mac80211: extend/document powersave API
[deliverable/linux.git] / drivers / net / wireless / rt2x00 / rt2400pci.c
1 /*
2 Copyright (C) 2004 - 2008 rt2x00 SourceForge Project
3 <http://rt2x00.serialmonkey.com>
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the
17 Free Software Foundation, Inc.,
18 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 */
20
21 /*
22 Module: rt2400pci
23 Abstract: rt2400pci device specific routines.
24 Supported chipsets: RT2460.
25 */
26
27 #include <linux/delay.h>
28 #include <linux/etherdevice.h>
29 #include <linux/init.h>
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/pci.h>
33 #include <linux/eeprom_93cx6.h>
34
35 #include "rt2x00.h"
36 #include "rt2x00pci.h"
37 #include "rt2400pci.h"
38
39 /*
40 * Register access.
41 * All access to the CSR registers will go through the methods
42 * rt2x00pci_register_read and rt2x00pci_register_write.
43 * BBP and RF register require indirect register access,
44 * and use the CSR registers BBPCSR and RFCSR to achieve this.
45 * These indirect registers work with busy bits,
46 * and we will try maximal REGISTER_BUSY_COUNT times to access
47 * the register while taking a REGISTER_BUSY_DELAY us delay
48 * between each attampt. When the busy bit is still set at that time,
49 * the access attempt is considered to have failed,
50 * and we will print an error.
51 */
52 #define WAIT_FOR_BBP(__dev, __reg) \
53 rt2x00pci_regbusy_read((__dev), BBPCSR, BBPCSR_BUSY, (__reg))
54 #define WAIT_FOR_RF(__dev, __reg) \
55 rt2x00pci_regbusy_read((__dev), RFCSR, RFCSR_BUSY, (__reg))
56
57 static void rt2400pci_bbp_write(struct rt2x00_dev *rt2x00dev,
58 const unsigned int word, const u8 value)
59 {
60 u32 reg;
61
62 mutex_lock(&rt2x00dev->csr_mutex);
63
64 /*
65 * Wait until the BBP becomes available, afterwards we
66 * can safely write the new data into the register.
67 */
68 if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
69 reg = 0;
70 rt2x00_set_field32(&reg, BBPCSR_VALUE, value);
71 rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
72 rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
73 rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 1);
74
75 rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
76 }
77
78 mutex_unlock(&rt2x00dev->csr_mutex);
79 }
80
81 static void rt2400pci_bbp_read(struct rt2x00_dev *rt2x00dev,
82 const unsigned int word, u8 *value)
83 {
84 u32 reg;
85
86 mutex_lock(&rt2x00dev->csr_mutex);
87
88 /*
89 * Wait until the BBP becomes available, afterwards we
90 * can safely write the read request into the register.
91 * After the data has been written, we wait until hardware
92 * returns the correct value, if at any time the register
93 * doesn't become available in time, reg will be 0xffffffff
94 * which means we return 0xff to the caller.
95 */
96 if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
97 reg = 0;
98 rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
99 rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
100 rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 0);
101
102 rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
103
104 WAIT_FOR_BBP(rt2x00dev, &reg);
105 }
106
107 *value = rt2x00_get_field32(reg, BBPCSR_VALUE);
108
109 mutex_unlock(&rt2x00dev->csr_mutex);
110 }
111
112 static void rt2400pci_rf_write(struct rt2x00_dev *rt2x00dev,
113 const unsigned int word, const u32 value)
114 {
115 u32 reg;
116
117 if (!word)
118 return;
119
120 mutex_lock(&rt2x00dev->csr_mutex);
121
122 /*
123 * Wait until the RF becomes available, afterwards we
124 * can safely write the new data into the register.
125 */
126 if (WAIT_FOR_RF(rt2x00dev, &reg)) {
127 reg = 0;
128 rt2x00_set_field32(&reg, RFCSR_VALUE, value);
129 rt2x00_set_field32(&reg, RFCSR_NUMBER_OF_BITS, 20);
130 rt2x00_set_field32(&reg, RFCSR_IF_SELECT, 0);
131 rt2x00_set_field32(&reg, RFCSR_BUSY, 1);
132
133 rt2x00pci_register_write(rt2x00dev, RFCSR, reg);
134 rt2x00_rf_write(rt2x00dev, word, value);
135 }
136
137 mutex_unlock(&rt2x00dev->csr_mutex);
138 }
139
140 static void rt2400pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
141 {
142 struct rt2x00_dev *rt2x00dev = eeprom->data;
143 u32 reg;
144
145 rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
146
147 eeprom->reg_data_in = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_IN);
148 eeprom->reg_data_out = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_OUT);
149 eeprom->reg_data_clock =
150 !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_CLOCK);
151 eeprom->reg_chip_select =
152 !!rt2x00_get_field32(reg, CSR21_EEPROM_CHIP_SELECT);
153 }
154
155 static void rt2400pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
156 {
157 struct rt2x00_dev *rt2x00dev = eeprom->data;
158 u32 reg = 0;
159
160 rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_IN, !!eeprom->reg_data_in);
161 rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_OUT, !!eeprom->reg_data_out);
162 rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_CLOCK,
163 !!eeprom->reg_data_clock);
164 rt2x00_set_field32(&reg, CSR21_EEPROM_CHIP_SELECT,
165 !!eeprom->reg_chip_select);
166
167 rt2x00pci_register_write(rt2x00dev, CSR21, reg);
168 }
169
170 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
171 static const struct rt2x00debug rt2400pci_rt2x00debug = {
172 .owner = THIS_MODULE,
173 .csr = {
174 .read = rt2x00pci_register_read,
175 .write = rt2x00pci_register_write,
176 .flags = RT2X00DEBUGFS_OFFSET,
177 .word_base = CSR_REG_BASE,
178 .word_size = sizeof(u32),
179 .word_count = CSR_REG_SIZE / sizeof(u32),
180 },
181 .eeprom = {
182 .read = rt2x00_eeprom_read,
183 .write = rt2x00_eeprom_write,
184 .word_base = EEPROM_BASE,
185 .word_size = sizeof(u16),
186 .word_count = EEPROM_SIZE / sizeof(u16),
187 },
188 .bbp = {
189 .read = rt2400pci_bbp_read,
190 .write = rt2400pci_bbp_write,
191 .word_base = BBP_BASE,
192 .word_size = sizeof(u8),
193 .word_count = BBP_SIZE / sizeof(u8),
194 },
195 .rf = {
196 .read = rt2x00_rf_read,
197 .write = rt2400pci_rf_write,
198 .word_base = RF_BASE,
199 .word_size = sizeof(u32),
200 .word_count = RF_SIZE / sizeof(u32),
201 },
202 };
203 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
204
205 #ifdef CONFIG_RT2X00_LIB_RFKILL
206 static int rt2400pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
207 {
208 u32 reg;
209
210 rt2x00pci_register_read(rt2x00dev, GPIOCSR, &reg);
211 return rt2x00_get_field32(reg, GPIOCSR_BIT0);
212 }
213 #else
214 #define rt2400pci_rfkill_poll NULL
215 #endif /* CONFIG_RT2X00_LIB_RFKILL */
216
217 #ifdef CONFIG_RT2X00_LIB_LEDS
218 static void rt2400pci_brightness_set(struct led_classdev *led_cdev,
219 enum led_brightness brightness)
220 {
221 struct rt2x00_led *led =
222 container_of(led_cdev, struct rt2x00_led, led_dev);
223 unsigned int enabled = brightness != LED_OFF;
224 u32 reg;
225
226 rt2x00pci_register_read(led->rt2x00dev, LEDCSR, &reg);
227
228 if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC)
229 rt2x00_set_field32(&reg, LEDCSR_LINK, enabled);
230 else if (led->type == LED_TYPE_ACTIVITY)
231 rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, enabled);
232
233 rt2x00pci_register_write(led->rt2x00dev, LEDCSR, reg);
234 }
235
236 static int rt2400pci_blink_set(struct led_classdev *led_cdev,
237 unsigned long *delay_on,
238 unsigned long *delay_off)
239 {
240 struct rt2x00_led *led =
241 container_of(led_cdev, struct rt2x00_led, led_dev);
242 u32 reg;
243
244 rt2x00pci_register_read(led->rt2x00dev, LEDCSR, &reg);
245 rt2x00_set_field32(&reg, LEDCSR_ON_PERIOD, *delay_on);
246 rt2x00_set_field32(&reg, LEDCSR_OFF_PERIOD, *delay_off);
247 rt2x00pci_register_write(led->rt2x00dev, LEDCSR, reg);
248
249 return 0;
250 }
251
252 static void rt2400pci_init_led(struct rt2x00_dev *rt2x00dev,
253 struct rt2x00_led *led,
254 enum led_type type)
255 {
256 led->rt2x00dev = rt2x00dev;
257 led->type = type;
258 led->led_dev.brightness_set = rt2400pci_brightness_set;
259 led->led_dev.blink_set = rt2400pci_blink_set;
260 led->flags = LED_INITIALIZED;
261 }
262 #endif /* CONFIG_RT2X00_LIB_LEDS */
263
264 /*
265 * Configuration handlers.
