drivers/net: Remove unnecessary semicolons
[deliverable/linux.git] / drivers / net / wireless / rt2x00 / rt2800lib.c
1 /*
2 Copyright (C) 2010 Willow Garage <http://www.willowgarage.com>
3 Copyright (C) 2010 Ivo van Doorn <IvDoorn@gmail.com>
4 Copyright (C) 2009 Bartlomiej Zolnierkiewicz <bzolnier@gmail.com>
5 Copyright (C) 2009 Gertjan van Wingerde <gwingerde@gmail.com>
6
7 Based on the original rt2800pci.c and rt2800usb.c.
8 Copyright (C) 2009 Alban Browaeys <prahal@yahoo.com>
9 Copyright (C) 2009 Felix Fietkau <nbd@openwrt.org>
10 Copyright (C) 2009 Luis Correia <luis.f.correia@gmail.com>
11 Copyright (C) 2009 Mattias Nissler <mattias.nissler@gmx.de>
12 Copyright (C) 2009 Mark Asselstine <asselsm@gmail.com>
13 Copyright (C) 2009 Xose Vazquez Perez <xose.vazquez@gmail.com>
14 <http://rt2x00.serialmonkey.com>
15
16 This program is free software; you can redistribute it and/or modify
17 it under the terms of the GNU General Public License as published by
18 the Free Software Foundation; either version 2 of the License, or
19 (at your option) any later version.
20
21 This program is distributed in the hope that it will be useful,
22 but WITHOUT ANY WARRANTY; without even the implied warranty of
23 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
24 GNU General Public License for more details.
25
26 You should have received a copy of the GNU General Public License
27 along with this program; if not, write to the
28 Free Software Foundation, Inc.,
29 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
30 */
31
32 /*
33 Module: rt2800lib
34 Abstract: rt2800 generic device routines.
35 */
36
37 #include <linux/crc-ccitt.h>
38 #include <linux/kernel.h>
39 #include <linux/module.h>
40 #include <linux/slab.h>
41
42 #include "rt2x00.h"
43 #include "rt2800lib.h"
44 #include "rt2800.h"
45
46 /*
47 * Register access.
48 * All access to the CSR registers will go through the methods
49 * rt2800_register_read and rt2800_register_write.
50 * BBP and RF register require indirect register access,
51 * and use the CSR registers BBPCSR and RFCSR to achieve this.
52 * These indirect registers work with busy bits,
53 * and we will try maximal REGISTER_BUSY_COUNT times to access
54 * the register while taking a REGISTER_BUSY_DELAY us delay
55 * between each attampt. When the busy bit is still set at that time,
56 * the access attempt is considered to have failed,
57 * and we will print an error.
58 * The _lock versions must be used if you already hold the csr_mutex
59 */
60 #define WAIT_FOR_BBP(__dev, __reg) \
61 rt2800_regbusy_read((__dev), BBP_CSR_CFG, BBP_CSR_CFG_BUSY, (__reg))
62 #define WAIT_FOR_RFCSR(__dev, __reg) \
63 rt2800_regbusy_read((__dev), RF_CSR_CFG, RF_CSR_CFG_BUSY, (__reg))
64 #define WAIT_FOR_RF(__dev, __reg) \
65 rt2800_regbusy_read((__dev), RF_CSR_CFG0, RF_CSR_CFG0_BUSY, (__reg))
66 #define WAIT_FOR_MCU(__dev, __reg) \
67 rt2800_regbusy_read((__dev), H2M_MAILBOX_CSR, \
68 H2M_MAILBOX_CSR_OWNER, (__reg))
69
70 static inline bool rt2800_is_305x_soc(struct rt2x00_dev *rt2x00dev)
71 {
72 /* check for rt2872 on SoC */
73 if (!rt2x00_is_soc(rt2x00dev) ||
74 !rt2x00_rt(rt2x00dev, RT2872))
75 return false;
76
77 /* we know for sure that these rf chipsets are used on rt305x boards */
78 if (rt2x00_rf(rt2x00dev, RF3020) ||
79 rt2x00_rf(rt2x00dev, RF3021) ||
80 rt2x00_rf(rt2x00dev, RF3022))
81 return true;
82
83 NOTICE(rt2x00dev, "Unknown RF chipset on rt305x\n");
84 return false;
85 }
86
87 static void rt2800_bbp_write(struct rt2x00_dev *rt2x00dev,
88 const unsigned int word, const u8 value)
89 {
90 u32 reg;
91
92 mutex_lock(&rt2x00dev->csr_mutex);
93
94 /*
95 * Wait until the BBP becomes available, afterwards we
96 * can safely write the new data into the register.
97 */
98 if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
99 reg = 0;
100 rt2x00_set_field32(&reg, BBP_CSR_CFG_VALUE, value);
101 rt2x00_set_field32(&reg, BBP_CSR_CFG_REGNUM, word);
102 rt2x00_set_field32(&reg, BBP_CSR_CFG_BUSY, 1);
103 rt2x00_set_field32(&reg, BBP_CSR_CFG_READ_CONTROL, 0);
104 rt2x00_set_field32(&reg, BBP_CSR_CFG_BBP_RW_MODE, 1);
105
106 rt2800_register_write_lock(rt2x00dev, BBP_CSR_CFG, reg);
107 }
108
109 mutex_unlock(&rt2x00dev->csr_mutex);
110 }
111
112 static void rt2800_bbp_read(struct rt2x00_dev *rt2x00dev,
113 const unsigned int word, u8 *value)
114 {
115 u32 reg;
116
117 mutex_lock(&rt2x00dev->csr_mutex);
118
119 /*
120 * Wait until the BBP becomes available, afterwards we
121 * can safely write the read request into the register.
122 * After the data has been written, we wait until hardware
123 * returns the correct value, if at any time the register
124 * doesn't become available in time, reg will be 0xffffffff
125 * which means we return 0xff to the caller.
