Merge branches 'acpi', 'idle', 'mrst-pmu' and 'pm-tools' into next
[deliverable/linux.git] / drivers / net / wireless / rt2x00 / rt2400pci.c
1 /*
2 Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
3 <http://rt2x00.serialmonkey.com>
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the
17 Free Software Foundation, Inc.,
18 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 */
20
21 /*
22 Module: rt2400pci
23 Abstract: rt2400pci device specific routines.
24 Supported chipsets: RT2460.
25 */
26
27 #include <linux/delay.h>
28 #include <linux/etherdevice.h>
29 #include <linux/init.h>
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/pci.h>
33 #include <linux/eeprom_93cx6.h>
34 #include <linux/slab.h>
35
36 #include "rt2x00.h"
37 #include "rt2x00pci.h"
38 #include "rt2400pci.h"
39
40 /*
41 * Register access.
42 * All access to the CSR registers will go through the methods
43 * rt2x00pci_register_read and rt2x00pci_register_write.
44 * BBP and RF register require indirect register access,
45 * and use the CSR registers BBPCSR and RFCSR to achieve this.
46 * These indirect registers work with busy bits,
47 * and we will try maximal REGISTER_BUSY_COUNT times to access
48 * the register while taking a REGISTER_BUSY_DELAY us delay
49 * between each attempt. When the busy bit is still set at that time,
50 * the access attempt is considered to have failed,
51 * and we will print an error.
52 */
53 #define WAIT_FOR_BBP(__dev, __reg) \
54 rt2x00pci_regbusy_read((__dev), BBPCSR, BBPCSR_BUSY, (__reg))
55 #define WAIT_FOR_RF(__dev, __reg) \
56 rt2x00pci_regbusy_read((__dev), RFCSR, RFCSR_BUSY, (__reg))
57
58 static void rt2400pci_bbp_write(struct rt2x00_dev *rt2x00dev,
59 const unsigned int word, const u8 value)
60 {
61 u32 reg;
62
63 mutex_lock(&rt2x00dev->csr_mutex);
64
65 /*
66 * Wait until the BBP becomes available, afterwards we
67 * can safely write the new data into the register.
68 */
69 if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
70 reg = 0;
71 rt2x00_set_field32(&reg, BBPCSR_VALUE, value);
72 rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
73 rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
74 rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 1);
75
76 rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
77 }
78
79 mutex_unlock(&rt2x00dev->csr_mutex);
80 }
81
82 static void rt2400pci_bbp_read(struct rt2x00_dev *rt2x00dev,
83 const unsigned int word, u8 *value)
84 {
85 u32 reg;
86
87 mutex_lock(&rt2x00dev->csr_mutex);
88
89 /*
90 * Wait until the BBP becomes available, afterwards we
91 * can safely write the read request into the register.
92 * After the data has been written, we wait until hardware
93 * returns the correct value, if at any time the register
94 * doesn't become available in time, reg will be 0xffffffff
95 * which means we return 0xff to the caller.
96 */
97 if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
98 reg = 0;
99 rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
100 rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
101 rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 0);
102
103 rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
104
105 WAIT_FOR_BBP(rt2x00dev, &reg);
106 }
107
108 *value = rt2x00_get_field32(reg, BBPCSR_VALUE);
109
110 mutex_unlock(&rt2x00dev->csr_mutex);
111 }
112
113 static void rt2400pci_rf_write(struct rt2x00_dev *rt2x00dev,
114 const unsigned int word, const u32 value)
115 {
116 u32 reg;
117
118 mutex_lock(&rt2x00dev->csr_mutex);
119
120 /*
121 * Wait until the RF becomes available, afterwards we
122 * can safely write the new data into the register.
123 */
124 if (WAIT_FOR_RF(rt2x00dev, &reg)) {
125 reg = 0;
126 rt2x00_set_field32(&reg, RFCSR_VALUE, value);
127 rt2x00_set_field32(&reg, RFCSR_NUMBER_OF_BITS, 20);
128 rt2x00_set_field32(&reg, RFCSR_IF_SELECT, 0);
129 rt2x00_set_field32(&reg, RFCSR_BUSY, 1);
130
131 rt2x00pci_register_write(rt2x00dev, RFCSR, reg);
132 rt2x00_rf_write(rt2x00dev, word, value);
133 }
134
135 mutex_unlock(&rt2x00dev->csr_mutex);
136 }
137
138 static void rt2400pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
139 {
140 struct rt2x00_dev *rt2x00dev = eeprom->data;
141 u32 reg;
142
143 rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
144
145 eeprom->reg_data_in = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_IN);
146 eeprom->reg_data_out = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_OUT);
147 eeprom->reg_data_clock =
148 !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_CLOCK);
149 eeprom->reg_chip_select =
150 !!rt2x00_get_field32(reg, CSR21_EEPROM_CHIP_SELECT);
151 }
152
153 static void rt2400pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
154 {
155 struct rt2x00_dev *rt2x00dev = eeprom->data;
156 u32 reg = 0;
157
158 rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_IN, !!eeprom->reg_data_in);
159 rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_OUT, !!eeprom->reg_data_out);
160 rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_CLOCK,
161 !!eeprom->reg_data_clock);
162 rt2x00_set_field32(&reg, CSR21_EEPROM_CHIP_SELECT,
163 !!eeprom->reg_chip_select);
164
165 rt2x00pci_register_write(rt2x00dev, CSR21, reg);
166 }
167
168 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
169 static const struct rt2x00debug rt2400pci_rt2x00debug = {
170 .owner = THIS_MODULE,
171 .csr = {
172 .read = rt2x00pci_register_read,
173 .write = rt2x00pci_register_write,
174 .flags = RT2X00DEBUGFS_OFFSET,
175 .word_base = CSR_REG_BASE,
176 .word_size = sizeof(u32),
177 .word_count = CSR_REG_SIZE / sizeof(u32),
178 },
179 .eeprom = {
180 .read = rt2x00_eeprom_read,
181 .write = rt2x00_eeprom_write,
182 .word_base = EEPROM_BASE,
183 .word_size = sizeof(u16),
184 .word_count = EEPROM_SIZE / sizeof(u16),
185 },
186 .bbp = {
187 .read = rt2400pci_bbp_read,
188 .write = rt2400pci_bbp_write,
189 .word_base = BBP_BASE,
190 .word_size = sizeof(u8),
191 .word_count = BBP_SIZE / sizeof(u8),
192 },
193 .rf = {
194 .read = rt2x00_rf_read,
195 .write = rt2400pci_rf_write,
196 .word_base = RF_BASE,
197 .word_size = sizeof(u32),
198 .word_count = RF_SIZE / sizeof(u32),
199 },
200 };
201 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
202
203 static int rt2400pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
204 {
205 u32 reg;
206
207 rt2x00pci_register_read(rt2x00dev, GPIOCSR, &reg);
208 return rt2x00_get_field32(reg, GPIOCSR_BIT0);
209 }
210
211 #ifdef CONFIG_RT2X00_LIB_LEDS
212 static void rt2400pci_brightness_set(struct led_classdev *led_cdev,
213 enum led_brightness brightness)
214 {
215 struct rt2x00_led *led =
216 container_of(led_cdev, struct rt2x00_led, led_dev);
217 unsigned int enabled = brightness != LED_OFF;
218 u32 reg;
219
220 rt2x00pci_register_read(led->rt2x00dev, LEDCSR, &reg);
221
222 if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC)
223 rt2x00_set_field32(&reg, LEDCSR_LINK, enabled);
224 else if (led->type == LED_TYPE_ACTIVITY)
225 rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, enabled);
226
227 rt2x00pci_register_write(led->rt2x00dev, LEDCSR, reg);
228 }
229
230 static int rt2400pci_blink_set(struct led_classdev *led_cdev,
231 unsigned long *delay_on,
232 unsigned long *delay_off)
233 {
234 struct rt2x00_led *led =
235 container_of(led_cdev, struct rt2x00_led, led_dev);
236 u32 reg;
237
238 rt2x00pci_register_read(led->rt2x00dev, LEDCSR, &reg);
239 rt2x00_set_field32(&reg, LEDCSR_ON_PERIOD, *delay_on);
240 rt2x00_set_field32(&reg, LEDCSR_OFF_PERIOD, *delay_off);
241 rt2x00pci_register_write(led->rt2x00dev, LEDCSR, reg);
242
243 return 0;
244 }
245
246 static void rt2400pci_init_led(struct rt2x00_dev *rt2x00dev,
247 struct rt2x00_led *led,
248 enum led_type type)
249 {
250 led->rt2x00dev = rt2x00dev;
251 led->type = type;
252 led->led_dev.brightness_set = rt2400pci_brightness_set;
253 led->led_dev.blink_set = rt2400pci_blink_set;
254 led->flags = LED_INITIALIZED;
255 }
256 #endif /* CONFIG_RT2X00_LIB_LEDS */
257
258 /*
259 * Configuration handlers.
260 */
261 static void rt2400pci_config_filter(struct rt2x00_dev *rt2x00dev,
262 const unsigned int filter_flags)
263 {
264 u32 reg;
265
266 /*
267 * Start configuration steps.