266 */
267 static void rt2400pci_config_filter(struct rt2x00_dev *rt2x00dev,
268 const unsigned int filter_flags)
269 {
270 u32 reg;
271
272 /*
273 * Start configuration steps.
274 * Note that the version error will always be dropped
275 * since there is no filter for it at this time.
276 */
277 rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
278 rt2x00_set_field32(&reg, RXCSR0_DROP_CRC,
279 !(filter_flags & FIF_FCSFAIL));
280 rt2x00_set_field32(&reg, RXCSR0_DROP_PHYSICAL,
281 !(filter_flags & FIF_PLCPFAIL));
282 rt2x00_set_field32(&reg, RXCSR0_DROP_CONTROL,
283 !(filter_flags & FIF_CONTROL));
284 rt2x00_set_field32(&reg, RXCSR0_DROP_NOT_TO_ME,
285 !(filter_flags & FIF_PROMISC_IN_BSS));
286 rt2x00_set_field32(&reg, RXCSR0_DROP_TODS,
287 !(filter_flags & FIF_PROMISC_IN_BSS) &&
288 !rt2x00dev->intf_ap_count);
289 rt2x00_set_field32(&reg, RXCSR0_DROP_VERSION_ERROR, 1);
290 rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
291 }
292
293 static void rt2400pci_config_intf(struct rt2x00_dev *rt2x00dev,
294 struct rt2x00_intf *intf,
295 struct rt2x00intf_conf *conf,
296 const unsigned int flags)
297 {
298 unsigned int bcn_preload;
299 u32 reg;
300
301 if (flags & CONFIG_UPDATE_TYPE) {
302 /*
303 * Enable beacon config
304 */
305 bcn_preload = PREAMBLE + GET_DURATION(IEEE80211_HEADER, 20);
306 rt2x00pci_register_read(rt2x00dev, BCNCSR1, &reg);
307 rt2x00_set_field32(&reg, BCNCSR1_PRELOAD, bcn_preload);
308 rt2x00pci_register_write(rt2x00dev, BCNCSR1, reg);
309
310 /*
311 * Enable synchronisation.
312 */
313 rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
314 rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
315 rt2x00_set_field32(&reg, CSR14_TSF_SYNC, conf->sync);
316 rt2x00_set_field32(&reg, CSR14_TBCN, 1);
317 rt2x00pci_register_write(rt2x00dev, CSR14, reg);
318 }
319
320 if (flags & CONFIG_UPDATE_MAC)
321 rt2x00pci_register_multiwrite(rt2x00dev, CSR3,
322 conf->mac, sizeof(conf->mac));
323
324 if (flags & CONFIG_UPDATE_BSSID)
325 rt2x00pci_register_multiwrite(rt2x00dev, CSR5,
326 conf->bssid, sizeof(conf->bssid));
327 }
328
329 static void rt2400pci_config_erp(struct rt2x00_dev *rt2x00dev,
330 struct rt2x00lib_erp *erp)
331 {
332 int preamble_mask;
333 u32 reg;
334
335 /*
336 * When short preamble is enabled, we should set bit 0x08
337 */
338 preamble_mask = erp->short_preamble << 3;
339
340 rt2x00pci_register_read(rt2x00dev, TXCSR1, &reg);
341 rt2x00_set_field32(&reg, TXCSR1_ACK_TIMEOUT,
342 erp->ack_timeout);
343 rt2x00_set_field32(&reg, TXCSR1_ACK_CONSUME_TIME,
344 erp->ack_consume_time);
345 rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);
346
347 rt2x00pci_register_read(rt2x00dev, ARCSR2, &reg);
348 rt2x00_set_field32(&reg, ARCSR2_SIGNAL, 0x00);
349 rt2x00_set_field32(&reg, ARCSR2_SERVICE, 0x04);
350 rt2x00_set_field32(&reg, ARCSR2_LENGTH, GET_DURATION(ACK_SIZE, 10));
351 rt2x00pci_register_write(rt2x00dev, ARCSR2, reg);
352
353 rt2x00pci_register_read(rt2x00dev, ARCSR3, &reg);
354 rt2x00_set_field32(&reg, ARCSR3_SIGNAL, 0x01 | preamble_mask);
355 rt2x00_set_field32(&reg, ARCSR3_SERVICE, 0x04);
356 rt2x00_set_field32(&reg, ARCSR2_LENGTH, GET_DURATION(ACK_SIZE, 20));
357 rt2x00pci_register_write(rt2x00dev, ARCSR3, reg);
358
359 rt2x00pci_register_read(rt2x00dev, ARCSR4, &reg);
360 rt2x00_set_field32(&reg, ARCSR4_SIGNAL, 0x02 | preamble_mask);
361 rt2x00_set_field32(&reg, ARCSR4_SERVICE, 0x04);
362 rt2x00_set_field32(&reg, ARCSR2_LENGTH, GET_DURATION(ACK_SIZE, 55));
363 rt2x00pci_register_write(rt2x00dev, ARCSR4, reg);
364
365 rt2x00pci_register_read(rt2x00dev, ARCSR5, &reg);
366 rt2x00_set_field32(&reg, ARCSR5_SIGNAL, 0x03 | preamble_mask);
367 rt2x00_set_field32(&reg, ARCSR5_SERVICE, 0x84);
368 rt2x00_set_field32(&reg, ARCSR2_LENGTH, GET_DURATION(ACK_SIZE, 110));
369 rt2x00pci_register_write(rt2x00dev, ARCSR5, reg);
370
371 rt2x00pci_register_write(rt2x00dev, ARCSR1, erp->basic_rates);
372
373 rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
374 rt2x00_set_field32(&reg, CSR11_SLOT_TIME, erp->slot_time);
375 rt2x00pci_register_write(rt2x00dev, CSR11, reg);
376
377 rt2x00pci_register_read(rt2x00dev, CSR18, &reg);
378 rt2x00_set_field32(&reg, CSR18_SIFS, erp->sifs);
379 rt2x00_set_field32(&reg, CSR18_PIFS, erp->pifs);
380 rt2x00pci_register_write(rt2x00dev, CSR18, reg);
381
382 rt2x00pci_register_read(rt2x00dev, CSR19, &reg);
383 rt2x00_set_field32(&reg, CSR19_DIFS, erp->difs);
384 rt2x00_set_field32(&reg, CSR19_EIFS, erp->eifs);
385 rt2x00pci_register_write(rt2x00dev, CSR19, reg);
386 }
387
388 static void rt2400pci_config_ant(struct rt2x00_dev *rt2x00dev,
389 struct antenna_setup *ant)
390 {
391 u8 r1;
392 u8 r4;
393
394 /*
395 * We should never come here because rt2x00lib is supposed
396 * to catch this and send us the correct antenna explicitely.
397 */
398 BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
399 ant->tx == ANTENNA_SW_DIVERSITY);
400
401 rt2400pci_bbp_read(rt2x00dev, 4, &r4);
402 rt2400pci_bbp_read(rt2x00dev, 1, &r1);
403
404 /*
405 * Configure the TX antenna.
406 */
407 switch (ant->tx) {
408 case ANTENNA_HW_DIVERSITY:
409 rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 1);
410 break;
411 case ANTENNA_A:
412 rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 0);
413 break;
414 case ANTENNA_B:
415 default:
416 rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 2);
417 break;
418 }
419
420 /*
421 * Configure the RX antenna.
422 */
423 switch (ant->rx) {
424 case ANTENNA_HW_DIVERSITY:
425 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 1);
426 break;
427 case ANTENNA_A:
428 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 0);
429 break;
430 case ANTENNA_B:
431 default:
432 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 2);
433 break;
434 }
435
436 rt2400pci_bbp_write(rt2x00dev, 4, r4);
437 rt2400pci_bbp_write(rt2x00dev, 1, r1);
438 }
439
440 static void rt2400pci_config_channel(struct rt2x00_dev *rt2x00dev,
441 struct rf_channel *rf)
442 {
443 /*
444 * Switch on tuning bits.
