Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dtor/input
[deliverable/linux.git] / drivers / net / wireless / rt2x00 / rt2400pci.c
1 /*
2 Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
3 <http://rt2x00.serialmonkey.com>
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the
17 Free Software Foundation, Inc.,
18 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 */
20
21 /*
22 Module: rt2400pci
23 Abstract: rt2400pci device specific routines.
24 Supported chipsets: RT2460.
25 */
26
27 #include <linux/delay.h>
28 #include <linux/etherdevice.h>
29 #include <linux/init.h>
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/pci.h>
33 #include <linux/eeprom_93cx6.h>
34 #include <linux/slab.h>
35
36 #include "rt2x00.h"
37 #include "rt2x00mmio.h"
38 #include "rt2x00pci.h"
39 #include "rt2400pci.h"
40
41 /*
42 * Register access.
43 * All access to the CSR registers will go through the methods
44 * rt2x00mmio_register_read and rt2x00mmio_register_write.
45 * BBP and RF register require indirect register access,
46 * and use the CSR registers BBPCSR and RFCSR to achieve this.
47 * These indirect registers work with busy bits,
48 * and we will try maximal REGISTER_BUSY_COUNT times to access
49 * the register while taking a REGISTER_BUSY_DELAY us delay
50 * between each attempt. When the busy bit is still set at that time,
51 * the access attempt is considered to have failed,
52 * and we will print an error.
53 */
54 #define WAIT_FOR_BBP(__dev, __reg) \
55 rt2x00mmio_regbusy_read((__dev), BBPCSR, BBPCSR_BUSY, (__reg))
56 #define WAIT_FOR_RF(__dev, __reg) \
57 rt2x00mmio_regbusy_read((__dev), RFCSR, RFCSR_BUSY, (__reg))
58
59 static void rt2400pci_bbp_write(struct rt2x00_dev *rt2x00dev,
60 const unsigned int word, const u8 value)
61 {
62 u32 reg;
63
64 mutex_lock(&rt2x00dev->csr_mutex);
65
66 /*
67 * Wait until the BBP becomes available, afterwards we
68 * can safely write the new data into the register.
69 */
70 if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
71 reg = 0;
72 rt2x00_set_field32(&reg, BBPCSR_VALUE, value);
73 rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
74 rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
75 rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 1);
76
77 rt2x00mmio_register_write(rt2x00dev, BBPCSR, reg);
78 }
79
80 mutex_unlock(&rt2x00dev->csr_mutex);
81 }
82
83 static void rt2400pci_bbp_read(struct rt2x00_dev *rt2x00dev,
84 const unsigned int word, u8 *value)
85 {
86 u32 reg;
87
88 mutex_lock(&rt2x00dev->csr_mutex);
89
90 /*
91 * Wait until the BBP becomes available, afterwards we
92 * can safely write the read request into the register.
93 * After the data has been written, we wait until hardware
94 * returns the correct value, if at any time the register
95 * doesn't become available in time, reg will be 0xffffffff
96 * which means we return 0xff to the caller.
97 */
98 if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
99 reg = 0;
100 rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
101 rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
102 rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 0);
103
104 rt2x00mmio_register_write(rt2x00dev, BBPCSR, reg);
105
106 WAIT_FOR_BBP(rt2x00dev, &reg);
107 }
108
109 *value = rt2x00_get_field32(reg, BBPCSR_VALUE);
110
111 mutex_unlock(&rt2x00dev->csr_mutex);
112 }
113
114 static void rt2400pci_rf_write(struct rt2x00_dev *rt2x00dev,
115 const unsigned int word, const u32 value)
116 {
117 u32 reg;
118
119 mutex_lock(&rt2x00dev->csr_mutex);
120
121 /*
122 * Wait until the RF becomes available, afterwards we
123 * can safely write the new data into the register.
124 */
125 if (WAIT_FOR_RF(rt2x00dev, &reg)) {
126 reg = 0;
127 rt2x00_set_field32(&reg, RFCSR_VALUE, value);
128 rt2x00_set_field32(&reg, RFCSR_NUMBER_OF_BITS, 20);
129 rt2x00_set_field32(&reg, RFCSR_IF_SELECT, 0);
130 rt2x00_set_field32(&reg, RFCSR_BUSY, 1);
131
132 rt2x00mmio_register_write(rt2x00dev, RFCSR, reg);
133 rt2x00_rf_write(rt2x00dev, word, value);
134 }
135
136 mutex_unlock(&rt2x00dev->csr_mutex);
137 }
138
139 static void rt2400pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
140 {
141 struct rt2x00_dev *rt2x00dev = eeprom->data;
142 u32 reg;
143
144 rt2x00mmio_register_read(rt2x00dev, CSR21, &reg);
145
146 eeprom->reg_data_in = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_IN);
147 eeprom->reg_data_out = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_OUT);
148 eeprom->reg_data_clock =
149 !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_CLOCK);
150 eeprom->reg_chip_select =
151 !!rt2x00_get_field32(reg, CSR21_EEPROM_CHIP_SELECT);
152 }
153
154 static void rt2400pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
155 {
156 struct rt2x00_dev *rt2x00dev = eeprom->data;
157 u32 reg = 0;
158
159 rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_IN, !!eeprom->reg_data_in);
160 rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_OUT, !!eeprom->reg_data_out);
161 rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_CLOCK,
162 !!eeprom->reg_data_clock);
163 rt2x00_set_field32(&reg, CSR21_EEPROM_CHIP_SELECT,
164 !!eeprom->reg_chip_select);
165
166 rt2x00mmio_register_write(rt2x00dev, CSR21, reg);
167 }
168
169 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
170 static const struct rt2x00debug rt2400pci_rt2x00debug = {
171 .owner = THIS_MODULE,
172 .csr = {
173 .read = rt2x00mmio_register_read,
174 .write = rt2x00mmio_register_write,
175 .flags = RT2X00DEBUGFS_OFFSET,
176 .word_base = CSR_REG_BASE,
177 .word_size = sizeof(u32),
178 .word_count = CSR_REG_SIZE / sizeof(u32),
179 },
180 .eeprom = {
181 .read = rt2x00_eeprom_read,
182 .write = rt2x00_eeprom_write,
183 .word_base = EEPROM_BASE,
184 .word_size = sizeof(u16),
185 .word_count = EEPROM_SIZE / sizeof(u16),
186 },
187 .bbp = {
188 .read = rt2400pci_bbp_read,
189 .write = rt2400pci_bbp_write,
190 .word_base = BBP_BASE,
191 .word_size = sizeof(u8),
192 .word_count = BBP_SIZE / sizeof(u8),
193 },
194 .rf = {
195 .read = rt2x00_rf_read,
196 .write = rt2400pci_rf_write,
197 .word_base = RF_BASE,
198 .word_size = sizeof(u32),
199 .word_count = RF_SIZE / sizeof(u32),
200 },
201 };
202 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
203
204 static int rt2400pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
205 {
206 u32 reg;
207
208 rt2x00mmio_register_read(rt2x00dev, GPIOCSR, &reg);
209 return rt2x00_get_field32(reg, GPIOCSR_VAL0);
210 }
211
212 #ifdef CONFIG_RT2X00_LIB_LEDS
213 static void rt2400pci_brightness_set(struct led_classdev *led_cdev,
214 enum led_brightness brightness)
215 {
216 struct rt2x00_led *led =
217 container_of(led_cdev, struct rt2x00_led, led_dev);
218 unsigned int enabled = brightness != LED_OFF;
219 u32 reg;
220
221 rt2x00mmio_register_read(led->rt2x00dev, LEDCSR, &reg);
222
223 if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC)
224 rt2x00_set_field32(&reg, LEDCSR_LINK, enabled);
225 else if (led->type == LED_TYPE_ACTIVITY)
226 rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, enabled);
227
228 rt2x00mmio_register_write(led->rt2x00dev, LEDCSR, reg);
229 }
230
231 static int rt2400pci_blink_set(struct led_classdev *led_cdev,
232 unsigned long *delay_on,
233 unsigned long *delay_off)
234 {
235 struct rt2x00_led *led =
236 container_of(led_cdev, struct rt2x00_led, led_dev);
237 u32 reg;
238
239 rt2x00mmio_register_read(led->rt2x00dev, LEDCSR, &reg);
240 rt2x00_set_field32(&reg, LEDCSR_ON_PERIOD, *delay_on);
241 rt2x00_set_field32(&reg, LEDCSR_OFF_PERIOD, *delay_off);
242 rt2x00mmio_register_write(led->rt2x00dev, LEDCSR, reg);
243
244 return 0;
245 }
246
247 static void rt2400pci_init_led(struct rt2x00_dev *rt2x00dev,
248 struct rt2x00_led *led,
249 enum led_type type)
250 {
251 led->rt2x00dev = rt2x00dev;
252 led->type = type;
253 led->led_dev.brightness_set = rt2400pci_brightness_set;
254 led->led_dev.blink_set = rt2400pci_blink_set;
255 led->flags = LED_INITIALIZED;
256 }
257 #endif /* CONFIG_RT2X00_LIB_LEDS */
258
259 /*
260 * Configuration handlers.
261 */
262 static void rt2400pci_config_filter(struct rt2x00_dev *rt2x00dev,
263 const unsigned int filter_flags)
264 {
265 u32 reg;
266
267 /*
268 * Start configuration steps.
269 * Note that the version error will always be dropped
270 * since there is no filter for it at this time.
