tsf = (u64) rt2x00_get_field32(reg, CSR17_HIGH_TSFTIMER) << 32;
1541 rt2x00pci_register_read(rt2x00dev, CSR16, &reg);
1542 tsf |= rt2x00_get_field32(reg, CSR16_LOW_TSFTIMER);
1543
1544 return tsf;
1545 }
1546
1547 static int rt2400pci_tx_last_beacon(struct ieee80211_hw *hw)
1548 {
1549 struct rt2x00_dev *rt2x00dev = hw->priv;
1550 u32 reg;
1551
1552 rt2x00pci_register_read(rt2x00dev, CSR15, &reg);
1553 return rt2x00_get_field32(reg, CSR15_BEACON_SENT);
1554 }
1555
1556 static const struct ieee80211_ops rt2400pci_mac80211_ops = {
1557 .tx = rt2x00mac_tx,
1558 .start = rt2x00mac_start,
1559 .stop = rt2x00mac_stop,
1560 .add_interface = rt2x00mac_add_interface,
1561 .remove_interface = rt2x00mac_remove_interface,
1562 .config = rt2x00mac_config,
1563 .configure_filter = rt2x00mac_configure_filter,
1564 .set_tim = rt2x00mac_set_tim,
1565 .get_stats = rt2x00mac_get_stats,
1566 .bss_info_changed = rt2x00mac_bss_info_changed,
1567 .conf_tx = rt2400pci_conf_tx,
1568 .get_tx_stats = rt2x00mac_get_tx_stats,
1569 .get_tsf = rt2400pci_get_tsf,
1570 .tx_last_beacon = rt2400pci_tx_last_beacon,
1571 .rfkill_poll = rt2x00mac_rfkill_poll,
1572 };
1573
1574 static const struct rt2x00lib_ops rt2400pci_rt2x00_ops = {
1575 .irq_handler = rt2400pci_interrupt,
1576 .probe_hw = rt2400pci_probe_hw,
1577 .initialize = rt2x00pci_initialize,
1578 .uninitialize = rt2x00pci_uninitialize,
1579 .get_entry_state = rt2400pci_get_entry_state,
1580 .clear_entry = rt2400pci_clear_entry,
1581 .set_device_state = rt2400pci_set_device_state,
1582 .rfkill_poll = rt2400pci_rfkill_poll,
1583 .link_stats = rt2400pci_link_stats,
1584 .reset_tuner = rt2400pci_reset_tuner,
1585 .link_tuner = rt2400pci_link_tuner,
1586 .write_tx_desc = rt2400pci_write_tx_desc,
1587 .write_tx_data = rt2x00pci_write_tx_data,
1588 .write_beacon = rt2400pci_write_beacon,
1589 .kick_tx_queue = rt2400pci_kick_tx_queue,
1590 .kill_tx_queue = rt2400pci_kill_tx_queue,
1591 .fill_rxdone = rt2400pci_fill_rxdone,
1592 .config_filter = rt2400pci_config_filter,
1593 .config_intf = rt2400pci_config_intf,
1594 .config_erp = rt2400pci_config_erp,
1595 .config_ant = rt2400pci_config_ant,
1596 .config = rt2400pci_config,
1597 };
1598
1599 static const struct data_queue_desc rt2400pci_queue_rx = {
1600 .entry_num = RX_ENTRIES,
1601 .data_size = DATA_FRAME_SIZE,
1602 .desc_size = RXD_DESC_SIZE,
1603 .priv_size = sizeof(struct queue_entry_priv_pci),
1604 };
1605
1606 static const struct data_queue_desc rt2400pci_queue_tx = {
1607 .entry_num = TX_ENTRIES,
1608 .data_size = DATA_FRAME_SIZE,
1609 .desc_size = TXD_DESC_SIZE,
1610 .priv_size = sizeof(struct queue_entry_priv_pci),
1611 };
1612
1613 static const struct data_queue_desc rt2400pci_queue_bcn = {
1614 .entry_num = BEACON_ENTRIES,
1615 .data_size = MGMT_FRAME_SIZE,
1616 .desc_size = TXD_DESC_SIZE,
1617 .priv_size = sizeof(struct queue_entry_priv_pci),
1618 };
1619
1620 static const struct data_queue_desc rt2400pci_queue_atim = {
1621 .entry_num = ATIM_ENTRIES,
1622 .data_size = DATA_FRAME_SIZE,
1623 .desc_size = TXD_DESC_SIZE,
1624 .priv_size = sizeof(struct queue_entry_priv_pci),
1625 };
1626
1627 static const struct rt2x00_ops rt2400pci_ops = {
1628 .name = KBUILD_MODNAME,
1629 .max_sta_intf = 1,
1630 .max_ap_intf = 1,
1631 .eeprom_size = EEPROM_SIZE,
1632 .rf_size = RF_SIZE,
1633 .tx_queues = NUM_TX_QUEUES,
1634 .rx = &rt2400pci_queue_rx,
1635 .tx = &rt2400pci_queue_tx,
1636 .bcn = &rt2400pci_queue_bcn,
1637 .atim = &rt2400pci_queue_atim,
1638 .lib = &rt2400pci_rt2x00_ops,
1639 .hw = &rt2400pci_mac80211_ops,
1640 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
1641 .debugfs = &rt2400pci_rt2x00debug,
1642 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1643 };
1644
1645 /*
1646 * RT2400pci module information.
1647 */
1648 static struct pci_device_id rt2400pci_device_table[] = {
1649 { PCI_DEVICE(0x1814, 0x0101), PCI_DEVICE_DATA(&rt2400pci_ops) },
1650 { 0, }
1651 };
1652
1653 MODULE_AUTHOR(DRV_PROJECT);
1654 MODULE_VERSION(DRV_VERSION);
1655 MODULE_DESCRIPTION("Ralink RT2400 PCI & PCMCIA Wireless LAN driver.");
1656 MODULE_SUPPORTED_DEVICE("Ralink RT2460 PCI & PCMCIA chipset based cards");
1657 MODULE_DEVICE_TABLE(pci, rt2400pci_device_table);
1658 MODULE_LICENSE("GPL");
1659
1660 static struct pci_driver rt2400pci_driver = {
1661 .name = KBUILD_MODNAME,
1662 .id_table = rt2400pci_device_table,
1663 .probe = rt2x00pci_probe,
1664 .remove = __devexit_p(rt2x00pci_remove),
1665 .suspend = rt2x00pci_suspend,
1666 .resume = rt2x00pci_resume,
1667 };
1668
1669 static int __init rt2400pci_init(void)
1670 {
1671 return pci_register_driver(&rt2400pci_driver);
1672 }
1673
1674 static void __exit rt2400pci_exit(void)
1675 {
1676 pci_unregister_driver(&rt2400pci_driver);
1677 }
1678
1679 module_init(rt2400pci_init);
1680 module_exit(rt2400pci_exit);
This page took 0.088659 seconds and 5 git commands to generate.