Merge branch 'x86-setup-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[deliverable/linux.git] / drivers / net / wireless / rt2x00 / rt2500pci.c
1 /*
2 Copyright (C) 2004 - 2009 rt2x00 SourceForge Project
3 <http://rt2x00.serialmonkey.com>
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the
17 Free Software Foundation, Inc.,
18 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 */
20
21 /*
22 Module: rt2500pci
23 Abstract: rt2500pci device specific routines.
24 Supported chipsets: RT2560.
25 */
26
27 #include <linux/delay.h>
28 #include <linux/etherdevice.h>
29 #include <linux/init.h>
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/pci.h>
33 #include <linux/eeprom_93cx6.h>
34
35 #include "rt2x00.h"
36 #include "rt2x00pci.h"
37 #include "rt2500pci.h"
38
39 /*
40 * Register access.
41 * All access to the CSR registers will go through the methods
42 * rt2x00pci_register_read and rt2x00pci_register_write.
43 * BBP and RF register require indirect register access,
44 * and use the CSR registers BBPCSR and RFCSR to achieve this.
45 * These indirect registers work with busy bits,
46 * and we will try maximal REGISTER_BUSY_COUNT times to access
47 * the register while taking a REGISTER_BUSY_DELAY us delay
48 * between each attampt. When the busy bit is still set at that time,
49 * the access attempt is considered to have failed,
50 * and we will print an error.
51 */
52 #define WAIT_FOR_BBP(__dev, __reg) \
53 rt2x00pci_regbusy_read((__dev), BBPCSR, BBPCSR_BUSY, (__reg))
54 #define WAIT_FOR_RF(__dev, __reg) \
55 rt2x00pci_regbusy_read((__dev), RFCSR, RFCSR_BUSY, (__reg))
56
57 static void rt2500pci_bbp_write(struct rt2x00_dev *rt2x00dev,
58 const unsigned int word, const u8 value)
59 {
60 u32 reg;
61
62 mutex_lock(&rt2x00dev->csr_mutex);
63
64 /*
65 * Wait until the BBP becomes available, afterwards we
66 * can safely write the new data into the register.
67 */
68 if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
69 reg = 0;
70 rt2x00_set_field32(&reg, BBPCSR_VALUE, value);
71 rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
72 rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
73 rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 1);
74
75 rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
76 }
77
78 mutex_unlock(&rt2x00dev->csr_mutex);
79 }
80
81 static void rt2500pci_bbp_read(struct rt2x00_dev *rt2x00dev,
82 const unsigned int word, u8 *value)
83 {
84 u32 reg;
85
86 mutex_lock(&rt2x00dev->csr_mutex);
87
88 /*
89 * Wait until the BBP becomes available, afterwards we
90 * can safely write the read request into the register.
91 * After the data has been written, we wait until hardware
92 * returns the correct value, if at any time the register
93 * doesn't become available in time, reg will be 0xffffffff
94 * which means we return 0xff to the caller.
95 */
96 if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
97 reg = 0;
98 rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
99 rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
100 rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 0);
101
102 rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
103
104 WAIT_FOR_BBP(rt2x00dev, &reg);
105 }
106
107 *value = rt2x00_get_field32(reg, BBPCSR_VALUE);
108
109 mutex_unlock(&rt2x00dev->csr_mutex);
110 }
111
112 static void rt2500pci_rf_write(struct rt2x00_dev *rt2x00dev,
113 const unsigned int word, const u32 value)
114 {
115 u32 reg;
116
117 mutex_lock(&rt2x00dev->csr_mutex);
118
119 /*
120 * Wait until the RF becomes available, afterwards we
121 * can safely write the new data into the register.
122 */
123 if (WAIT_FOR_RF(rt2x00dev, &reg)) {
124 reg = 0;
125 rt2x00_set_field32(&reg, RFCSR_VALUE, value);
126 rt2x00_set_field32(&reg, RFCSR_NUMBER_OF_BITS, 20);
127 rt2x00_set_field32(&reg, RFCSR_IF_SELECT, 0);
128 rt2x00_set_field32(&reg, RFCSR_BUSY, 1);
129
130 rt2x00pci_register_write(rt2x00dev, RFCSR, reg);
131 rt2x00_rf_write(rt2x00dev, word, value);
132 }
133
134 mutex_unlock(&rt2x00dev->csr_mutex);
135 }
136
137 static void rt2500pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
138 {
139 struct rt2x00_dev *rt2x00dev = eeprom->data;
140 u32 reg;
141
142 rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
143
144 eeprom->reg_data_in = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_IN);
145 eeprom->reg_data_out = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_OUT);
146 eeprom->reg_data_clock =
147 !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_CLOCK);
148 eeprom->reg_chip_select =
149 !!rt2x00_get_field32(reg, CSR21_EEPROM_CHIP_SELECT);
150 }
151
152 static void rt2500pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
153 {
154 struct rt2x00_dev *rt2x00dev = eeprom->data;
155 u32 reg = 0;
156
157 rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_IN, !!eeprom->reg_data_in);
158 rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_OUT, !!eeprom->reg_data_out);
159 rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_CLOCK,
160 !!eeprom->reg_data_clock);
161 rt2x00_set_field32(&reg, CSR21_EEPROM_CHIP_SELECT,
162 !!eeprom->reg_chip_select);
163
164 rt2x00pci_register_write(rt2x00dev, CSR21, reg);
165 }
166
167 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
168 static const struct rt2x00debug rt2500pci_rt2x00debug = {
169 .owner = THIS_MODULE,
170 .csr = {
171 .read = rt2x00pci_register_read,
172 .write = rt2x00pci_register_write,
173 .flags = RT2X00DEBUGFS_OFFSET,
174 .word_base = CSR_REG_BASE,
175 .word_size = sizeof(u32),
176 .word_count = CSR_REG_SIZE / sizeof(u32),
177 },
178 .eeprom = {
179 .read = rt2x00_eeprom_read,
180 .write = rt2x00_eeprom_write,
181 .word_base = EEPROM_BASE,
182 .word_size = sizeof(u16),
183 .word_count = EEPROM_SIZE / sizeof(u16),
184 },
185 .bbp = {
186 .read = rt2500pci_bbp_read,
187 .write = rt2500pci_bbp_write,
188 .word_base = BBP_BASE,
189 .word_size = sizeof(u8),
190 .word_count = BBP_SIZE / sizeof(u8),
191 },
192 .rf = {
193 .read = rt2x00_rf_read,
194 .write = rt2500pci_rf_write,
195 .word_base = RF_BASE,
196 .word_size = sizeof(u32),
197 .word_count = RF_SIZE / sizeof(u32),
198 },
199 };
200 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
201
202 #ifdef CONFIG_RT2X00_LIB_RFKILL
203 static int rt2500pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
204 {
205 u32 reg;
206
207 rt2x00pci_register_read(rt2x00dev, GPIOCSR, &reg);
208 return rt2x00_get_field32(reg, GPIOCSR_BIT0);
209 }
210 #else
211 #define rt2500pci_rfkill_poll NULL
212 #endif /* CONFIG_RT2X00_LIB_RFKILL */
213
214 #ifdef CONFIG_RT2X00_LIB_LEDS
215 static void rt2500pci_brightness_set(struct led_classdev *led_cdev,
216 enum led_brightness brightness)
217 {
218 struct rt2x00_led *led =
219 container_of(led_cdev, struct rt2x00_led, led_dev);
220 unsigned int enabled = brightness != LED_OFF;
221 u32 reg;
222
223 rt2x00pci_register_read(led->rt2x00dev, LEDCSR, &reg);
224
225 if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC)
226 rt2x00_set_field32(&reg, LEDCSR_LINK, enabled);
227 else if (led->type == LED_TYPE_ACTIVITY)
228 rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, enabled);
229
230 rt2x00pci_register_write(led->rt2x00dev, LEDCSR, reg);
231 }
232
233 static int rt2500pci_blink_set(struct led_classdev *led_cdev,
234 unsigned long *delay_on,
235 unsigned long *delay_off)
236 {
237 struct rt2x00_led *led =
238 container_of(led_cdev, struct rt2x00_led, led_dev);
239 u32 reg;
240
241 rt2x00pci_register_read(led->rt2x00dev, LEDCSR, &reg);
242 rt2x00_set_field32(&reg, LEDCSR_ON_PERIOD, *delay_on);
243 rt2x00_set_field32(&reg, LEDCSR_OFF_PERIOD, *delay_off);
244 rt2x00pci_register_write(led->rt2x00dev, LEDCSR, reg);
245
246 return 0;
247 }
248
249 static void rt2500pci_init_led(struct rt2x00_dev *rt2x00dev,
250 struct rt2x00_led *led,
251 enum led_type type)
252 {
253 led->rt2x00dev = rt2x00dev;
254 led->type = type;
255 led->led_dev.brightness_set = rt2500pci_brightness_set;
256 led->led_dev.blink_set = rt2500pci_blink_set;
257 led->flags = LED_INITIALIZED;
258 }
259 #endif /* CONFIG_RT2X00_LIB_LEDS */
260
261 /*
262 * Configuration handlers.
263 */
264 static void rt2500pci_config_filter(struct rt2x00_dev *rt2x00dev,
265 const unsigned int filter_flags)
266 {
267 u32 reg;
268
269 /*
270 * Start configuration steps.
271 * Note that the version error will always be dropped
272 * and broadcast frames will always be accepted since
273 * there is no filter for it at this time.