271 */
272 rt2x00mmio_register_read(rt2x00dev, RXCSR0, &reg);
273 rt2x00_set_field32(&reg, RXCSR0_DROP_CRC,
274 !(filter_flags & FIF_FCSFAIL));
275 rt2x00_set_field32(&reg, RXCSR0_DROP_PHYSICAL,
276 !(filter_flags & FIF_PLCPFAIL));
277 rt2x00_set_field32(&reg, RXCSR0_DROP_CONTROL,
278 !(filter_flags & FIF_CONTROL));
279 rt2x00_set_field32(&reg, RXCSR0_DROP_NOT_TO_ME,
280 !(filter_flags & FIF_PROMISC_IN_BSS));
281 rt2x00_set_field32(&reg, RXCSR0_DROP_TODS,
282 !(filter_flags & FIF_PROMISC_IN_BSS) &&
283 !rt2x00dev->intf_ap_count);
284 rt2x00_set_field32(&reg, RXCSR0_DROP_VERSION_ERROR, 1);
285 rt2x00mmio_register_write(rt2x00dev, RXCSR0, reg);
286 }
287
288 static void rt2400pci_config_intf(struct rt2x00_dev *rt2x00dev,
289 struct rt2x00_intf *intf,
290 struct rt2x00intf_conf *conf,
291 const unsigned int flags)
292 {
293 unsigned int bcn_preload;
294 u32 reg;
295
296 if (flags & CONFIG_UPDATE_TYPE) {
297 /*
298 * Enable beacon config
299 */
300 bcn_preload = PREAMBLE + GET_DURATION(IEEE80211_HEADER, 20);
301 rt2x00mmio_register_read(rt2x00dev, BCNCSR1, &reg);
302 rt2x00_set_field32(&reg, BCNCSR1_PRELOAD, bcn_preload);
303 rt2x00mmio_register_write(rt2x00dev, BCNCSR1, reg);
304
305 /*
306 * Enable synchronisation.
307 */
308 rt2x00mmio_register_read(rt2x00dev, CSR14, &reg);
309 rt2x00_set_field32(&reg, CSR14_TSF_SYNC, conf->sync);
310 rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
311 }
312
313 if (flags & CONFIG_UPDATE_MAC)
314 rt2x00mmio_register_multiwrite(rt2x00dev, CSR3,
315 conf->mac, sizeof(conf->mac));
316
317 if (flags & CONFIG_UPDATE_BSSID)
318 rt2x00mmio_register_multiwrite(rt2x00dev, CSR5,
319 conf->bssid,
320 sizeof(conf->bssid));
321 }
322
323 static void rt2400pci_config_erp(struct rt2x00_dev *rt2x00dev,
324 struct rt2x00lib_erp *erp,
325 u32 changed)
326 {
327 int preamble_mask;
328 u32 reg;
329
330 /*
331 * When short preamble is enabled, we should set bit 0x08
332 */
333 if (changed & BSS_CHANGED_ERP_PREAMBLE) {
334 preamble_mask = erp->short_preamble << 3;
335
336 rt2x00mmio_register_read(rt2x00dev, TXCSR1, &reg);
337 rt2x00_set_field32(&reg, TXCSR1_ACK_TIMEOUT, 0x1ff);
338 rt2x00_set_field32(&reg, TXCSR1_ACK_CONSUME_TIME, 0x13a);
339 rt2x00_set_field32(&reg, TXCSR1_TSF_OFFSET, IEEE80211_HEADER);
340 rt2x00_set_field32(&reg, TXCSR1_AUTORESPONDER, 1);
341 rt2x00mmio_register_write(rt2x00dev, TXCSR1, reg);
342
343 rt2x00mmio_register_read(rt2x00dev, ARCSR2, &reg);
344 rt2x00_set_field32(&reg, ARCSR2_SIGNAL, 0x00);
345 rt2x00_set_field32(&reg, ARCSR2_SERVICE, 0x04);
346 rt2x00_set_field32(&reg, ARCSR2_LENGTH,
347 GET_DURATION(ACK_SIZE, 10));
348 rt2x00mmio_register_write(rt2x00dev, ARCSR2, reg);
349
350 rt2x00mmio_register_read(rt2x00dev, ARCSR3, &reg);
351 rt2x00_set_field32(&reg, ARCSR3_SIGNAL, 0x01 | preamble_mask);
352 rt2x00_set_field32(&reg, ARCSR3_SERVICE, 0x04);
353 rt2x00_set_field32(&reg, ARCSR2_LENGTH,
354 GET_DURATION(ACK_SIZE, 20));
355 rt2x00mmio_register_write(rt2x00dev, ARCSR3, reg);
356
357 rt2x00mmio_register_read(rt2x00dev, ARCSR4, &reg);
358 rt2x00_set_field32(&reg, ARCSR4_SIGNAL, 0x02 | preamble_mask);
359 rt2x00_set_field32(&reg, ARCSR4_SERVICE, 0x04);
360 rt2x00_set_field32(&reg, ARCSR2_LENGTH,
361 GET_DURATION(ACK_SIZE, 55));
362 rt2x00mmio_register_write(rt2x00dev, ARCSR4, reg);
363
364 rt2x00mmio_register_read(rt2x00dev, ARCSR5, &reg);
365 rt2x00_set_field32(&reg, ARCSR5_SIGNAL, 0x03 | preamble_mask);
366 rt2x00_set_field32(&reg, ARCSR5_SERVICE, 0x84);
367 rt2x00_set_field32(&reg, ARCSR2_LENGTH,
368 GET_DURATION(ACK_SIZE, 110));
369 rt2x00mmio_register_write(rt2x00dev, ARCSR5, reg);
370 }
371
372 if (changed & BSS_CHANGED_BASIC_RATES)
373 rt2x00mmio_register_write(rt2x00dev, ARCSR1, erp->basic_rates);
374
375 if (changed & BSS_CHANGED_ERP_SLOT) {
376 rt2x00mmio_register_read(rt2x00dev, CSR11, &reg);
377 rt2x00_set_field32(&reg, CSR11_SLOT_TIME, erp->slot_time);
378 rt2x00mmio_register_write(rt2x00dev, CSR11, reg);
379
380 rt2x00mmio_register_read(rt2x00dev, CSR18, &reg);
381 rt2x00_set_field32(&reg, CSR18_SIFS, erp->sifs);
382 rt2x00_set_field32(&reg, CSR18_PIFS, erp->pifs);
383 rt2x00mmio_register_write(rt2x00dev, CSR18, reg);
384
385 rt2x00mmio_register_read(rt2x00dev, CSR19, &reg);
386 rt2x00_set_field32(&reg, CSR19_DIFS, erp->difs);
387 rt2x00_set_field32(&reg, CSR19_EIFS, erp->eifs);
388 rt2x00mmio_register_write(rt2x00dev, CSR19, reg);
389 }
390
391 if (changed & BSS_CHANGED_BEACON_INT) {
392 rt2x00mmio_register_read(rt2x00dev, CSR12, &reg);
393 rt2x00_set_field32(&reg, CSR12_BEACON_INTERVAL,
394 erp->beacon_int * 16);
395 rt2x00_set_field32(&reg, CSR12_CFP_MAX_DURATION,
396 erp->beacon_int * 16);
397 rt2x00mmio_register_write(rt2x00dev, CSR12, reg);
398 }
399 }
400
401 static void rt2400pci_config_ant(struct rt2x00_dev *rt2x00dev,
402 struct antenna_setup *ant)
403 {
404 u8 r1;
405 u8 r4;
406
407 /*
408 * We should never come here because rt2x00lib is supposed
409 * to catch this and send us the correct antenna explicitely.
410 */
411 BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
412 ant->tx == ANTENNA_SW_DIVERSITY);
413
414 rt2400pci_bbp_read(rt2x00dev, 4, &r4);
415 rt2400pci_bbp_read(rt2x00dev, 1, &r1);
416
417 /*
418 * Configure the TX antenna.
419 */
420 switch (ant->tx) {
421 case ANTENNA_HW_DIVERSITY:
422 rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 1);
423 break;
424 case ANTENNA_A:
425 rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 0);
426 break;
427 case ANTENNA_B:
428 default:
429 rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 2);
430 break;
431 }
432
433 /*
434 * Configure the RX antenna.
435 */
436 switch (ant->rx) {
437 case ANTENNA_HW_DIVERSITY:
438 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 1);
439 break;
440 case ANTENNA_A:
441 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 0);
442 break;
443 case ANTENNA_B:
444 default:
445 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 2);
446 break;
447 }
448
449 rt2400pci_bbp_write(rt2x00dev, 4, r4);
450 rt2400pci_bbp_write(rt2x00dev, 1, r1);
451 }
452
453 static void rt2400pci_config_channel(struct rt2x00_dev *rt2x00dev,
454 struct rf_channel *rf)
455 {
456 /*
457 * Switch on tuning bits.
458 */
459 rt2x00_set_field32(&rf->rf1, RF1_TUNER, 1);
460 rt2x00_set_field32(&rf->rf3, RF3_TUNER, 1);
461
462 rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
463 rt2400pci_rf_write(rt2x00dev, 2, rf->rf2);
464 rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
465
466 /*
467 * RF2420 chipset don't need any additional actions.
468 */
469 if (rt2x00_rf(rt2x00dev, RF2420))
470 return;
471
472 /*
473 * For the RT2421 chipsets we need to write an invalid
474 * reference clock rate to activate auto_tune.