445 */
446 rt2x00_set_field32(&rf->rf1, RF1_TUNER, 1);
447 rt2x00_set_field32(&rf->rf3, RF3_TUNER, 1);
448
449 rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
450 rt2400pci_rf_write(rt2x00dev, 2, rf->rf2);
451 rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
452
453 /*
454 * RF2420 chipset don't need any additional actions.
455 */
456 if (rt2x00_rf(&rt2x00dev->chip, RF2420))
457 return;
458
459 /*
460 * For the RT2421 chipsets we need to write an invalid
461 * reference clock rate to activate auto_tune.
462 * After that we set the value back to the correct channel.
463 */
464 rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
465 rt2400pci_rf_write(rt2x00dev, 2, 0x000c2a32);
466 rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
467
468 msleep(1);
469
470 rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
471 rt2400pci_rf_write(rt2x00dev, 2, rf->rf2);
472 rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
473
474 msleep(1);
475
476 /*
477 * Switch off tuning bits.
478 */
479 rt2x00_set_field32(&rf->rf1, RF1_TUNER, 0);
480 rt2x00_set_field32(&rf->rf3, RF3_TUNER, 0);
481
482 rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
483 rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
484
485 /*
486 * Clear false CRC during channel switch.
487 */
488 rt2x00pci_register_read(rt2x00dev, CNT0, &rf->rf1);
489 }
490
491 static void rt2400pci_config_txpower(struct rt2x00_dev *rt2x00dev, int txpower)
492 {
493 rt2400pci_bbp_write(rt2x00dev, 3, TXPOWER_TO_DEV(txpower));
494 }
495
496 static void rt2400pci_config_retry_limit(struct rt2x00_dev *rt2x00dev,
497 struct rt2x00lib_conf *libconf)
498 {
499 u32 reg;
500
501 rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
502 rt2x00_set_field32(&reg, CSR11_LONG_RETRY,
503 libconf->conf->long_frame_max_tx_count);
504 rt2x00_set_field32(&reg, CSR11_SHORT_RETRY,
505 libconf->conf->short_frame_max_tx_count);
506 rt2x00pci_register_write(rt2x00dev, CSR11, reg);
507 }
508
509 static void rt2400pci_config_duration(struct rt2x00_dev *rt2x00dev,
510 struct rt2x00lib_conf *libconf)
511 {
512 u32 reg;
513
514 rt2x00pci_register_read(rt2x00dev, TXCSR1, &reg);
515 rt2x00_set_field32(&reg, TXCSR1_TSF_OFFSET, IEEE80211_HEADER);
516 rt2x00_set_field32(&reg, TXCSR1_AUTORESPONDER, 1);
517 rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);
518
519 rt2x00pci_register_read(rt2x00dev, CSR12, &reg);
520 rt2x00_set_field32(&reg, CSR12_BEACON_INTERVAL,
521 libconf->conf->beacon_int * 16);
522 rt2x00_set_field32(&reg, CSR12_CFP_MAX_DURATION,
523 libconf->conf->beacon_int * 16);
524 rt2x00pci_register_write(rt2x00dev, CSR12, reg);
525 }
526
527 static void rt2400pci_config_ps(struct rt2x00_dev *rt2x00dev,
528 struct rt2x00lib_conf *libconf)
529 {
530 enum dev_state state =
531 (libconf->conf->flags & IEEE80211_CONF_PS) ?
532 STATE_SLEEP : STATE_AWAKE;
533 u32 reg;
534
535 if (state == STATE_SLEEP) {
536 rt2x00pci_register_read(rt2x00dev, CSR20, &reg);
537 rt2x00_set_field32(&reg, CSR20_DELAY_AFTER_TBCN,
538 (libconf->conf->beacon_int - 20) * 16);
539 rt2x00_set_field32(&reg, CSR20_TBCN_BEFORE_WAKEUP,
540 libconf->conf->listen_interval - 1);
541
542 /* We must first disable autowake before it can be enabled */
543 rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 0);
544 rt2x00pci_register_write(rt2x00dev, CSR20, reg);
545
546 rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 1);
547 rt2x00pci_register_write(rt2x00dev, CSR20, reg);
548 }
549
550 rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
551 }
552
553 static void rt2400pci_config(struct rt2x00_dev *rt2x00dev,
554 struct rt2x00lib_conf *libconf,
555 const unsigned int flags)
556 {
557 if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
558 rt2400pci_config_channel(rt2x00dev, &libconf->rf);
559 if (flags & IEEE80211_CONF_CHANGE_POWER)
560 rt2400pci_config_txpower(rt2x00dev,
561 libconf->conf->power_level);
562 if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
563 rt2400pci_config_retry_limit(rt2x00dev, libconf);
564 if (flags & IEEE80211_CONF_CHANGE_BEACON_INTERVAL)
565 rt2400pci_config_duration(rt2x00dev, libconf);
566 if (flags & IEEE80211_CONF_CHANGE_PS)
567 rt2400pci_config_ps(rt2x00dev, libconf);
568 }
569
570 static void rt2400pci_config_cw(struct rt2x00_dev *rt2x00dev,
571 const int cw_min, const int cw_max)
572 {
573 u32 reg;
574
575 rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
576 rt2x00_set_field32(&reg, CSR11_CWMIN, cw_min);
577 rt2x00_set_field32(&reg, CSR11_CWMAX, cw_max);
578 rt2x00pci_register_write(rt2x00dev, CSR11, reg);
579 }
580
581 /*
582 * Link tuning
583 */
584 static void rt2400pci_link_stats(struct rt2x00_dev *rt2x00dev,
585 struct link_qual *qual)
586 {
587 u32 reg;
588 u8 bbp;
589
590 /*
591 * Update FCS error count from register.
592 */
593 rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
594 qual->rx_failed = rt2x00_get_field32(reg, CNT0_FCS_ERROR);
595
596 /*
597 * Update False CCA count from register.
598 */
599 rt2400pci_bbp_read(rt2x00dev, 39, &bbp);
600 qual->false_cca = bbp;
601 }
602
603 static inline void rt2400pci_set_vgc(struct rt2x00_dev *rt2x00dev,
604 struct link_qual *qual, u8 vgc_level)
605 {
606 rt2400pci_bbp_write(rt2x00dev, 13, vgc_level);
607 qual->vgc_level = vgc_level;
608 qual->vgc_level_reg = vgc_level;
609 }
610
611 static void rt2400pci_reset_tuner(struct rt2x00_dev *rt2x00dev,
612 struct link_qual *qual)
613 {
614 rt2400pci_set_vgc(rt2x00dev, qual, 0x08);
615 }
616
617 static void rt2400pci_link_tuner(struct rt2x00_dev *rt2x00dev,
618 struct link_qual *qual, const u32 count)
619 {
620 /*
621 * The link tuner should not run longer then 60 seconds,
622 * and should run once every 2 seconds.
623 */
624 if (count > 60 || !(count & 1))
625 return;
626
627 /*
628 * Base r13 link tuning on the false cca count.
629 */
630 if ((qual->false_cca > 512) && (qual->vgc_level < 0x20))
631 rt2400pci_set_vgc(rt2x00dev, qual, ++qual->vgc_level);
632 else if ((qual->false_cca < 100) && (qual->vgc_level > 0x08))
633 rt2400pci_set_vgc(rt2x00dev, qual, --qual->vgc_level);
634 }
635
636 /*
637 * Initialization functions.