274 */
275 rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
276 rt2x00_set_field32(&reg, RXCSR0_DROP_CRC,
277 !(filter_flags & FIF_FCSFAIL));
278 rt2x00_set_field32(&reg, RXCSR0_DROP_PHYSICAL,
279 !(filter_flags & FIF_PLCPFAIL));
280 rt2x00_set_field32(&reg, RXCSR0_DROP_CONTROL,
281 !(filter_flags & FIF_CONTROL));
282 rt2x00_set_field32(&reg, RXCSR0_DROP_NOT_TO_ME,
283 !(filter_flags & FIF_PROMISC_IN_BSS));
284 rt2x00_set_field32(&reg, RXCSR0_DROP_TODS,
285 !(filter_flags & FIF_PROMISC_IN_BSS) &&
286 !rt2x00dev->intf_ap_count);
287 rt2x00_set_field32(&reg, RXCSR0_DROP_VERSION_ERROR, 1);
288 rt2x00_set_field32(&reg, RXCSR0_DROP_MCAST,
289 !(filter_flags & FIF_ALLMULTI));
290 rt2x00_set_field32(&reg, RXCSR0_DROP_BCAST, 0);
291 rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
292 }
293
294 static void rt2500pci_config_intf(struct rt2x00_dev *rt2x00dev,
295 struct rt2x00_intf *intf,
296 struct rt2x00intf_conf *conf,
297 const unsigned int flags)
298 {
299 struct data_queue *queue = rt2x00queue_get_queue(rt2x00dev, QID_BEACON);
300 unsigned int bcn_preload;
301 u32 reg;
302
303 if (flags & CONFIG_UPDATE_TYPE) {
304 /*
305 * Enable beacon config
306 */
307 bcn_preload = PREAMBLE + GET_DURATION(IEEE80211_HEADER, 20);
308 rt2x00pci_register_read(rt2x00dev, BCNCSR1, &reg);
309 rt2x00_set_field32(&reg, BCNCSR1_PRELOAD, bcn_preload);
310 rt2x00_set_field32(&reg, BCNCSR1_BEACON_CWMIN, queue->cw_min);
311 rt2x00pci_register_write(rt2x00dev, BCNCSR1, reg);
312
313 /*
314 * Enable synchronisation.
315 */
316 rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
317 rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
318 rt2x00_set_field32(&reg, CSR14_TSF_SYNC, conf->sync);
319 rt2x00_set_field32(&reg, CSR14_TBCN, 1);
320 rt2x00pci_register_write(rt2x00dev, CSR14, reg);
321 }
322
323 if (flags & CONFIG_UPDATE_MAC)
324 rt2x00pci_register_multiwrite(rt2x00dev, CSR3,
325 conf->mac, sizeof(conf->mac));
326
327 if (flags & CONFIG_UPDATE_BSSID)
328 rt2x00pci_register_multiwrite(rt2x00dev, CSR5,
329 conf->bssid, sizeof(conf->bssid));
330 }
331
332 static void rt2500pci_config_erp(struct rt2x00_dev *rt2x00dev,
333 struct rt2x00lib_erp *erp)
334 {
335 int preamble_mask;
336 u32 reg;
337
338 /*
339 * When short preamble is enabled, we should set bit 0x08
340 */
341 preamble_mask = erp->short_preamble << 3;
342
343 rt2x00pci_register_read(rt2x00dev, TXCSR1, &reg);
344 rt2x00_set_field32(&reg, TXCSR1_ACK_TIMEOUT,
345 erp->ack_timeout);
346 rt2x00_set_field32(&reg, TXCSR1_ACK_CONSUME_TIME,
347 erp->ack_consume_time);
348 rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);
349
350 rt2x00pci_register_read(rt2x00dev, ARCSR2, &reg);
351 rt2x00_set_field32(&reg, ARCSR2_SIGNAL, 0x00);
352 rt2x00_set_field32(&reg, ARCSR2_SERVICE, 0x04);
353 rt2x00_set_field32(&reg, ARCSR2_LENGTH, GET_DURATION(ACK_SIZE, 10));
354 rt2x00pci_register_write(rt2x00dev, ARCSR2, reg);
355
356 rt2x00pci_register_read(rt2x00dev, ARCSR3, &reg);
357 rt2x00_set_field32(&reg, ARCSR3_SIGNAL, 0x01 | preamble_mask);
358 rt2x00_set_field32(&reg, ARCSR3_SERVICE, 0x04);
359 rt2x00_set_field32(&reg, ARCSR2_LENGTH, GET_DURATION(ACK_SIZE, 20));
360 rt2x00pci_register_write(rt2x00dev, ARCSR3, reg);
361
362 rt2x00pci_register_read(rt2x00dev, ARCSR4, &reg);
363 rt2x00_set_field32(&reg, ARCSR4_SIGNAL, 0x02 | preamble_mask);
364 rt2x00_set_field32(&reg, ARCSR4_SERVICE, 0x04);
365 rt2x00_set_field32(&reg, ARCSR2_LENGTH, GET_DURATION(ACK_SIZE, 55));
366 rt2x00pci_register_write(rt2x00dev, ARCSR4, reg);
367
368 rt2x00pci_register_read(rt2x00dev, ARCSR5, &reg);
369 rt2x00_set_field32(&reg, ARCSR5_SIGNAL, 0x03 | preamble_mask);
370 rt2x00_set_field32(&reg, ARCSR5_SERVICE, 0x84);
371 rt2x00_set_field32(&reg, ARCSR2_LENGTH, GET_DURATION(ACK_SIZE, 110));
372 rt2x00pci_register_write(rt2x00dev, ARCSR5, reg);
373
374 rt2x00pci_register_write(rt2x00dev, ARCSR1, erp->basic_rates);
375
376 rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
377 rt2x00_set_field32(&reg, CSR11_SLOT_TIME, erp->slot_time);
378 rt2x00pci_register_write(rt2x00dev, CSR11, reg);
379
380 rt2x00pci_register_read(rt2x00dev, CSR18, &reg);
381 rt2x00_set_field32(&reg, CSR18_SIFS, erp->sifs);
382 rt2x00_set_field32(&reg, CSR18_PIFS, erp->pifs);
383 rt2x00pci_register_write(rt2x00dev, CSR18, reg);
384
385 rt2x00pci_register_read(rt2x00dev, CSR19, &reg);
386 rt2x00_set_field32(&reg, CSR19_DIFS, erp->difs);
387 rt2x00_set_field32(&reg, CSR19_EIFS, erp->eifs);
388 rt2x00pci_register_write(rt2x00dev, CSR19, reg);
389 }
390
391 static void rt2500pci_config_ant(struct rt2x00_dev *rt2x00dev,
392 struct antenna_setup *ant)
393 {
394 u32 reg;
395 u8 r14;
396 u8 r2;
397
398 /*
399 * We should never come here because rt2x00lib is supposed
400 * to catch this and send us the correct antenna explicitely.
401 */
402 BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
403 ant->tx == ANTENNA_SW_DIVERSITY);
404
405 rt2x00pci_register_read(rt2x00dev, BBPCSR1, &reg);
406 rt2500pci_bbp_read(rt2x00dev, 14, &r14);
407 rt2500pci_bbp_read(rt2x00dev, 2, &r2);
408
409 /*
410 * Configure the TX antenna.
411 */
412 switch (ant->tx) {
413 case ANTENNA_A:
414 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 0);
415 rt2x00_set_field32(&reg, BBPCSR1_CCK, 0);
416 rt2x00_set_field32(&reg, BBPCSR1_OFDM, 0);
417 break;
418 case ANTENNA_B:
419 default:
420 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2);
421 rt2x00_set_field32(&reg, BBPCSR1_CCK, 2);
422 rt2x00_set_field32(&reg, BBPCSR1_OFDM, 2);
423 break;
424 }
425
426 /*
427 * Configure the RX antenna.
428 */
429 switch (ant->rx) {
430 case ANTENNA_A:
431 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 0);
432 break;
433 case ANTENNA_B:
434 default:
435 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2);
436 break;
437 }
438
439 /*
440 * RT2525E and RT5222 need to flip TX I/Q
441 */
442 if (rt2x00_rf(&rt2x00dev->chip, RF2525E) ||
443 rt2x00_rf(&rt2x00dev->chip, RF5222)) {
444 rt2x00_set_field8(&r2, BBP_R2_TX_IQ_FLIP, 1);
445 rt2x00_set_field32(&reg, BBPCSR1_CCK_FLIP, 1);
446 rt2x00_set_field32(&reg, BBPCSR1_OFDM_FLIP, 1);
447
448 /*
449 * RT2525E does not need RX I/Q Flip.
450 */
451 if (rt2x00_rf(&rt2x00dev->chip, RF2525E))
452 rt2x00_set_field8(&r14, BBP_R14_RX_IQ_FLIP, 0);
453 } else {
454 rt2x00_set_field32(&reg, BBPCSR1_CCK_FLIP, 0);
455 rt2x00_set_field32(&reg, BBPCSR1_OFDM_FLIP, 0);
456 }
457
458 rt2x00pci_register_write(rt2x00dev, BBPCSR1, reg);
459 rt2500pci_bbp_write(rt2x00dev, 14, r14);
460 rt2500pci_bbp_write(rt2x00dev, 2, r2);
461 }
462
463 static void rt2500pci_config_channel(struct rt2x00_dev *rt2x00dev,
464 struct rf_channel *rf, const int txpower)
465 {
466 u8 r70;
467
468 /*
469 * Set TXpower.
470 */
471 rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
472
473 /*
474 * Switch on tuning bits.
475 * For RT2523 devices we do not need to update the R1 register.
476 */
477 if (!rt2x00_rf(&rt2x00dev->chip, RF2523))
478 rt2x00_set_field32(&rf->rf1, RF1_TUNER, 1);
479 rt2x00_set_field32(&rf->rf3, RF3_TUNER, 1);
480
481 /*
482 * For RT2525 we should first set the channel to half band higher.
483 */
484 if (rt2x00_rf(&rt2x00dev->chip, RF2525)) {
485 static const u32 vals[] = {
486 0x00080cbe, 0x00080d02, 0x00080d06, 0x00080d0a,
487 0x00080d0e, 0x00080d12, 0x00080d16, 0x00080d1a,
488 0x00080d1e, 0x00080d22, 0x00080d26, 0x00080d2a,
489 0x00080d2e, 0x00080d3a
490 };
491
492 rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
493 rt2500pci_rf_write(rt2x00dev, 2, vals[rf->channel - 1]);
494 rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
495 if (rf->rf4)
496 rt2500pci_rf_write(rt2x00dev, 4, rf->rf4);
497 }
498
499 rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
500 rt2500pci_rf_write(rt2x00dev, 2, rf->rf2);
501 rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
502 if (rf->rf4)
503 rt2500pci_rf_write(rt2x00dev, 4, rf->rf4);
504
505 /*
506 * Channel 14 requires the Japan filter bit to be set.
507 */
508 r70 = 0x46;
509 rt2x00_set_field8(&r70, BBP_R70_JAPAN_FILTER, rf->channel == 14);
510 rt2500pci_bbp_write(rt2x00dev, 70, r70);
511
512 msleep(1);
513
514 /*
515 * Switch off tuning bits.