475 * After that we set the value back to the correct channel.
476 */
477 rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
478 rt2400pci_rf_write(rt2x00dev, 2, 0x000c2a32);
479 rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
480
481 msleep(1);
482
483 rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
484 rt2400pci_rf_write(rt2x00dev, 2, rf->rf2);
485 rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
486
487 msleep(1);
488
489 /*
490 * Switch off tuning bits.
491 */
492 rt2x00_set_field32(&rf->rf1, RF1_TUNER, 0);
493 rt2x00_set_field32(&rf->rf3, RF3_TUNER, 0);
494
495 rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
496 rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
497
498 /*
499 * Clear false CRC during channel switch.
500 */
501 rt2x00mmio_register_read(rt2x00dev, CNT0, &rf->rf1);
502 }
503
504 static void rt2400pci_config_txpower(struct rt2x00_dev *rt2x00dev, int txpower)
505 {
506 rt2400pci_bbp_write(rt2x00dev, 3, TXPOWER_TO_DEV(txpower));
507 }
508
509 static void rt2400pci_config_retry_limit(struct rt2x00_dev *rt2x00dev,
510 struct rt2x00lib_conf *libconf)
511 {
512 u32 reg;
513
514 rt2x00mmio_register_read(rt2x00dev, CSR11, &reg);
515 rt2x00_set_field32(&reg, CSR11_LONG_RETRY,
516 libconf->conf->long_frame_max_tx_count);
517 rt2x00_set_field32(&reg, CSR11_SHORT_RETRY,
518 libconf->conf->short_frame_max_tx_count);
519 rt2x00mmio_register_write(rt2x00dev, CSR11, reg);
520 }
521
522 static void rt2400pci_config_ps(struct rt2x00_dev *rt2x00dev,
523 struct rt2x00lib_conf *libconf)
524 {
525 enum dev_state state =
526 (libconf->conf->flags & IEEE80211_CONF_PS) ?
527 STATE_SLEEP : STATE_AWAKE;
528 u32 reg;
529
530 if (state == STATE_SLEEP) {
531 rt2x00mmio_register_read(rt2x00dev, CSR20, &reg);
532 rt2x00_set_field32(&reg, CSR20_DELAY_AFTER_TBCN,
533 (rt2x00dev->beacon_int - 20) * 16);
534 rt2x00_set_field32(&reg, CSR20_TBCN_BEFORE_WAKEUP,
535 libconf->conf->listen_interval - 1);
536
537 /* We must first disable autowake before it can be enabled */
538 rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 0);
539 rt2x00mmio_register_write(rt2x00dev, CSR20, reg);
540
541 rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 1);
542 rt2x00mmio_register_write(rt2x00dev, CSR20, reg);
543 } else {
544 rt2x00mmio_register_read(rt2x00dev, CSR20, &reg);
545 rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 0);
546 rt2x00mmio_register_write(rt2x00dev, CSR20, reg);
547 }
548
549 rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
550 }
551
552 static void rt2400pci_config(struct rt2x00_dev *rt2x00dev,
553 struct rt2x00lib_conf *libconf,
554 const unsigned int flags)
555 {
556 if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
557 rt2400pci_config_channel(rt2x00dev, &libconf->rf);
558 if (flags & IEEE80211_CONF_CHANGE_POWER)
559 rt2400pci_config_txpower(rt2x00dev,
560 libconf->conf->power_level);
561 if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
562 rt2400pci_config_retry_limit(rt2x00dev, libconf);
563 if (flags & IEEE80211_CONF_CHANGE_PS)
564 rt2400pci_config_ps(rt2x00dev, libconf);
565 }
566
567 static void rt2400pci_config_cw(struct rt2x00_dev *rt2x00dev,
568 const int cw_min, const int cw_max)
569 {
570 u32 reg;
571
572 rt2x00mmio_register_read(rt2x00dev, CSR11, &reg);
573 rt2x00_set_field32(&reg, CSR11_CWMIN, cw_min);
574 rt2x00_set_field32(&reg, CSR11_CWMAX, cw_max);
575 rt2x00mmio_register_write(rt2x00dev, CSR11, reg);
576 }
577
578 /*
579 * Link tuning
580 */
581 static void rt2400pci_link_stats(struct rt2x00_dev *rt2x00dev,
582 struct link_qual *qual)
583 {
584 u32 reg;
585 u8 bbp;
586
587 /*
588 * Update FCS error count from register.
589 */
590 rt2x00mmio_register_read(rt2x00dev, CNT0, &reg);
591 qual->rx_failed = rt2x00_get_field32(reg, CNT0_FCS_ERROR);
592
593 /*
594 * Update False CCA count from register.
595 */
596 rt2400pci_bbp_read(rt2x00dev, 39, &bbp);
597 qual->false_cca = bbp;
598 }
599
600 static inline void rt2400pci_set_vgc(struct rt2x00_dev *rt2x00dev,
601 struct link_qual *qual, u8 vgc_level)
602 {
603 if (qual->vgc_level_reg != vgc_level) {
604 rt2400pci_bbp_write(rt2x00dev, 13, vgc_level);
605 qual->vgc_level = vgc_level;
606 qual->vgc_level_reg = vgc_level;
607 }
608 }
609
610 static void rt2400pci_reset_tuner(struct rt2x00_dev *rt2x00dev,
611 struct link_qual *qual)
612 {
613 rt2400pci_set_vgc(rt2x00dev, qual, 0x08);
614 }
615
616 static void rt2400pci_link_tuner(struct rt2x00_dev *rt2x00dev,
617 struct link_qual *qual, const u32 count)
618 {
619 /*
620 * The link tuner should not run longer then 60 seconds,
621 * and should run once every 2 seconds.
622 */
623 if (count > 60 || !(count & 1))
624 return;
625
626 /*
627 * Base r13 link tuning on the false cca count.
628 */
629 if ((qual->false_cca > 512) && (qual->vgc_level < 0x20))
630 rt2400pci_set_vgc(rt2x00dev, qual, ++qual->vgc_level);
631 else if ((qual->false_cca < 100) && (qual->vgc_level > 0x08))
632 rt2400pci_set_vgc(rt2x00dev, qual, --qual->vgc_level);
633 }
634
635 /*
636 * Queue handlers.
637 */
638 static void rt2400pci_start_queue(struct data_queue *queue)
639 {
640 struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
641 u32 reg;
642
643 switch (queue->qid) {
644 case QID_RX:
645 rt2x00mmio_register_read(rt2x00dev, RXCSR0, &reg);
646 rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX, 0);
647 rt2x00mmio_register_write(rt2x00dev, RXCSR0, reg);
648 break;
649 case QID_BEACON:
650 rt2x00mmio_register_read(rt2x00dev, CSR14, &reg);
651 rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
652 rt2x00_set_field32(&reg, CSR14_TBCN, 1);
653 rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
654 rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
655 break;
656 default:
657 break;
658 }
659 }
660
661 static void rt2400pci_kick_queue(struct data_queue *queue)
662 {
663 struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
664 u32 reg;
665
666 switch (queue->qid) {
667 case QID_AC_VO:
668 rt2x00mmio_register_read(rt2x00dev, TXCSR0, &reg);
669 rt2x00_set_field32(&reg, TXCSR0_KICK_PRIO, 1);
670 rt2x00mmio_register_write(rt2x00dev, TXCSR0, reg);
671 break;
672 case QID_AC_VI:
673 rt2x00mmio_register_read(rt2x00dev, TXCSR0, &reg);
674 rt2x00_set_field32(&reg, TXCSR0_KICK_TX, 1);
675 rt2x00mmio_register_write(rt2x00dev, TXCSR0, reg);
676 break;
677 case QID_ATIM:
678 rt2x00mmio_register_read(rt2x00dev, TXCSR0, &reg);
679 rt2x00_set_field32(&reg, TXCSR0_KICK_ATIM, 1);
680 rt2x00mmio_register_write(rt2x00dev, TXCSR0, reg);
681 break;
682 default:
683 break;
684 }
685 }
686
687 static void rt2400pci_stop_queue(struct data_queue *queue)
688 {
689 struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
690 u32 reg;
691
692 switch (queue->qid) {
693 case QID_AC_VO:
694 case QID_AC_VI:
695 case QID_ATIM:
696 rt2x00mmio_register_read(rt2x00dev, TXCSR0, &reg);
697 rt2x00_set_field32(&reg, TXCSR0_ABORT, 1);
698 rt2x00mmio_register_write(rt2x00dev, TXCSR0, reg);
699 break;
700 case QID_RX:
701 rt2x00mmio_register_read(rt2x00dev, RXCSR0, &reg);
702 rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX, 1);
703 rt2x00mmio_register_write(rt2x00dev, RXCSR0, reg);
704 break;
705 case QID_BEACON:
706 rt2x00mmio_register_read(rt2x00dev, CSR14, &reg);
707 rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
708 rt2x00_set_field32(&reg, CSR14_TBCN, 0);
709 rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
710 rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
711
712 /*
713 * Wait for possibly running tbtt tasklets.
714 */
715 tasklet_kill(&rt2x00dev->tbtt_tasklet);
716 break;
717 default:
718 break;
719 }
720 }
721
722 /*
723 * Initialization functions.