638 */
639 static bool rt2400pci_get_entry_state(struct queue_entry *entry)
640 {
641 struct queue_entry_priv_pci *entry_priv = entry->priv_data;
642 u32 word;
643
644 if (entry->queue->qid == QID_RX) {
645 rt2x00_desc_read(entry_priv->desc, 0, &word);
646
647 return rt2x00_get_field32(word, RXD_W0_OWNER_NIC);
648 } else {
649 rt2x00_desc_read(entry_priv->desc, 0, &word);
650
651 return (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
652 rt2x00_get_field32(word, TXD_W0_VALID));
653 }
654 }
655
656 static void rt2400pci_clear_entry(struct queue_entry *entry)
657 {
658 struct queue_entry_priv_pci *entry_priv = entry->priv_data;
659 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
660 u32 word;
661
662 if (entry->queue->qid == QID_RX) {
663 rt2x00_desc_read(entry_priv->desc, 2, &word);
664 rt2x00_set_field32(&word, RXD_W2_BUFFER_LENGTH, entry->skb->len);
665 rt2x00_desc_write(entry_priv->desc, 2, word);
666
667 rt2x00_desc_read(entry_priv->desc, 1, &word);
668 rt2x00_set_field32(&word, RXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
669 rt2x00_desc_write(entry_priv->desc, 1, word);
670
671 rt2x00_desc_read(entry_priv->desc, 0, &word);
672 rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
673 rt2x00_desc_write(entry_priv->desc, 0, word);
674 } else {
675 rt2x00_desc_read(entry_priv->desc, 0, &word);
676 rt2x00_set_field32(&word, TXD_W0_VALID, 0);
677 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
678 rt2x00_desc_write(entry_priv->desc, 0, word);
679 }
680 }
681
682 static int rt2400pci_init_queues(struct rt2x00_dev *rt2x00dev)
683 {
684 struct queue_entry_priv_pci *entry_priv;
685 u32 reg;
686
687 /*
688 * Initialize registers.
689 */
690 rt2x00pci_register_read(rt2x00dev, TXCSR2, &reg);
691 rt2x00_set_field32(&reg, TXCSR2_TXD_SIZE, rt2x00dev->tx[0].desc_size);
692 rt2x00_set_field32(&reg, TXCSR2_NUM_TXD, rt2x00dev->tx[1].limit);
693 rt2x00_set_field32(&reg, TXCSR2_NUM_ATIM, rt2x00dev->bcn[1].limit);
694 rt2x00_set_field32(&reg, TXCSR2_NUM_PRIO, rt2x00dev->tx[0].limit);
695 rt2x00pci_register_write(rt2x00dev, TXCSR2, reg);
696
697 entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
698 rt2x00pci_register_read(rt2x00dev, TXCSR3, &reg);
699 rt2x00_set_field32(&reg, TXCSR3_TX_RING_REGISTER,
700 entry_priv->desc_dma);
701 rt2x00pci_register_write(rt2x00dev, TXCSR3, reg);
702
703 entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
704 rt2x00pci_register_read(rt2x00dev, TXCSR5, &reg);
705 rt2x00_set_field32(&reg, TXCSR5_PRIO_RING_REGISTER,
706 entry_priv->desc_dma);
707 rt2x00pci_register_write(rt2x00dev, TXCSR5, reg);
708
709 entry_priv = rt2x00dev->bcn[1].entries[0].priv_data;
710 rt2x00pci_register_read(rt2x00dev, TXCSR4, &reg);
711 rt2x00_set_field32(&reg, TXCSR4_ATIM_RING_REGISTER,
712 entry_priv->desc_dma);
713 rt2x00pci_register_write(rt2x00dev, TXCSR4, reg);
714
715 entry_priv = rt2x00dev->bcn[0].entries[0].priv_data;
716 rt2x00pci_register_read(rt2x00dev, TXCSR6, &reg);
717 rt2x00_set_field32(&reg, TXCSR6_BEACON_RING_REGISTER,
718 entry_priv->desc_dma);
719 rt2x00pci_register_write(rt2x00dev, TXCSR6, reg);
720
721 rt2x00pci_register_read(rt2x00dev, RXCSR1, &reg);
722 rt2x00_set_field32(&reg, RXCSR1_RXD_SIZE, rt2x00dev->rx->desc_size);
723 rt2x00_set_field32(&reg, RXCSR1_NUM_RXD, rt2x00dev->rx->limit);
724 rt2x00pci_register_write(rt2x00dev, RXCSR1, reg);
725
726 entry_priv = rt2x00dev->rx->entries[0].priv_data;
727 rt2x00pci_register_read(rt2x00dev, RXCSR2, &reg);
728 rt2x00_set_field32(&reg, RXCSR2_RX_RING_REGISTER,
729 entry_priv->desc_dma);
730 rt2x00pci_register_write(rt2x00dev, RXCSR2, reg);
731
732 return 0;
733 }
734
735 static int rt2400pci_init_registers(struct rt2x00_dev *rt2x00dev)
736 {
737 u32 reg;
738
739 rt2x00pci_register_write(rt2x00dev, PSCSR0, 0x00020002);
740 rt2x00pci_register_write(rt2x00dev, PSCSR1, 0x00000002);
741 rt2x00pci_register_write(rt2x00dev, PSCSR2, 0x00023f20);
742 rt2x00pci_register_write(rt2x00dev, PSCSR3, 0x00000002);
743
744 rt2x00pci_register_read(rt2x00dev, TIMECSR, &reg);
745 rt2x00_set_field32(&reg, TIMECSR_US_COUNT, 33);
746 rt2x00_set_field32(&reg, TIMECSR_US_64_COUNT, 63);
747 rt2x00_set_field32(&reg, TIMECSR_BEACON_EXPECT, 0);
748 rt2x00pci_register_write(rt2x00dev, TIMECSR, reg);
749
750 rt2x00pci_register_read(rt2x00dev, CSR9, &reg);
751 rt2x00_set_field32(&reg, CSR9_MAX_FRAME_UNIT,
752 (rt2x00dev->rx->data_size / 128));
753 rt2x00pci_register_write(rt2x00dev, CSR9, reg);
754
755 rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
756 rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
757 rt2x00_set_field32(&reg, CSR14_TSF_SYNC, 0);
758 rt2x00_set_field32(&reg, CSR14_TBCN, 0);
759 rt2x00_set_field32(&reg, CSR14_TCFP, 0);
760 rt2x00_set_field32(&reg, CSR14_TATIMW, 0);
761 rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
762 rt2x00_set_field32(&reg, CSR14_CFP_COUNT_PRELOAD, 0);
763 rt2x00_set_field32(&reg, CSR14_TBCM_PRELOAD, 0);
764 rt2x00pci_register_write(rt2x00dev, CSR14, reg);
765
766 rt2x00pci_register_write(rt2x00dev, CNT3, 0x3f080000);
767
768 rt2x00pci_register_read(rt2x00dev, ARCSR0, &reg);
769 rt2x00_set_field32(&reg, ARCSR0_AR_BBP_DATA0, 133);
770 rt2x00_set_field32(&reg, ARCSR0_AR_BBP_ID0, 134);
771 rt2x00_set_field32(&reg, ARCSR0_AR_BBP_DATA1, 136);
772 rt2x00_set_field32(&reg, ARCSR0_AR_BBP_ID1, 135);
773 rt2x00pci_register_write(rt2x00dev, ARCSR0, reg);
774
775 rt2x00pci_register_read(rt2x00dev, RXCSR3, &reg);
776 rt2x00_set_field32(&reg, RXCSR3_BBP_ID0, 3); /* Tx power.*/
777 rt2x00_set_field32(&reg, RXCSR3_BBP_ID0_VALID, 1);
778 rt2x00_set_field32(&reg, RXCSR3_BBP_ID1, 32); /* Signal */
779 rt2x00_set_field32(&reg, RXCSR3_BBP_ID1_VALID, 1);
780 rt2x00_set_field32(&reg, RXCSR3_BBP_ID2, 36); /* Rssi */
781 rt2x00_set_field32(&reg, RXCSR3_BBP_ID2_VALID, 1);
782 rt2x00pci_register_write(rt2x00dev, RXCSR3, reg);
783
784 rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0x3f3b3100);
785
786 if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
787 return -EBUSY;
788
789 rt2x00pci_register_write(rt2x00dev, MACCSR0, 0x00217223);
790 rt2x00pci_register_write(rt2x00dev, MACCSR1, 0x00235518);
791
792 rt2x00pci_register_read(rt2x00dev, MACCSR2, &reg);
793 rt2x00_set_field32(&reg, MACCSR2_DELAY, 64);
794 rt2x00pci_register_write(rt2x00dev, MACCSR2, reg);
795
796 rt2x00pci_register_read(rt2x00dev, RALINKCSR, &reg);
797 rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA0, 17);
798 rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID0, 154);
799 rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA1, 0);
800 rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID1, 154);
801 rt2x00pci_register_write(rt2x00dev, RALINKCSR, reg);
802
803 rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
804 rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 1);
805 rt2x00_set_field32(&reg, CSR1_BBP_RESET, 0);
806 rt2x00_set_field32(&reg, CSR1_HOST_READY, 0);
807 rt2x00pci_register_write(rt2x00dev, CSR1, reg);
808
809 rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
810 rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 0);
811 rt2x00_set_field32(&reg, CSR1_HOST_READY, 1);
812 rt2x00pci_register_write(rt2x00dev, CSR1, reg);
813
814 /*
815 * We must clear the FCS and FIFO error count.