516 * For RT2523 devices we do not need to update the R1 register.
517 */
518 if (!rt2x00_rf(&rt2x00dev->chip, RF2523)) {
519 rt2x00_set_field32(&rf->rf1, RF1_TUNER, 0);
520 rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
521 }
522
523 rt2x00_set_field32(&rf->rf3, RF3_TUNER, 0);
524 rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
525
526 /*
527 * Clear false CRC during channel switch.
528 */
529 rt2x00pci_register_read(rt2x00dev, CNT0, &rf->rf1);
530 }
531
532 static void rt2500pci_config_txpower(struct rt2x00_dev *rt2x00dev,
533 const int txpower)
534 {
535 u32 rf3;
536
537 rt2x00_rf_read(rt2x00dev, 3, &rf3);
538 rt2x00_set_field32(&rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
539 rt2500pci_rf_write(rt2x00dev, 3, rf3);
540 }
541
542 static void rt2500pci_config_retry_limit(struct rt2x00_dev *rt2x00dev,
543 struct rt2x00lib_conf *libconf)
544 {
545 u32 reg;
546
547 rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
548 rt2x00_set_field32(&reg, CSR11_LONG_RETRY,
549 libconf->conf->long_frame_max_tx_count);
550 rt2x00_set_field32(&reg, CSR11_SHORT_RETRY,
551 libconf->conf->short_frame_max_tx_count);
552 rt2x00pci_register_write(rt2x00dev, CSR11, reg);
553 }
554
555 static void rt2500pci_config_duration(struct rt2x00_dev *rt2x00dev,
556 struct rt2x00lib_conf *libconf)
557 {
558 u32 reg;
559
560 rt2x00pci_register_read(rt2x00dev, TXCSR1, &reg);
561 rt2x00_set_field32(&reg, TXCSR1_TSF_OFFSET, IEEE80211_HEADER);
562 rt2x00_set_field32(&reg, TXCSR1_AUTORESPONDER, 1);
563 rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);
564
565 rt2x00pci_register_read(rt2x00dev, CSR12, &reg);
566 rt2x00_set_field32(&reg, CSR12_BEACON_INTERVAL,
567 libconf->conf->beacon_int * 16);
568 rt2x00_set_field32(&reg, CSR12_CFP_MAX_DURATION,
569 libconf->conf->beacon_int * 16);
570 rt2x00pci_register_write(rt2x00dev, CSR12, reg);
571 }
572
573 static void rt2500pci_config_ps(struct rt2x00_dev *rt2x00dev,
574 struct rt2x00lib_conf *libconf)
575 {
576 enum dev_state state =
577 (libconf->conf->flags & IEEE80211_CONF_PS) ?
578 STATE_SLEEP : STATE_AWAKE;
579 u32 reg;
580
581 if (state == STATE_SLEEP) {
582 rt2x00pci_register_read(rt2x00dev, CSR20, &reg);
583 rt2x00_set_field32(&reg, CSR20_DELAY_AFTER_TBCN,
584 (libconf->conf->beacon_int - 20) * 16);
585 rt2x00_set_field32(&reg, CSR20_TBCN_BEFORE_WAKEUP,
586 libconf->conf->listen_interval - 1);
587
588 /* We must first disable autowake before it can be enabled */
589 rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 0);
590 rt2x00pci_register_write(rt2x00dev, CSR20, reg);
591
592 rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 1);
593 rt2x00pci_register_write(rt2x00dev, CSR20, reg);
594 }
595
596 rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
597 }
598
599 static void rt2500pci_config(struct rt2x00_dev *rt2x00dev,
600 struct rt2x00lib_conf *libconf,
601 const unsigned int flags)
602 {
603 if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
604 rt2500pci_config_channel(rt2x00dev, &libconf->rf,
605 libconf->conf->power_level);
606 if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
607 !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
608 rt2500pci_config_txpower(rt2x00dev,
609 libconf->conf->power_level);
610 if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
611 rt2500pci_config_retry_limit(rt2x00dev, libconf);
612 if (flags & IEEE80211_CONF_CHANGE_BEACON_INTERVAL)
613 rt2500pci_config_duration(rt2x00dev, libconf);
614 if (flags & IEEE80211_CONF_CHANGE_PS)
615 rt2500pci_config_ps(rt2x00dev, libconf);
616 }
617
618 /*
619 * Link tuning
620 */
621 static void rt2500pci_link_stats(struct rt2x00_dev *rt2x00dev,
622 struct link_qual *qual)
623 {
624 u32 reg;
625
626 /*
627 * Update FCS error count from register.
628 */
629 rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
630 qual->rx_failed = rt2x00_get_field32(reg, CNT0_FCS_ERROR);
631
632 /*
633 * Update False CCA count from register.
634 */
635 rt2x00pci_register_read(rt2x00dev, CNT3, &reg);
636 qual->false_cca = rt2x00_get_field32(reg, CNT3_FALSE_CCA);
637 }
638
639 static inline void rt2500pci_set_vgc(struct rt2x00_dev *rt2x00dev,
640 struct link_qual *qual, u8 vgc_level)
641 {
642 if (qual->vgc_level_reg != vgc_level) {
643 rt2500pci_bbp_write(rt2x00dev, 17, vgc_level);
644 qual->vgc_level_reg = vgc_level;
645 }
646 }
647
648 static void rt2500pci_reset_tuner(struct rt2x00_dev *rt2x00dev,
649 struct link_qual *qual)
650 {
651 rt2500pci_set_vgc(rt2x00dev, qual, 0x48);
652 }
653
654 static void rt2500pci_link_tuner(struct rt2x00_dev *rt2x00dev,
655 struct link_qual *qual, const u32 count)
656 {
657 /*
658 * To prevent collisions with MAC ASIC on chipsets
659 * up to version C the link tuning should halt after 20
660 * seconds while being associated.
661 */
662 if (rt2x00_rev(&rt2x00dev->chip) < RT2560_VERSION_D &&
663 rt2x00dev->intf_associated && count > 20)
664 return;
665
666 /*
667 * Chipset versions C and lower should directly continue
668 * to the dynamic CCA tuning. Chipset version D and higher
669 * should go straight to dynamic CCA tuning when they
670 * are not associated.
671 */
672 if (rt2x00_rev(&rt2x00dev->chip) < RT2560_VERSION_D ||
673 !rt2x00dev->intf_associated)
674 goto dynamic_cca_tune;
675
676 /*
677 * A too low RSSI will cause too much false CCA which will
678 * then corrupt the R17 tuning. To remidy this the tuning should
679 * be stopped (While making sure the R17 value will not exceed limits)
680 */
681 if (qual->rssi < -80 && count > 20) {
682 if (qual->vgc_level_reg >= 0x41)
683 rt2500pci_set_vgc(rt2x00dev, qual, qual->vgc_level);
684 return;
685 }
686
687 /*
688 * Special big-R17 for short distance
689 */
690 if (qual->rssi >= -58) {
691 rt2500pci_set_vgc(rt2x00dev, qual, 0x50);
692 return;
693 }
694
695 /*
696 * Special mid-R17 for middle distance
697 */
698 if (qual->rssi >= -74) {
699 rt2500pci_set_vgc(rt2x00dev, qual, 0x41);
700 return;
701 }
702
703 /*
704 * Leave short or middle distance condition, restore r17
705 * to the dynamic tuning range.
706 */
707 if (qual->vgc_level_reg >= 0x41) {
708 rt2500pci_set_vgc(rt2x00dev, qual, qual->vgc_level);
709 return;
710 }
711
712 dynamic_cca_tune:
713
714 /*
715 * R17 is inside the dynamic tuning range,
716 * start tuning the link based on the false cca counter.
717 */
718 if (qual->false_cca > 512 && qual->vgc_level_reg < 0x40) {
719 rt2500pci_set_vgc(rt2x00dev, qual, ++qual->vgc_level_reg);
720 qual->vgc_level = qual->vgc_level_reg;
721 } else if (qual->false_cca < 100 && qual->vgc_level_reg > 0x32) {
722 rt2500pci_set_vgc(rt2x00dev, qual, --qual->vgc_level_reg);
723 qual->vgc_level = qual->vgc_level_reg;
724 }
725 }
726
727 /*
728 * Initialization functions.
729 */
730 static bool rt2500pci_get_entry_state(struct queue_entry *entry)
731 {
732 struct queue_entry_priv_pci *entry_priv = entry->priv_data;
733 u32 word;
734
735 if (entry->queue->qid == QID_RX) {
736 rt2x00_desc_read(entry_priv->desc, 0, &word);
737
738 return rt2x00_get_field32(word, RXD_W0_OWNER_NIC);
739 } else {
740 rt2x00_desc_read(entry_priv->desc, 0, &word);
741
742 return (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
743 rt2x00_get_field32(word, TXD_W0_VALID));
744 }
745 }
746
747 static void rt2500pci_clear_entry(struct queue_entry *entry)
748 {
749 struct queue_entry_priv_pci *entry_priv = entry->priv_data;
750 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
751 u32 word;
752
753 if (entry->queue->qid == QID_RX) {
754 rt2x00_desc_read(entry_priv->desc, 1, &word);
755 rt2x00_set_field32(&word, RXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
756 rt2x00_desc_write(entry_priv->desc, 1, word);
757
758 rt2x00_desc_read(entry_priv->desc, 0, &word);
759 rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
760 rt2x00_desc_write(entry_priv->desc, 0, word);
761 } else {
762 rt2x00_desc_read(entry_priv->desc, 0, &word);
763 rt2x00_set_field32(&word, TXD_W0_VALID, 0);
764 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
765 rt2x00_desc_write(entry_priv->desc, 0, word);
766 }
767 }
768
769 static int rt2500pci_init_queues(struct rt2x00_dev *rt2x00dev)
770 {
771 struct queue_entry_priv_pci *entry_priv;
772 u32 reg;
773
774 /*
775 * Initialize registers.