724 */
725 static bool rt2400pci_get_entry_state(struct queue_entry *entry)
726 {
727 struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
728 u32 word;
729
730 if (entry->queue->qid == QID_RX) {
731 rt2x00_desc_read(entry_priv->desc, 0, &word);
732
733 return rt2x00_get_field32(word, RXD_W0_OWNER_NIC);
734 } else {
735 rt2x00_desc_read(entry_priv->desc, 0, &word);
736
737 return (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
738 rt2x00_get_field32(word, TXD_W0_VALID));
739 }
740 }
741
742 static void rt2400pci_clear_entry(struct queue_entry *entry)
743 {
744 struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
745 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
746 u32 word;
747
748 if (entry->queue->qid == QID_RX) {
749 rt2x00_desc_read(entry_priv->desc, 2, &word);
750 rt2x00_set_field32(&word, RXD_W2_BUFFER_LENGTH, entry->skb->len);
751 rt2x00_desc_write(entry_priv->desc, 2, word);
752
753 rt2x00_desc_read(entry_priv->desc, 1, &word);
754 rt2x00_set_field32(&word, RXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
755 rt2x00_desc_write(entry_priv->desc, 1, word);
756
757 rt2x00_desc_read(entry_priv->desc, 0, &word);
758 rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
759 rt2x00_desc_write(entry_priv->desc, 0, word);
760 } else {
761 rt2x00_desc_read(entry_priv->desc, 0, &word);
762 rt2x00_set_field32(&word, TXD_W0_VALID, 0);
763 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
764 rt2x00_desc_write(entry_priv->desc, 0, word);
765 }
766 }
767
768 static int rt2400pci_init_queues(struct rt2x00_dev *rt2x00dev)
769 {
770 struct queue_entry_priv_mmio *entry_priv;
771 u32 reg;
772
773 /*
774 * Initialize registers.
775 */
776 rt2x00mmio_register_read(rt2x00dev, TXCSR2, &reg);
777 rt2x00_set_field32(&reg, TXCSR2_TXD_SIZE, rt2x00dev->tx[0].desc_size);
778 rt2x00_set_field32(&reg, TXCSR2_NUM_TXD, rt2x00dev->tx[1].limit);
779 rt2x00_set_field32(&reg, TXCSR2_NUM_ATIM, rt2x00dev->atim->limit);
780 rt2x00_set_field32(&reg, TXCSR2_NUM_PRIO, rt2x00dev->tx[0].limit);
781 rt2x00mmio_register_write(rt2x00dev, TXCSR2, reg);
782
783 entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
784 rt2x00mmio_register_read(rt2x00dev, TXCSR3, &reg);
785 rt2x00_set_field32(&reg, TXCSR3_TX_RING_REGISTER,
786 entry_priv->desc_dma);
787 rt2x00mmio_register_write(rt2x00dev, TXCSR3, reg);
788
789 entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
790 rt2x00mmio_register_read(rt2x00dev, TXCSR5, &reg);
791 rt2x00_set_field32(&reg, TXCSR5_PRIO_RING_REGISTER,
792 entry_priv->desc_dma);
793 rt2x00mmio_register_write(rt2x00dev, TXCSR5, reg);
794
795 entry_priv = rt2x00dev->atim->entries[0].priv_data;
796 rt2x00mmio_register_read(rt2x00dev, TXCSR4, &reg);
797 rt2x00_set_field32(&reg, TXCSR4_ATIM_RING_REGISTER,
798 entry_priv->desc_dma);
799 rt2x00mmio_register_write(rt2x00dev, TXCSR4, reg);
800
801 entry_priv = rt2x00dev->bcn->entries[0].priv_data;
802 rt2x00mmio_register_read(rt2x00dev, TXCSR6, &reg);
803 rt2x00_set_field32(&reg, TXCSR6_BEACON_RING_REGISTER,
804 entry_priv->desc_dma);
805 rt2x00mmio_register_write(rt2x00dev, TXCSR6, reg);
806
807 rt2x00mmio_register_read(rt2x00dev, RXCSR1, &reg);
808 rt2x00_set_field32(&reg, RXCSR1_RXD_SIZE, rt2x00dev->rx->desc_size);
809 rt2x00_set_field32(&reg, RXCSR1_NUM_RXD, rt2x00dev->rx->limit);
810 rt2x00mmio_register_write(rt2x00dev, RXCSR1, reg);
811
812 entry_priv = rt2x00dev->rx->entries[0].priv_data;
813 rt2x00mmio_register_read(rt2x00dev, RXCSR2, &reg);
814 rt2x00_set_field32(&reg, RXCSR2_RX_RING_REGISTER,
815 entry_priv->desc_dma);
816 rt2x00mmio_register_write(rt2x00dev, RXCSR2, reg);
817
818 return 0;
819 }
820
821 static int rt2400pci_init_registers(struct rt2x00_dev *rt2x00dev)
822 {
823 u32 reg;
824
825 rt2x00mmio_register_write(rt2x00dev, PSCSR0, 0x00020002);
826 rt2x00mmio_register_write(rt2x00dev, PSCSR1, 0x00000002);
827 rt2x00mmio_register_write(rt2x00dev, PSCSR2, 0x00023f20);
828 rt2x00mmio_register_write(rt2x00dev, PSCSR3, 0x00000002);
829
830 rt2x00mmio_register_read(rt2x00dev, TIMECSR, &reg);
831 rt2x00_set_field32(&reg, TIMECSR_US_COUNT, 33);
832 rt2x00_set_field32(&reg, TIMECSR_US_64_COUNT, 63);
833 rt2x00_set_field32(&reg, TIMECSR_BEACON_EXPECT, 0);
834 rt2x00mmio_register_write(rt2x00dev, TIMECSR, reg);
835
836 rt2x00mmio_register_read(rt2x00dev, CSR9, &reg);
837 rt2x00_set_field32(&reg, CSR9_MAX_FRAME_UNIT,
838 (rt2x00dev->rx->data_size / 128));
839 rt2x00mmio_register_write(rt2x00dev, CSR9, reg);
840
841 rt2x00mmio_register_read(rt2x00dev, CSR14, &reg);
842 rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
843 rt2x00_set_field32(&reg, CSR14_TSF_SYNC, 0);
844 rt2x00_set_field32(&reg, CSR14_TBCN, 0);
845 rt2x00_set_field32(&reg, CSR14_TCFP, 0);
846 rt2x00_set_field32(&reg, CSR14_TATIMW, 0);
847 rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
848 rt2x00_set_field32(&reg, CSR14_CFP_COUNT_PRELOAD, 0);
849 rt2x00_set_field32(&reg, CSR14_TBCM_PRELOAD, 0);
850 rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
851
852 rt2x00mmio_register_write(rt2x00dev, CNT3, 0x3f080000);
853
854 rt2x00mmio_register_read(rt2x00dev, ARCSR0, &reg);
855 rt2x00_set_field32(&reg, ARCSR0_AR_BBP_DATA0, 133);
856 rt2x00_set_field32(&reg, ARCSR0_AR_BBP_ID0, 134);
857 rt2x00_set_field32(&reg, ARCSR0_AR_BBP_DATA1, 136);
858 rt2x00_set_field32(&reg, ARCSR0_AR_BBP_ID1, 135);
859 rt2x00mmio_register_write(rt2x00dev, ARCSR0, reg);
860
861 rt2x00mmio_register_read(rt2x00dev, RXCSR3, &reg);
862 rt2x00_set_field32(&reg, RXCSR3_BBP_ID0, 3); /* Tx power.*/
863 rt2x00_set_field32(&reg, RXCSR3_BBP_ID0_VALID, 1);
864 rt2x00_set_field32(&reg, RXCSR3_BBP_ID1, 32); /* Signal */
865 rt2x00_set_field32(&reg, RXCSR3_BBP_ID1_VALID, 1);
866 rt2x00_set_field32(&reg, RXCSR3_BBP_ID2, 36); /* Rssi */
867 rt2x00_set_field32(&reg, RXCSR3_BBP_ID2_VALID, 1);
868 rt2x00mmio_register_write(rt2x00dev, RXCSR3, reg);
869
870 rt2x00mmio_register_write(rt2x00dev, PWRCSR0, 0x3f3b3100);
871
872 if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
873 return -EBUSY;
874
875 rt2x00mmio_register_write(rt2x00dev, MACCSR0, 0x00217223);
876 rt2x00mmio_register_write(rt2x00dev, MACCSR1, 0x00235518);
877
878 rt2x00mmio_register_read(rt2x00dev, MACCSR2, &reg);
879 rt2x00_set_field32(&reg, MACCSR2_DELAY, 64);
880 rt2x00mmio_register_write(rt2x00dev, MACCSR2, reg);
881
882 rt2x00mmio_register_read(rt2x00dev, RALINKCSR, &reg);
883 rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA0, 17);
884 rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID0, 154);
885 rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA1, 0);
886 rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID1, 154);
887 rt2x00mmio_register_write(rt2x00dev, RALINKCSR, reg);
888
889 rt2x00mmio_register_read(rt2x00dev, CSR1, &reg);
890 rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 1);
891 rt2x00_set_field32(&reg, CSR1_BBP_RESET, 0);
892 rt2x00_set_field32(&reg, CSR1_HOST_READY, 0);
893 rt2x00mmio_register_write(rt2x00dev, CSR1, reg);
894
895 rt2x00mmio_register_read(rt2x00dev, CSR1, &reg);
896 rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 0);
897 rt2x00_set_field32(&reg, CSR1_HOST_READY, 1);
898 rt2x00mmio_register_write(rt2x00dev, CSR1, reg);
899
900 /*
901 * We must clear the FCS and FIFO error count.