126 */
127 if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
128 reg = 0;
129 rt2x00_set_field32(&reg, BBP_CSR_CFG_REGNUM, word);
130 rt2x00_set_field32(&reg, BBP_CSR_CFG_BUSY, 1);
131 rt2x00_set_field32(&reg, BBP_CSR_CFG_READ_CONTROL, 1);
132 rt2x00_set_field32(&reg, BBP_CSR_CFG_BBP_RW_MODE, 1);
133
134 rt2800_register_write_lock(rt2x00dev, BBP_CSR_CFG, reg);
135
136 WAIT_FOR_BBP(rt2x00dev, &reg);
137 }
138
139 *value = rt2x00_get_field32(reg, BBP_CSR_CFG_VALUE);
140
141 mutex_unlock(&rt2x00dev->csr_mutex);
142 }
143
144 static void rt2800_rfcsr_write(struct rt2x00_dev *rt2x00dev,
145 const unsigned int word, const u8 value)
146 {
147 u32 reg;
148
149 mutex_lock(&rt2x00dev->csr_mutex);
150
151 /*
152 * Wait until the RFCSR becomes available, afterwards we
153 * can safely write the new data into the register.
154 */
155 if (WAIT_FOR_RFCSR(rt2x00dev, &reg)) {
156 reg = 0;
157 rt2x00_set_field32(&reg, RF_CSR_CFG_DATA, value);
158 rt2x00_set_field32(&reg, RF_CSR_CFG_REGNUM, word);
159 rt2x00_set_field32(&reg, RF_CSR_CFG_WRITE, 1);
160 rt2x00_set_field32(&reg, RF_CSR_CFG_BUSY, 1);
161
162 rt2800_register_write_lock(rt2x00dev, RF_CSR_CFG, reg);
163 }
164
165 mutex_unlock(&rt2x00dev->csr_mutex);
166 }
167
168 static void rt2800_rfcsr_read(struct rt2x00_dev *rt2x00dev,
169 const unsigned int word, u8 *value)
170 {
171 u32 reg;
172
173 mutex_lock(&rt2x00dev->csr_mutex);
174
175 /*
176 * Wait until the RFCSR becomes available, afterwards we
177 * can safely write the read request into the register.
178 * After the data has been written, we wait until hardware
179 * returns the correct value, if at any time the register
180 * doesn't become available in time, reg will be 0xffffffff
181 * which means we return 0xff to the caller.
182 */
183 if (WAIT_FOR_RFCSR(rt2x00dev, &reg)) {
184 reg = 0;
185 rt2x00_set_field32(&reg, RF_CSR_CFG_REGNUM, word);
186 rt2x00_set_field32(&reg, RF_CSR_CFG_WRITE, 0);
187 rt2x00_set_field32(&reg, RF_CSR_CFG_BUSY, 1);
188
189 rt2800_register_write_lock(rt2x00dev, RF_CSR_CFG, reg);
190
191 WAIT_FOR_RFCSR(rt2x00dev, &reg);
192 }
193
194 *value = rt2x00_get_field32(reg, RF_CSR_CFG_DATA);
195
196 mutex_unlock(&rt2x00dev->csr_mutex);
197 }
198
199 static void rt2800_rf_write(struct rt2x00_dev *rt2x00dev,
200 const unsigned int word, const u32 value)
201 {
202 u32 reg;
203
204 mutex_lock(&rt2x00dev->csr_mutex);
205
206 /*
207 * Wait until the RF becomes available, afterwards we
208 * can safely write the new data into the register.
209 */
210 if (WAIT_FOR_RF(rt2x00dev, &reg)) {
211 reg = 0;
212 rt2x00_set_field32(&reg, RF_CSR_CFG0_REG_VALUE_BW, value);
213 rt2x00_set_field32(&reg, RF_CSR_CFG0_STANDBYMODE, 0);
214 rt2x00_set_field32(&reg, RF_CSR_CFG0_SEL, 0);
215 rt2x00_set_field32(&reg, RF_CSR_CFG0_BUSY, 1);
216
217 rt2800_register_write_lock(rt2x00dev, RF_CSR_CFG0, reg);
218 rt2x00_rf_write(rt2x00dev, word, value);
219 }
220
221 mutex_unlock(&rt2x00dev->csr_mutex);
222 }
223
224 void rt2800_mcu_request(struct rt2x00_dev *rt2x00dev,
225 const u8 command, const u8 token,
226 const u8 arg0, const u8 arg1)
227 {
228 u32 reg;
229
230 /*
231 * SOC devices don't support MCU requests.
232 */
233 if (rt2x00_is_soc(rt2x00dev))
234 return;
235
236 mutex_lock(&rt2x00dev->csr_mutex);
237
238 /*
239 * Wait until the MCU becomes available, afterwards we
240 * can safely write the new data into the register.
241 */
242 if (WAIT_FOR_MCU(rt2x00dev, &reg)) {
243 rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_OWNER, 1);
244 rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_CMD_TOKEN, token);
245 rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_ARG0, arg0);
246 rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_ARG1, arg1);
247 rt2800_register_write_lock(rt2x00dev, H2M_MAILBOX_CSR, reg);
248
249 reg = 0;
250 rt2x00_set_field32(&reg, HOST_CMD_CSR_HOST_COMMAND, command);
251 rt2800_register_write_lock(rt2x00dev, HOST_CMD_CSR, reg);
252 }
253
254 mutex_unlock(&rt2x00dev->csr_mutex);
255 }
256 EXPORT_SYMBOL_GPL(rt2800_mcu_request);
257
258 int rt2800_wait_csr_ready(struct rt2x00_dev *rt2x00dev)
259 {
260 unsigned int i = 0;
261 u32 reg;
262
263 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
264 rt2800_register_read(rt2x00dev, MAC_CSR0, &reg);
265 if (reg && reg != ~0)
266 return 0;
267 msleep(1);
268 }
269
270 ERROR(rt2x00dev, "Unstable hardware.\n");
271 return -EBUSY;
272 }
273 EXPORT_SYMBOL_GPL(rt2800_wait_csr_ready);
274
275 int rt2800_wait_wpdma_ready(struct rt2x00_dev *rt2x00dev)
276 {
277 unsigned int i;
278 u32 reg;
279
280 /*
281 * Some devices are really slow to respond here. Wait a whole second
282 * before timing out.