268 * Note that the version error will always be dropped
269 * since there is no filter for it at this time.
270 */
271 rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
272 rt2x00_set_field32(&reg, RXCSR0_DROP_CRC,
273 !(filter_flags & FIF_FCSFAIL));
274 rt2x00_set_field32(&reg, RXCSR0_DROP_PHYSICAL,
275 !(filter_flags & FIF_PLCPFAIL));
276 rt2x00_set_field32(&reg, RXCSR0_DROP_CONTROL,
277 !(filter_flags & FIF_CONTROL));
278 rt2x00_set_field32(&reg, RXCSR0_DROP_NOT_TO_ME,
279 !(filter_flags & FIF_PROMISC_IN_BSS));
280 rt2x00_set_field32(&reg, RXCSR0_DROP_TODS,
281 !(filter_flags & FIF_PROMISC_IN_BSS) &&
282 !rt2x00dev->intf_ap_count);
283 rt2x00_set_field32(&reg, RXCSR0_DROP_VERSION_ERROR, 1);
284 rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
285 }
286
287 static void rt2400pci_config_intf(struct rt2x00_dev *rt2x00dev,
288 struct rt2x00_intf *intf,
289 struct rt2x00intf_conf *conf,
290 const unsigned int flags)
291 {
292 unsigned int bcn_preload;
293 u32 reg;
294
295 if (flags & CONFIG_UPDATE_TYPE) {
296 /*
297 * Enable beacon config
298 */
299 bcn_preload = PREAMBLE + GET_DURATION(IEEE80211_HEADER, 20);
300 rt2x00pci_register_read(rt2x00dev, BCNCSR1, &reg);
301 rt2x00_set_field32(&reg, BCNCSR1_PRELOAD, bcn_preload);
302 rt2x00pci_register_write(rt2x00dev, BCNCSR1, reg);
303
304 /*
305 * Enable synchronisation.
306 */
307 rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
308 rt2x00_set_field32(&reg, CSR14_TSF_SYNC, conf->sync);
309 rt2x00pci_register_write(rt2x00dev, CSR14, reg);
310 }
311
312 if (flags & CONFIG_UPDATE_MAC)
313 rt2x00pci_register_multiwrite(rt2x00dev, CSR3,
314 conf->mac, sizeof(conf->mac));
315
316 if (flags & CONFIG_UPDATE_BSSID)
317 rt2x00pci_register_multiwrite(rt2x00dev, CSR5,
318 conf->bssid, sizeof(conf->bssid));
319 }
320
321 static void rt2400pci_config_erp(struct rt2x00_dev *rt2x00dev,
322 struct rt2x00lib_erp *erp,
323 u32 changed)
324 {
325 int preamble_mask;
326 u32 reg;
327
328 /*
329 * When short preamble is enabled, we should set bit 0x08
330 */
331 if (changed & BSS_CHANGED_ERP_PREAMBLE) {
332 preamble_mask = erp->short_preamble << 3;
333
334 rt2x00pci_register_read(rt2x00dev, TXCSR1, &reg);
335 rt2x00_set_field32(&reg, TXCSR1_ACK_TIMEOUT, 0x1ff);
336 rt2x00_set_field32(&reg, TXCSR1_ACK_CONSUME_TIME, 0x13a);
337 rt2x00_set_field32(&reg, TXCSR1_TSF_OFFSET, IEEE80211_HEADER);
338 rt2x00_set_field32(&reg, TXCSR1_AUTORESPONDER, 1);
339 rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);
340
341 rt2x00pci_register_read(rt2x00dev, ARCSR2, &reg);
342 rt2x00_set_field32(&reg, ARCSR2_SIGNAL, 0x00);
343 rt2x00_set_field32(&reg, ARCSR2_SERVICE, 0x04);
344 rt2x00_set_field32(&reg, ARCSR2_LENGTH,
345 GET_DURATION(ACK_SIZE, 10));
346 rt2x00pci_register_write(rt2x00dev, ARCSR2, reg);
347
348 rt2x00pci_register_read(rt2x00dev, ARCSR3, &reg);
349 rt2x00_set_field32(&reg, ARCSR3_SIGNAL, 0x01 | preamble_mask);
350 rt2x00_set_field32(&reg, ARCSR3_SERVICE, 0x04);
351 rt2x00_set_field32(&reg, ARCSR2_LENGTH,
352 GET_DURATION(ACK_SIZE, 20));
353 rt2x00pci_register_write(rt2x00dev, ARCSR3, reg);
354
355 rt2x00pci_register_read(rt2x00dev, ARCSR4, &reg);
356 rt2x00_set_field32(&reg, ARCSR4_SIGNAL, 0x02 | preamble_mask);
357 rt2x00_set_field32(&reg, ARCSR4_SERVICE, 0x04);
358 rt2x00_set_field32(&reg, ARCSR2_LENGTH,
359 GET_DURATION(ACK_SIZE, 55));
360 rt2x00pci_register_write(rt2x00dev, ARCSR4, reg);
361
362 rt2x00pci_register_read(rt2x00dev, ARCSR5, &reg);
363 rt2x00_set_field32(&reg, ARCSR5_SIGNAL, 0x03 | preamble_mask);
364 rt2x00_set_field32(&reg, ARCSR5_SERVICE, 0x84);
365 rt2x00_set_field32(&reg, ARCSR2_LENGTH,
366 GET_DURATION(ACK_SIZE, 110));
367 rt2x00pci_register_write(rt2x00dev, ARCSR5, reg);
368 }
369
370 if (changed & BSS_CHANGED_BASIC_RATES)
371 rt2x00pci_register_write(rt2x00dev, ARCSR1, erp->basic_rates);
372
373 if (changed & BSS_CHANGED_ERP_SLOT) {
374 rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
375 rt2x00_set_field32(&reg, CSR11_SLOT_TIME, erp->slot_time);
376 rt2x00pci_register_write(rt2x00dev, CSR11, reg);
377
378 rt2x00pci_register_read(rt2x00dev, CSR18, &reg);
379 rt2x00_set_field32(&reg, CSR18_SIFS, erp->sifs);
380 rt2x00_set_field32(&reg, CSR18_PIFS, erp->pifs);
381 rt2x00pci_register_write(rt2x00dev, CSR18, reg);
382
383 rt2x00pci_register_read(rt2x00dev, CSR19, &reg);
384 rt2x00_set_field32(&reg, CSR19_DIFS, erp->difs);
385 rt2x00_set_field32(&reg, CSR19_EIFS, erp->eifs);
386 rt2x00pci_register_write(rt2x00dev, CSR19, reg);
387 }
388
389 if (changed & BSS_CHANGED_BEACON_INT) {
390 rt2x00pci_register_read(rt2x00dev, CSR12, &reg);
391 rt2x00_set_field32(&reg, CSR12_BEACON_INTERVAL,
392 erp->beacon_int * 16);
393 rt2x00_set_field32(&reg, CSR12_CFP_MAX_DURATION,
394 erp->beacon_int * 16);
395 rt2x00pci_register_write(rt2x00dev, CSR12, reg);
396 }
397 }
398
399 static void rt2400pci_config_ant(struct rt2x00_dev *rt2x00dev,
400 struct antenna_setup *ant)
401 {
402 u8 r1;
403 u8 r4;
404
405 /*
406 * We should never come here because rt2x00lib is supposed
407 * to catch this and send us the correct antenna explicitely.
408 */
409 BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
410 ant->tx == ANTENNA_SW_DIVERSITY);
411
412 rt2400pci_bbp_read(rt2x00dev, 4, &r4);
413 rt2400pci_bbp_read(rt2x00dev, 1, &r1);
414
415 /*
416 * Configure the TX antenna.
417 */
418 switch (ant->tx) {
419 case ANTENNA_HW_DIVERSITY:
420 rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 1);
421 break;
422 case ANTENNA_A:
423 rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 0);
424 break;
425 case ANTENNA_B:
426 default:
427 rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 2);
428 break;
429 }
430
431 /*
432 * Configure the RX antenna.
433 */
434 switch (ant->rx) {
435 case ANTENNA_HW_DIVERSITY:
436 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 1);
437 break;
438 case ANTENNA_A:
439 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 0);
440 break;
441 case ANTENNA_B:
442 default:
443 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 2);
444 break;
445 }
446
447 rt2400pci_bbp_write(rt2x00dev, 4, r4);
448 rt2400pci_bbp_write(rt2x00dev, 1, r1);
449 }
450
451 static void rt2400pci_config_channel(struct rt2x00_dev *rt2x00dev,
452 struct rf_channel *rf)
453 {
454 /*
455 * Switch on tuning bits.
456 */
457 rt2x00_set_field32(&rf->rf1, RF1_TUNER, 1);
458 rt2x00_set_field32(&rf->rf3, RF3_TUNER, 1);
459
460 rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
461 rt2400pci_rf_write(rt2x00dev, 2, rf->rf2);
462 rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
463
464 /*
465 * RF2420 chipset don't need any additional actions.