902 * These registers are cleared on read,
903 * so we may pass a useless variable to store the value.
904 */
905 rt2x00mmio_register_read(rt2x00dev, CNT0, &reg);
906 rt2x00mmio_register_read(rt2x00dev, CNT4, &reg);
907
908 return 0;
909 }
910
911 static int rt2400pci_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
912 {
913 unsigned int i;
914 u8 value;
915
916 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
917 rt2400pci_bbp_read(rt2x00dev, 0, &value);
918 if ((value != 0xff) && (value != 0x00))
919 return 0;
920 udelay(REGISTER_BUSY_DELAY);
921 }
922
923 rt2x00_err(rt2x00dev, "BBP register access failed, aborting\n");
924 return -EACCES;
925 }
926
927 static int rt2400pci_init_bbp(struct rt2x00_dev *rt2x00dev)
928 {
929 unsigned int i;
930 u16 eeprom;
931 u8 reg_id;
932 u8 value;
933
934 if (unlikely(rt2400pci_wait_bbp_ready(rt2x00dev)))
935 return -EACCES;
936
937 rt2400pci_bbp_write(rt2x00dev, 1, 0x00);
938 rt2400pci_bbp_write(rt2x00dev, 3, 0x27);
939 rt2400pci_bbp_write(rt2x00dev, 4, 0x08);
940 rt2400pci_bbp_write(rt2x00dev, 10, 0x0f);
941 rt2400pci_bbp_write(rt2x00dev, 15, 0x72);
942 rt2400pci_bbp_write(rt2x00dev, 16, 0x74);
943 rt2400pci_bbp_write(rt2x00dev, 17, 0x20);
944 rt2400pci_bbp_write(rt2x00dev, 18, 0x72);
945 rt2400pci_bbp_write(rt2x00dev, 19, 0x0b);
946 rt2400pci_bbp_write(rt2x00dev, 20, 0x00);
947 rt2400pci_bbp_write(rt2x00dev, 28, 0x11);
948 rt2400pci_bbp_write(rt2x00dev, 29, 0x04);
949 rt2400pci_bbp_write(rt2x00dev, 30, 0x21);
950 rt2400pci_bbp_write(rt2x00dev, 31, 0x00);
951
952 for (i = 0; i < EEPROM_BBP_SIZE; i++) {
953 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
954
955 if (eeprom != 0xffff && eeprom != 0x0000) {
956 reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
957 value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
958 rt2400pci_bbp_write(rt2x00dev, reg_id, value);
959 }
960 }
961
962 return 0;
963 }
964
965 /*
966 * Device state switch handlers.
967 */
968 static void rt2400pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
969 enum dev_state state)
970 {
971 int mask = (state == STATE_RADIO_IRQ_OFF);
972 u32 reg;
973 unsigned long flags;
974
975 /*
976 * When interrupts are being enabled, the interrupt registers
977 * should clear the register to assure a clean state.
978 */
979 if (state == STATE_RADIO_IRQ_ON) {
980 rt2x00mmio_register_read(rt2x00dev, CSR7, &reg);
981 rt2x00mmio_register_write(rt2x00dev, CSR7, reg);
982 }
983
984 /*
985 * Only toggle the interrupts bits we are going to use.
986 * Non-checked interrupt bits are disabled by default.
987 */
988 spin_lock_irqsave(&rt2x00dev->irqmask_lock, flags);
989
990 rt2x00mmio_register_read(rt2x00dev, CSR8, &reg);
991 rt2x00_set_field32(&reg, CSR8_TBCN_EXPIRE, mask);
992 rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, mask);
993 rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, mask);
994 rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, mask);
995 rt2x00_set_field32(&reg, CSR8_RXDONE, mask);
996 rt2x00mmio_register_write(rt2x00dev, CSR8, reg);
997
998 spin_unlock_irqrestore(&rt2x00dev->irqmask_lock, flags);
999
1000 if (state == STATE_RADIO_IRQ_OFF) {
1001 /*
1002 * Ensure that all tasklets are finished before
1003 * disabling the interrupts.
1004 */
1005 tasklet_kill(&rt2x00dev->txstatus_tasklet);
1006 tasklet_kill(&rt2x00dev->rxdone_tasklet);
1007 tasklet_kill(&rt2x00dev->tbtt_tasklet);
1008 }
1009 }
1010
1011 static int rt2400pci_enable_radio(struct rt2x00_dev *rt2x00dev)
1012 {
1013 /*
1014 * Initialize all registers.
1015 */
1016 if (unlikely(rt2400pci_init_queues(rt2x00dev) ||
1017 rt2400pci_init_registers(rt2x00dev) ||
1018 rt2400pci_init_bbp(rt2x00dev)))
1019 return -EIO;
1020
1021 return 0;
1022 }
1023
1024 static void rt2400pci_disable_radio(struct rt2x00_dev *rt2x00dev)
1025 {
1026 /*
1027 * Disable power
1028 */
1029 rt2x00mmio_register_write(rt2x00dev, PWRCSR0, 0);
1030 }
1031
1032 static int rt2400pci_set_state(struct rt2x00_dev *rt2x00dev,
1033 enum dev_state state)
1034 {
1035 u32 reg, reg2;
1036 unsigned int i;
1037 char put_to_sleep;
1038 char bbp_state;
1039 char rf_state;
1040
1041 put_to_sleep = (state != STATE_AWAKE);
1042
1043 rt2x00mmio_register_read(rt2x00dev, PWRCSR1, &reg);
1044 rt2x00_set_field32(&reg, PWRCSR1_SET_STATE, 1);
1045 rt2x00_set_field32(&reg, PWRCSR1_BBP_DESIRE_STATE, state);
1046 rt2x00_set_field32(&reg, PWRCSR1_RF_DESIRE_STATE, state);
1047 rt2x00_set_field32(&reg, PWRCSR1_PUT_TO_SLEEP, put_to_sleep);
1048 rt2x00mmio_register_write(rt2x00dev, PWRCSR1, reg);
1049
1050 /*
1051 * Device is not guaranteed to be in the requested state yet.
1052 * We must wait until the register indicates that the
1053 * device has entered the correct state.
1054 */
1055 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1056 rt2x00mmio_register_read(rt2x00dev, PWRCSR1, &reg2);
1057 bbp_state = rt2x00_get_field32(reg2, PWRCSR1_BBP_CURR_STATE);
1058 rf_state = rt2x00_get_field32(reg2, PWRCSR1_RF_CURR_STATE);
1059 if (bbp_state == state && rf_state == state)
1060 return 0;
1061 rt2x00mmio_register_write(rt2x00dev, PWRCSR1, reg);
1062 msleep(10);
1063 }
1064
1065 return -EBUSY;
1066 }
1067
1068 static int rt2400pci_set_device_state(struct rt2x00_dev *rt2x00dev,
1069 enum dev_state state)
1070 {
1071 int retval = 0;
1072
1073 switch (state) {
1074 case STATE_RADIO_ON:
1075 retval = rt2400pci_enable_radio(rt2x00dev);
1076 break;
1077 case STATE_RADIO_OFF:
1078 rt2400pci_disable_radio(rt2x00dev);
1079 break;
1080 case STATE_RADIO_IRQ_ON:
1081 case STATE_RADIO_IRQ_OFF:
1082 rt2400pci_toggle_irq(rt2x00dev, state);
1083 break;
1084 case STATE_DEEP_SLEEP:
1085 case STATE_SLEEP:
1086 case STATE_STANDBY:
1087 case STATE_AWAKE:
1088 retval = rt2400pci_set_state(rt2x00dev, state);
1089 break;
1090 default:
1091 retval = -ENOTSUPP;
1092 break;
1093 }
1094
1095 if (unlikely(retval))
1096 rt2x00_err(rt2x00dev, "Device failed to enter state %d (%d)\n",
1097 state, retval);
1098
1099 return retval;
1100 }
1101
1102 /*
1103 * TX descriptor initialization
1104 */
1105 static void rt2400pci_write_tx_desc(struct queue_entry *entry,
1106 struct txentry_desc *txdesc)
1107 {
1108 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1109 struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
1110 __le32 *txd = entry_priv->desc;
1111 u32 word;
1112
1113 /*
1114 * Start writing the descriptor words.
1115 */
1116 rt2x00_desc_read(txd, 1, &word);
1117 rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
1118 rt2x00_desc_write(txd, 1, word);
1119
1120 rt2x00_desc_read(txd, 2, &word);
1121 rt2x00_set_field32(&word, TXD_W2_BUFFER_LENGTH, txdesc->length);
1122 rt2x00_set_field32(&word, TXD_W2_DATABYTE_COUNT, txdesc->length);
1123 rt2x00_desc_write(txd, 2, word);
1124
1125 rt2x00_desc_read(txd, 3, &word);
1126 rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL, txdesc->u.plcp.signal);
1127 rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL_REGNUM, 5);
1128 rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL_BUSY, 1);
1129 rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE, txdesc->u.plcp.service);
1130 rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE_REGNUM, 6);
1131 rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE_BUSY, 1);
1132 rt2x00_desc_write(txd, 3, word);
1133
1134 rt2x00_desc_read(txd, 4, &word);
1135 rt2x00_set_field32(&word, TXD_W4_PLCP_LENGTH_LOW,
1136 txdesc->u.plcp.length_low);
1137 rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW_REGNUM, 8);
1138 rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW_BUSY, 1);
1139 rt2x00_set_field32(&word, TXD_W4_PLCP_LENGTH_HIGH,
1140 txdesc->u.plcp.length_high);
1141 rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH_REGNUM, 7);
1142 rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH_BUSY, 1);
1143 rt2x00_desc_write(txd, 4, word);
1144
1145 /*
1146 * Writing TXD word 0 must the last to prevent a race condition with
1147 * the device, whereby the device may take hold of the TXD before we
1148 * finished updating it.