283 */
284 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
285 rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, &reg);
286 if (!rt2x00_get_field32(reg, WPDMA_GLO_CFG_TX_DMA_BUSY) &&
287 !rt2x00_get_field32(reg, WPDMA_GLO_CFG_RX_DMA_BUSY))
288 return 0;
289
290 msleep(10);
291 }
292
293 ERROR(rt2x00dev, "WPDMA TX/RX busy, aborting.\n");
294 return -EACCES;
295 }
296 EXPORT_SYMBOL_GPL(rt2800_wait_wpdma_ready);
297
298 static bool rt2800_check_firmware_crc(const u8 *data, const size_t len)
299 {
300 u16 fw_crc;
301 u16 crc;
302
303 /*
304 * The last 2 bytes in the firmware array are the crc checksum itself,
305 * this means that we should never pass those 2 bytes to the crc
306 * algorithm.
307 */
308 fw_crc = (data[len - 2] << 8 | data[len - 1]);
309
310 /*
311 * Use the crc ccitt algorithm.
312 * This will return the same value as the legacy driver which
313 * used bit ordering reversion on the both the firmware bytes
314 * before input input as well as on the final output.
315 * Obviously using crc ccitt directly is much more efficient.
316 */
317 crc = crc_ccitt(~0, data, len - 2);
318
319 /*
320 * There is a small difference between the crc-itu-t + bitrev and
321 * the crc-ccitt crc calculation. In the latter method the 2 bytes
322 * will be swapped, use swab16 to convert the crc to the correct
323 * value.
324 */
325 crc = swab16(crc);
326
327 return fw_crc == crc;
328 }
329
330 int rt2800_check_firmware(struct rt2x00_dev *rt2x00dev,
331 const u8 *data, const size_t len)
332 {
333 size_t offset = 0;
334 size_t fw_len;
335 bool multiple;
336
337 /*
338 * PCI(e) & SOC devices require firmware with a length
339 * of 8kb. USB devices require firmware files with a length
340 * of 4kb. Certain USB chipsets however require different firmware,
341 * which Ralink only provides attached to the original firmware
342 * file. Thus for USB devices, firmware files have a length
343 * which is a multiple of 4kb.
344 */
345 if (rt2x00_is_usb(rt2x00dev)) {
346 fw_len = 4096;
347 multiple = true;
348 } else {
349 fw_len = 8192;
350 multiple = true;
351 }
352
353 /*
354 * Validate the firmware length
355 */
356 if (len != fw_len && (!multiple || (len % fw_len) != 0))
357 return FW_BAD_LENGTH;
358
359 /*
360 * Check if the chipset requires one of the upper parts
361 * of the firmware.
362 */
363 if (rt2x00_is_usb(rt2x00dev) &&
364 !rt2x00_rt(rt2x00dev, RT2860) &&
365 !rt2x00_rt(rt2x00dev, RT2872) &&
366 !rt2x00_rt(rt2x00dev, RT3070) &&
367 ((len / fw_len) == 1))
368 return FW_BAD_VERSION;
369
370 /*
371 * 8kb firmware files must be checked as if it were
372 * 2 separate firmware files.
373 */
374 while (offset < len) {
375 if (!rt2800_check_firmware_crc(data + offset, fw_len))
376 return FW_BAD_CRC;
377
378 offset += fw_len;
379 }
380
381 return FW_OK;
382 }
383 EXPORT_SYMBOL_GPL(rt2800_check_firmware);
384
385 int rt2800_load_firmware(struct rt2x00_dev *rt2x00dev,
386 const u8 *data, const size_t len)
387 {
388 unsigned int i;
389 u32 reg;
390
391 /*
392 * If driver doesn't wake up firmware here,
393 * rt2800_load_firmware will hang forever when interface is up again.
394 */
395 rt2800_register_write(rt2x00dev, AUTOWAKEUP_CFG, 0x00000000);
396
397 /*
398 * Wait for stable hardware.
399 */
400 if (rt2800_wait_csr_ready(rt2x00dev))
401 return -EBUSY;
402
403 if (rt2x00_is_pci(rt2x00dev)) {
404 if (rt2x00_rt(rt2x00dev, RT5390)) {
405 rt2800_register_read(rt2x00dev, AUX_CTRL, &reg);
406 rt2x00_set_field32(&reg, AUX_CTRL_FORCE_PCIE_CLK, 1);
407 rt2x00_set_field32(&reg, AUX_CTRL_WAKE_PCIE_EN, 1);
408 rt2800_register_write(rt2x00dev, AUX_CTRL, reg);
409 }
410 rt2800_register_write(rt2x00dev, PWR_PIN_CFG, 0x00000002);
411 }
412
413 /*
414 * Disable DMA, will be reenabled later when enabling
415 * the radio.
416 */
417 rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, &reg);
418 rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_TX_DMA, 0);
419 rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_DMA_BUSY, 0);
420 rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_RX_DMA, 0);
421 rt2x00_set_field32(&reg, WPDMA_GLO_CFG_RX_DMA_BUSY, 0);
422 rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1);
423 rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg);
424
425 /*
426 * Write firmware to the device.
427 */
428 rt2800_drv_write_firmware(rt2x00dev, data, len);
429
430 /*
431 * Wait for device to stabilize.