466 */
467 if (rt2x00_rf(rt2x00dev, RF2420))
468 return;
469
470 /*
471 * For the RT2421 chipsets we need to write an invalid
472 * reference clock rate to activate auto_tune.
473 * After that we set the value back to the correct channel.
474 */
475 rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
476 rt2400pci_rf_write(rt2x00dev, 2, 0x000c2a32);
477 rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
478
479 msleep(1);
480
481 rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
482 rt2400pci_rf_write(rt2x00dev, 2, rf->rf2);
483 rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
484
485 msleep(1);
486
487 /*
488 * Switch off tuning bits.
489 */
490 rt2x00_set_field32(&rf->rf1, RF1_TUNER, 0);
491 rt2x00_set_field32(&rf->rf3, RF3_TUNER, 0);
492
493 rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
494 rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
495
496 /*
497 * Clear false CRC during channel switch.
498 */
499 rt2x00pci_register_read(rt2x00dev, CNT0, &rf->rf1);
500 }
501
502 static void rt2400pci_config_txpower(struct rt2x00_dev *rt2x00dev, int txpower)
503 {
504 rt2400pci_bbp_write(rt2x00dev, 3, TXPOWER_TO_DEV(txpower));
505 }
506
507 static void rt2400pci_config_retry_limit(struct rt2x00_dev *rt2x00dev,
508 struct rt2x00lib_conf *libconf)
509 {
510 u32 reg;
511
512 rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
513 rt2x00_set_field32(&reg, CSR11_LONG_RETRY,
514 libconf->conf->long_frame_max_tx_count);
515 rt2x00_set_field32(&reg, CSR11_SHORT_RETRY,
516 libconf->conf->short_frame_max_tx_count);
517 rt2x00pci_register_write(rt2x00dev, CSR11, reg);
518 }
519
520 static void rt2400pci_config_ps(struct rt2x00_dev *rt2x00dev,
521 struct rt2x00lib_conf *libconf)
522 {
523 enum dev_state state =
524 (libconf->conf->flags & IEEE80211_CONF_PS) ?
525 STATE_SLEEP : STATE_AWAKE;
526 u32 reg;
527
528 if (state == STATE_SLEEP) {
529 rt2x00pci_register_read(rt2x00dev, CSR20, &reg);
530 rt2x00_set_field32(&reg, CSR20_DELAY_AFTER_TBCN,
531 (rt2x00dev->beacon_int - 20) * 16);
532 rt2x00_set_field32(&reg, CSR20_TBCN_BEFORE_WAKEUP,
533 libconf->conf->listen_interval - 1);
534
535 /* We must first disable autowake before it can be enabled */
536 rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 0);
537 rt2x00pci_register_write(rt2x00dev, CSR20, reg);
538
539 rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 1);
540 rt2x00pci_register_write(rt2x00dev, CSR20, reg);
541 } else {
542 rt2x00pci_register_read(rt2x00dev, CSR20, &reg);
543 rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 0);
544 rt2x00pci_register_write(rt2x00dev, CSR20, reg);
545 }
546
547 rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
548 }
549
550 static void rt2400pci_config(struct rt2x00_dev *rt2x00dev,
551 struct rt2x00lib_conf *libconf,
552 const unsigned int flags)
553 {
554 if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
555 rt2400pci_config_channel(rt2x00dev, &libconf->rf);
556 if (flags & IEEE80211_CONF_CHANGE_POWER)
557 rt2400pci_config_txpower(rt2x00dev,
558 libconf->conf->power_level);
559 if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
560 rt2400pci_config_retry_limit(rt2x00dev, libconf);
561 if (flags & IEEE80211_CONF_CHANGE_PS)
562 rt2400pci_config_ps(rt2x00dev, libconf);
563 }
564
565 static void rt2400pci_config_cw(struct rt2x00_dev *rt2x00dev,
566 const int cw_min, const int cw_max)
567 {
568 u32 reg;
569
570 rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
571 rt2x00_set_field32(&reg, CSR11_CWMIN, cw_min);
572 rt2x00_set_field32(&reg, CSR11_CWMAX, cw_max);
573 rt2x00pci_register_write(rt2x00dev, CSR11, reg);
574 }
575
576 /*
577 * Link tuning
578 */
579 static void rt2400pci_link_stats(struct rt2x00_dev *rt2x00dev,
580 struct link_qual *qual)
581 {
582 u32 reg;
583 u8 bbp;
584
585 /*
586 * Update FCS error count from register.
587 */
588 rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
589 qual->rx_failed = rt2x00_get_field32(reg, CNT0_FCS_ERROR);
590
591 /*
592 * Update False CCA count from register.
593 */
594 rt2400pci_bbp_read(rt2x00dev, 39, &bbp);
595 qual->false_cca = bbp;
596 }
597
598 static inline void rt2400pci_set_vgc(struct rt2x00_dev *rt2x00dev,
599 struct link_qual *qual, u8 vgc_level)
600 {
601 if (qual->vgc_level_reg != vgc_level) {
602 rt2400pci_bbp_write(rt2x00dev, 13, vgc_level);
603 qual->vgc_level = vgc_level;
604 qual->vgc_level_reg = vgc_level;
605 }
606 }
607
608 static void rt2400pci_reset_tuner(struct rt2x00_dev *rt2x00dev,
609 struct link_qual *qual)
610 {
611 rt2400pci_set_vgc(rt2x00dev, qual, 0x08);
612 }
613
614 static void rt2400pci_link_tuner(struct rt2x00_dev *rt2x00dev,
615 struct link_qual *qual, const u32 count)
616 {
617 /*
618 * The link tuner should not run longer then 60 seconds,
619 * and should run once every 2 seconds.
620 */
621 if (count > 60 || !(count & 1))
622 return;
623
624 /*
625 * Base r13 link tuning on the false cca count.
626 */
627 if ((qual->false_cca > 512) && (qual->vgc_level < 0x20))
628 rt2400pci_set_vgc(rt2x00dev, qual, ++qual->vgc_level);
629 else if ((qual->false_cca < 100) && (qual->vgc_level > 0x08))
630 rt2400pci_set_vgc(rt2x00dev, qual, --qual->vgc_level);
631 }
632
633 /*
634 * Queue handlers.
635 */
636 static void rt2400pci_start_queue(struct data_queue *queue)
637 {
638 struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
639 u32 reg;
640
641 switch (queue->qid) {
642 case QID_RX:
643 rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
644 rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX, 0);
645 rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
646 break;
647 case QID_BEACON:
648 /*
649 * Allow the tbtt tasklet to be scheduled.
650 */
651 tasklet_enable(&rt2x00dev->tbtt_tasklet);
652
653 rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
654 rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
655 rt2x00_set_field32(&reg, CSR14_TBCN, 1);
656 rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
657 rt2x00pci_register_write(rt2x00dev, CSR14, reg);
658 break;
659 default:
660 break;
661 }
662 }
663
664 static void rt2400pci_kick_queue(struct data_queue *queue)
665 {
666 struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
667 u32 reg;
668
669 switch (queue->qid) {
670 case QID_AC_VO:
671 rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
672 rt2x00_set_field32(&reg, TXCSR0_KICK_PRIO, 1);
673 rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
674 break;
675 case QID_AC_VI:
676 rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
677 rt2x00_set_field32(&reg, TXCSR0_KICK_TX, 1);
678 rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
679 break;
680 case QID_ATIM:
681 rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
682 rt2x00_set_field32(&reg, TXCSR0_KICK_ATIM, 1);
683 rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
684 break;
685 default:
686 break;
687 }
688 }
689
690 static void rt2400pci_stop_queue(struct data_queue *queue)
691 {
692 struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
693 u32 reg;
694
695 switch (queue->qid) {
696 case QID_AC_VO:
697 case QID_AC_VI:
698 case QID_ATIM:
699 rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
700 rt2x00_set_field32(&reg, TXCSR0_ABORT, 1);
701 rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
702 break;
703 case QID_RX:
704 rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
705 rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX, 1);
706 rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
707 break;
708 case QID_BEACON:
709 rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
710 rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
711 rt2x00_set_field32(&reg, CSR14_TBCN, 0);
712 rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
713 rt2x00pci_register_write(rt2x00dev, CSR14, reg);
714
715 /*
716 * Wait for possibly running tbtt tasklets.
717 */
718 tasklet_disable(&rt2x00dev->tbtt_tasklet);
719 break;
720 default:
721 break;
722 }
723 }
724
725 /*
726 * Initialization functions.