1149 */
1150 rt2x00_desc_read(txd, 0, &word);
1151 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
1152 rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1153 rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1154 test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1155 rt2x00_set_field32(&word, TXD_W0_ACK,
1156 test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1157 rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1158 test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1159 rt2x00_set_field32(&word, TXD_W0_RTS,
1160 test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags));
1161 rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->u.plcp.ifs);
1162 rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1163 test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
1164 rt2x00_desc_write(txd, 0, word);
1165
1166 /*
1167 * Register descriptor details in skb frame descriptor.
1168 */
1169 skbdesc->desc = txd;
1170 skbdesc->desc_len = TXD_DESC_SIZE;
1171 }
1172
1173 /*
1174 * TX data initialization
1175 */
1176 static void rt2400pci_write_beacon(struct queue_entry *entry,
1177 struct txentry_desc *txdesc)
1178 {
1179 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1180 u32 reg;
1181
1182 /*
1183 * Disable beaconing while we are reloading the beacon data,
1184 * otherwise we might be sending out invalid data.
1185 */
1186 rt2x00mmio_register_read(rt2x00dev, CSR14, &reg);
1187 rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
1188 rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
1189
1190 if (rt2x00queue_map_txskb(entry)) {
1191 rt2x00_err(rt2x00dev, "Fail to map beacon, aborting\n");
1192 goto out;
1193 }
1194 /*
1195 * Enable beaconing again.
1196 */
1197 rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
1198 /*
1199 * Write the TX descriptor for the beacon.
1200 */
1201 rt2400pci_write_tx_desc(entry, txdesc);
1202
1203 /*
1204 * Dump beacon to userspace through debugfs.
1205 */
1206 rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry->skb);
1207 out:
1208 /*
1209 * Enable beaconing again.
1210 */
1211 rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
1212 rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
1213 }
1214
1215 /*
1216 * RX control handlers
1217 */
1218 static void rt2400pci_fill_rxdone(struct queue_entry *entry,
1219 struct rxdone_entry_desc *rxdesc)
1220 {
1221 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1222 struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
1223 u32 word0;
1224 u32 word2;
1225 u32 word3;
1226 u32 word4;
1227 u64 tsf;
1228 u32 rx_low;
1229 u32 rx_high;
1230
1231 rt2x00_desc_read(entry_priv->desc, 0, &word0);
1232 rt2x00_desc_read(entry_priv->desc, 2, &word2);
1233 rt2x00_desc_read(entry_priv->desc, 3, &word3);
1234 rt2x00_desc_read(entry_priv->desc, 4, &word4);
1235
1236 if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1237 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1238 if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
1239 rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
1240
1241 /*
1242 * We only get the lower 32bits from the timestamp,
1243 * to get the full 64bits we must complement it with
1244 * the timestamp from get_tsf().
1245 * Note that when a wraparound of the lower 32bits
1246 * has occurred between the frame arrival and the get_tsf()
1247 * call, we must decrease the higher 32bits with 1 to get
1248 * to correct value.
1249 */
1250 tsf = rt2x00dev->ops->hw->get_tsf(rt2x00dev->hw, NULL);
1251 rx_low = rt2x00_get_field32(word4, RXD_W4_RX_END_TIME);
1252 rx_high = upper_32_bits(tsf);
1253
1254 if ((u32)tsf <= rx_low)
1255 rx_high--;
1256
1257 /*
1258 * Obtain the status about this packet.
1259 * The signal is the PLCP value, and needs to be stripped
1260 * of the preamble bit (0x08).
1261 */
1262 rxdesc->timestamp = ((u64)rx_high << 32) | rx_low;
1263 rxdesc->signal = rt2x00_get_field32(word2, RXD_W2_SIGNAL) & ~0x08;
1264 rxdesc->rssi = rt2x00_get_field32(word2, RXD_W3_RSSI) -
1265 entry->queue->rt2x00dev->rssi_offset;
1266 rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1267
1268 rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
1269 if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
1270 rxdesc->dev_flags |= RXDONE_MY_BSS;
1271 }
1272
1273 /*
1274 * Interrupt functions.
1275 */
1276 static void rt2400pci_txdone(struct rt2x00_dev *rt2x00dev,
1277 const enum data_queue_qid queue_idx)
1278 {
1279 struct data_queue *queue = rt2x00queue_get_tx_queue(rt2x00dev, queue_idx);
1280 struct queue_entry_priv_mmio *entry_priv;
1281 struct queue_entry *entry;
1282 struct txdone_entry_desc txdesc;
1283 u32 word;
1284
1285 while (!rt2x00queue_empty(queue)) {
1286 entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
1287 entry_priv = entry->priv_data;
1288 rt2x00_desc_read(entry_priv->desc, 0, &word);
1289
1290 if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
1291 !rt2x00_get_field32(word, TXD_W0_VALID))
1292 break;
1293
1294 /*
1295 * Obtain the status about this packet.
1296 */
1297 txdesc.flags = 0;
1298 switch (rt2x00_get_field32(word, TXD_W0_RESULT)) {
1299 case 0: /* Success */
1300 case 1: /* Success with retry */
1301 __set_bit(TXDONE_SUCCESS, &txdesc.flags);
1302 break;
1303 case 2: /* Failure, excessive retries */
1304 __set_bit(TXDONE_EXCESSIVE_RETRY, &txdesc.flags);
1305 /* Don't break, this is a failed frame! */
1306 default: /* Failure */
1307 __set_bit(TXDONE_FAILURE, &txdesc.flags);
1308 }
1309 txdesc.retry = rt2x00_get_field32(word, TXD_W0_RETRY_COUNT);
1310
1311 rt2x00lib_txdone(entry, &txdesc);
1312 }
1313 }
1314
1315 static inline void rt2400pci_enable_interrupt(struct rt2x00_dev *rt2x00dev,
1316 struct rt2x00_field32 irq_field)
1317 {
1318 u32 reg;
1319
1320 /*
1321 * Enable a single interrupt. The interrupt mask register
1322 * access needs locking.
1323 */
1324 spin_lock_irq(&rt2x00dev->irqmask_lock);
1325
1326 rt2x00mmio_register_read(rt2x00dev, CSR8, &reg);
1327 rt2x00_set_field32(&reg, irq_field, 0);
1328 rt2x00mmio_register_write(rt2x00dev, CSR8, reg);
1329
1330 spin_unlock_irq(&rt2x00dev->irqmask_lock);
1331 }
1332
1333 static void rt2400pci_txstatus_tasklet(unsigned long data)
1334 {
1335 struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
1336 u32 reg;
1337
1338 /*
1339 * Handle all tx queues.
1340 */
1341 rt2400pci_txdone(rt2x00dev, QID_ATIM);
1342 rt2400pci_txdone(rt2x00dev, QID_AC_VO);
1343 rt2400pci_txdone(rt2x00dev, QID_AC_VI);
1344
1345 /*
1346 * Enable all TXDONE interrupts again.
1347 */
1348 if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) {
1349 spin_lock_irq(&rt2x00dev->irqmask_lock);
1350
1351 rt2x00mmio_register_read(rt2x00dev, CSR8, &reg);
1352 rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, 0);
1353 rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, 0);
1354 rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, 0);
1355 rt2x00mmio_register_write(rt2x00dev, CSR8, reg);
1356
1357 spin_unlock_irq(&rt2x00dev->irqmask_lock);
1358 }
1359 }
1360
1361 static void rt2400pci_tbtt_tasklet(unsigned long data)
1362 {
1363 struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
1364 rt2x00lib_beacondone(rt2x00dev);
1365 if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
1366 rt2400pci_enable_interrupt(rt2x00dev, CSR8_TBCN_EXPIRE);
1367 }
1368
1369 static void rt2400pci_rxdone_tasklet(unsigned long data)
1370 {
1371 struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
1372 if (rt2x00mmio_rxdone(rt2x00dev))
1373 tasklet_schedule(&rt2x00dev->rxdone_tasklet);
1374 else if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
1375 rt2400pci_enable_interrupt(rt2x00dev, CSR8_RXDONE);
1376 }
1377
1378 static irqreturn_t rt2400pci_interrupt(int irq, void *dev_instance)
1379 {
1380 struct rt2x00_dev *rt2x00dev = dev_instance;
1381 u32 reg, mask;
1382
1383 /*
1384 * Get the interrupt sources & saved to local variable.
1385 * Write register value back to clear pending interrupts.
1386 */
1387 rt2x00mmio_register_read(rt2x00dev, CSR7, &reg);
1388 rt2x00mmio_register_write(rt2x00dev, CSR7, reg);
1389
1390 if (!reg)
1391 return IRQ_NONE;
1392
1393 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
1394 return IRQ_HANDLED;
1395
1396 mask = reg;
1397
1398 /*
1399 * Schedule tasklets for interrupt handling.