776 */
777 rt2x00pci_register_read(rt2x00dev, TXCSR2, &reg);
778 rt2x00_set_field32(&reg, TXCSR2_TXD_SIZE, rt2x00dev->tx[0].desc_size);
779 rt2x00_set_field32(&reg, TXCSR2_NUM_TXD, rt2x00dev->tx[1].limit);
780 rt2x00_set_field32(&reg, TXCSR2_NUM_ATIM, rt2x00dev->bcn[1].limit);
781 rt2x00_set_field32(&reg, TXCSR2_NUM_PRIO, rt2x00dev->tx[0].limit);
782 rt2x00pci_register_write(rt2x00dev, TXCSR2, reg);
783
784 entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
785 rt2x00pci_register_read(rt2x00dev, TXCSR3, &reg);
786 rt2x00_set_field32(&reg, TXCSR3_TX_RING_REGISTER,
787 entry_priv->desc_dma);
788 rt2x00pci_register_write(rt2x00dev, TXCSR3, reg);
789
790 entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
791 rt2x00pci_register_read(rt2x00dev, TXCSR5, &reg);
792 rt2x00_set_field32(&reg, TXCSR5_PRIO_RING_REGISTER,
793 entry_priv->desc_dma);
794 rt2x00pci_register_write(rt2x00dev, TXCSR5, reg);
795
796 entry_priv = rt2x00dev->bcn[1].entries[0].priv_data;
797 rt2x00pci_register_read(rt2x00dev, TXCSR4, &reg);
798 rt2x00_set_field32(&reg, TXCSR4_ATIM_RING_REGISTER,
799 entry_priv->desc_dma);
800 rt2x00pci_register_write(rt2x00dev, TXCSR4, reg);
801
802 entry_priv = rt2x00dev->bcn[0].entries[0].priv_data;
803 rt2x00pci_register_read(rt2x00dev, TXCSR6, &reg);
804 rt2x00_set_field32(&reg, TXCSR6_BEACON_RING_REGISTER,
805 entry_priv->desc_dma);
806 rt2x00pci_register_write(rt2x00dev, TXCSR6, reg);
807
808 rt2x00pci_register_read(rt2x00dev, RXCSR1, &reg);
809 rt2x00_set_field32(&reg, RXCSR1_RXD_SIZE, rt2x00dev->rx->desc_size);
810 rt2x00_set_field32(&reg, RXCSR1_NUM_RXD, rt2x00dev->rx->limit);
811 rt2x00pci_register_write(rt2x00dev, RXCSR1, reg);
812
813 entry_priv = rt2x00dev->rx->entries[0].priv_data;
814 rt2x00pci_register_read(rt2x00dev, RXCSR2, &reg);
815 rt2x00_set_field32(&reg, RXCSR2_RX_RING_REGISTER,
816 entry_priv->desc_dma);
817 rt2x00pci_register_write(rt2x00dev, RXCSR2, reg);
818
819 return 0;
820 }
821
822 static int rt2500pci_init_registers(struct rt2x00_dev *rt2x00dev)
823 {
824 u32 reg;
825
826 rt2x00pci_register_write(rt2x00dev, PSCSR0, 0x00020002);
827 rt2x00pci_register_write(rt2x00dev, PSCSR1, 0x00000002);
828 rt2x00pci_register_write(rt2x00dev, PSCSR2, 0x00020002);
829 rt2x00pci_register_write(rt2x00dev, PSCSR3, 0x00000002);
830
831 rt2x00pci_register_read(rt2x00dev, TIMECSR, &reg);
832 rt2x00_set_field32(&reg, TIMECSR_US_COUNT, 33);
833 rt2x00_set_field32(&reg, TIMECSR_US_64_COUNT, 63);
834 rt2x00_set_field32(&reg, TIMECSR_BEACON_EXPECT, 0);
835 rt2x00pci_register_write(rt2x00dev, TIMECSR, reg);
836
837 rt2x00pci_register_read(rt2x00dev, CSR9, &reg);
838 rt2x00_set_field32(&reg, CSR9_MAX_FRAME_UNIT,
839 rt2x00dev->rx->data_size / 128);
840 rt2x00pci_register_write(rt2x00dev, CSR9, reg);
841
842 /*
843 * Always use CWmin and CWmax set in descriptor.
844 */
845 rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
846 rt2x00_set_field32(&reg, CSR11_CW_SELECT, 0);
847 rt2x00pci_register_write(rt2x00dev, CSR11, reg);
848
849 rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
850 rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
851 rt2x00_set_field32(&reg, CSR14_TSF_SYNC, 0);
852 rt2x00_set_field32(&reg, CSR14_TBCN, 0);
853 rt2x00_set_field32(&reg, CSR14_TCFP, 0);
854 rt2x00_set_field32(&reg, CSR14_TATIMW, 0);
855 rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
856 rt2x00_set_field32(&reg, CSR14_CFP_COUNT_PRELOAD, 0);
857 rt2x00_set_field32(&reg, CSR14_TBCM_PRELOAD, 0);
858 rt2x00pci_register_write(rt2x00dev, CSR14, reg);
859
860 rt2x00pci_register_write(rt2x00dev, CNT3, 0);
861
862 rt2x00pci_register_read(rt2x00dev, TXCSR8, &reg);
863 rt2x00_set_field32(&reg, TXCSR8_BBP_ID0, 10);
864 rt2x00_set_field32(&reg, TXCSR8_BBP_ID0_VALID, 1);
865 rt2x00_set_field32(&reg, TXCSR8_BBP_ID1, 11);
866 rt2x00_set_field32(&reg, TXCSR8_BBP_ID1_VALID, 1);
867 rt2x00_set_field32(&reg, TXCSR8_BBP_ID2, 13);
868 rt2x00_set_field32(&reg, TXCSR8_BBP_ID2_VALID, 1);
869 rt2x00_set_field32(&reg, TXCSR8_BBP_ID3, 12);
870 rt2x00_set_field32(&reg, TXCSR8_BBP_ID3_VALID, 1);
871 rt2x00pci_register_write(rt2x00dev, TXCSR8, reg);
872
873 rt2x00pci_register_read(rt2x00dev, ARTCSR0, &reg);
874 rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_1MBS, 112);
875 rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_2MBS, 56);
876 rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_5_5MBS, 20);
877 rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_11MBS, 10);
878 rt2x00pci_register_write(rt2x00dev, ARTCSR0, reg);
879
880 rt2x00pci_register_read(rt2x00dev, ARTCSR1, &reg);
881 rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_6MBS, 45);
882 rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_9MBS, 37);
883 rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_12MBS, 33);
884 rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_18MBS, 29);
885 rt2x00pci_register_write(rt2x00dev, ARTCSR1, reg);
886
887 rt2x00pci_register_read(rt2x00dev, ARTCSR2, &reg);
888 rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_24MBS, 29);
889 rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_36MBS, 25);
890 rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_48MBS, 25);
891 rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_54MBS, 25);
892 rt2x00pci_register_write(rt2x00dev, ARTCSR2, reg);
893
894 rt2x00pci_register_read(rt2x00dev, RXCSR3, &reg);
895 rt2x00_set_field32(&reg, RXCSR3_BBP_ID0, 47); /* CCK Signal */
896 rt2x00_set_field32(&reg, RXCSR3_BBP_ID0_VALID, 1);
897 rt2x00_set_field32(&reg, RXCSR3_BBP_ID1, 51); /* Rssi */
898 rt2x00_set_field32(&reg, RXCSR3_BBP_ID1_VALID, 1);
899 rt2x00_set_field32(&reg, RXCSR3_BBP_ID2, 42); /* OFDM Rate */
900 rt2x00_set_field32(&reg, RXCSR3_BBP_ID2_VALID, 1);
901 rt2x00_set_field32(&reg, RXCSR3_BBP_ID3, 51); /* RSSI */
902 rt2x00_set_field32(&reg, RXCSR3_BBP_ID3_VALID, 1);
903 rt2x00pci_register_write(rt2x00dev, RXCSR3, reg);
904
905 rt2x00pci_register_read(rt2x00dev, PCICSR, &reg);
906 rt2x00_set_field32(&reg, PCICSR_BIG_ENDIAN, 0);
907 rt2x00_set_field32(&reg, PCICSR_RX_TRESHOLD, 0);
908 rt2x00_set_field32(&reg, PCICSR_TX_TRESHOLD, 3);
909 rt2x00_set_field32(&reg, PCICSR_BURST_LENTH, 1);
910 rt2x00_set_field32(&reg, PCICSR_ENABLE_CLK, 1);
911 rt2x00_set_field32(&reg, PCICSR_READ_MULTIPLE, 1);
912 rt2x00_set_field32(&reg, PCICSR_WRITE_INVALID, 1);
913 rt2x00pci_register_write(rt2x00dev, PCICSR, reg);
914
915 rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0x3f3b3100);
916
917 rt2x00pci_register_write(rt2x00dev, GPIOCSR, 0x0000ff00);
918 rt2x00pci_register_write(rt2x00dev, TESTCSR, 0x000000f0);
919
920 if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
921 return -EBUSY;
922
923 rt2x00pci_register_write(rt2x00dev, MACCSR0, 0x00213223);
924 rt2x00pci_register_write(rt2x00dev, MACCSR1, 0x00235518);
925
926 rt2x00pci_register_read(rt2x00dev, MACCSR2, &reg);
927 rt2x00_set_field32(&reg, MACCSR2_DELAY, 64);
928 rt2x00pci_register_write(rt2x00dev, MACCSR2, reg);
929
930 rt2x00pci_register_read(rt2x00dev, RALINKCSR, &reg);
931 rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA0, 17);
932 rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID0, 26);
933 rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_VALID0, 1);
934 rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA1, 0);
935 rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID1, 26);
936 rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_VALID1, 1);
937 rt2x00pci_register_write(rt2x00dev, RALINKCSR, reg);
938
939 rt2x00pci_register_write(rt2x00dev, BBPCSR1, 0x82188200);
940
941 rt2x00pci_register_write(rt2x00dev, TXACKCSR0, 0x00000020);
942
943 rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
944 rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 1);
945 rt2x00_set_field32(&reg, CSR1_BBP_RESET, 0);
946 rt2x00_set_field32(&reg, CSR1_HOST_READY, 0);
947 rt2x00pci_register_write(rt2x00dev, CSR1, reg);
948
949 rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
950 rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 0);
951 rt2x00_set_field32(&reg, CSR1_HOST_READY, 1);
952 rt2x00pci_register_write(rt2x00dev, CSR1, reg);
953
954 /*
955 * We must clear the FCS and FIFO error count.