816 * These registers are cleared on read,
817 * so we may pass a useless variable to store the value.
818 */
819 rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
820 rt2x00pci_register_read(rt2x00dev, CNT4, &reg);
821
822 return 0;
823 }
824
825 static int rt2400pci_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
826 {
827 unsigned int i;
828 u8 value;
829
830 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
831 rt2400pci_bbp_read(rt2x00dev, 0, &value);
832 if ((value != 0xff) && (value != 0x00))
833 return 0;
834 udelay(REGISTER_BUSY_DELAY);
835 }
836
837 ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
838 return -EACCES;
839 }
840
841 static int rt2400pci_init_bbp(struct rt2x00_dev *rt2x00dev)
842 {
843 unsigned int i;
844 u16 eeprom;
845 u8 reg_id;
846 u8 value;
847
848 if (unlikely(rt2400pci_wait_bbp_ready(rt2x00dev)))
849 return -EACCES;
850
851 rt2400pci_bbp_write(rt2x00dev, 1, 0x00);
852 rt2400pci_bbp_write(rt2x00dev, 3, 0x27);
853 rt2400pci_bbp_write(rt2x00dev, 4, 0x08);
854 rt2400pci_bbp_write(rt2x00dev, 10, 0x0f);
855 rt2400pci_bbp_write(rt2x00dev, 15, 0x72);
856 rt2400pci_bbp_write(rt2x00dev, 16, 0x74);
857 rt2400pci_bbp_write(rt2x00dev, 17, 0x20);
858 rt2400pci_bbp_write(rt2x00dev, 18, 0x72);
859 rt2400pci_bbp_write(rt2x00dev, 19, 0x0b);
860 rt2400pci_bbp_write(rt2x00dev, 20, 0x00);
861 rt2400pci_bbp_write(rt2x00dev, 28, 0x11);
862 rt2400pci_bbp_write(rt2x00dev, 29, 0x04);
863 rt2400pci_bbp_write(rt2x00dev, 30, 0x21);
864 rt2400pci_bbp_write(rt2x00dev, 31, 0x00);
865
866 for (i = 0; i < EEPROM_BBP_SIZE; i++) {
867 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
868
869 if (eeprom != 0xffff && eeprom != 0x0000) {
870 reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
871 value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
872 rt2400pci_bbp_write(rt2x00dev, reg_id, value);
873 }
874 }
875
876 return 0;
877 }
878
879 /*
880 * Device state switch handlers.
881 */
882 static void rt2400pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
883 enum dev_state state)
884 {
885 u32 reg;
886
887 rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
888 rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX,
889 (state == STATE_RADIO_RX_OFF) ||
890 (state == STATE_RADIO_RX_OFF_LINK));
891 rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
892 }
893
894 static void rt2400pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
895 enum dev_state state)
896 {
897 int mask = (state == STATE_RADIO_IRQ_OFF);
898 u32 reg;
899
900 /*
901 * When interrupts are being enabled, the interrupt registers
902 * should clear the register to assure a clean state.
903 */
904 if (state == STATE_RADIO_IRQ_ON) {
905 rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
906 rt2x00pci_register_write(rt2x00dev, CSR7, reg);
907 }
908
909 /*
910 * Only toggle the interrupts bits we are going to use.
911 * Non-checked interrupt bits are disabled by default.
912 */
913 rt2x00pci_register_read(rt2x00dev, CSR8, &reg);
914 rt2x00_set_field32(&reg, CSR8_TBCN_EXPIRE, mask);
915 rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, mask);
916 rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, mask);
917 rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, mask);
918 rt2x00_set_field32(&reg, CSR8_RXDONE, mask);
919 rt2x00pci_register_write(rt2x00dev, CSR8, reg);
920 }
921
922 static int rt2400pci_enable_radio(struct rt2x00_dev *rt2x00dev)
923 {
924 /*
925 * Initialize all registers.
926 */
927 if (unlikely(rt2400pci_init_queues(rt2x00dev) ||
928 rt2400pci_init_registers(rt2x00dev) ||
929 rt2400pci_init_bbp(rt2x00dev)))
930 return -EIO;
931
932 return 0;
933 }
934
935 static void rt2400pci_disable_radio(struct rt2x00_dev *rt2x00dev)
936 {
937 u32 reg;
938
939 rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0);
940
941 /*
942 * Disable synchronisation.
943 */
944 rt2x00pci_register_write(rt2x00dev, CSR14, 0);
945
946 /*
947 * Cancel RX and TX.
948 */
949 rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
950 rt2x00_set_field32(&reg, TXCSR0_ABORT, 1);
951 rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
952 }
953
954 static int rt2400pci_set_state(struct rt2x00_dev *rt2x00dev,
955 enum dev_state state)
956 {
957 u32 reg;
958 unsigned int i;
959 char put_to_sleep;
960 char bbp_state;
961 char rf_state;
962
963 put_to_sleep = (state != STATE_AWAKE);
964
965 rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
966 rt2x00_set_field32(&reg, PWRCSR1_SET_STATE, 1);
967 rt2x00_set_field32(&reg, PWRCSR1_BBP_DESIRE_STATE, state);
968 rt2x00_set_field32(&reg, PWRCSR1_RF_DESIRE_STATE, state);
969 rt2x00_set_field32(&reg, PWRCSR1_PUT_TO_SLEEP, put_to_sleep);
970 rt2x00pci_register_write(rt2x00dev, PWRCSR1, reg);
971
972 /*
973 * Device is not guaranteed to be in the requested state yet.
974 * We must wait until the register indicates that the
975 * device has entered the correct state.
976 */
977 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
978 rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
979 bbp_state = rt2x00_get_field32(reg, PWRCSR1_BBP_CURR_STATE);
980 rf_state = rt2x00_get_field32(reg, PWRCSR1_RF_CURR_STATE);
981 if (bbp_state == state && rf_state == state)
982 return 0;
983 msleep(10);
984 }
985
986 return -EBUSY;
987 }
988
989 static int rt2400pci_set_device_state(struct rt2x00_dev *rt2x00dev,
990 enum dev_state state)
991 {
992 int retval = 0;
993
994 switch (state) {
995 case STATE_RADIO_ON:
996 retval = rt2400pci_enable_radio(rt2x00dev);
997 break;
998 case STATE_RADIO_OFF:
999 rt2400pci_disable_radio(rt2x00dev);
1000 break;
1001 case STATE_RADIO_RX_ON:
1002 case STATE_RADIO_RX_ON_LINK:
1003 case STATE_RADIO_RX_OFF:
1004 case STATE_RADIO_RX_OFF_LINK:
1005 rt2400pci_toggle_rx(rt2x00dev, state);
1006 break;
1007 case STATE_RADIO_IRQ_ON:
1008 case STATE_RADIO_IRQ_OFF:
1009 rt2400pci_toggle_irq(rt2x00dev, state);
1010 break;
1011 case STATE_DEEP_SLEEP:
1012 case STATE_SLEEP:
1013 case STATE_STANDBY:
1014 case STATE_AWAKE:
1015 retval = rt2400pci_set_state(rt2x00dev, state);
1016 break;
1017 default:
1018 retval = -ENOTSUPP;
1019 break;
1020 }
1021
1022 if (unlikely(retval))
1023 ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
1024 state, retval);
1025
1026 return retval;
1027 }
1028
1029 /*
1030 * TX descriptor initialization
1031 */
1032 static void rt2400pci_write_tx_desc(struct rt2x00_dev *rt2x00dev,
1033 struct sk_buff *skb,
1034 struct txentry_desc *txdesc)
1035 {
1036 struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
1037 struct queue_entry_priv_pci *entry_priv = skbdesc->entry->priv_data;
1038 __le32 *txd = skbdesc->desc;
1039 u32 word;
1040
1041 /*
1042 * Start writing the descriptor words.