432 */
433 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
434 rt2800_register_read(rt2x00dev, PBF_SYS_CTRL, &reg);
435 if (rt2x00_get_field32(reg, PBF_SYS_CTRL_READY))
436 break;
437 msleep(1);
438 }
439
440 if (i == REGISTER_BUSY_COUNT) {
441 ERROR(rt2x00dev, "PBF system register not ready.\n");
442 return -EBUSY;
443 }
444
445 /*
446 * Initialize firmware.
447 */
448 rt2800_register_write(rt2x00dev, H2M_BBP_AGENT, 0);
449 rt2800_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
450 msleep(1);
451
452 return 0;
453 }
454 EXPORT_SYMBOL_GPL(rt2800_load_firmware);
455
456 void rt2800_write_tx_data(struct queue_entry *entry,
457 struct txentry_desc *txdesc)
458 {
459 __le32 *txwi = rt2800_drv_get_txwi(entry);
460 u32 word;
461
462 /*
463 * Initialize TX Info descriptor
464 */
465 rt2x00_desc_read(txwi, 0, &word);
466 rt2x00_set_field32(&word, TXWI_W0_FRAG,
467 test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
468 rt2x00_set_field32(&word, TXWI_W0_MIMO_PS,
469 test_bit(ENTRY_TXD_HT_MIMO_PS, &txdesc->flags));
470 rt2x00_set_field32(&word, TXWI_W0_CF_ACK, 0);
471 rt2x00_set_field32(&word, TXWI_W0_TS,
472 test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
473 rt2x00_set_field32(&word, TXWI_W0_AMPDU,
474 test_bit(ENTRY_TXD_HT_AMPDU, &txdesc->flags));
475 rt2x00_set_field32(&word, TXWI_W0_MPDU_DENSITY,
476 txdesc->u.ht.mpdu_density);
477 rt2x00_set_field32(&word, TXWI_W0_TX_OP, txdesc->u.ht.txop);
478 rt2x00_set_field32(&word, TXWI_W0_MCS, txdesc->u.ht.mcs);
479 rt2x00_set_field32(&word, TXWI_W0_BW,
480 test_bit(ENTRY_TXD_HT_BW_40, &txdesc->flags));
481 rt2x00_set_field32(&word, TXWI_W0_SHORT_GI,
482 test_bit(ENTRY_TXD_HT_SHORT_GI, &txdesc->flags));
483 rt2x00_set_field32(&word, TXWI_W0_STBC, txdesc->u.ht.stbc);
484 rt2x00_set_field32(&word, TXWI_W0_PHYMODE, txdesc->rate_mode);
485 rt2x00_desc_write(txwi, 0, word);
486
487 rt2x00_desc_read(txwi, 1, &word);
488 rt2x00_set_field32(&word, TXWI_W1_ACK,
489 test_bit(ENTRY_TXD_ACK, &txdesc->flags));
490 rt2x00_set_field32(&word, TXWI_W1_NSEQ,
491 test_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags));
492 rt2x00_set_field32(&word, TXWI_W1_BW_WIN_SIZE, txdesc->u.ht.ba_size);
493 rt2x00_set_field32(&word, TXWI_W1_WIRELESS_CLI_ID,
494 test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags) ?
495 txdesc->key_idx : 0xff);
496 rt2x00_set_field32(&word, TXWI_W1_MPDU_TOTAL_BYTE_COUNT,
497 txdesc->length);
498 rt2x00_set_field32(&word, TXWI_W1_PACKETID_QUEUE, entry->queue->qid);
499 rt2x00_set_field32(&word, TXWI_W1_PACKETID_ENTRY, (entry->entry_idx % 3) + 1);
500 rt2x00_desc_write(txwi, 1, word);
501
502 /*
503 * Always write 0 to IV/EIV fields, hardware will insert the IV
504 * from the IVEIV register when TXD_W3_WIV is set to 0.
505 * When TXD_W3_WIV is set to 1 it will use the IV data
506 * from the descriptor. The TXWI_W1_WIRELESS_CLI_ID indicates which
507 * crypto entry in the registers should be used to encrypt the frame.
508 */
509 _rt2x00_desc_write(txwi, 2, 0 /* skbdesc->iv[0] */);
510 _rt2x00_desc_write(txwi, 3, 0 /* skbdesc->iv[1] */);
511 }
512 EXPORT_SYMBOL_GPL(rt2800_write_tx_data);
513
514 static int rt2800_agc_to_rssi(struct rt2x00_dev *rt2x00dev, u32 rxwi_w2)
515 {
516 int rssi0 = rt2x00_get_field32(rxwi_w2, RXWI_W2_RSSI0);
517 int rssi1 = rt2x00_get_field32(rxwi_w2, RXWI_W2_RSSI1);
518 int rssi2 = rt2x00_get_field32(rxwi_w2, RXWI_W2_RSSI2);
519 u16 eeprom;
520 u8 offset0;
521 u8 offset1;
522 u8 offset2;
523
524 if (rt2x00dev->curr_band == IEEE80211_BAND_2GHZ) {
525 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_BG, &eeprom);
526 offset0 = rt2x00_get_field16(eeprom, EEPROM_RSSI_BG_OFFSET0);
527 offset1 = rt2x00_get_field16(eeprom, EEPROM_RSSI_BG_OFFSET1);
528 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_BG2, &eeprom);
529 offset2 = rt2x00_get_field16(eeprom, EEPROM_RSSI_BG2_OFFSET2);
530 } else {
531 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_A, &eeprom);
532 offset0 = rt2x00_get_field16(eeprom, EEPROM_RSSI_A_OFFSET0);
533 offset1 = rt2x00_get_field16(eeprom, EEPROM_RSSI_A_OFFSET1);
534 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_A2, &eeprom);
535 offset2 = rt2x00_get_field16(eeprom, EEPROM_RSSI_A2_OFFSET2);
536 }
537
538 /*
539 * Convert the value from the descriptor into the RSSI value
540 * If the value in the descriptor is 0, it is considered invalid
541 * and the default (extremely low) rssi value is assumed
542 */
543 rssi0 = (rssi0) ? (-12 - offset0 - rt2x00dev->lna_gain - rssi0) : -128;
544 rssi1 = (rssi1) ? (-12 - offset1 - rt2x00dev->lna_gain - rssi1) : -128;
545 rssi2 = (rssi2) ? (-12 - offset2 - rt2x00dev->lna_gain - rssi2) : -128;
546
547 /*
548 * mac80211 only accepts a single RSSI value. Calculating the
549 * average doesn't deliver a fair answer either since -60:-60 would
550 * be considered equally good as -50:-70 while the second is the one
551 * which gives less energy...