956 * These registers are cleared on read,
957 * so we may pass a useless variable to store the value.
958 */
959 rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
960 rt2x00pci_register_read(rt2x00dev, CNT4, &reg);
961
962 return 0;
963 }
964
965 static int rt2500pci_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
966 {
967 unsigned int i;
968 u8 value;
969
970 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
971 rt2500pci_bbp_read(rt2x00dev, 0, &value);
972 if ((value != 0xff) && (value != 0x00))
973 return 0;
974 udelay(REGISTER_BUSY_DELAY);
975 }
976
977 ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
978 return -EACCES;
979 }
980
981 static int rt2500pci_init_bbp(struct rt2x00_dev *rt2x00dev)
982 {
983 unsigned int i;
984 u16 eeprom;
985 u8 reg_id;
986 u8 value;
987
988 if (unlikely(rt2500pci_wait_bbp_ready(rt2x00dev)))
989 return -EACCES;
990
991 rt2500pci_bbp_write(rt2x00dev, 3, 0x02);
992 rt2500pci_bbp_write(rt2x00dev, 4, 0x19);
993 rt2500pci_bbp_write(rt2x00dev, 14, 0x1c);
994 rt2500pci_bbp_write(rt2x00dev, 15, 0x30);
995 rt2500pci_bbp_write(rt2x00dev, 16, 0xac);
996 rt2500pci_bbp_write(rt2x00dev, 18, 0x18);
997 rt2500pci_bbp_write(rt2x00dev, 19, 0xff);
998 rt2500pci_bbp_write(rt2x00dev, 20, 0x1e);
999 rt2500pci_bbp_write(rt2x00dev, 21, 0x08);
1000 rt2500pci_bbp_write(rt2x00dev, 22, 0x08);
1001 rt2500pci_bbp_write(rt2x00dev, 23, 0x08);
1002 rt2500pci_bbp_write(rt2x00dev, 24, 0x70);
1003 rt2500pci_bbp_write(rt2x00dev, 25, 0x40);
1004 rt2500pci_bbp_write(rt2x00dev, 26, 0x08);
1005 rt2500pci_bbp_write(rt2x00dev, 27, 0x23);
1006 rt2500pci_bbp_write(rt2x00dev, 30, 0x10);
1007 rt2500pci_bbp_write(rt2x00dev, 31, 0x2b);
1008 rt2500pci_bbp_write(rt2x00dev, 32, 0xb9);
1009 rt2500pci_bbp_write(rt2x00dev, 34, 0x12);
1010 rt2500pci_bbp_write(rt2x00dev, 35, 0x50);
1011 rt2500pci_bbp_write(rt2x00dev, 39, 0xc4);
1012 rt2500pci_bbp_write(rt2x00dev, 40, 0x02);
1013 rt2500pci_bbp_write(rt2x00dev, 41, 0x60);
1014 rt2500pci_bbp_write(rt2x00dev, 53, 0x10);
1015 rt2500pci_bbp_write(rt2x00dev, 54, 0x18);
1016 rt2500pci_bbp_write(rt2x00dev, 56, 0x08);
1017 rt2500pci_bbp_write(rt2x00dev, 57, 0x10);
1018 rt2500pci_bbp_write(rt2x00dev, 58, 0x08);
1019 rt2500pci_bbp_write(rt2x00dev, 61, 0x6d);
1020 rt2500pci_bbp_write(rt2x00dev, 62, 0x10);
1021
1022 for (i = 0; i < EEPROM_BBP_SIZE; i++) {
1023 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
1024
1025 if (eeprom != 0xffff && eeprom != 0x0000) {
1026 reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
1027 value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
1028 rt2500pci_bbp_write(rt2x00dev, reg_id, value);
1029 }
1030 }
1031
1032 return 0;
1033 }
1034
1035 /*
1036 * Device state switch handlers.
1037 */
1038 static void rt2500pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
1039 enum dev_state state)
1040 {
1041 u32 reg;
1042
1043 rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
1044 rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX,
1045 (state == STATE_RADIO_RX_OFF) ||
1046 (state == STATE_RADIO_RX_OFF_LINK));
1047 rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
1048 }
1049
1050 static void rt2500pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
1051 enum dev_state state)
1052 {
1053 int mask = (state == STATE_RADIO_IRQ_OFF);
1054 u32 reg;
1055
1056 /*
1057 * When interrupts are being enabled, the interrupt registers
1058 * should clear the register to assure a clean state.
1059 */
1060 if (state == STATE_RADIO_IRQ_ON) {
1061 rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
1062 rt2x00pci_register_write(rt2x00dev, CSR7, reg);
1063 }
1064
1065 /*
1066 * Only toggle the interrupts bits we are going to use.
1067 * Non-checked interrupt bits are disabled by default.
1068 */
1069 rt2x00pci_register_read(rt2x00dev, CSR8, &reg);
1070 rt2x00_set_field32(&reg, CSR8_TBCN_EXPIRE, mask);
1071 rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, mask);
1072 rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, mask);
1073 rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, mask);
1074 rt2x00_set_field32(&reg, CSR8_RXDONE, mask);
1075 rt2x00pci_register_write(rt2x00dev, CSR8, reg);
1076 }
1077
1078 static int rt2500pci_enable_radio(struct rt2x00_dev *rt2x00dev)
1079 {
1080 /*
1081 * Initialize all registers.
1082 */
1083 if (unlikely(rt2500pci_init_queues(rt2x00dev) ||
1084 rt2500pci_init_registers(rt2x00dev) ||
1085 rt2500pci_init_bbp(rt2x00dev)))
1086 return -EIO;
1087
1088 return 0;
1089 }
1090
1091 static void rt2500pci_disable_radio(struct rt2x00_dev *rt2x00dev)
1092 {
1093 /*
1094 * Disable power
1095 */
1096 rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0);
1097 }
1098
1099 static int rt2500pci_set_state(struct rt2x00_dev *rt2x00dev,
1100 enum dev_state state)
1101 {
1102 u32 reg;
1103 unsigned int i;
1104 char put_to_sleep;
1105 char bbp_state;
1106 char rf_state;
1107
1108 put_to_sleep = (state != STATE_AWAKE);
1109
1110 rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
1111 rt2x00_set_field32(&reg, PWRCSR1_SET_STATE, 1);
1112 rt2x00_set_field32(&reg, PWRCSR1_BBP_DESIRE_STATE, state);
1113 rt2x00_set_field32(&reg, PWRCSR1_RF_DESIRE_STATE, state);
1114 rt2x00_set_field32(&reg, PWRCSR1_PUT_TO_SLEEP, put_to_sleep);
1115 rt2x00pci_register_write(rt2x00dev, PWRCSR1, reg);
1116
1117 /*
1118 * Device is not guaranteed to be in the requested state yet.
1119 * We must wait until the register indicates that the
1120 * device has entered the correct state.
1121 */
1122 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1123 rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
1124 bbp_state = rt2x00_get_field32(reg, PWRCSR1_BBP_CURR_STATE);
1125 rf_state = rt2x00_get_field32(reg, PWRCSR1_RF_CURR_STATE);
1126 if (bbp_state == state && rf_state == state)
1127 return 0;
1128 msleep(10);
1129 }
1130
1131 return -EBUSY;
1132 }
1133
1134 static int rt2500pci_set_device_state(struct rt2x00_dev *rt2x00dev,
1135 enum dev_state state)
1136 {
1137 int retval = 0;
1138
1139 switch (state) {
1140 case STATE_RADIO_ON:
1141 retval = rt2500pci_enable_radio(rt2x00dev);
1142 break;
1143 case STATE_RADIO_OFF:
1144 rt2500pci_disable_radio(rt2x00dev);
1145 break;
1146 case STATE_RADIO_RX_ON:
1147 case STATE_RADIO_RX_ON_LINK:
1148 case STATE_RADIO_RX_OFF:
1149 case STATE_RADIO_RX_OFF_LINK:
1150 rt2500pci_toggle_rx(rt2x00dev, state);
1151 break;
1152 case STATE_RADIO_IRQ_ON:
1153 case STATE_RADIO_IRQ_OFF:
1154 rt2500pci_toggle_irq(rt2x00dev, state);
1155 break;
1156 case STATE_DEEP_SLEEP:
1157 case STATE_SLEEP:
1158 case STATE_STANDBY:
1159 case STATE_AWAKE:
1160 retval = rt2500pci_set_state(rt2x00dev, state);
1161 break;
1162 default:
1163 retval = -ENOTSUPP;
1164 break;
1165 }
1166
1167 if (unlikely(retval))
1168 ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
1169 state, retval);
1170
1171 return retval;
1172 }
1173
1174 /*
1175 * TX descriptor initialization
1176 */
1177 static void rt2500pci_write_tx_desc(struct rt2x00_dev *rt2x00dev,
1178 struct sk_buff *skb,
1179 struct txentry_desc *txdesc)
1180 {
1181 struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
1182 struct queue_entry_priv_pci *entry_priv = skbdesc->entry->priv_data;
1183 __le32 *txd = skbdesc->desc;
1184 u32 word;
1185
1186 /*
1187 * Start writing the descriptor words.
1188 */
1189 rt2x00_desc_read(entry_priv->desc, 1, &word);
1190 rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
1191 rt2x00_desc_write(entry_priv->desc, 1, word);
1192
1193 rt2x00_desc_read(txd, 2, &word);
1194 rt2x00_set_field32(&word, TXD_W2_IV_OFFSET, IEEE80211_HEADER);
1195 rt2x00_set_field32(&word, TXD_W2_AIFS, txdesc->aifs);
1196 rt2x00_set_field32(&word, TXD_W2_CWMIN, txdesc->cw_min);
1197 rt2x00_set_field32(&word, TXD_W2_CWMAX, txdesc->cw_max);
1198 rt2x00_desc_write(txd, 2, word);
1199
1200 rt2x00_desc_read(txd, 3, &word);
1201 rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL, txdesc->signal);
1202 rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE, txdesc->service);
1203 rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW, txdesc->length_low);
1204 rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH, txdesc->length_high);
1205 rt2x00_desc_write(txd, 3, word);
1206
1207 rt2x00_desc_read(txd, 10, &word);
1208 rt2x00_set_field32(&word, TXD_W10_RTS,
1209 test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags));
1210 rt2x00_desc_write(txd, 10, word);
1211
1212 rt2x00_desc_read(txd, 0, &word);
1213 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
1214 rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1215 rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1216 test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1217 rt2x00_set_field32(&word, TXD_W0_ACK,
1218 test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1219 rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1220 test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1221 rt2x00_set_field32(&word, TXD_W0_OFDM,
1222 (txdesc->rate_mode == RATE_MODE_OFDM));
1223 rt2x00_set_field32(&word, TXD_W0_CIPHER_OWNER, 1);
1224 rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->ifs);
1225 rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1226 test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
1227 rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, skb->len);
1228 rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, CIPHER_NONE);
1229 rt2x00_desc_write(txd, 0, word);
1230 }
1231
1232 /*
1233 * TX data initialization
1234 */
1235 static void rt2500pci_write_beacon(struct queue_entry *entry)
1236 {
1237 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1238 struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1239 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1240 u32 word;
1241 u32 reg;
1242
1243 /*
1244 * Disable beaconing while we are reloading the beacon data,
1245 * otherwise we might be sending out invalid data.