1043 */
1044 rt2x00_desc_read(entry_priv->desc, 1, &word);
1045 rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
1046 rt2x00_desc_write(entry_priv->desc, 1, word);
1047
1048 rt2x00_desc_read(txd, 2, &word);
1049 rt2x00_set_field32(&word, TXD_W2_BUFFER_LENGTH, skb->len);
1050 rt2x00_set_field32(&word, TXD_W2_DATABYTE_COUNT, skb->len);
1051 rt2x00_desc_write(txd, 2, word);
1052
1053 rt2x00_desc_read(txd, 3, &word);
1054 rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL, txdesc->signal);
1055 rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL_REGNUM, 5);
1056 rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL_BUSY, 1);
1057 rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE, txdesc->service);
1058 rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE_REGNUM, 6);
1059 rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE_BUSY, 1);
1060 rt2x00_desc_write(txd, 3, word);
1061
1062 rt2x00_desc_read(txd, 4, &word);
1063 rt2x00_set_field32(&word, TXD_W4_PLCP_LENGTH_LOW, txdesc->length_low);
1064 rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW_REGNUM, 8);
1065 rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW_BUSY, 1);
1066 rt2x00_set_field32(&word, TXD_W4_PLCP_LENGTH_HIGH, txdesc->length_high);
1067 rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH_REGNUM, 7);
1068 rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH_BUSY, 1);
1069 rt2x00_desc_write(txd, 4, word);
1070
1071 rt2x00_desc_read(txd, 0, &word);
1072 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
1073 rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1074 rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1075 test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1076 rt2x00_set_field32(&word, TXD_W0_ACK,
1077 test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1078 rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1079 test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1080 rt2x00_set_field32(&word, TXD_W0_RTS,
1081 test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags));
1082 rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->ifs);
1083 rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1084 test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
1085 rt2x00_desc_write(txd, 0, word);
1086 }
1087
1088 /*
1089 * TX data initialization
1090 */
1091 static void rt2400pci_write_beacon(struct queue_entry *entry)
1092 {
1093 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1094 struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1095 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1096 u32 word;
1097 u32 reg;
1098
1099 /*
1100 * Disable beaconing while we are reloading the beacon data,
1101 * otherwise we might be sending out invalid data.
1102 */
1103 rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
1104 rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
1105 rt2x00_set_field32(&reg, CSR14_TBCN, 0);
1106 rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
1107 rt2x00pci_register_write(rt2x00dev, CSR14, reg);
1108
1109 /*
1110 * Replace rt2x00lib allocated descriptor with the
1111 * pointer to the _real_ hardware descriptor.
1112 * After that, map the beacon to DMA and update the
1113 * descriptor.
1114 */
1115 memcpy(entry_priv->desc, skbdesc->desc, skbdesc->desc_len);
1116 skbdesc->desc = entry_priv->desc;
1117
1118 rt2x00queue_map_txskb(rt2x00dev, entry->skb);
1119
1120 rt2x00_desc_read(entry_priv->desc, 1, &word);
1121 rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
1122 rt2x00_desc_write(entry_priv->desc, 1, word);
1123 }
1124
1125 static void rt2400pci_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
1126 const enum data_queue_qid queue)
1127 {
1128 u32 reg;
1129
1130 if (queue == QID_BEACON) {
1131 rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
1132 if (!rt2x00_get_field32(reg, CSR14_BEACON_GEN)) {
1133 rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
1134 rt2x00_set_field32(&reg, CSR14_TBCN, 1);
1135 rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
1136 rt2x00pci_register_write(rt2x00dev, CSR14, reg);
1137 }
1138 return;
1139 }
1140
1141 rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
1142 rt2x00_set_field32(&reg, TXCSR0_KICK_PRIO, (queue == QID_AC_BE));
1143 rt2x00_set_field32(&reg, TXCSR0_KICK_TX, (queue == QID_AC_BK));
1144 rt2x00_set_field32(&reg, TXCSR0_KICK_ATIM, (queue == QID_ATIM));
1145 rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
1146 }
1147
1148 /*
1149 * RX control handlers
1150 */
1151 static void rt2400pci_fill_rxdone(struct queue_entry *entry,
1152 struct rxdone_entry_desc *rxdesc)
1153 {
1154 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1155 struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1156 u32 word0;
1157 u32 word2;
1158 u32 word3;
1159 u32 word4;
1160 u64 tsf;
1161 u32 rx_low;
1162 u32 rx_high;
1163
1164 rt2x00_desc_read(entry_priv->desc, 0, &word0);
1165 rt2x00_desc_read(entry_priv->desc, 2, &word2);
1166 rt2x00_desc_read(entry_priv->desc, 3, &word3);
1167 rt2x00_desc_read(entry_priv->desc, 4, &word4);
1168
1169 if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1170 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1171 if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
1172 rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
1173
1174 /*
1175 * We only get the lower 32bits from the timestamp,
1176 * to get the full 64bits we must complement it with
1177 * the timestamp from get_tsf().
1178 * Note that when a wraparound of the lower 32bits
1179 * has occurred between the frame arrival and the get_tsf()
1180 * call, we must decrease the higher 32bits with 1 to get
1181 * to correct value.
1182 */
1183 tsf = rt2x00dev->ops->hw->get_tsf(rt2x00dev->hw);
1184 rx_low = rt2x00_get_field32(word4, RXD_W4_RX_END_TIME);
1185 rx_high = upper_32_bits(tsf);
1186
1187 if ((u32)tsf <= rx_low)
1188 rx_high--;
1189
1190 /*
1191 * Obtain the status about this packet.
1192 * The signal is the PLCP value, and needs to be stripped
1193 * of the preamble bit (0x08).
1194 */
1195 rxdesc->timestamp = ((u64)rx_high << 32) | rx_low;
1196 rxdesc->signal = rt2x00_get_field32(word2, RXD_W2_SIGNAL) & ~0x08;
1197 rxdesc->rssi = rt2x00_get_field32(word2, RXD_W3_RSSI) -
1198 entry->queue->rt2x00dev->rssi_offset;
1199 rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1200
1201 rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
1202 if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
1203 rxdesc->dev_flags |= RXDONE_MY_BSS;
1204 }
1205
1206 /*
1207 * Interrupt functions.
1208 */
1209 static void rt2400pci_txdone(struct rt2x00_dev *rt2x00dev,
1210 const enum data_queue_qid queue_idx)
1211 {
1212 struct data_queue *queue = rt2x00queue_get_queue(rt2x00dev, queue_idx);
1213 struct queue_entry_priv_pci *entry_priv;
1214 struct queue_entry *entry;
1215 struct txdone_entry_desc txdesc;
1216 u32 word;
1217
1218 while (!rt2x00queue_empty(queue)) {
1219 entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
1220 entry_priv = entry->priv_data;
1221 rt2x00_desc_read(entry_priv->desc, 0, &word);
1222
1223 if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
1224 !rt2x00_get_field32(word, TXD_W0_VALID))
1225 break;
1226
1227 /*
1228 * Obtain the status about this packet.
1229 */
1230 txdesc.flags = 0;
1231 switch (rt2x00_get_field32(word, TXD_W0_RESULT)) {
1232 case 0: /* Success */
1233 case 1: /* Success with retry */
1234 __set_bit(TXDONE_SUCCESS, &txdesc.flags);
1235 break;
1236 case 2: /* Failure, excessive retries */
1237 __set_bit(TXDONE_EXCESSIVE_RETRY, &txdesc.flags);
1238 /* Don't break, this is a failed frame! */
1239 default: /* Failure */
1240 __set_bit(TXDONE_FAILURE, &txdesc.flags);
1241 }
1242 txdesc.retry = rt2x00_get_field32(word, TXD_W0_RETRY_COUNT);
1243
1244 rt2x00lib_txdone(entry, &txdesc);
1245 }
1246 }
1247
1248 static irqreturn_t rt2400pci_interrupt(int irq, void *dev_instance)
1249 {
1250 struct rt2x00_dev *rt2x00dev = dev_instance;
1251 u32 reg;
1252
1253 /*
1254 * Get the interrupt sources & saved to local variable.
1255 * Write register value back to clear pending interrupts.
1256 */
1257 rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
1258 rt2x00pci_register_write(rt2x00dev, CSR7, reg);
1259
1260 if (!reg)
1261 return IRQ_NONE;
1262
1263 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
1264 return IRQ_HANDLED;
1265
1266 /*
1267 * Handle interrupts, walk through all bits
1268 * and run the tasks, the bits are checked in order of
1269 * priority.
1270 */
1271
1272 /*
1273 * 1 - Beacon timer expired interrupt.