727 */
728 static bool rt2400pci_get_entry_state(struct queue_entry *entry)
729 {
730 struct queue_entry_priv_pci *entry_priv = entry->priv_data;
731 u32 word;
732
733 if (entry->queue->qid == QID_RX) {
734 rt2x00_desc_read(entry_priv->desc, 0, &word);
735
736 return rt2x00_get_field32(word, RXD_W0_OWNER_NIC);
737 } else {
738 rt2x00_desc_read(entry_priv->desc, 0, &word);
739
740 return (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
741 rt2x00_get_field32(word, TXD_W0_VALID));
742 }
743 }
744
745 static void rt2400pci_clear_entry(struct queue_entry *entry)
746 {
747 struct queue_entry_priv_pci *entry_priv = entry->priv_data;
748 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
749 u32 word;
750
751 if (entry->queue->qid == QID_RX) {
752 rt2x00_desc_read(entry_priv->desc, 2, &word);
753 rt2x00_set_field32(&word, RXD_W2_BUFFER_LENGTH, entry->skb->len);
754 rt2x00_desc_write(entry_priv->desc, 2, word);
755
756 rt2x00_desc_read(entry_priv->desc, 1, &word);
757 rt2x00_set_field32(&word, RXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
758 rt2x00_desc_write(entry_priv->desc, 1, word);
759
760 rt2x00_desc_read(entry_priv->desc, 0, &word);
761 rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
762 rt2x00_desc_write(entry_priv->desc, 0, word);
763 } else {
764 rt2x00_desc_read(entry_priv->desc, 0, &word);
765 rt2x00_set_field32(&word, TXD_W0_VALID, 0);
766 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
767 rt2x00_desc_write(entry_priv->desc, 0, word);
768 }
769 }
770
771 static int rt2400pci_init_queues(struct rt2x00_dev *rt2x00dev)
772 {
773 struct queue_entry_priv_pci *entry_priv;
774 u32 reg;
775
776 /*
777 * Initialize registers.
778 */
779 rt2x00pci_register_read(rt2x00dev, TXCSR2, &reg);
780 rt2x00_set_field32(&reg, TXCSR2_TXD_SIZE, rt2x00dev->tx[0].desc_size);
781 rt2x00_set_field32(&reg, TXCSR2_NUM_TXD, rt2x00dev->tx[1].limit);
782 rt2x00_set_field32(&reg, TXCSR2_NUM_ATIM, rt2x00dev->atim->limit);
783 rt2x00_set_field32(&reg, TXCSR2_NUM_PRIO, rt2x00dev->tx[0].limit);
784 rt2x00pci_register_write(rt2x00dev, TXCSR2, reg);
785
786 entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
787 rt2x00pci_register_read(rt2x00dev, TXCSR3, &reg);
788 rt2x00_set_field32(&reg, TXCSR3_TX_RING_REGISTER,
789 entry_priv->desc_dma);
790 rt2x00pci_register_write(rt2x00dev, TXCSR3, reg);
791
792 entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
793 rt2x00pci_register_read(rt2x00dev, TXCSR5, &reg);
794 rt2x00_set_field32(&reg, TXCSR5_PRIO_RING_REGISTER,
795 entry_priv->desc_dma);
796 rt2x00pci_register_write(rt2x00dev, TXCSR5, reg);
797
798 entry_priv = rt2x00dev->atim->entries[0].priv_data;
799 rt2x00pci_register_read(rt2x00dev, TXCSR4, &reg);
800 rt2x00_set_field32(&reg, TXCSR4_ATIM_RING_REGISTER,
801 entry_priv->desc_dma);
802 rt2x00pci_register_write(rt2x00dev, TXCSR4, reg);
803
804 entry_priv = rt2x00dev->bcn->entries[0].priv_data;
805 rt2x00pci_register_read(rt2x00dev, TXCSR6, &reg);
806 rt2x00_set_field32(&reg, TXCSR6_BEACON_RING_REGISTER,
807 entry_priv->desc_dma);
808 rt2x00pci_register_write(rt2x00dev, TXCSR6, reg);
809
810 rt2x00pci_register_read(rt2x00dev, RXCSR1, &reg);
811 rt2x00_set_field32(&reg, RXCSR1_RXD_SIZE, rt2x00dev->rx->desc_size);
812 rt2x00_set_field32(&reg, RXCSR1_NUM_RXD, rt2x00dev->rx->limit);
813 rt2x00pci_register_write(rt2x00dev, RXCSR1, reg);
814
815 entry_priv = rt2x00dev->rx->entries[0].priv_data;
816 rt2x00pci_register_read(rt2x00dev, RXCSR2, &reg);
817 rt2x00_set_field32(&reg, RXCSR2_RX_RING_REGISTER,
818 entry_priv->desc_dma);
819 rt2x00pci_register_write(rt2x00dev, RXCSR2, reg);
820
821 return 0;
822 }
823
824 static int rt2400pci_init_registers(struct rt2x00_dev *rt2x00dev)
825 {
826 u32 reg;
827
828 rt2x00pci_register_write(rt2x00dev, PSCSR0, 0x00020002);
829 rt2x00pci_register_write(rt2x00dev, PSCSR1, 0x00000002);
830 rt2x00pci_register_write(rt2x00dev, PSCSR2, 0x00023f20);
831 rt2x00pci_register_write(rt2x00dev, PSCSR3, 0x00000002);
832
833 rt2x00pci_register_read(rt2x00dev, TIMECSR, &reg);
834 rt2x00_set_field32(&reg, TIMECSR_US_COUNT, 33);
835 rt2x00_set_field32(&reg, TIMECSR_US_64_COUNT, 63);
836 rt2x00_set_field32(&reg, TIMECSR_BEACON_EXPECT, 0);
837 rt2x00pci_register_write(rt2x00dev, TIMECSR, reg);
838
839 rt2x00pci_register_read(rt2x00dev, CSR9, &reg);
840 rt2x00_set_field32(&reg, CSR9_MAX_FRAME_UNIT,
841 (rt2x00dev->rx->data_size / 128));
842 rt2x00pci_register_write(rt2x00dev, CSR9, reg);
843
844 rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
845 rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
846 rt2x00_set_field32(&reg, CSR14_TSF_SYNC, 0);
847 rt2x00_set_field32(&reg, CSR14_TBCN, 0);
848 rt2x00_set_field32(&reg, CSR14_TCFP, 0);
849 rt2x00_set_field32(&reg, CSR14_TATIMW, 0);
850 rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
851 rt2x00_set_field32(&reg, CSR14_CFP_COUNT_PRELOAD, 0);
852 rt2x00_set_field32(&reg, CSR14_TBCM_PRELOAD, 0);
853 rt2x00pci_register_write(rt2x00dev, CSR14, reg);
854
855 rt2x00pci_register_write(rt2x00dev, CNT3, 0x3f080000);
856
857 rt2x00pci_register_read(rt2x00dev, ARCSR0, &reg);
858 rt2x00_set_field32(&reg, ARCSR0_AR_BBP_DATA0, 133);
859 rt2x00_set_field32(&reg, ARCSR0_AR_BBP_ID0, 134);
860 rt2x00_set_field32(&reg, ARCSR0_AR_BBP_DATA1, 136);
861 rt2x00_set_field32(&reg, ARCSR0_AR_BBP_ID1, 135);
862 rt2x00pci_register_write(rt2x00dev, ARCSR0, reg);
863
864 rt2x00pci_register_read(rt2x00dev, RXCSR3, &reg);
865 rt2x00_set_field32(&reg, RXCSR3_BBP_ID0, 3); /* Tx power.*/
866 rt2x00_set_field32(&reg, RXCSR3_BBP_ID0_VALID, 1);
867 rt2x00_set_field32(&reg, RXCSR3_BBP_ID1, 32); /* Signal */
868 rt2x00_set_field32(&reg, RXCSR3_BBP_ID1_VALID, 1);
869 rt2x00_set_field32(&reg, RXCSR3_BBP_ID2, 36); /* Rssi */
870 rt2x00_set_field32(&reg, RXCSR3_BBP_ID2_VALID, 1);
871 rt2x00pci_register_write(rt2x00dev, RXCSR3, reg);
872
873 rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0x3f3b3100);
874
875 if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
876 return -EBUSY;
877
878 rt2x00pci_register_write(rt2x00dev, MACCSR0, 0x00217223);
879 rt2x00pci_register_write(rt2x00dev, MACCSR1, 0x00235518);
880
881 rt2x00pci_register_read(rt2x00dev, MACCSR2, &reg);
882 rt2x00_set_field32(&reg, MACCSR2_DELAY, 64);
883 rt2x00pci_register_write(rt2x00dev, MACCSR2, reg);
884
885 rt2x00pci_register_read(rt2x00dev, RALINKCSR, &reg);
886 rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA0, 17);
887 rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID0, 154);
888 rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA1, 0);
889 rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID1, 154);
890 rt2x00pci_register_write(rt2x00dev, RALINKCSR, reg);
891
892 rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
893 rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 1);
894 rt2x00_set_field32(&reg, CSR1_BBP_RESET, 0);
895 rt2x00_set_field32(&reg, CSR1_HOST_READY, 0);
896 rt2x00pci_register_write(rt2x00dev, CSR1, reg);
897
898 rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
899 rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 0);
900 rt2x00_set_field32(&reg, CSR1_HOST_READY, 1);
901 rt2x00pci_register_write(rt2x00dev, CSR1, reg);
902
903 /*
904 * We must clear the FCS and FIFO error count.
905 * These registers are cleared on read,
906 * so we may pass a useless variable to store the value.