1400 */
1401 if (rt2x00_get_field32(reg, CSR7_TBCN_EXPIRE))
1402 tasklet_hi_schedule(&rt2x00dev->tbtt_tasklet);
1403
1404 if (rt2x00_get_field32(reg, CSR7_RXDONE))
1405 tasklet_schedule(&rt2x00dev->rxdone_tasklet);
1406
1407 if (rt2x00_get_field32(reg, CSR7_TXDONE_ATIMRING) ||
1408 rt2x00_get_field32(reg, CSR7_TXDONE_PRIORING) ||
1409 rt2x00_get_field32(reg, CSR7_TXDONE_TXRING)) {
1410 tasklet_schedule(&rt2x00dev->txstatus_tasklet);
1411 /*
1412 * Mask out all txdone interrupts.
1413 */
1414 rt2x00_set_field32(&mask, CSR8_TXDONE_TXRING, 1);
1415 rt2x00_set_field32(&mask, CSR8_TXDONE_ATIMRING, 1);
1416 rt2x00_set_field32(&mask, CSR8_TXDONE_PRIORING, 1);
1417 }
1418
1419 /*
1420 * Disable all interrupts for which a tasklet was scheduled right now,
1421 * the tasklet will reenable the appropriate interrupts.
1422 */
1423 spin_lock(&rt2x00dev->irqmask_lock);
1424
1425 rt2x00mmio_register_read(rt2x00dev, CSR8, &reg);
1426 reg |= mask;
1427 rt2x00mmio_register_write(rt2x00dev, CSR8, reg);
1428
1429 spin_unlock(&rt2x00dev->irqmask_lock);
1430
1431
1432
1433 return IRQ_HANDLED;
1434 }
1435
1436 /*
1437 * Device probe functions.
1438 */
1439 static int rt2400pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1440 {
1441 struct eeprom_93cx6 eeprom;
1442 u32 reg;
1443 u16 word;
1444 u8 *mac;
1445
1446 rt2x00mmio_register_read(rt2x00dev, CSR21, &reg);
1447
1448 eeprom.data = rt2x00dev;
1449 eeprom.register_read = rt2400pci_eepromregister_read;
1450 eeprom.register_write = rt2400pci_eepromregister_write;
1451 eeprom.width = rt2x00_get_field32(reg, CSR21_TYPE_93C46) ?
1452 PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
1453 eeprom.reg_data_in = 0;
1454 eeprom.reg_data_out = 0;
1455 eeprom.reg_data_clock = 0;
1456 eeprom.reg_chip_select = 0;
1457
1458 eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
1459 EEPROM_SIZE / sizeof(u16));
1460
1461 /*
1462 * Start validation of the data that has been read.
1463 */
1464 mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1465 if (!is_valid_ether_addr(mac)) {
1466 eth_random_addr(mac);
1467 rt2x00_eeprom_dbg(rt2x00dev, "MAC: %pM\n", mac);
1468 }
1469
1470 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
1471 if (word == 0xffff) {
1472 rt2x00_err(rt2x00dev, "Invalid EEPROM data detected\n");
1473 return -EINVAL;
1474 }
1475
1476 return 0;
1477 }
1478
1479 static int rt2400pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
1480 {
1481 u32 reg;
1482 u16 value;
1483 u16 eeprom;
1484
1485 /*
1486 * Read EEPROM word for configuration.
1487 */
1488 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
1489
1490 /*
1491 * Identify RF chipset.
1492 */
1493 value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1494 rt2x00mmio_register_read(rt2x00dev, CSR0, &reg);
1495 rt2x00_set_chip(rt2x00dev, RT2460, value,
1496 rt2x00_get_field32(reg, CSR0_REVISION));
1497
1498 if (!rt2x00_rf(rt2x00dev, RF2420) && !rt2x00_rf(rt2x00dev, RF2421)) {
1499 rt2x00_err(rt2x00dev, "Invalid RF chipset detected\n");
1500 return -ENODEV;
1501 }
1502
1503 /*
1504 * Identify default antenna configuration.
1505 */
1506 rt2x00dev->default_ant.tx =
1507 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1508 rt2x00dev->default_ant.rx =
1509 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1510
1511 /*
1512 * When the eeprom indicates SW_DIVERSITY use HW_DIVERSITY instead.
1513 * I am not 100% sure about this, but the legacy drivers do not
1514 * indicate antenna swapping in software is required when
1515 * diversity is enabled.
1516 */
1517 if (rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY)
1518 rt2x00dev->default_ant.tx = ANTENNA_HW_DIVERSITY;
1519 if (rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY)
1520 rt2x00dev->default_ant.rx = ANTENNA_HW_DIVERSITY;
1521
1522 /*
1523 * Store led mode, for correct led behaviour.
1524 */
1525 #ifdef CONFIG_RT2X00_LIB_LEDS
1526 value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
1527
1528 rt2400pci_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
1529 if (value == LED_MODE_TXRX_ACTIVITY ||
1530 value == LED_MODE_DEFAULT ||
1531 value == LED_MODE_ASUS)
1532 rt2400pci_init_led(rt2x00dev, &rt2x00dev->led_qual,
1533 LED_TYPE_ACTIVITY);
1534 #endif /* CONFIG_RT2X00_LIB_LEDS */
1535
1536 /*
1537 * Detect if this device has an hardware controlled radio.
1538 */
1539 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
1540 __set_bit(CAPABILITY_HW_BUTTON, &rt2x00dev->cap_flags);
1541
1542 /*
1543 * Check if the BBP tuning should be enabled.
1544 */
1545 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_AGCVGC_TUNING))
1546 __set_bit(CAPABILITY_LINK_TUNING, &rt2x00dev->cap_flags);
1547
1548 return 0;
1549 }
1550
1551 /*
1552 * RF value list for RF2420 & RF2421
1553 * Supports: 2.4 GHz
1554 */
1555 static const struct rf_channel rf_vals_b[] = {
1556 { 1, 0x00022058, 0x000c1fda, 0x00000101, 0 },
1557 { 2, 0x00022058, 0x000c1fee, 0x00000101, 0 },
1558 { 3, 0x00022058, 0x000c2002, 0x00000101, 0 },
1559 { 4, 0x00022058, 0x000c2016, 0x00000101, 0 },
1560 { 5, 0x00022058, 0x000c202a, 0x00000101, 0 },
1561 { 6, 0x00022058, 0x000c203e, 0x00000101, 0 },
1562 { 7, 0x00022058, 0x000c2052, 0x00000101, 0 },
1563 { 8, 0x00022058, 0x000c2066, 0x00000101, 0 },
1564 { 9, 0x00022058, 0x000c207a, 0x00000101, 0 },
1565 { 10, 0x00022058, 0x000c208e, 0x00000101, 0 },
1566 { 11, 0x00022058, 0x000c20a2, 0x00000101, 0 },
1567 { 12, 0x00022058, 0x000c20b6, 0x00000101, 0 },
1568 { 13, 0x00022058, 0x000c20ca, 0x00000101, 0 },
1569 { 14, 0x00022058, 0x000c20fa, 0x00000101, 0 },
1570 };
1571
1572 static int rt2400pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
1573 {
1574 struct hw_mode_spec *spec = &rt2x00dev->spec;
1575 struct channel_info *info;
1576 char *tx_power;
1577 unsigned int i;
1578
1579 /*
1580 * Initialize all hw fields.
1581 */
1582 rt2x00dev->hw->flags = IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
1583 IEEE80211_HW_SIGNAL_DBM |
1584 IEEE80211_HW_SUPPORTS_PS |
1585 IEEE80211_HW_PS_NULLFUNC_STACK;
1586
1587 SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
1588 SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
1589 rt2x00_eeprom_addr(rt2x00dev,
1590 EEPROM_MAC_ADDR_0));
1591
1592 /*
1593 * Initialize hw_mode information.
1594 */
1595 spec->supported_bands = SUPPORT_BAND_2GHZ;
1596 spec->supported_rates = SUPPORT_RATE_CCK;
1597
1598 spec->num_channels = ARRAY_SIZE(rf_vals_b);
1599 spec->channels = rf_vals_b;
1600
1601 /*
1602 * Create channel information array
1603 */
1604 info = kcalloc(spec->num_channels, sizeof(*info), GFP_KERNEL);
1605 if (!info)
1606 return -ENOMEM;
1607
1608 spec->channels_info = info;
1609
1610 tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
1611 for (i = 0; i < 14; i++) {
1612 info[i].max_power = TXPOWER_FROM_DEV(MAX_TXPOWER);
1613 info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]);
1614 }
1615
1616 return 0;
1617 }
1618
1619 static int rt2400pci_probe_hw(struct rt2x00_dev *rt2x00dev)
1620 {
1621 int retval;
1622 u32 reg;
1623
1624 /*
1625 * Allocate eeprom data.
1626 */
1627 retval = rt2400pci_validate_eeprom(rt2x00dev);
1628 if (retval)
1629 return retval;
1630
1631 retval = rt2400pci_init_eeprom(rt2x00dev);
1632 if (retval)
1633 return retval;
1634
1635 /*
1636 * Enable rfkill polling by setting GPIO direction of the
1637 * rfkill switch GPIO pin correctly.
1638 */
1639 rt2x00mmio_register_read(rt2x00dev, GPIOCSR, &reg);
1640 rt2x00_set_field32(&reg, GPIOCSR_DIR0, 1);
1641 rt2x00mmio_register_write(rt2x00dev, GPIOCSR, reg);
1642
1643 /*
1644 * Initialize hw specifications.