1246 */
1247 rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
1248 rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
1249 rt2x00_set_field32(&reg, CSR14_TBCN, 0);
1250 rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
1251 rt2x00pci_register_write(rt2x00dev, CSR14, reg);
1252
1253 /*
1254 * Replace rt2x00lib allocated descriptor with the
1255 * pointer to the _real_ hardware descriptor.
1256 * After that, map the beacon to DMA and update the
1257 * descriptor.
1258 */
1259 memcpy(entry_priv->desc, skbdesc->desc, skbdesc->desc_len);
1260 skbdesc->desc = entry_priv->desc;
1261
1262 rt2x00queue_map_txskb(rt2x00dev, entry->skb);
1263
1264 rt2x00_desc_read(entry_priv->desc, 1, &word);
1265 rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
1266 rt2x00_desc_write(entry_priv->desc, 1, word);
1267 }
1268
1269 static void rt2500pci_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
1270 const enum data_queue_qid queue)
1271 {
1272 u32 reg;
1273
1274 if (queue == QID_BEACON) {
1275 rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
1276 if (!rt2x00_get_field32(reg, CSR14_BEACON_GEN)) {
1277 rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
1278 rt2x00_set_field32(&reg, CSR14_TBCN, 1);
1279 rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
1280 rt2x00pci_register_write(rt2x00dev, CSR14, reg);
1281 }
1282 return;
1283 }
1284
1285 rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
1286 rt2x00_set_field32(&reg, TXCSR0_KICK_PRIO, (queue == QID_AC_BE));
1287 rt2x00_set_field32(&reg, TXCSR0_KICK_TX, (queue == QID_AC_BK));
1288 rt2x00_set_field32(&reg, TXCSR0_KICK_ATIM, (queue == QID_ATIM));
1289 rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
1290 }
1291
1292 static void rt2500pci_kill_tx_queue(struct rt2x00_dev *rt2x00dev,
1293 const enum data_queue_qid qid)
1294 {
1295 u32 reg;
1296
1297 if (qid == QID_BEACON) {
1298 rt2x00pci_register_write(rt2x00dev, CSR14, 0);
1299 } else {
1300 rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
1301 rt2x00_set_field32(&reg, TXCSR0_ABORT, 1);
1302 rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
1303 }
1304 }
1305
1306 /*
1307 * RX control handlers
1308 */
1309 static void rt2500pci_fill_rxdone(struct queue_entry *entry,
1310 struct rxdone_entry_desc *rxdesc)
1311 {
1312 struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1313 u32 word0;
1314 u32 word2;
1315
1316 rt2x00_desc_read(entry_priv->desc, 0, &word0);
1317 rt2x00_desc_read(entry_priv->desc, 2, &word2);
1318
1319 if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1320 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1321 if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
1322 rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
1323
1324 /*
1325 * Obtain the status about this packet.
1326 * When frame was received with an OFDM bitrate,
1327 * the signal is the PLCP value. If it was received with
1328 * a CCK bitrate the signal is the rate in 100kbit/s.
1329 */
1330 rxdesc->signal = rt2x00_get_field32(word2, RXD_W2_SIGNAL);
1331 rxdesc->rssi = rt2x00_get_field32(word2, RXD_W2_RSSI) -
1332 entry->queue->rt2x00dev->rssi_offset;
1333 rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1334
1335 if (rt2x00_get_field32(word0, RXD_W0_OFDM))
1336 rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
1337 else
1338 rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
1339 if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
1340 rxdesc->dev_flags |= RXDONE_MY_BSS;
1341 }
1342
1343 /*
1344 * Interrupt functions.
1345 */
1346 static void rt2500pci_txdone(struct rt2x00_dev *rt2x00dev,
1347 const enum data_queue_qid queue_idx)
1348 {
1349 struct data_queue *queue = rt2x00queue_get_queue(rt2x00dev, queue_idx);
1350 struct queue_entry_priv_pci *entry_priv;
1351 struct queue_entry *entry;
1352 struct txdone_entry_desc txdesc;
1353 u32 word;
1354
1355 while (!rt2x00queue_empty(queue)) {
1356 entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
1357 entry_priv = entry->priv_data;
1358 rt2x00_desc_read(entry_priv->desc, 0, &word);
1359
1360 if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
1361 !rt2x00_get_field32(word, TXD_W0_VALID))
1362 break;
1363
1364 /*
1365 * Obtain the status about this packet.
1366 */
1367 txdesc.flags = 0;
1368 switch (rt2x00_get_field32(word, TXD_W0_RESULT)) {
1369 case 0: /* Success */
1370 case 1: /* Success with retry */
1371 __set_bit(TXDONE_SUCCESS, &txdesc.flags);
1372 break;
1373 case 2: /* Failure, excessive retries */
1374 __set_bit(TXDONE_EXCESSIVE_RETRY, &txdesc.flags);
1375 /* Don't break, this is a failed frame! */
1376 default: /* Failure */
1377 __set_bit(TXDONE_FAILURE, &txdesc.flags);
1378 }
1379 txdesc.retry = rt2x00_get_field32(word, TXD_W0_RETRY_COUNT);
1380
1381 rt2x00lib_txdone(entry, &txdesc);
1382 }
1383 }
1384
1385 static irqreturn_t rt2500pci_interrupt(int irq, void *dev_instance)
1386 {
1387 struct rt2x00_dev *rt2x00dev = dev_instance;
1388 u32 reg;
1389
1390 /*
1391 * Get the interrupt sources & saved to local variable.
1392 * Write register value back to clear pending interrupts.
1393 */
1394 rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
1395 rt2x00pci_register_write(rt2x00dev, CSR7, reg);
1396
1397 if (!reg)
1398 return IRQ_NONE;
1399
1400 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
1401 return IRQ_HANDLED;
1402
1403 /*
1404 * Handle interrupts, walk through all bits
1405 * and run the tasks, the bits are checked in order of
1406 * priority.
1407 */
1408
1409 /*
1410 * 1 - Beacon timer expired interrupt.
1411 */
1412 if (rt2x00_get_field32(reg, CSR7_TBCN_EXPIRE))
1413 rt2x00lib_beacondone(rt2x00dev);
1414
1415 /*
1416 * 2 - Rx ring done interrupt.
1417 */
1418 if (rt2x00_get_field32(reg, CSR7_RXDONE))
1419 rt2x00pci_rxdone(rt2x00dev);
1420
1421 /*
1422 * 3 - Atim ring transmit done interrupt.
1423 */
1424 if (rt2x00_get_field32(reg, CSR7_TXDONE_ATIMRING))
1425 rt2500pci_txdone(rt2x00dev, QID_ATIM);
1426
1427 /*
1428 * 4 - Priority ring transmit done interrupt.
1429 */
1430 if (rt2x00_get_field32(reg, CSR7_TXDONE_PRIORING))
1431 rt2500pci_txdone(rt2x00dev, QID_AC_BE);
1432
1433 /*
1434 * 5 - Tx ring transmit done interrupt.
1435 */
1436 if (rt2x00_get_field32(reg, CSR7_TXDONE_TXRING))
1437 rt2500pci_txdone(rt2x00dev, QID_AC_BK);
1438
1439 return IRQ_HANDLED;
1440 }
1441
1442 /*
1443 * Device probe functions.
1444 */
1445 static int rt2500pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1446 {
1447 struct eeprom_93cx6 eeprom;
1448 u32 reg;
1449 u16 word;
1450 u8 *mac;
1451
1452 rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
1453
1454 eeprom.data = rt2x00dev;
1455 eeprom.register_read = rt2500pci_eepromregister_read;
1456 eeprom.register_write = rt2500pci_eepromregister_write;
1457 eeprom.width = rt2x00_get_field32(reg, CSR21_TYPE_93C46) ?
1458 PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
1459 eeprom.reg_data_in = 0;
1460 eeprom.reg_data_out = 0;
1461 eeprom.reg_data_clock = 0;
1462 eeprom.reg_chip_select = 0;
1463
1464 eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
1465 EEPROM_SIZE / sizeof(u16));
1466
1467 /*
1468 * Start validation of the data that has been read.
1469 */
1470 mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1471 if (!is_valid_ether_addr(mac)) {
1472 random_ether_addr(mac);
1473 EEPROM(rt2x00dev, "MAC: %pM\n", mac);
1474 }
1475
1476 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
1477 if (word == 0xffff) {
1478 rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
1479 rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
1480 ANTENNA_SW_DIVERSITY);
1481 rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
1482 ANTENNA_SW_DIVERSITY);
1483 rt2x00_set_field16(&word, EEPROM_ANTENNA_LED_MODE,
1484 LED_MODE_DEFAULT);
1485 rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
1486 rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
1487 rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2522);
1488 rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
1489 EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
1490 }
1491
1492 rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
1493 if (word == 0xffff) {
1494 rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
1495 rt2x00_set_field16(&word, EEPROM_NIC_DYN_BBP_TUNE, 0);
1496 rt2x00_set_field16(&word, EEPROM_NIC_CCK_TX_POWER, 0);
1497 rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
1498 EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
1499 }
1500
1501 rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &word);
1502 if (word == 0xffff) {
1503 rt2x00_set_field16(&word, EEPROM_CALIBRATE_OFFSET_RSSI,
1504 DEFAULT_RSSI_OFFSET);
1505 rt2x00_eeprom_write(rt2x00dev, EEPROM_CALIBRATE_OFFSET, word);
1506 EEPROM(rt2x00dev, "Calibrate offset: 0x%04x\n", word);
1507 }
1508
1509 return 0;
1510 }
1511
1512 static int rt2500pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
1513 {
1514 u32 reg;
1515 u16 value;
1516 u16 eeprom;
1517
1518 /*
1519 * Read EEPROM word for configuration.