907 */
908 rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
909 rt2x00pci_register_read(rt2x00dev, CNT4, &reg);
910
911 return 0;
912 }
913
914 static int rt2400pci_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
915 {
916 unsigned int i;
917 u8 value;
918
919 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
920 rt2400pci_bbp_read(rt2x00dev, 0, &value);
921 if ((value != 0xff) && (value != 0x00))
922 return 0;
923 udelay(REGISTER_BUSY_DELAY);
924 }
925
926 ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
927 return -EACCES;
928 }
929
930 static int rt2400pci_init_bbp(struct rt2x00_dev *rt2x00dev)
931 {
932 unsigned int i;
933 u16 eeprom;
934 u8 reg_id;
935 u8 value;
936
937 if (unlikely(rt2400pci_wait_bbp_ready(rt2x00dev)))
938 return -EACCES;
939
940 rt2400pci_bbp_write(rt2x00dev, 1, 0x00);
941 rt2400pci_bbp_write(rt2x00dev, 3, 0x27);
942 rt2400pci_bbp_write(rt2x00dev, 4, 0x08);
943 rt2400pci_bbp_write(rt2x00dev, 10, 0x0f);
944 rt2400pci_bbp_write(rt2x00dev, 15, 0x72);
945 rt2400pci_bbp_write(rt2x00dev, 16, 0x74);
946 rt2400pci_bbp_write(rt2x00dev, 17, 0x20);
947 rt2400pci_bbp_write(rt2x00dev, 18, 0x72);
948 rt2400pci_bbp_write(rt2x00dev, 19, 0x0b);
949 rt2400pci_bbp_write(rt2x00dev, 20, 0x00);
950 rt2400pci_bbp_write(rt2x00dev, 28, 0x11);
951 rt2400pci_bbp_write(rt2x00dev, 29, 0x04);
952 rt2400pci_bbp_write(rt2x00dev, 30, 0x21);
953 rt2400pci_bbp_write(rt2x00dev, 31, 0x00);
954
955 for (i = 0; i < EEPROM_BBP_SIZE; i++) {
956 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
957
958 if (eeprom != 0xffff && eeprom != 0x0000) {
959 reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
960 value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
961 rt2400pci_bbp_write(rt2x00dev, reg_id, value);
962 }
963 }
964
965 return 0;
966 }
967
968 /*
969 * Device state switch handlers.
970 */
971 static void rt2400pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
972 enum dev_state state)
973 {
974 int mask = (state == STATE_RADIO_IRQ_OFF);
975 u32 reg;
976 unsigned long flags;
977
978 /*
979 * When interrupts are being enabled, the interrupt registers
980 * should clear the register to assure a clean state.
981 */
982 if (state == STATE_RADIO_IRQ_ON) {
983 rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
984 rt2x00pci_register_write(rt2x00dev, CSR7, reg);
985
986 /*
987 * Enable tasklets.
988 */
989 tasklet_enable(&rt2x00dev->txstatus_tasklet);
990 tasklet_enable(&rt2x00dev->rxdone_tasklet);
991 }
992
993 /*
994 * Only toggle the interrupts bits we are going to use.
995 * Non-checked interrupt bits are disabled by default.
996 */
997 spin_lock_irqsave(&rt2x00dev->irqmask_lock, flags);
998
999 rt2x00pci_register_read(rt2x00dev, CSR8, &reg);
1000 rt2x00_set_field32(&reg, CSR8_TBCN_EXPIRE, mask);
1001 rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, mask);
1002 rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, mask);
1003 rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, mask);
1004 rt2x00_set_field32(&reg, CSR8_RXDONE, mask);
1005 rt2x00pci_register_write(rt2x00dev, CSR8, reg);
1006
1007 spin_unlock_irqrestore(&rt2x00dev->irqmask_lock, flags);
1008
1009 if (state == STATE_RADIO_IRQ_OFF) {
1010 /*
1011 * Ensure that all tasklets are finished before
1012 * disabling the interrupts.
1013 */
1014 tasklet_disable(&rt2x00dev->txstatus_tasklet);
1015 tasklet_disable(&rt2x00dev->rxdone_tasklet);
1016 }
1017 }
1018
1019 static int rt2400pci_enable_radio(struct rt2x00_dev *rt2x00dev)
1020 {
1021 /*
1022 * Initialize all registers.
1023 */
1024 if (unlikely(rt2400pci_init_queues(rt2x00dev) ||
1025 rt2400pci_init_registers(rt2x00dev) ||
1026 rt2400pci_init_bbp(rt2x00dev)))
1027 return -EIO;
1028
1029 return 0;
1030 }
1031
1032 static void rt2400pci_disable_radio(struct rt2x00_dev *rt2x00dev)
1033 {
1034 /*
1035 * Disable power
1036 */
1037 rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0);
1038 }
1039
1040 static int rt2400pci_set_state(struct rt2x00_dev *rt2x00dev,
1041 enum dev_state state)
1042 {
1043 u32 reg, reg2;
1044 unsigned int i;
1045 char put_to_sleep;
1046 char bbp_state;
1047 char rf_state;
1048
1049 put_to_sleep = (state != STATE_AWAKE);
1050
1051 rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
1052 rt2x00_set_field32(&reg, PWRCSR1_SET_STATE, 1);
1053 rt2x00_set_field32(&reg, PWRCSR1_BBP_DESIRE_STATE, state);
1054 rt2x00_set_field32(&reg, PWRCSR1_RF_DESIRE_STATE, state);
1055 rt2x00_set_field32(&reg, PWRCSR1_PUT_TO_SLEEP, put_to_sleep);
1056 rt2x00pci_register_write(rt2x00dev, PWRCSR1, reg);
1057
1058 /*
1059 * Device is not guaranteed to be in the requested state yet.
1060 * We must wait until the register indicates that the
1061 * device has entered the correct state.
1062 */
1063 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1064 rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg2);
1065 bbp_state = rt2x00_get_field32(reg2, PWRCSR1_BBP_CURR_STATE);
1066 rf_state = rt2x00_get_field32(reg2, PWRCSR1_RF_CURR_STATE);
1067 if (bbp_state == state && rf_state == state)
1068 return 0;
1069 rt2x00pci_register_write(rt2x00dev, PWRCSR1, reg);
1070 msleep(10);
1071 }
1072
1073 return -EBUSY;
1074 }
1075
1076 static int rt2400pci_set_device_state(struct rt2x00_dev *rt2x00dev,
1077 enum dev_state state)
1078 {
1079 int retval = 0;
1080
1081 switch (state) {
1082 case STATE_RADIO_ON:
1083 retval = rt2400pci_enable_radio(rt2x00dev);
1084 break;
1085 case STATE_RADIO_OFF:
1086 rt2400pci_disable_radio(rt2x00dev);
1087 break;
1088 case STATE_RADIO_IRQ_ON:
1089 case STATE_RADIO_IRQ_OFF:
1090 rt2400pci_toggle_irq(rt2x00dev, state);
1091 break;
1092 case STATE_DEEP_SLEEP:
1093 case STATE_SLEEP:
1094 case STATE_STANDBY:
1095 case STATE_AWAKE:
1096 retval = rt2400pci_set_state(rt2x00dev, state);
1097 break;
1098 default:
1099 retval = -ENOTSUPP;
1100 break;
1101 }
1102
1103 if (unlikely(retval))
1104 ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
1105 state, retval);
1106
1107 return retval;
1108 }
1109
1110 /*
1111 * TX descriptor initialization
1112 */
1113 static void rt2400pci_write_tx_desc(struct queue_entry *entry,
1114 struct txentry_desc *txdesc)
1115 {
1116 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1117 struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1118 __le32 *txd = entry_priv->desc;
1119 u32 word;
1120
1121 /*
1122 * Start writing the descriptor words.
1123 */
1124 rt2x00_desc_read(txd, 1, &word);
1125 rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
1126 rt2x00_desc_write(txd, 1, word);
1127
1128 rt2x00_desc_read(txd, 2, &word);
1129 rt2x00_set_field32(&word, TXD_W2_BUFFER_LENGTH, txdesc->length);
1130 rt2x00_set_field32(&word, TXD_W2_DATABYTE_COUNT, txdesc->length);
1131 rt2x00_desc_write(txd, 2, word);
1132
1133 rt2x00_desc_read(txd, 3, &word);
1134 rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL, txdesc->u.plcp.signal);
1135 rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL_REGNUM, 5);
1136 rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL_BUSY, 1);
1137 rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE, txdesc->u.plcp.service);
1138 rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE_REGNUM, 6);
1139 rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE_BUSY, 1);
1140 rt2x00_desc_write(txd, 3, word);
1141
1142 rt2x00_desc_read(txd, 4, &word);
1143 rt2x00_set_field32(&word, TXD_W4_PLCP_LENGTH_LOW,
1144 txdesc->u.plcp.length_low);
1145 rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW_REGNUM, 8);
1146 rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW_BUSY, 1);
1147 rt2x00_set_field32(&word, TXD_W4_PLCP_LENGTH_HIGH,
1148 txdesc->u.plcp.length_high);
1149 rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH_REGNUM, 7);
1150 rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH_BUSY, 1);
1151 rt2x00_desc_write(txd, 4, word);
1152
1153 /*
1154 * Writing TXD word 0 must the last to prevent a race condition with
1155 * the device, whereby the device may take hold of the TXD before we
1156 * finished updating it.