552 */
553 rssi0 = max(rssi0, rssi1);
554 return max(rssi0, rssi2);
555 }
556
557 void rt2800_process_rxwi(struct queue_entry *entry,
558 struct rxdone_entry_desc *rxdesc)
559 {
560 __le32 *rxwi = (__le32 *) entry->skb->data;
561 u32 word;
562
563 rt2x00_desc_read(rxwi, 0, &word);
564
565 rxdesc->cipher = rt2x00_get_field32(word, RXWI_W0_UDF);
566 rxdesc->size = rt2x00_get_field32(word, RXWI_W0_MPDU_TOTAL_BYTE_COUNT);
567
568 rt2x00_desc_read(rxwi, 1, &word);
569
570 if (rt2x00_get_field32(word, RXWI_W1_SHORT_GI))
571 rxdesc->flags |= RX_FLAG_SHORT_GI;
572
573 if (rt2x00_get_field32(word, RXWI_W1_BW))
574 rxdesc->flags |= RX_FLAG_40MHZ;
575
576 /*
577 * Detect RX rate, always use MCS as signal type.
578 */
579 rxdesc->dev_flags |= RXDONE_SIGNAL_MCS;
580 rxdesc->signal = rt2x00_get_field32(word, RXWI_W1_MCS);
581 rxdesc->rate_mode = rt2x00_get_field32(word, RXWI_W1_PHYMODE);
582
583 /*
584 * Mask of 0x8 bit to remove the short preamble flag.
585 */
586 if (rxdesc->rate_mode == RATE_MODE_CCK)
587 rxdesc->signal &= ~0x8;
588
589 rt2x00_desc_read(rxwi, 2, &word);
590
591 /*
592 * Convert descriptor AGC value to RSSI value.
593 */
594 rxdesc->rssi = rt2800_agc_to_rssi(entry->queue->rt2x00dev, word);
595
596 /*
597 * Remove RXWI descriptor from start of buffer.
598 */
599 skb_pull(entry->skb, RXWI_DESC_SIZE);
600 }
601 EXPORT_SYMBOL_GPL(rt2800_process_rxwi);
602
603 static bool rt2800_txdone_entry_check(struct queue_entry *entry, u32 reg)
604 {
605 __le32 *txwi;
606 u32 word;
607 int wcid, ack, pid;
608 int tx_wcid, tx_ack, tx_pid;
609
610 wcid = rt2x00_get_field32(reg, TX_STA_FIFO_WCID);
611 ack = rt2x00_get_field32(reg, TX_STA_FIFO_TX_ACK_REQUIRED);
612 pid = rt2x00_get_field32(reg, TX_STA_FIFO_PID_TYPE);
613
614 /*
615 * This frames has returned with an IO error,
616 * so the status report is not intended for this
617 * frame.
618 */
619 if (test_bit(ENTRY_DATA_IO_FAILED, &entry->flags)) {
620 rt2x00lib_txdone_noinfo(entry, TXDONE_FAILURE);
621 return false;
622 }
623
624 /*
625 * Validate if this TX status report is intended for
626 * this entry by comparing the WCID/ACK/PID fields.
627 */
628 txwi = rt2800_drv_get_txwi(entry);
629
630 rt2x00_desc_read(txwi, 1, &word);
631 tx_wcid = rt2x00_get_field32(word, TXWI_W1_WIRELESS_CLI_ID);
632 tx_ack = rt2x00_get_field32(word, TXWI_W1_ACK);
633 tx_pid = rt2x00_get_field32(word, TXWI_W1_PACKETID);
634
635 if ((wcid != tx_wcid) || (ack != tx_ack) || (pid != tx_pid)) {
636 WARNING(entry->queue->rt2x00dev,
637 "TX status report missed for queue %d entry %d\n",
638 entry->queue->qid, entry->entry_idx);
639 rt2x00lib_txdone_noinfo(entry, TXDONE_UNKNOWN);
640 return false;
641 }
642
643 return true;
644 }
645
646 void rt2800_txdone_entry(struct queue_entry *entry, u32 status)
647 {
648 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
649 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
650 struct txdone_entry_desc txdesc;
651 u32 word;
652 u16 mcs, real_mcs;
653 int aggr, ampdu;
654 __le32 *txwi;
655
656 /*
657 * Obtain the status about this packet.
658 */
659 txdesc.flags = 0;
660 txwi = rt2800_drv_get_txwi(entry);
661 rt2x00_desc_read(txwi, 0, &word);
662
663 mcs = rt2x00_get_field32(word, TXWI_W0_MCS);
664 ampdu = rt2x00_get_field32(word, TXWI_W0_AMPDU);
665
666 real_mcs = rt2x00_get_field32(status, TX_STA_FIFO_MCS);
667 aggr = rt2x00_get_field32(status, TX_STA_FIFO_TX_AGGRE);
668
669 /*
670 * If a frame was meant to be sent as a single non-aggregated MPDU
671 * but ended up in an aggregate the used tx rate doesn't correlate
672 * with the one specified in the TXWI as the whole aggregate is sent
673 * with the same rate.