1520 */
1521 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
1522
1523 /*
1524 * Identify RF chipset.
1525 */
1526 value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1527 rt2x00pci_register_read(rt2x00dev, CSR0, &reg);
1528 rt2x00_set_chip(rt2x00dev, RT2560, value, reg);
1529
1530 if (!rt2x00_rf(&rt2x00dev->chip, RF2522) &&
1531 !rt2x00_rf(&rt2x00dev->chip, RF2523) &&
1532 !rt2x00_rf(&rt2x00dev->chip, RF2524) &&
1533 !rt2x00_rf(&rt2x00dev->chip, RF2525) &&
1534 !rt2x00_rf(&rt2x00dev->chip, RF2525E) &&
1535 !rt2x00_rf(&rt2x00dev->chip, RF5222)) {
1536 ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
1537 return -ENODEV;
1538 }
1539
1540 /*
1541 * Identify default antenna configuration.
1542 */
1543 rt2x00dev->default_ant.tx =
1544 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1545 rt2x00dev->default_ant.rx =
1546 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1547
1548 /*
1549 * Store led mode, for correct led behaviour.
1550 */
1551 #ifdef CONFIG_RT2X00_LIB_LEDS
1552 value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
1553
1554 rt2500pci_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
1555 if (value == LED_MODE_TXRX_ACTIVITY ||
1556 value == LED_MODE_DEFAULT ||
1557 value == LED_MODE_ASUS)
1558 rt2500pci_init_led(rt2x00dev, &rt2x00dev->led_qual,
1559 LED_TYPE_ACTIVITY);
1560 #endif /* CONFIG_RT2X00_LIB_LEDS */
1561
1562 /*
1563 * Detect if this device has an hardware controlled radio.
1564 */
1565 #ifdef CONFIG_RT2X00_LIB_RFKILL
1566 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
1567 __set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
1568 #endif /* CONFIG_RT2X00_LIB_RFKILL */
1569
1570 /*
1571 * Check if the BBP tuning should be enabled.
1572 */
1573 rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
1574
1575 if (rt2x00_get_field16(eeprom, EEPROM_NIC_DYN_BBP_TUNE))
1576 __set_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags);
1577
1578 /*
1579 * Read the RSSI <-> dBm offset information.
1580 */
1581 rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &eeprom);
1582 rt2x00dev->rssi_offset =
1583 rt2x00_get_field16(eeprom, EEPROM_CALIBRATE_OFFSET_RSSI);
1584
1585 return 0;
1586 }
1587
1588 /*
1589 * RF value list for RF2522
1590 * Supports: 2.4 GHz
1591 */
1592 static const struct rf_channel rf_vals_bg_2522[] = {
1593 { 1, 0x00002050, 0x000c1fda, 0x00000101, 0 },
1594 { 2, 0x00002050, 0x000c1fee, 0x00000101, 0 },
1595 { 3, 0x00002050, 0x000c2002, 0x00000101, 0 },
1596 { 4, 0x00002050, 0x000c2016, 0x00000101, 0 },
1597 { 5, 0x00002050, 0x000c202a, 0x00000101, 0 },
1598 { 6, 0x00002050, 0x000c203e, 0x00000101, 0 },
1599 { 7, 0x00002050, 0x000c2052, 0x00000101, 0 },
1600 { 8, 0x00002050, 0x000c2066, 0x00000101, 0 },
1601 { 9, 0x00002050, 0x000c207a, 0x00000101, 0 },
1602 { 10, 0x00002050, 0x000c208e, 0x00000101, 0 },
1603 { 11, 0x00002050, 0x000c20a2, 0x00000101, 0 },
1604 { 12, 0x00002050, 0x000c20b6, 0x00000101, 0 },
1605 { 13, 0x00002050, 0x000c20ca, 0x00000101, 0 },
1606 { 14, 0x00002050, 0x000c20fa, 0x00000101, 0 },
1607 };
1608
1609 /*
1610 * RF value list for RF2523
1611 * Supports: 2.4 GHz
1612 */
1613 static const struct rf_channel rf_vals_bg_2523[] = {
1614 { 1, 0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b },
1615 { 2, 0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b },
1616 { 3, 0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b },
1617 { 4, 0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b },
1618 { 5, 0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b },
1619 { 6, 0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b },
1620 { 7, 0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b },
1621 { 8, 0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b },
1622 { 9, 0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b },
1623 { 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b },
1624 { 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b },
1625 { 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b },
1626 { 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b },
1627 { 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 },
1628 };
1629
1630 /*
1631 * RF value list for RF2524
1632 * Supports: 2.4 GHz
1633 */
1634 static const struct rf_channel rf_vals_bg_2524[] = {
1635 { 1, 0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b },
1636 { 2, 0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b },
1637 { 3, 0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b },
1638 { 4, 0x00032020, 0x00000caa, 0x00000101, 0x00000a1b },
1639 { 5, 0x00032020, 0x00000cae, 0x00000101, 0x00000a1b },
1640 { 6, 0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b },
1641 { 7, 0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b },
1642 { 8, 0x00032020, 0x00000cba, 0x00000101, 0x00000a1b },
1643 { 9, 0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b },
1644 { 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b },
1645 { 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b },
1646 { 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b },
1647 { 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b },
1648 { 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 },
1649 };
1650
1651 /*
1652 * RF value list for RF2525
1653 * Supports: 2.4 GHz
1654 */
1655 static const struct rf_channel rf_vals_bg_2525[] = {
1656 { 1, 0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b },
1657 { 2, 0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b },
1658 { 3, 0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b },
1659 { 4, 0x00022020, 0x00080caa, 0x00060111, 0x00000a1b },
1660 { 5, 0x00022020, 0x00080cae, 0x00060111, 0x00000a1b },
1661 { 6, 0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b },
1662 { 7, 0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b },
1663 { 8, 0x00022020, 0x00080cba, 0x00060111, 0x00000a1b },
1664 { 9, 0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b },
1665 { 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b },
1666 { 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b },
1667 { 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b },
1668 { 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b },
1669 { 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 },
1670 };
1671
1672 /*
1673 * RF value list for RF2525e
1674 * Supports: 2.4 GHz
1675 */
1676 static const struct rf_channel rf_vals_bg_2525e[] = {
1677 { 1, 0x00022020, 0x00081136, 0x00060111, 0x00000a0b },
1678 { 2, 0x00022020, 0x0008113a, 0x00060111, 0x00000a0b },
1679 { 3, 0x00022020, 0x0008113e, 0x00060111, 0x00000a0b },
1680 { 4, 0x00022020, 0x00081182, 0x00060111, 0x00000a0b },
1681 { 5, 0x00022020, 0x00081186, 0x00060111, 0x00000a0b },
1682 { 6, 0x00022020, 0x0008118a, 0x00060111, 0x00000a0b },
1683 { 7, 0x00022020, 0x0008118e, 0x00060111, 0x00000a0b },
1684 { 8, 0x00022020, 0x00081192, 0x00060111, 0x00000a0b },
1685 { 9, 0x00022020, 0x00081196, 0x00060111, 0x00000a0b },
1686 { 10, 0x00022020, 0x0008119a, 0x00060111, 0x00000a0b },
1687 { 11, 0x00022020, 0x0008119e, 0x00060111, 0x00000a0b },
1688 { 12, 0x00022020, 0x000811a2, 0x00060111, 0x00000a0b },
1689 { 13, 0x00022020, 0x000811a6, 0x00060111, 0x00000a0b },
1690 { 14, 0x00022020, 0x000811ae, 0x00060111, 0x00000a1b },
1691 };
1692
1693 /*
1694 * RF value list for RF5222
1695 * Supports: 2.4 GHz & 5.2 GHz
1696 */
1697 static const struct rf_channel rf_vals_5222[] = {
1698 { 1, 0x00022020, 0x00001136, 0x00000101, 0x00000a0b },
1699 { 2, 0x00022020, 0x0000113a, 0x00000101, 0x00000a0b },
1700 { 3, 0x00022020, 0x0000113e, 0x00000101, 0x00000a0b },
1701 { 4, 0x00022020, 0x00001182, 0x00000101, 0x00000a0b },
1702 { 5, 0x00022020, 0x00001186, 0x00000101, 0x00000a0b },
1703 { 6, 0x00022020, 0x0000118a, 0x00000101, 0x00000a0b },
1704 { 7, 0x00022020, 0x0000118e, 0x00000101, 0x00000a0b },
1705 { 8, 0x00022020, 0x00001192, 0x00000101, 0x00000a0b },
1706 { 9, 0x00022020, 0x00001196, 0x00000101, 0x00000a0b },
1707 { 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b },
1708 { 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b },
1709 { 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b },
1710 { 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b },
1711 { 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b },
1712
1713 /* 802.11 UNI / HyperLan 2 */
1714 { 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f },
1715 { 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f },
1716 { 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f },
1717 { 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f },
1718 { 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f },
1719 { 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f },
1720 { 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f },
1721 { 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f },
1722
1723 /* 802.11 HyperLan 2 */
1724 { 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f },
1725 { 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f },
1726 { 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f },
1727 { 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f },
1728 { 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f },
1729 { 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f },
1730 { 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f },
1731 { 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f },
1732 { 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f },
1733 { 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f },
1734
1735 /* 802.11 UNII */
1736 { 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f },
1737 { 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 },
1738 { 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 },
1739 { 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 },
1740 { 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 },
1741 };
1742
1743 static int rt2500pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
1744 {
1745 struct hw_mode_spec *spec = &rt2x00dev->spec;
1746 struct channel_info *info;
1747 char *tx_power;
1748 unsigned int i;
1749
1750 /*
1751 * Initialize all hw fields.