1157 */
1158 rt2x00_desc_read(txd, 0, &word);
1159 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
1160 rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1161 rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1162 test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1163 rt2x00_set_field32(&word, TXD_W0_ACK,
1164 test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1165 rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1166 test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1167 rt2x00_set_field32(&word, TXD_W0_RTS,
1168 test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags));
1169 rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->u.plcp.ifs);
1170 rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1171 test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
1172 rt2x00_desc_write(txd, 0, word);
1173
1174 /*
1175 * Register descriptor details in skb frame descriptor.
1176 */
1177 skbdesc->desc = txd;
1178 skbdesc->desc_len = TXD_DESC_SIZE;
1179 }
1180
1181 /*
1182 * TX data initialization
1183 */
1184 static void rt2400pci_write_beacon(struct queue_entry *entry,
1185 struct txentry_desc *txdesc)
1186 {
1187 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1188 u32 reg;
1189
1190 /*
1191 * Disable beaconing while we are reloading the beacon data,
1192 * otherwise we might be sending out invalid data.
1193 */
1194 rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
1195 rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
1196 rt2x00pci_register_write(rt2x00dev, CSR14, reg);
1197
1198 rt2x00queue_map_txskb(entry);
1199
1200 /*
1201 * Write the TX descriptor for the beacon.
1202 */
1203 rt2400pci_write_tx_desc(entry, txdesc);
1204
1205 /*
1206 * Dump beacon to userspace through debugfs.
1207 */
1208 rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry->skb);
1209
1210 /*
1211 * Enable beaconing again.
1212 */
1213 rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
1214 rt2x00pci_register_write(rt2x00dev, CSR14, reg);
1215 }
1216
1217 /*
1218 * RX control handlers
1219 */
1220 static void rt2400pci_fill_rxdone(struct queue_entry *entry,
1221 struct rxdone_entry_desc *rxdesc)
1222 {
1223 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1224 struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1225 u32 word0;
1226 u32 word2;
1227 u32 word3;
1228 u32 word4;
1229 u64 tsf;
1230 u32 rx_low;
1231 u32 rx_high;
1232
1233 rt2x00_desc_read(entry_priv->desc, 0, &word0);
1234 rt2x00_desc_read(entry_priv->desc, 2, &word2);
1235 rt2x00_desc_read(entry_priv->desc, 3, &word3);
1236 rt2x00_desc_read(entry_priv->desc, 4, &word4);
1237
1238 if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1239 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1240 if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
1241 rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
1242
1243 /*
1244 * We only get the lower 32bits from the timestamp,
1245 * to get the full 64bits we must complement it with
1246 * the timestamp from get_tsf().
1247 * Note that when a wraparound of the lower 32bits
1248 * has occurred between the frame arrival and the get_tsf()
1249 * call, we must decrease the higher 32bits with 1 to get
1250 * to correct value.
1251 */
1252 tsf = rt2x00dev->ops->hw->get_tsf(rt2x00dev->hw);
1253 rx_low = rt2x00_get_field32(word4, RXD_W4_RX_END_TIME);
1254 rx_high = upper_32_bits(tsf);
1255
1256 if ((u32)tsf <= rx_low)
1257 rx_high--;
1258
1259 /*
1260 * Obtain the status about this packet.
1261 * The signal is the PLCP value, and needs to be stripped
1262 * of the preamble bit (0x08).
1263 */
1264 rxdesc->timestamp = ((u64)rx_high << 32) | rx_low;
1265 rxdesc->signal = rt2x00_get_field32(word2, RXD_W2_SIGNAL) & ~0x08;
1266 rxdesc->rssi = rt2x00_get_field32(word2, RXD_W3_RSSI) -
1267 entry->queue->rt2x00dev->rssi_offset;
1268 rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1269
1270 rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
1271 if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
1272 rxdesc->dev_flags |= RXDONE_MY_BSS;
1273 }
1274
1275 /*
1276 * Interrupt functions.
1277 */
1278 static void rt2400pci_txdone(struct rt2x00_dev *rt2x00dev,
1279 const enum data_queue_qid queue_idx)
1280 {
1281 struct data_queue *queue = rt2x00queue_get_tx_queue(rt2x00dev, queue_idx);
1282 struct queue_entry_priv_pci *entry_priv;
1283 struct queue_entry *entry;
1284 struct txdone_entry_desc txdesc;
1285 u32 word;
1286
1287 while (!rt2x00queue_empty(queue)) {
1288 entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
1289 entry_priv = entry->priv_data;
1290 rt2x00_desc_read(entry_priv->desc, 0, &word);
1291
1292 if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
1293 !rt2x00_get_field32(word, TXD_W0_VALID))
1294 break;
1295
1296 /*
1297 * Obtain the status about this packet.
1298 */
1299 txdesc.flags = 0;
1300 switch (rt2x00_get_field32(word, TXD_W0_RESULT)) {
1301 case 0: /* Success */
1302 case 1: /* Success with retry */
1303 __set_bit(TXDONE_SUCCESS, &txdesc.flags);
1304 break;
1305 case 2: /* Failure, excessive retries */
1306 __set_bit(TXDONE_EXCESSIVE_RETRY, &txdesc.flags);
1307 /* Don't break, this is a failed frame! */
1308 default: /* Failure */
1309 __set_bit(TXDONE_FAILURE, &txdesc.flags);
1310 }
1311 txdesc.retry = rt2x00_get_field32(word, TXD_W0_RETRY_COUNT);
1312
1313 rt2x00lib_txdone(entry, &txdesc);
1314 }
1315 }
1316
1317 static inline void rt2400pci_enable_interrupt(struct rt2x00_dev *rt2x00dev,
1318 struct rt2x00_field32 irq_field)
1319 {
1320 u32 reg;
1321
1322 /*
1323 * Enable a single interrupt. The interrupt mask register
1324 * access needs locking.
1325 */
1326 spin_lock_irq(&rt2x00dev->irqmask_lock);
1327
1328 rt2x00pci_register_read(rt2x00dev, CSR8, &reg);
1329 rt2x00_set_field32(&reg, irq_field, 0);
1330 rt2x00pci_register_write(rt2x00dev, CSR8, reg);
1331
1332 spin_unlock_irq(&rt2x00dev->irqmask_lock);
1333 }
1334
1335 static void rt2400pci_txstatus_tasklet(unsigned long data)
1336 {
1337 struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
1338 u32 reg;
1339
1340 /*
1341 * Handle all tx queues.
1342 */
1343 rt2400pci_txdone(rt2x00dev, QID_ATIM);
1344 rt2400pci_txdone(rt2x00dev, QID_AC_VO);
1345 rt2400pci_txdone(rt2x00dev, QID_AC_VI);
1346
1347 /*
1348 * Enable all TXDONE interrupts again.
1349 */
1350 spin_lock_irq(&rt2x00dev->irqmask_lock);
1351
1352 rt2x00pci_register_read(rt2x00dev, CSR8, &reg);
1353 rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, 0);
1354 rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, 0);
1355 rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, 0);
1356 rt2x00pci_register_write(rt2x00dev, CSR8, reg);
1357
1358 spin_unlock_irq(&rt2x00dev->irqmask_lock);
1359 }
1360
1361 static void rt2400pci_tbtt_tasklet(unsigned long data)
1362 {
1363 struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
1364 rt2x00lib_beacondone(rt2x00dev);
1365 rt2400pci_enable_interrupt(rt2x00dev, CSR8_TBCN_EXPIRE);
1366 }
1367
1368 static void rt2400pci_rxdone_tasklet(unsigned long data)
1369 {
1370 struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
1371 if (rt2x00pci_rxdone(rt2x00dev))
1372 tasklet_schedule(&rt2x00dev->rxdone_tasklet);
1373 else
1374 rt2400pci_enable_interrupt(rt2x00dev, CSR8_RXDONE);
1375 }
1376
1377 static irqreturn_t rt2400pci_interrupt(int irq, void *dev_instance)
1378 {
1379 struct rt2x00_dev *rt2x00dev = dev_instance;
1380 u32 reg, mask;
1381
1382 /*
1383 * Get the interrupt sources & saved to local variable.
1384 * Write register value back to clear pending interrupts.
1385 */
1386 rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
1387 rt2x00pci_register_write(rt2x00dev, CSR7, reg);
1388
1389 if (!reg)
1390 return IRQ_NONE;
1391
1392 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
1393 return IRQ_HANDLED;
1394
1395 mask = reg;
1396
1397 /*
1398 * Schedule tasklets for interrupt handling.