674 *
675 * For example: two frames are sent to rt2x00, the first one sets
676 * AMPDU=1 and requests MCS7 whereas the second frame sets AMDPU=0
677 * and requests MCS15. If the hw aggregates both frames into one
678 * AMDPU the tx status for both frames will contain MCS7 although
679 * the frame was sent successfully.
680 *
681 * Hence, replace the requested rate with the real tx rate to not
682 * confuse the rate control algortihm by providing clearly wrong
683 * data.
684 */
685 if (unlikely(aggr == 1 && ampdu == 0 && real_mcs != mcs)) {
686 skbdesc->tx_rate_idx = real_mcs;
687 mcs = real_mcs;
688 }
689
690 if (aggr == 1 || ampdu == 1)
691 __set_bit(TXDONE_AMPDU, &txdesc.flags);
692
693 /*
694 * Ralink has a retry mechanism using a global fallback
695 * table. We setup this fallback table to try the immediate
696 * lower rate for all rates. In the TX_STA_FIFO, the MCS field
697 * always contains the MCS used for the last transmission, be
698 * it successful or not.
699 */
700 if (rt2x00_get_field32(status, TX_STA_FIFO_TX_SUCCESS)) {
701 /*
702 * Transmission succeeded. The number of retries is
703 * mcs - real_mcs
704 */
705 __set_bit(TXDONE_SUCCESS, &txdesc.flags);
706 txdesc.retry = ((mcs > real_mcs) ? mcs - real_mcs : 0);
707 } else {
708 /*
709 * Transmission failed. The number of retries is
710 * always 7 in this case (for a total number of 8
711 * frames sent).
712 */
713 __set_bit(TXDONE_FAILURE, &txdesc.flags);
714 txdesc.retry = rt2x00dev->long_retry;
715 }
716
717 /*
718 * the frame was retried at least once
719 * -> hw used fallback rates
720 */
721 if (txdesc.retry)
722 __set_bit(TXDONE_FALLBACK, &txdesc.flags);
723
724 rt2x00lib_txdone(entry, &txdesc);
725 }
726 EXPORT_SYMBOL_GPL(rt2800_txdone_entry);
727
728 void rt2800_txdone(struct rt2x00_dev *rt2x00dev)
729 {
730 struct data_queue *queue;
731 struct queue_entry *entry;
732 u32 reg;
733 u8 qid;
734
735 while (kfifo_get(&rt2x00dev->txstatus_fifo, &reg)) {
736
737 /* TX_STA_FIFO_PID_QUEUE is a 2-bit field, thus
738 * qid is guaranteed to be one of the TX QIDs
739 */
740 qid = rt2x00_get_field32(reg, TX_STA_FIFO_PID_QUEUE);
741 queue = rt2x00queue_get_tx_queue(rt2x00dev, qid);
742 if (unlikely(!queue)) {
743 WARNING(rt2x00dev, "Got TX status for an unavailable "
744 "queue %u, dropping\n", qid);
745 continue;
746 }
747
748 /*
749 * Inside each queue, we process each entry in a chronological
750 * order. We first check that the queue is not empty.
751 */
752 entry = NULL;
753 while (!rt2x00queue_empty(queue)) {
754 entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
755 if (rt2800_txdone_entry_check(entry, reg))
756 break;
757 }
758
759 if (!entry || rt2x00queue_empty(queue))
760 break;
761
762 rt2800_txdone_entry(entry, reg);
763 }
764 }
765 EXPORT_SYMBOL_GPL(rt2800_txdone);
766
767 void rt2800_write_beacon(struct queue_entry *entry, struct txentry_desc *txdesc)
768 {
769 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
770 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
771 unsigned int beacon_base;
772 unsigned int padding_len;
773 u32 orig_reg, reg;
774
775 /*
776 * Disable beaconing while we are reloading the beacon data,
777 * otherwise we might be sending out invalid data.
778 */
779 rt2800_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
780 orig_reg = reg;
781 rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_GEN, 0);
782 rt2800_register_write(rt2x00dev, BCN_TIME_CFG, reg);
783
784 /*
785 * Add space for the TXWI in front of the skb.
786 */
787 skb_push(entry->skb, TXWI_DESC_SIZE);
788 memset(entry->skb, 0, TXWI_DESC_SIZE);
789
790 /*
791 * Register descriptor details in skb frame descriptor.
792 */
793 skbdesc->flags |= SKBDESC_DESC_IN_SKB;
794 skbdesc->desc = entry->skb->data;
795 skbdesc->desc_len = TXWI_DESC_SIZE;
796
797 /*
798 * Add the TXWI for the beacon to the skb.
799 */
800 rt2800_write_tx_data(entry, txdesc);
801
802 /*
803 * Dump beacon to userspace through debugfs.
804 */
805 rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry->skb);
806
807 /*
808 * Write entire beacon with TXWI and padding to register.
809 */
810 padding_len = roundup(entry->skb->len, 4) - entry->skb->len;
811 if (padding_len && skb_pad(entry->skb, padding_len)) {
812 ERROR(rt2x00dev, "Failure padding beacon, aborting\n");
813 /* skb freed by skb_pad() on failure */
814 entry->skb = NULL;
815 rt2800_register_write(rt2x00dev, BCN_TIME_CFG, orig_reg);
816 return;
817 }
818
819 beacon_base = HW_BEACON_OFFSET(entry->entry_idx);
820 rt2800_register_multiwrite(rt2x00dev, beacon_base, entry->skb->data,
821 entry->skb->len + padding_len);
822
823 /*
824 * Enable beaconing again.
825 */
826 rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_GEN, 1);
827 rt2800_register_write(rt2x00dev, BCN_TIME_CFG, reg);
828
829 /*
830 * Clean up beacon skb.