1752 */
1753 rt2x00dev->hw->flags = IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
1754 IEEE80211_HW_SIGNAL_DBM |
1755 IEEE80211_HW_SUPPORTS_PS |
1756 IEEE80211_HW_PS_NULLFUNC_STACK;
1757
1758 rt2x00dev->hw->extra_tx_headroom = 0;
1759
1760 SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
1761 SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
1762 rt2x00_eeprom_addr(rt2x00dev,
1763 EEPROM_MAC_ADDR_0));
1764
1765 /*
1766 * Initialize hw_mode information.
1767 */
1768 spec->supported_bands = SUPPORT_BAND_2GHZ;
1769 spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
1770
1771 if (rt2x00_rf(&rt2x00dev->chip, RF2522)) {
1772 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2522);
1773 spec->channels = rf_vals_bg_2522;
1774 } else if (rt2x00_rf(&rt2x00dev->chip, RF2523)) {
1775 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2523);
1776 spec->channels = rf_vals_bg_2523;
1777 } else if (rt2x00_rf(&rt2x00dev->chip, RF2524)) {
1778 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2524);
1779 spec->channels = rf_vals_bg_2524;
1780 } else if (rt2x00_rf(&rt2x00dev->chip, RF2525)) {
1781 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525);
1782 spec->channels = rf_vals_bg_2525;
1783 } else if (rt2x00_rf(&rt2x00dev->chip, RF2525E)) {
1784 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525e);
1785 spec->channels = rf_vals_bg_2525e;
1786 } else if (rt2x00_rf(&rt2x00dev->chip, RF5222)) {
1787 spec->supported_bands |= SUPPORT_BAND_5GHZ;
1788 spec->num_channels = ARRAY_SIZE(rf_vals_5222);
1789 spec->channels = rf_vals_5222;
1790 }
1791
1792 /*
1793 * Create channel information array
1794 */
1795 info = kzalloc(spec->num_channels * sizeof(*info), GFP_KERNEL);
1796 if (!info)
1797 return -ENOMEM;
1798
1799 spec->channels_info = info;
1800
1801 tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
1802 for (i = 0; i < 14; i++)
1803 info[i].tx_power1 = TXPOWER_FROM_DEV(tx_power[i]);
1804
1805 if (spec->num_channels > 14) {
1806 for (i = 14; i < spec->num_channels; i++)
1807 info[i].tx_power1 = DEFAULT_TXPOWER;
1808 }
1809
1810 return 0;
1811 }
1812
1813 static int rt2500pci_probe_hw(struct rt2x00_dev *rt2x00dev)
1814 {
1815 int retval;
1816
1817 /*
1818 * Allocate eeprom data.
1819 */
1820 retval = rt2500pci_validate_eeprom(rt2x00dev);
1821 if (retval)
1822 return retval;
1823
1824 retval = rt2500pci_init_eeprom(rt2x00dev);
1825 if (retval)
1826 return retval;
1827
1828 /*
1829 * Initialize hw specifications.
1830 */
1831 retval = rt2500pci_probe_hw_mode(rt2x00dev);
1832 if (retval)
1833 return retval;
1834
1835 /*
1836 * This device requires the atim queue and DMA-mapped skbs.
1837 */
1838 __set_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags);
1839 __set_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags);
1840
1841 /*
1842 * Set the rssi offset.
1843 */
1844 rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
1845
1846 return 0;
1847 }
1848
1849 /*
1850 * IEEE80211 stack callback functions.
1851 */
1852 static u64 rt2500pci_get_tsf(struct ieee80211_hw *hw)
1853 {
1854 struct rt2x00_dev *rt2x00dev = hw->priv;
1855 u64 tsf;
1856 u32 reg;
1857
1858 rt2x00pci_register_read(rt2x00dev, CSR17, &reg);
1859 tsf = (u64) rt2x00_get_field32(reg, CSR17_HIGH_TSFTIMER) << 32;
1860 rt2x00pci_register_read(rt2x00dev, CSR16, &reg);
1861 tsf |= rt2x00_get_field32(reg, CSR16_LOW_TSFTIMER);
1862
1863 return tsf;
1864 }
1865
1866 static int rt2500pci_tx_last_beacon(struct ieee80211_hw *hw)
1867 {
1868 struct rt2x00_dev *rt2x00dev = hw->priv;
1869 u32 reg;
1870
1871 rt2x00pci_register_read(rt2x00dev, CSR15, &reg);
1872 return rt2x00_get_field32(reg, CSR15_BEACON_SENT);
1873 }
1874
1875 static const struct ieee80211_ops rt2500pci_mac80211_ops = {
1876 .tx = rt2x00mac_tx,
1877 .start = rt2x00mac_start,
1878 .stop = rt2x00mac_stop,
1879 .add_interface = rt2x00mac_add_interface,
1880 .remove_interface = rt2x00mac_remove_interface,
1881 .config = rt2x00mac_config,
1882 .config_interface = rt2x00mac_config_interface,
1883 .configure_filter = rt2x00mac_configure_filter,
1884 .get_stats = rt2x00mac_get_stats,
1885 .bss_info_changed = rt2x00mac_bss_info_changed,
1886 .conf_tx = rt2x00mac_conf_tx,
1887 .get_tx_stats = rt2x00mac_get_tx_stats,
1888 .get_tsf = rt2500pci_get_tsf,
1889 .tx_last_beacon = rt2500pci_tx_last_beacon,
1890 };
1891
1892 static const struct rt2x00lib_ops rt2500pci_rt2x00_ops = {
1893 .irq_handler = rt2500pci_interrupt,
1894 .probe_hw = rt2500pci_probe_hw,
1895 .initialize = rt2x00pci_initialize,
1896 .uninitialize = rt2x00pci_uninitialize,
1897 .get_entry_state = rt2500pci_get_entry_state,
1898 .clear_entry = rt2500pci_clear_entry,
1899 .set_device_state = rt2500pci_set_device_state,
1900 .rfkill_poll = rt2500pci_rfkill_poll,
1901 .link_stats = rt2500pci_link_stats,
1902 .reset_tuner = rt2500pci_reset_tuner,
1903 .link_tuner = rt2500pci_link_tuner,
1904 .write_tx_desc = rt2500pci_write_tx_desc,
1905 .write_tx_data = rt2x00pci_write_tx_data,
1906 .write_beacon = rt2500pci_write_beacon,
1907 .kick_tx_queue = rt2500pci_kick_tx_queue,
1908 .kill_tx_queue = rt2500pci_kill_tx_queue,
1909 .fill_rxdone = rt2500pci_fill_rxdone,
1910 .config_filter = rt2500pci_config_filter,
1911 .config_intf = rt2500pci_config_intf,
1912 .config_erp = rt2500pci_config_erp,
1913 .config_ant = rt2500pci_config_ant,
1914 .config = rt2500pci_config,
1915 };
1916
1917 static const struct data_queue_desc rt2500pci_queue_rx = {
1918 .entry_num = RX_ENTRIES,
1919 .data_size = DATA_FRAME_SIZE,
1920 .desc_size = RXD_DESC_SIZE,
1921 .priv_size = sizeof(struct queue_entry_priv_pci),
1922 };
1923
1924 static const struct data_queue_desc rt2500pci_queue_tx = {
1925 .entry_num = TX_ENTRIES,
1926 .data_size = DATA_FRAME_SIZE,
1927 .desc_size = TXD_DESC_SIZE,
1928 .priv_size = sizeof(struct queue_entry_priv_pci),
1929 };
1930
1931 static const struct data_queue_desc rt2500pci_queue_bcn = {
1932 .entry_num = BEACON_ENTRIES,
1933 .data_size = MGMT_FRAME_SIZE,
1934 .desc_size = TXD_DESC_SIZE,
1935 .priv_size = sizeof(struct queue_entry_priv_pci),
1936 };
1937
1938 static const struct data_queue_desc rt2500pci_queue_atim = {
1939 .entry_num = ATIM_ENTRIES,
1940 .data_size = DATA_FRAME_SIZE,
1941 .desc_size = TXD_DESC_SIZE,
1942 .priv_size = sizeof(struct queue_entry_priv_pci),
1943 };
1944
1945 static const struct rt2x00_ops rt2500pci_ops = {
1946 .name = KBUILD_MODNAME,
1947 .max_sta_intf = 1,
1948 .max_ap_intf = 1,
1949 .eeprom_size = EEPROM_SIZE,
1950 .rf_size = RF_SIZE,
1951 .tx_queues = NUM_TX_QUEUES,
1952 .rx = &rt2500pci_queue_rx,
1953 .tx = &rt2500pci_queue_tx,
1954 .bcn = &rt2500pci_queue_bcn,
1955 .atim = &rt2500pci_queue_atim,
1956 .lib = &rt2500pci_rt2x00_ops,
1957 .hw = &rt2500pci_mac80211_ops,
1958 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
1959 .debugfs = &rt2500pci_rt2x00debug,
1960 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1961 };
1962
1963 /*
1964 * RT2500pci module information.
1965 */
1966 static struct pci_device_id rt2500pci_device_table[] = {
1967 { PCI_DEVICE(0x1814, 0x0201), PCI_DEVICE_DATA(&rt2500pci_ops) },
1968 { 0, }
1969 };
1970
1971 MODULE_AUTHOR(DRV_PROJECT);
1972 MODULE_VERSION(DRV_VERSION);
1973 MODULE_DESCRIPTION("Ralink RT2500 PCI & PCMCIA Wireless LAN driver.");
1974 MODULE_SUPPORTED_DEVICE("Ralink RT2560 PCI & PCMCIA chipset based cards");
1975 MODULE_DEVICE_TABLE(pci, rt2500pci_device_table);
1976 MODULE_LICENSE("GPL");
1977
1978 static struct pci_driver rt2500pci_driver = {
1979 .name = KBUILD_MODNAME,
1980 .id_table = rt2500pci_device_table,
1981 .probe = rt2x00pci_probe,
1982 .remove = __devexit_p(rt2x00pci_remove),
1983 .suspend = rt2x00pci_suspend,
1984 .resume = rt2x00pci_resume,
1985 };
1986
1987 static int __init rt2500pci_init(void)
1988 {
1989 return pci_register_driver(&rt2500pci_driver);
1990 }
1991
1992 static void __exit rt2500pci_exit(void)
1993 {
1994 pci_unregister_driver(&rt2500pci_driver);
1995 }
1996
1997 module_init(rt2500pci_init);
1998 module_exit(rt2500pci_exit);
This page took 0.102251 seconds and 6 git commands to generate.