1399 */
1400 if (rt2x00_get_field32(reg, CSR7_TBCN_EXPIRE))
1401 tasklet_hi_schedule(&rt2x00dev->tbtt_tasklet);
1402
1403 if (rt2x00_get_field32(reg, CSR7_RXDONE))
1404 tasklet_schedule(&rt2x00dev->rxdone_tasklet);
1405
1406 if (rt2x00_get_field32(reg, CSR7_TXDONE_ATIMRING) ||
1407 rt2x00_get_field32(reg, CSR7_TXDONE_PRIORING) ||
1408 rt2x00_get_field32(reg, CSR7_TXDONE_TXRING)) {
1409 tasklet_schedule(&rt2x00dev->txstatus_tasklet);
1410 /*
1411 * Mask out all txdone interrupts.
1412 */
1413 rt2x00_set_field32(&mask, CSR8_TXDONE_TXRING, 1);
1414 rt2x00_set_field32(&mask, CSR8_TXDONE_ATIMRING, 1);
1415 rt2x00_set_field32(&mask, CSR8_TXDONE_PRIORING, 1);
1416 }
1417
1418 /*
1419 * Disable all interrupts for which a tasklet was scheduled right now,
1420 * the tasklet will reenable the appropriate interrupts.
1421 */
1422 spin_lock(&rt2x00dev->irqmask_lock);
1423
1424 rt2x00pci_register_read(rt2x00dev, CSR8, &reg);
1425 reg |= mask;
1426 rt2x00pci_register_write(rt2x00dev, CSR8, reg);
1427
1428 spin_unlock(&rt2x00dev->irqmask_lock);
1429
1430
1431
1432 return IRQ_HANDLED;
1433 }
1434
1435 /*
1436 * Device probe functions.
1437 */
1438 static int rt2400pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1439 {
1440 struct eeprom_93cx6 eeprom;
1441 u32 reg;
1442 u16 word;
1443 u8 *mac;
1444
1445 rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
1446
1447 eeprom.data = rt2x00dev;
1448 eeprom.register_read = rt2400pci_eepromregister_read;
1449 eeprom.register_write = rt2400pci_eepromregister_write;
1450 eeprom.width = rt2x00_get_field32(reg, CSR21_TYPE_93C46) ?
1451 PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
1452 eeprom.reg_data_in = 0;
1453 eeprom.reg_data_out = 0;
1454 eeprom.reg_data_clock = 0;
1455 eeprom.reg_chip_select = 0;
1456
1457 eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
1458 EEPROM_SIZE / sizeof(u16));
1459
1460 /*
1461 * Start validation of the data that has been read.
1462 */
1463 mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1464 if (!is_valid_ether_addr(mac)) {
1465 random_ether_addr(mac);
1466 EEPROM(rt2x00dev, "MAC: %pM\n", mac);
1467 }
1468
1469 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
1470 if (word == 0xffff) {
1471 ERROR(rt2x00dev, "Invalid EEPROM data detected.\n");
1472 return -EINVAL;
1473 }
1474
1475 return 0;
1476 }
1477
1478 static int rt2400pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
1479 {
1480 u32 reg;
1481 u16 value;
1482 u16 eeprom;
1483
1484 /*
1485 * Read EEPROM word for configuration.
1486 */
1487 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
1488
1489 /*
1490 * Identify RF chipset.
1491 */
1492 value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1493 rt2x00pci_register_read(rt2x00dev, CSR0, &reg);
1494 rt2x00_set_chip(rt2x00dev, RT2460, value,
1495 rt2x00_get_field32(reg, CSR0_REVISION));
1496
1497 if (!rt2x00_rf(rt2x00dev, RF2420) && !rt2x00_rf(rt2x00dev, RF2421)) {
1498 ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
1499 return -ENODEV;
1500 }
1501
1502 /*
1503 * Identify default antenna configuration.
1504 */
1505 rt2x00dev->default_ant.tx =
1506 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1507 rt2x00dev->default_ant.rx =
1508 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1509
1510 /*
1511 * When the eeprom indicates SW_DIVERSITY use HW_DIVERSITY instead.
1512 * I am not 100% sure about this, but the legacy drivers do not
1513 * indicate antenna swapping in software is required when
1514 * diversity is enabled.
1515 */
1516 if (rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY)
1517 rt2x00dev->default_ant.tx = ANTENNA_HW_DIVERSITY;
1518 if (rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY)
1519 rt2x00dev->default_ant.rx = ANTENNA_HW_DIVERSITY;
1520
1521 /*
1522 * Store led mode, for correct led behaviour.
1523 */
1524 #ifdef CONFIG_RT2X00_LIB_LEDS
1525 value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
1526
1527 rt2400pci_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
1528 if (value == LED_MODE_TXRX_ACTIVITY ||
1529 value == LED_MODE_DEFAULT ||
1530 value == LED_MODE_ASUS)
1531 rt2400pci_init_led(rt2x00dev, &rt2x00dev->led_qual,
1532 LED_TYPE_ACTIVITY);
1533 #endif /* CONFIG_RT2X00_LIB_LEDS */
1534
1535 /*
1536 * Detect if this device has an hardware controlled radio.
1537 */
1538 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
1539 __set_bit(CAPABILITY_HW_BUTTON, &rt2x00dev->cap_flags);
1540
1541 /*
1542 * Check if the BBP tuning should be enabled.
1543 */
1544 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_AGCVGC_TUNING))
1545 __set_bit(CAPABILITY_LINK_TUNING, &rt2x00dev->cap_flags);
1546
1547 return 0;
1548 }
1549
1550 /*
1551 * RF value list for RF2420 & RF2421
1552 * Supports: 2.4 GHz
1553 */
1554 static const struct rf_channel rf_vals_b[] = {
1555 { 1, 0x00022058, 0x000c1fda, 0x00000101, 0 },
1556 { 2, 0x00022058, 0x000c1fee, 0x00000101, 0 },
1557 { 3, 0x00022058, 0x000c2002, 0x00000101, 0 },
1558 { 4, 0x00022058, 0x000c2016, 0x00000101, 0 },
1559 { 5, 0x00022058, 0x000c202a, 0x00000101, 0 },
1560 { 6, 0x00022058, 0x000c203e, 0x00000101, 0 },
1561 { 7, 0x00022058, 0x000c2052, 0x00000101, 0 },
1562 { 8, 0x00022058, 0x000c2066, 0x00000101, 0 },
1563 { 9, 0x00022058, 0x000c207a, 0x00000101, 0 },
1564 { 10, 0x00022058, 0x000c208e, 0x00000101, 0 },
1565 { 11, 0x00022058, 0x000c20a2, 0x00000101, 0 },
1566 { 12, 0x00022058, 0x000c20b6, 0x00000101, 0 },
1567 { 13, 0x00022058, 0x000c20ca, 0x00000101, 0 },
1568 { 14, 0x00022058, 0x000c20fa, 0x00000101, 0 },
1569 };
1570
1571 static int rt2400pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
1572 {
1573 struct hw_mode_spec *spec = &rt2x00dev->spec;
1574 struct channel_info *info;
1575 char *tx_power;
1576 unsigned int i;
1577
1578 /*
1579 * Initialize all hw fields.
1580 */
1581 rt2x00dev->hw->flags = IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
1582 IEEE80211_HW_SIGNAL_DBM |
1583 IEEE80211_HW_SUPPORTS_PS |
1584 IEEE80211_HW_PS_NULLFUNC_STACK;
1585
1586 SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
1587 SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
1588 rt2x00_eeprom_addr(rt2x00dev,
1589 EEPROM_MAC_ADDR_0));
1590
1591 /*
1592 * Initialize hw_mode information.
1593 */
1594 spec->supported_bands = SUPPORT_BAND_2GHZ;
1595 spec->supported_rates = SUPPORT_RATE_CCK;
1596
1597 spec->num_channels = ARRAY_SIZE(rf_vals_b);
1598 spec->channels = rf_vals_b;
1599
1600 /*
1601 * Create channel information array
1602 */
1603 info = kcalloc(spec->num_channels, sizeof(*info), GFP_KERNEL);
1604 if (!info)
1605 return -ENOMEM;
1606
1607 spec->channels_info = info;
1608
1609 tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
1610 for (i = 0; i < 14; i++) {
1611 info[i].max_power = TXPOWER_FROM_DEV(MAX_TXPOWER);
1612 info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]);
1613 }
1614
1615 return 0;
1616 }
1617
1618 static int rt2400pci_probe_hw(struct rt2x00_dev *rt2x00dev)
1619 {
1620 int retval;
1621
1622 /*
1623 * Allocate eeprom data.
1624 */
1625 retval = rt2400pci_validate_eeprom(rt2x00dev);
1626 if (retval)
1627 return retval;
1628
1629 retval = rt2400pci_init_eeprom(rt2x00dev);
1630 if (retval)
1631 return retval;
1632
1633 /*
1634 * Initialize hw specifications.
1635 */
1636 retval = rt2400pci_probe_hw_mode(rt2x00dev);
1637 if (retval)
1638 return retval;
1639
1640 /*
1641 * This device requires the atim queue and DMA-mapped skbs.
1642 */
1643 __set_bit(REQUIRE_ATIM_QUEUE, &rt2x00dev->cap_flags);
1644 __set_bit(REQUIRE_DMA, &rt2x00dev->cap_flags);
1645 __set_bit(REQUIRE_SW_SEQNO, &rt2x00dev->cap_flags);
1646
1647 /*
1648 * Set the rssi offset.