831 */
832 dev_kfree_skb_any(entry->skb);
833 entry->skb = NULL;
834 }
835 EXPORT_SYMBOL_GPL(rt2800_write_beacon);
836
837 static inline void rt2800_clear_beacon_register(struct rt2x00_dev *rt2x00dev,
838 unsigned int beacon_base)
839 {
840 int i;
841
842 /*
843 * For the Beacon base registers we only need to clear
844 * the whole TXWI which (when set to 0) will invalidate
845 * the entire beacon.
846 */
847 for (i = 0; i < TXWI_DESC_SIZE; i += sizeof(__le32))
848 rt2800_register_write(rt2x00dev, beacon_base + i, 0);
849 }
850
851 void rt2800_clear_beacon(struct queue_entry *entry)
852 {
853 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
854 u32 reg;
855
856 /*
857 * Disable beaconing while we are reloading the beacon data,
858 * otherwise we might be sending out invalid data.
859 */
860 rt2800_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
861 rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_GEN, 0);
862 rt2800_register_write(rt2x00dev, BCN_TIME_CFG, reg);
863
864 /*
865 * Clear beacon.
866 */
867 rt2800_clear_beacon_register(rt2x00dev,
868 HW_BEACON_OFFSET(entry->entry_idx));
869
870 /*
871 * Enabled beaconing again.
872 */
873 rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_GEN, 1);
874 rt2800_register_write(rt2x00dev, BCN_TIME_CFG, reg);
875 }
876 EXPORT_SYMBOL_GPL(rt2800_clear_beacon);
877
878 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
879 const struct rt2x00debug rt2800_rt2x00debug = {
880 .owner = THIS_MODULE,
881 .csr = {
882 .read = rt2800_register_read,
883 .write = rt2800_register_write,
884 .flags = RT2X00DEBUGFS_OFFSET,
885 .word_base = CSR_REG_BASE,
886 .word_size = sizeof(u32),
887 .word_count = CSR_REG_SIZE / sizeof(u32),
888 },
889 .eeprom = {
890 .read = rt2x00_eeprom_read,
891 .write = rt2x00_eeprom_write,
892 .word_base = EEPROM_BASE,
893 .word_size = sizeof(u16),
894 .word_count = EEPROM_SIZE / sizeof(u16),
895 },
896 .bbp = {
897 .read = rt2800_bbp_read,
898 .write = rt2800_bbp_write,
899 .word_base = BBP_BASE,
900 .word_size = sizeof(u8),
901 .word_count = BBP_SIZE / sizeof(u8),
902 },
903 .rf = {
904 .read = rt2x00_rf_read,
905 .write = rt2800_rf_write,
906 .word_base = RF_BASE,
907 .word_size = sizeof(u32),
908 .word_count = RF_SIZE / sizeof(u32),
909 },
910 };
911 EXPORT_SYMBOL_GPL(rt2800_rt2x00debug);
912 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
913
914 int rt2800_rfkill_poll(struct rt2x00_dev *rt2x00dev)
915 {
916 u32 reg;
917
918 rt2800_register_read(rt2x00dev, GPIO_CTRL_CFG, &reg);
919 return rt2x00_get_field32(reg, GPIO_CTRL_CFG_BIT2);
920 }
921 EXPORT_SYMBOL_GPL(rt2800_rfkill_poll);
922
923 #ifdef CONFIG_RT2X00_LIB_LEDS
924 static void rt2800_brightness_set(struct led_classdev *led_cdev,
925 enum led_brightness brightness)
926 {
927 struct rt2x00_led *led =
928 container_of(led_cdev, struct rt2x00_led, led_dev);
929 unsigned int enabled = brightness != LED_OFF;
930 unsigned int bg_mode =
931 (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_2GHZ);
932 unsigned int polarity =
933 rt2x00_get_field16(led->rt2x00dev->led_mcu_reg,
934 EEPROM_FREQ_LED_POLARITY);
935 unsigned int ledmode =
936 rt2x00_get_field16(led->rt2x00dev->led_mcu_reg,
937 EEPROM_FREQ_LED_MODE);
938 u32 reg;
939
940 /* Check for SoC (SOC devices don't support MCU requests) */
941 if (rt2x00_is_soc(led->rt2x00dev)) {
942 rt2800_register_read(led->rt2x00dev, LED_CFG, &reg);
943
944 /* Set LED Polarity */
945 rt2x00_set_field32(&reg, LED_CFG_LED_POLAR, polarity);
946
947 /* Set LED Mode */
948 if (led->type == LED_TYPE_RADIO) {
949 rt2x00_set_field32(&reg, LED_CFG_G_LED_MODE,
950 enabled ? 3 : 0);
951 } else if (led->type == LED_TYPE_ASSOC) {
952 rt2x00_set_field32(&reg, LED_CFG_Y_LED_MODE,
953 enabled ? 3 : 0);
954 } else if (led->type == LED_TYPE_QUALITY) {
955 rt2x00_set_field32(&reg, LED_CFG_R_LED_MODE,
956 enabled ? 3 : 0);
957 }
958
959 rt2800_register_write(led->rt2x00dev, LED_CFG, reg);
960
961 } else {
962 if (led->type == LED_TYPE_RADIO) {
963 rt2800_mcu_request(led->rt2x00dev, MCU_LED, 0xff, ledmode,
964 enabled ? 0x20 : 0);
965 } else if (led->type == LED_TYPE_ASSOC) {
966 rt2800_mcu_request(led->rt2x00dev, MCU_LED, 0xff, ledmode,
967 enabled ? (bg_mode ? 0x60 : 0xa0) : 0x20);
968 } else if (led->type == LED_TYPE_QUALITY) {
969 /*
970 * The brightness is divided into 6 levels (0 - 5),
971 * The specs tell us the following levels:
972 * 0, 1 ,3, 7, 15, 31
973 * to determine the level in a simple way we can simply
974 * work with bitshifting:
975 * (1 << level) - 1
976 */
977 rt2800_mcu_request(led->rt2x00dev, MCU_LED_STRENGTH, 0xff,
978 (1 << brightness / (LED_FULL / 6)) - 1,
979 polarity);
980 }
981 }
982 }
983
984 static int rt2800_blink_set(struct led_classdev *led_cdev,
985 unsigned long *delay_on, unsigned long *delay_off)
986 {
987 struct rt2x00_led *led =
988 container_of(led_cdev, struct rt2x00_led, led_dev);
989 u32 reg;
990
991 rt2800_register_read(led->rt2x00dev, LED_CFG, &reg);
992 rt2x00_set_field32(&reg, LED_CFG_ON_PERIOD, *delay_on);
993 rt2x00_set_field32(&reg, LED_CFG_OFF_PERIOD, *delay_off);
994 rt2800_register_write(led->rt2x00dev, LED_CFG, reg);
995
996 return 0;
997 }
998
999 static void rt2800_init_led(struct rt2x00_dev *rt2x00dev,
1000 struct rt2x00_led *led, enum led_type type)
1001 {
1002 led->rt2x00dev = rt2x00dev;
1003 led->type = type;
1004 led->led_dev.brightness_set = rt2800_brightness_set;
1005 led->led_dev.blink_set = rt2800_blink_set;
1006 led->flags = LED_INITIALIZED;
1007 }
1008 #endif /* CONFIG_RT2X00_LIB_LEDS */
1009
1010 /*
1011 * Configuration handlers.