1274 */
1275 if (rt2x00_get_field32(reg, CSR7_TBCN_EXPIRE))
1276 rt2x00lib_beacondone(rt2x00dev);
1277
1278 /*
1279 * 2 - Rx ring done interrupt.
1280 */
1281 if (rt2x00_get_field32(reg, CSR7_RXDONE))
1282 rt2x00pci_rxdone(rt2x00dev);
1283
1284 /*
1285 * 3 - Atim ring transmit done interrupt.
1286 */
1287 if (rt2x00_get_field32(reg, CSR7_TXDONE_ATIMRING))
1288 rt2400pci_txdone(rt2x00dev, QID_ATIM);
1289
1290 /*
1291 * 4 - Priority ring transmit done interrupt.
1292 */
1293 if (rt2x00_get_field32(reg, CSR7_TXDONE_PRIORING))
1294 rt2400pci_txdone(rt2x00dev, QID_AC_BE);
1295
1296 /*
1297 * 5 - Tx ring transmit done interrupt.
1298 */
1299 if (rt2x00_get_field32(reg, CSR7_TXDONE_TXRING))
1300 rt2400pci_txdone(rt2x00dev, QID_AC_BK);
1301
1302 return IRQ_HANDLED;
1303 }
1304
1305 /*
1306 * Device probe functions.
1307 */
1308 static int rt2400pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1309 {
1310 struct eeprom_93cx6 eeprom;
1311 u32 reg;
1312 u16 word;
1313 u8 *mac;
1314
1315 rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
1316
1317 eeprom.data = rt2x00dev;
1318 eeprom.register_read = rt2400pci_eepromregister_read;
1319 eeprom.register_write = rt2400pci_eepromregister_write;
1320 eeprom.width = rt2x00_get_field32(reg, CSR21_TYPE_93C46) ?
1321 PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
1322 eeprom.reg_data_in = 0;
1323 eeprom.reg_data_out = 0;
1324 eeprom.reg_data_clock = 0;
1325 eeprom.reg_chip_select = 0;
1326
1327 eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
1328 EEPROM_SIZE / sizeof(u16));
1329
1330 /*
1331 * Start validation of the data that has been read.
1332 */
1333 mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1334 if (!is_valid_ether_addr(mac)) {
1335 random_ether_addr(mac);
1336 EEPROM(rt2x00dev, "MAC: %pM\n", mac);
1337 }
1338
1339 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
1340 if (word == 0xffff) {
1341 ERROR(rt2x00dev, "Invalid EEPROM data detected.\n");
1342 return -EINVAL;
1343 }
1344
1345 return 0;
1346 }
1347
1348 static int rt2400pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
1349 {
1350 u32 reg;
1351 u16 value;
1352 u16 eeprom;
1353
1354 /*
1355 * Read EEPROM word for configuration.
1356 */
1357 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
1358
1359 /*
1360 * Identify RF chipset.
1361 */
1362 value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1363 rt2x00pci_register_read(rt2x00dev, CSR0, &reg);
1364 rt2x00_set_chip(rt2x00dev, RT2460, value, reg);
1365
1366 if (!rt2x00_rf(&rt2x00dev->chip, RF2420) &&
1367 !rt2x00_rf(&rt2x00dev->chip, RF2421)) {
1368 ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
1369 return -ENODEV;
1370 }
1371
1372 /*
1373 * Identify default antenna configuration.
1374 */
1375 rt2x00dev->default_ant.tx =
1376 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1377 rt2x00dev->default_ant.rx =
1378 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1379
1380 /*
1381 * When the eeprom indicates SW_DIVERSITY use HW_DIVERSITY instead.
1382 * I am not 100% sure about this, but the legacy drivers do not
1383 * indicate antenna swapping in software is required when
1384 * diversity is enabled.
1385 */
1386 if (rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY)
1387 rt2x00dev->default_ant.tx = ANTENNA_HW_DIVERSITY;
1388 if (rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY)
1389 rt2x00dev->default_ant.rx = ANTENNA_HW_DIVERSITY;
1390
1391 /*
1392 * Store led mode, for correct led behaviour.
1393 */
1394 #ifdef CONFIG_RT2X00_LIB_LEDS
1395 value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
1396
1397 rt2400pci_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
1398 if (value == LED_MODE_TXRX_ACTIVITY)
1399 rt2400pci_init_led(rt2x00dev, &rt2x00dev->led_qual,
1400 LED_TYPE_ACTIVITY);
1401 #endif /* CONFIG_RT2X00_LIB_LEDS */
1402
1403 /*
1404 * Detect if this device has an hardware controlled radio.
1405 */
1406 #ifdef CONFIG_RT2X00_LIB_RFKILL
1407 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
1408 __set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
1409 #endif /* CONFIG_RT2X00_LIB_RFKILL */
1410
1411 /*
1412 * Check if the BBP tuning should be enabled.
1413 */
1414 if (!rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_AGCVGC_TUNING))
1415 __set_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags);
1416
1417 return 0;
1418 }
1419
1420 /*
1421 * RF value list for RF2420 & RF2421
1422 * Supports: 2.4 GHz
1423 */
1424 static const struct rf_channel rf_vals_b[] = {
1425 { 1, 0x00022058, 0x000c1fda, 0x00000101, 0 },
1426 { 2, 0x00022058, 0x000c1fee, 0x00000101, 0 },
1427 { 3, 0x00022058, 0x000c2002, 0x00000101, 0 },
1428 { 4, 0x00022058, 0x000c2016, 0x00000101, 0 },
1429 { 5, 0x00022058, 0x000c202a, 0x00000101, 0 },
1430 { 6, 0x00022058, 0x000c203e, 0x00000101, 0 },
1431 { 7, 0x00022058, 0x000c2052, 0x00000101, 0 },
1432 { 8, 0x00022058, 0x000c2066, 0x00000101, 0 },
1433 { 9, 0x00022058, 0x000c207a, 0x00000101, 0 },
1434 { 10, 0x00022058, 0x000c208e, 0x00000101, 0 },
1435 { 11, 0x00022058, 0x000c20a2, 0x00000101, 0 },
1436 { 12, 0x00022058, 0x000c20b6, 0x00000101, 0 },
1437 { 13, 0x00022058, 0x000c20ca, 0x00000101, 0 },
1438 { 14, 0x00022058, 0x000c20fa, 0x00000101, 0 },
1439 };
1440
1441 static int rt2400pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
1442 {
1443 struct hw_mode_spec *spec = &rt2x00dev->spec;
1444 struct channel_info *info;
1445 char *tx_power;
1446 unsigned int i;
1447
1448 /*
1449 * Initialize all hw fields.
1450 */
1451 rt2x00dev->hw->flags = IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
1452 IEEE80211_HW_SIGNAL_DBM |
1453 IEEE80211_HW_SUPPORTS_PS |
1454 IEEE80211_HW_PS_NULLFUNC_STACK;
1455 rt2x00dev->hw->extra_tx_headroom = 0;
1456
1457 SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
1458 SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
1459 rt2x00_eeprom_addr(rt2x00dev,
1460 EEPROM_MAC_ADDR_0));
1461
1462 /*
1463 * Initialize hw_mode information.
1464 */
1465 spec->supported_bands = SUPPORT_BAND_2GHZ;
1466 spec->supported_rates = SUPPORT_RATE_CCK;
1467
1468 spec->num_channels = ARRAY_SIZE(rf_vals_b);
1469 spec->channels = rf_vals_b;
1470
1471 /*
1472 * Create channel information array
1473 */
1474 info = kzalloc(spec->num_channels * sizeof(*info), GFP_KERNEL);
1475 if (!info)
1476 return -ENOMEM;
1477
1478 spec->channels_info = info;
1479
1480 tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
1481 for (i = 0; i < 14; i++)
1482 info[i].tx_power1 = TXPOWER_FROM_DEV(tx_power[i]);
1483
1484 return 0;
1485 }
1486
1487 static int rt2400pci_probe_hw(struct rt2x00_dev *rt2x00dev)
1488 {
1489 int retval;
1490
1491 /*
1492 * Allocate eeprom data.
1493 */
1494 retval = rt2400pci_validate_eeprom(rt2x00dev);
1495 if (retval)
1496 return retval;
1497
1498 retval = rt2400pci_init_eeprom(rt2x00dev);
1499 if (retval)
1500 return retval;
1501
1502 /*
1503 * Initialize hw specifications.