1649 */
1650 rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
1651
1652 return 0;
1653 }
1654
1655 /*
1656 * IEEE80211 stack callback functions.
1657 */
1658 static int rt2400pci_conf_tx(struct ieee80211_hw *hw, u16 queue,
1659 const struct ieee80211_tx_queue_params *params)
1660 {
1661 struct rt2x00_dev *rt2x00dev = hw->priv;
1662
1663 /*
1664 * We don't support variating cw_min and cw_max variables
1665 * per queue. So by default we only configure the TX queue,
1666 * and ignore all other configurations.
1667 */
1668 if (queue != 0)
1669 return -EINVAL;
1670
1671 if (rt2x00mac_conf_tx(hw, queue, params))
1672 return -EINVAL;
1673
1674 /*
1675 * Write configuration to register.
1676 */
1677 rt2400pci_config_cw(rt2x00dev,
1678 rt2x00dev->tx->cw_min, rt2x00dev->tx->cw_max);
1679
1680 return 0;
1681 }
1682
1683 static u64 rt2400pci_get_tsf(struct ieee80211_hw *hw)
1684 {
1685 struct rt2x00_dev *rt2x00dev = hw->priv;
1686 u64 tsf;
1687 u32 reg;
1688
1689 rt2x00pci_register_read(rt2x00dev, CSR17, &reg);
1690 tsf = (u64) rt2x00_get_field32(reg, CSR17_HIGH_TSFTIMER) << 32;
1691 rt2x00pci_register_read(rt2x00dev, CSR16, &reg);
1692 tsf |= rt2x00_get_field32(reg, CSR16_LOW_TSFTIMER);
1693
1694 return tsf;
1695 }
1696
1697 static int rt2400pci_tx_last_beacon(struct ieee80211_hw *hw)
1698 {
1699 struct rt2x00_dev *rt2x00dev = hw->priv;
1700 u32 reg;
1701
1702 rt2x00pci_register_read(rt2x00dev, CSR15, &reg);
1703 return rt2x00_get_field32(reg, CSR15_BEACON_SENT);
1704 }
1705
1706 static const struct ieee80211_ops rt2400pci_mac80211_ops = {
1707 .tx = rt2x00mac_tx,
1708 .start = rt2x00mac_start,
1709 .stop = rt2x00mac_stop,
1710 .add_interface = rt2x00mac_add_interface,
1711 .remove_interface = rt2x00mac_remove_interface,
1712 .config = rt2x00mac_config,
1713 .configure_filter = rt2x00mac_configure_filter,
1714 .sw_scan_start = rt2x00mac_sw_scan_start,
1715 .sw_scan_complete = rt2x00mac_sw_scan_complete,
1716 .get_stats = rt2x00mac_get_stats,
1717 .bss_info_changed = rt2x00mac_bss_info_changed,
1718 .conf_tx = rt2400pci_conf_tx,
1719 .get_tsf = rt2400pci_get_tsf,
1720 .tx_last_beacon = rt2400pci_tx_last_beacon,
1721 .rfkill_poll = rt2x00mac_rfkill_poll,
1722 .flush = rt2x00mac_flush,
1723 .set_antenna = rt2x00mac_set_antenna,
1724 .get_antenna = rt2x00mac_get_antenna,
1725 .get_ringparam = rt2x00mac_get_ringparam,
1726 .tx_frames_pending = rt2x00mac_tx_frames_pending,
1727 };
1728
1729 static const struct rt2x00lib_ops rt2400pci_rt2x00_ops = {
1730 .irq_handler = rt2400pci_interrupt,
1731 .txstatus_tasklet = rt2400pci_txstatus_tasklet,
1732 .tbtt_tasklet = rt2400pci_tbtt_tasklet,
1733 .rxdone_tasklet = rt2400pci_rxdone_tasklet,
1734 .probe_hw = rt2400pci_probe_hw,
1735 .initialize = rt2x00pci_initialize,
1736 .uninitialize = rt2x00pci_uninitialize,
1737 .get_entry_state = rt2400pci_get_entry_state,
1738 .clear_entry = rt2400pci_clear_entry,
1739 .set_device_state = rt2400pci_set_device_state,
1740 .rfkill_poll = rt2400pci_rfkill_poll,
1741 .link_stats = rt2400pci_link_stats,
1742 .reset_tuner = rt2400pci_reset_tuner,
1743 .link_tuner = rt2400pci_link_tuner,
1744 .start_queue = rt2400pci_start_queue,
1745 .kick_queue = rt2400pci_kick_queue,
1746 .stop_queue = rt2400pci_stop_queue,
1747 .flush_queue = rt2x00pci_flush_queue,
1748 .write_tx_desc = rt2400pci_write_tx_desc,
1749 .write_beacon = rt2400pci_write_beacon,
1750 .fill_rxdone = rt2400pci_fill_rxdone,
1751 .config_filter = rt2400pci_config_filter,
1752 .config_intf = rt2400pci_config_intf,
1753 .config_erp = rt2400pci_config_erp,
1754 .config_ant = rt2400pci_config_ant,
1755 .config = rt2400pci_config,
1756 };
1757
1758 static const struct data_queue_desc rt2400pci_queue_rx = {
1759 .entry_num = 24,
1760 .data_size = DATA_FRAME_SIZE,
1761 .desc_size = RXD_DESC_SIZE,
1762 .priv_size = sizeof(struct queue_entry_priv_pci),
1763 };
1764
1765 static const struct data_queue_desc rt2400pci_queue_tx = {
1766 .entry_num = 24,
1767 .data_size = DATA_FRAME_SIZE,
1768 .desc_size = TXD_DESC_SIZE,
1769 .priv_size = sizeof(struct queue_entry_priv_pci),
1770 };
1771
1772 static const struct data_queue_desc rt2400pci_queue_bcn = {
1773 .entry_num = 1,
1774 .data_size = MGMT_FRAME_SIZE,
1775 .desc_size = TXD_DESC_SIZE,
1776 .priv_size = sizeof(struct queue_entry_priv_pci),
1777 };
1778
1779 static const struct data_queue_desc rt2400pci_queue_atim = {
1780 .entry_num = 8,
1781 .data_size = DATA_FRAME_SIZE,
1782 .desc_size = TXD_DESC_SIZE,
1783 .priv_size = sizeof(struct queue_entry_priv_pci),
1784 };
1785
1786 static const struct rt2x00_ops rt2400pci_ops = {
1787 .name = KBUILD_MODNAME,
1788 .max_sta_intf = 1,
1789 .max_ap_intf = 1,
1790 .eeprom_size = EEPROM_SIZE,
1791 .rf_size = RF_SIZE,
1792 .tx_queues = NUM_TX_QUEUES,
1793 .extra_tx_headroom = 0,
1794 .rx = &rt2400pci_queue_rx,
1795 .tx = &rt2400pci_queue_tx,
1796 .bcn = &rt2400pci_queue_bcn,
1797 .atim = &rt2400pci_queue_atim,
1798 .lib = &rt2400pci_rt2x00_ops,
1799 .hw = &rt2400pci_mac80211_ops,
1800 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
1801 .debugfs = &rt2400pci_rt2x00debug,
1802 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1803 };
1804
1805 /*
1806 * RT2400pci module information.
1807 */
1808 static DEFINE_PCI_DEVICE_TABLE(rt2400pci_device_table) = {
1809 { PCI_DEVICE(0x1814, 0x0101) },
1810 { 0, }
1811 };
1812
1813
1814 MODULE_AUTHOR(DRV_PROJECT);
1815 MODULE_VERSION(DRV_VERSION);
1816 MODULE_DESCRIPTION("Ralink RT2400 PCI & PCMCIA Wireless LAN driver.");
1817 MODULE_SUPPORTED_DEVICE("Ralink RT2460 PCI & PCMCIA chipset based cards");
1818 MODULE_DEVICE_TABLE(pci, rt2400pci_device_table);
1819 MODULE_LICENSE("GPL");
1820
1821 static int rt2400pci_probe(struct pci_dev *pci_dev,
1822 const struct pci_device_id *id)
1823 {
1824 return rt2x00pci_probe(pci_dev, &rt2400pci_ops);
1825 }
1826
1827 static struct pci_driver rt2400pci_driver = {
1828 .name = KBUILD_MODNAME,
1829 .id_table = rt2400pci_device_table,
1830 .probe = rt2400pci_probe,
1831 .remove = __devexit_p(rt2x00pci_remove),
1832 .suspend = rt2x00pci_suspend,
1833 .resume = rt2x00pci_resume,
1834 };
1835
1836 static int __init rt2400pci_init(void)
1837 {
1838 return pci_register_driver(&rt2400pci_driver);
1839 }
1840
1841 static void __exit rt2400pci_exit(void)
1842 {
1843 pci_unregister_driver(&rt2400pci_driver);
1844 }
1845
1846 module_init(rt2400pci_init);
1847 module_exit(rt2400pci_exit);
This page took 0.1561 seconds and 6 git commands to generate.