1645 */
1646 retval = rt2400pci_probe_hw_mode(rt2x00dev);
1647 if (retval)
1648 return retval;
1649
1650 /*
1651 * This device requires the atim queue and DMA-mapped skbs.
1652 */
1653 __set_bit(REQUIRE_ATIM_QUEUE, &rt2x00dev->cap_flags);
1654 __set_bit(REQUIRE_DMA, &rt2x00dev->cap_flags);
1655 __set_bit(REQUIRE_SW_SEQNO, &rt2x00dev->cap_flags);
1656
1657 /*
1658 * Set the rssi offset.
1659 */
1660 rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
1661
1662 return 0;
1663 }
1664
1665 /*
1666 * IEEE80211 stack callback functions.
1667 */
1668 static int rt2400pci_conf_tx(struct ieee80211_hw *hw,
1669 struct ieee80211_vif *vif, u16 queue,
1670 const struct ieee80211_tx_queue_params *params)
1671 {
1672 struct rt2x00_dev *rt2x00dev = hw->priv;
1673
1674 /*
1675 * We don't support variating cw_min and cw_max variables
1676 * per queue. So by default we only configure the TX queue,
1677 * and ignore all other configurations.
1678 */
1679 if (queue != 0)
1680 return -EINVAL;
1681
1682 if (rt2x00mac_conf_tx(hw, vif, queue, params))
1683 return -EINVAL;
1684
1685 /*
1686 * Write configuration to register.
1687 */
1688 rt2400pci_config_cw(rt2x00dev,
1689 rt2x00dev->tx->cw_min, rt2x00dev->tx->cw_max);
1690
1691 return 0;
1692 }
1693
1694 static u64 rt2400pci_get_tsf(struct ieee80211_hw *hw,
1695 struct ieee80211_vif *vif)
1696 {
1697 struct rt2x00_dev *rt2x00dev = hw->priv;
1698 u64 tsf;
1699 u32 reg;
1700
1701 rt2x00mmio_register_read(rt2x00dev, CSR17, &reg);
1702 tsf = (u64) rt2x00_get_field32(reg, CSR17_HIGH_TSFTIMER) << 32;
1703 rt2x00mmio_register_read(rt2x00dev, CSR16, &reg);
1704 tsf |= rt2x00_get_field32(reg, CSR16_LOW_TSFTIMER);
1705
1706 return tsf;
1707 }
1708
1709 static int rt2400pci_tx_last_beacon(struct ieee80211_hw *hw)
1710 {
1711 struct rt2x00_dev *rt2x00dev = hw->priv;
1712 u32 reg;
1713
1714 rt2x00mmio_register_read(rt2x00dev, CSR15, &reg);
1715 return rt2x00_get_field32(reg, CSR15_BEACON_SENT);
1716 }
1717
1718 static const struct ieee80211_ops rt2400pci_mac80211_ops = {
1719 .tx = rt2x00mac_tx,
1720 .start = rt2x00mac_start,
1721 .stop = rt2x00mac_stop,
1722 .add_interface = rt2x00mac_add_interface,
1723 .remove_interface = rt2x00mac_remove_interface,
1724 .config = rt2x00mac_config,
1725 .configure_filter = rt2x00mac_configure_filter,
1726 .sw_scan_start = rt2x00mac_sw_scan_start,
1727 .sw_scan_complete = rt2x00mac_sw_scan_complete,
1728 .get_stats = rt2x00mac_get_stats,
1729 .bss_info_changed = rt2x00mac_bss_info_changed,
1730 .conf_tx = rt2400pci_conf_tx,
1731 .get_tsf = rt2400pci_get_tsf,
1732 .tx_last_beacon = rt2400pci_tx_last_beacon,
1733 .rfkill_poll = rt2x00mac_rfkill_poll,
1734 .flush = rt2x00mac_flush,
1735 .set_antenna = rt2x00mac_set_antenna,
1736 .get_antenna = rt2x00mac_get_antenna,
1737 .get_ringparam = rt2x00mac_get_ringparam,
1738 .tx_frames_pending = rt2x00mac_tx_frames_pending,
1739 };
1740
1741 static const struct rt2x00lib_ops rt2400pci_rt2x00_ops = {
1742 .irq_handler = rt2400pci_interrupt,
1743 .txstatus_tasklet = rt2400pci_txstatus_tasklet,
1744 .tbtt_tasklet = rt2400pci_tbtt_tasklet,
1745 .rxdone_tasklet = rt2400pci_rxdone_tasklet,
1746 .probe_hw = rt2400pci_probe_hw,
1747 .initialize = rt2x00mmio_initialize,
1748 .uninitialize = rt2x00mmio_uninitialize,
1749 .get_entry_state = rt2400pci_get_entry_state,
1750 .clear_entry = rt2400pci_clear_entry,
1751 .set_device_state = rt2400pci_set_device_state,
1752 .rfkill_poll = rt2400pci_rfkill_poll,
1753 .link_stats = rt2400pci_link_stats,
1754 .reset_tuner = rt2400pci_reset_tuner,
1755 .link_tuner = rt2400pci_link_tuner,
1756 .start_queue = rt2400pci_start_queue,
1757 .kick_queue = rt2400pci_kick_queue,
1758 .stop_queue = rt2400pci_stop_queue,
1759 .flush_queue = rt2x00mmio_flush_queue,
1760 .write_tx_desc = rt2400pci_write_tx_desc,
1761 .write_beacon = rt2400pci_write_beacon,
1762 .fill_rxdone = rt2400pci_fill_rxdone,
1763 .config_filter = rt2400pci_config_filter,
1764 .config_intf = rt2400pci_config_intf,
1765 .config_erp = rt2400pci_config_erp,
1766 .config_ant = rt2400pci_config_ant,
1767 .config = rt2400pci_config,
1768 };
1769
1770 static void rt2400pci_queue_init(struct data_queue *queue)
1771 {
1772 switch (queue->qid) {
1773 case QID_RX:
1774 queue->limit = 24;
1775 queue->data_size = DATA_FRAME_SIZE;
1776 queue->desc_size = RXD_DESC_SIZE;
1777 queue->priv_size = sizeof(struct queue_entry_priv_mmio);
1778 break;
1779
1780 case QID_AC_VO:
1781 case QID_AC_VI:
1782 case QID_AC_BE:
1783 case QID_AC_BK:
1784 queue->limit = 24;
1785 queue->data_size = DATA_FRAME_SIZE;
1786 queue->desc_size = TXD_DESC_SIZE;
1787 queue->priv_size = sizeof(struct queue_entry_priv_mmio);
1788 break;
1789
1790 case QID_BEACON:
1791 queue->limit = 1;
1792 queue->data_size = MGMT_FRAME_SIZE;
1793 queue->desc_size = TXD_DESC_SIZE;
1794 queue->priv_size = sizeof(struct queue_entry_priv_mmio);
1795 break;
1796
1797 case QID_ATIM:
1798 queue->limit = 8;
1799 queue->data_size = DATA_FRAME_SIZE;
1800 queue->desc_size = TXD_DESC_SIZE;
1801 queue->priv_size = sizeof(struct queue_entry_priv_mmio);
1802 break;
1803
1804 default:
1805 BUG();
1806 break;
1807 }
1808 }
1809
1810 static const struct rt2x00_ops rt2400pci_ops = {
1811 .name = KBUILD_MODNAME,
1812 .max_ap_intf = 1,
1813 .eeprom_size = EEPROM_SIZE,
1814 .rf_size = RF_SIZE,
1815 .tx_queues = NUM_TX_QUEUES,
1816 .queue_init = rt2400pci_queue_init,
1817 .lib = &rt2400pci_rt2x00_ops,
1818 .hw = &rt2400pci_mac80211_ops,
1819 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
1820 .debugfs = &rt2400pci_rt2x00debug,
1821 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1822 };
1823
1824 /*
1825 * RT2400pci module information.
1826 */
1827 static DEFINE_PCI_DEVICE_TABLE(rt2400pci_device_table) = {
1828 { PCI_DEVICE(0x1814, 0x0101) },
1829 { 0, }
1830 };
1831
1832
1833 MODULE_AUTHOR(DRV_PROJECT);
1834 MODULE_VERSION(DRV_VERSION);
1835 MODULE_DESCRIPTION("Ralink RT2400 PCI & PCMCIA Wireless LAN driver.");
1836 MODULE_SUPPORTED_DEVICE("Ralink RT2460 PCI & PCMCIA chipset based cards");
1837 MODULE_DEVICE_TABLE(pci, rt2400pci_device_table);
1838 MODULE_LICENSE("GPL");
1839
1840 static int rt2400pci_probe(struct pci_dev *pci_dev,
1841 const struct pci_device_id *id)
1842 {
1843 return rt2x00pci_probe(pci_dev, &rt2400pci_ops);
1844 }
1845
1846 static struct pci_driver rt2400pci_driver = {
1847 .name = KBUILD_MODNAME,
1848 .id_table = rt2400pci_device_table,
1849 .probe = rt2400pci_probe,
1850 .remove = rt2x00pci_remove,
1851 .suspend = rt2x00pci_suspend,
1852 .resume = rt2x00pci_resume,
1853 };
1854
1855 module_pci_driver(rt2400pci_driver);
This page took 0.070945 seconds and 5 git commands to generate.