1504 */
1505 retval = rt2400pci_probe_hw_mode(rt2x00dev);
1506 if (retval)
1507 return retval;
1508
1509 /*
1510 * This device requires the atim queue and DMA-mapped skbs.
1511 */
1512 __set_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags);
1513 __set_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags);
1514
1515 /*
1516 * Set the rssi offset.
1517 */
1518 rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
1519
1520 return 0;
1521 }
1522
1523 /*
1524 * IEEE80211 stack callback functions.
1525 */
1526 static int rt2400pci_conf_tx(struct ieee80211_hw *hw, u16 queue,
1527 const struct ieee80211_tx_queue_params *params)
1528 {
1529 struct rt2x00_dev *rt2x00dev = hw->priv;
1530
1531 /*
1532 * We don't support variating cw_min and cw_max variables
1533 * per queue. So by default we only configure the TX queue,
1534 * and ignore all other configurations.
1535 */
1536 if (queue != 0)
1537 return -EINVAL;
1538
1539 if (rt2x00mac_conf_tx(hw, queue, params))
1540 return -EINVAL;
1541
1542 /*
1543 * Write configuration to register.
1544 */
1545 rt2400pci_config_cw(rt2x00dev,
1546 rt2x00dev->tx->cw_min, rt2x00dev->tx->cw_max);
1547
1548 return 0;
1549 }
1550
1551 static u64 rt2400pci_get_tsf(struct ieee80211_hw *hw)
1552 {
1553 struct rt2x00_dev *rt2x00dev = hw->priv;
1554 u64 tsf;
1555 u32 reg;
1556
1557 rt2x00pci_register_read(rt2x00dev, CSR17, &reg);
1558 tsf = (u64) rt2x00_get_field32(reg, CSR17_HIGH_TSFTIMER) << 32;
1559 rt2x00pci_register_read(rt2x00dev, CSR16, &reg);
1560 tsf |= rt2x00_get_field32(reg, CSR16_LOW_TSFTIMER);
1561
1562 return tsf;
1563 }
1564
1565 static int rt2400pci_tx_last_beacon(struct ieee80211_hw *hw)
1566 {
1567 struct rt2x00_dev *rt2x00dev = hw->priv;
1568 u32 reg;
1569
1570 rt2x00pci_register_read(rt2x00dev, CSR15, &reg);
1571 return rt2x00_get_field32(reg, CSR15_BEACON_SENT);
1572 }
1573
1574 static const struct ieee80211_ops rt2400pci_mac80211_ops = {
1575 .tx = rt2x00mac_tx,
1576 .start = rt2x00mac_start,
1577 .stop = rt2x00mac_stop,
1578 .add_interface = rt2x00mac_add_interface,
1579 .remove_interface = rt2x00mac_remove_interface,
1580 .config = rt2x00mac_config,
1581 .config_interface = rt2x00mac_config_interface,
1582 .configure_filter = rt2x00mac_configure_filter,
1583 .get_stats = rt2x00mac_get_stats,
1584 .bss_info_changed = rt2x00mac_bss_info_changed,
1585 .conf_tx = rt2400pci_conf_tx,
1586 .get_tx_stats = rt2x00mac_get_tx_stats,
1587 .get_tsf = rt2400pci_get_tsf,
1588 .tx_last_beacon = rt2400pci_tx_last_beacon,
1589 };
1590
1591 static const struct rt2x00lib_ops rt2400pci_rt2x00_ops = {
1592 .irq_handler = rt2400pci_interrupt,
1593 .probe_hw = rt2400pci_probe_hw,
1594 .initialize = rt2x00pci_initialize,
1595 .uninitialize = rt2x00pci_uninitialize,
1596 .get_entry_state = rt2400pci_get_entry_state,
1597 .clear_entry = rt2400pci_clear_entry,
1598 .set_device_state = rt2400pci_set_device_state,
1599 .rfkill_poll = rt2400pci_rfkill_poll,
1600 .link_stats = rt2400pci_link_stats,
1601 .reset_tuner = rt2400pci_reset_tuner,
1602 .link_tuner = rt2400pci_link_tuner,
1603 .write_tx_desc = rt2400pci_write_tx_desc,
1604 .write_tx_data = rt2x00pci_write_tx_data,
1605 .write_beacon = rt2400pci_write_beacon,
1606 .kick_tx_queue = rt2400pci_kick_tx_queue,
1607 .fill_rxdone = rt2400pci_fill_rxdone,
1608 .config_filter = rt2400pci_config_filter,
1609 .config_intf = rt2400pci_config_intf,
1610 .config_erp = rt2400pci_config_erp,
1611 .config_ant = rt2400pci_config_ant,
1612 .config = rt2400pci_config,
1613 };
1614
1615 static const struct data_queue_desc rt2400pci_queue_rx = {
1616 .entry_num = RX_ENTRIES,
1617 .data_size = DATA_FRAME_SIZE,
1618 .desc_size = RXD_DESC_SIZE,
1619 .priv_size = sizeof(struct queue_entry_priv_pci),
1620 };
1621
1622 static const struct data_queue_desc rt2400pci_queue_tx = {
1623 .entry_num = TX_ENTRIES,
1624 .data_size = DATA_FRAME_SIZE,
1625 .desc_size = TXD_DESC_SIZE,
1626 .priv_size = sizeof(struct queue_entry_priv_pci),
1627 };
1628
1629 static const struct data_queue_desc rt2400pci_queue_bcn = {
1630 .entry_num = BEACON_ENTRIES,
1631 .data_size = MGMT_FRAME_SIZE,
1632 .desc_size = TXD_DESC_SIZE,
1633 .priv_size = sizeof(struct queue_entry_priv_pci),
1634 };
1635
1636 static const struct data_queue_desc rt2400pci_queue_atim = {
1637 .entry_num = ATIM_ENTRIES,
1638 .data_size = DATA_FRAME_SIZE,
1639 .desc_size = TXD_DESC_SIZE,
1640 .priv_size = sizeof(struct queue_entry_priv_pci),
1641 };
1642
1643 static const struct rt2x00_ops rt2400pci_ops = {
1644 .name = KBUILD_MODNAME,
1645 .max_sta_intf = 1,
1646 .max_ap_intf = 1,
1647 .eeprom_size = EEPROM_SIZE,
1648 .rf_size = RF_SIZE,
1649 .tx_queues = NUM_TX_QUEUES,
1650 .rx = &rt2400pci_queue_rx,
1651 .tx = &rt2400pci_queue_tx,
1652 .bcn = &rt2400pci_queue_bcn,
1653 .atim = &rt2400pci_queue_atim,
1654 .lib = &rt2400pci_rt2x00_ops,
1655 .hw = &rt2400pci_mac80211_ops,
1656 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
1657 .debugfs = &rt2400pci_rt2x00debug,
1658 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1659 };
1660
1661 /*
1662 * RT2400pci module information.
1663 */
1664 static struct pci_device_id rt2400pci_device_table[] = {
1665 { PCI_DEVICE(0x1814, 0x0101), PCI_DEVICE_DATA(&rt2400pci_ops) },
1666 { 0, }
1667 };
1668
1669 MODULE_AUTHOR(DRV_PROJECT);
1670 MODULE_VERSION(DRV_VERSION);
1671 MODULE_DESCRIPTION("Ralink RT2400 PCI & PCMCIA Wireless LAN driver.");
1672 MODULE_SUPPORTED_DEVICE("Ralink RT2460 PCI & PCMCIA chipset based cards");
1673 MODULE_DEVICE_TABLE(pci, rt2400pci_device_table);
1674 MODULE_LICENSE("GPL");
1675
1676 static struct pci_driver rt2400pci_driver = {
1677 .name = KBUILD_MODNAME,
1678 .id_table = rt2400pci_device_table,
1679 .probe = rt2x00pci_probe,
1680 .remove = __devexit_p(rt2x00pci_remove),
1681 .suspend = rt2x00pci_suspend,
1682 .resume = rt2x00pci_resume,
1683 };
1684
1685 static int __init rt2400pci_init(void)
1686 {
1687 return pci_register_driver(&rt2400pci_driver);
1688 }
1689
1690 static void __exit rt2400pci_exit(void)
1691 {
1692 pci_unregister_driver(&rt2400pci_driver);
1693 }
1694
1695 module_init(rt2400pci_init);
1696 module_exit(rt2400pci_exit);
This page took 0.111945 seconds and 5 git commands to generate.