1012 */
1013 static void rt2800_config_wcid_attr(struct rt2x00_dev *rt2x00dev,
1014 struct rt2x00lib_crypto *crypto,
1015 struct ieee80211_key_conf *key)
1016 {
1017 struct mac_wcid_entry wcid_entry;
1018 struct mac_iveiv_entry iveiv_entry;
1019 u32 offset;
1020 u32 reg;
1021
1022 offset = MAC_WCID_ATTR_ENTRY(key->hw_key_idx);
1023
1024 if (crypto->cmd == SET_KEY) {
1025 rt2800_register_read(rt2x00dev, offset, &reg);
1026 rt2x00_set_field32(&reg, MAC_WCID_ATTRIBUTE_KEYTAB,
1027 !!(key->flags & IEEE80211_KEY_FLAG_PAIRWISE));
1028 /*
1029 * Both the cipher as the BSS Idx numbers are split in a main
1030 * value of 3 bits, and a extended field for adding one additional
1031 * bit to the value.
1032 */
1033 rt2x00_set_field32(&reg, MAC_WCID_ATTRIBUTE_CIPHER,
1034 (crypto->cipher & 0x7));
1035 rt2x00_set_field32(&reg, MAC_WCID_ATTRIBUTE_CIPHER_EXT,
1036 (crypto->cipher & 0x8) >> 3);
1037 rt2x00_set_field32(&reg, MAC_WCID_ATTRIBUTE_BSS_IDX,
1038 (crypto->bssidx & 0x7));
1039 rt2x00_set_field32(&reg, MAC_WCID_ATTRIBUTE_BSS_IDX_EXT,
1040 (crypto->bssidx & 0x8) >> 3);
1041 rt2x00_set_field32(&reg, MAC_WCID_ATTRIBUTE_RX_WIUDF, crypto->cipher);
1042 rt2800_register_write(rt2x00dev, offset, reg);
1043 } else {
1044 rt2800_register_write(rt2x00dev, offset, 0);
1045 }
1046
1047 offset = MAC_IVEIV_ENTRY(key->hw_key_idx);
1048
1049 memset(&iveiv_entry, 0, sizeof(iveiv_entry));
1050 if ((crypto->cipher == CIPHER_TKIP) ||
1051 (crypto->cipher == CIPHER_TKIP_NO_MIC) ||
1052 (crypto->cipher == CIPHER_AES))
1053 iveiv_entry.iv[3] |= 0x20;
1054 iveiv_entry.iv[3] |= key->keyidx << 6;
1055 rt2800_register_multiwrite(rt2x00dev, offset,
1056 &iveiv_entry, sizeof(iveiv_entry));
1057
1058 offset = MAC_WCID_ENTRY(key->hw_key_idx);
1059
1060 memset(&wcid_entry, 0, sizeof(wcid_entry));
1061 if (crypto->cmd == SET_KEY)
1062 memcpy(wcid_entry.mac, crypto->address, ETH_ALEN);
1063 rt2800_register_multiwrite(rt2x00dev, offset,
1064 &wcid_entry, sizeof(wcid_entry));
1065 }
1066
1067 int rt2800_config_shared_key(struct rt2x00_dev *rt2x00dev,
1068 struct rt2x00lib_crypto *crypto,
1069 struct ieee80211_key_conf *key)
1070 {
1071 struct hw_key_entry key_entry;
1072 struct rt2x00_field32 field;
1073 u32 offset;
1074 u32 reg;
1075
1076 if (crypto->cmd == SET_KEY) {
1077 key->hw_key_idx = (4 * crypto->bssidx) + key->keyidx;
1078
1079 memcpy(key_entry.key, crypto->key,
1080 sizeof(key_entry.key));
1081 memcpy(key_entry.tx_mic, crypto->tx_mic,
1082 sizeof(key_entry.tx_mic));
1083 memcpy(key_entry.rx_mic, crypto->rx_mic,
1084 sizeof(key_entry.rx_mic));
1085
1086 offset = SHARED_KEY_ENTRY(key->hw_key_idx);
1087 rt2800_register_multiwrite(rt2x00dev, offset,
1088 &key_entry, sizeof(key_entry));
1089 }
1090
1091 /*
1092 * The cipher types are stored over multiple registers
1093 * starting with SHARED_KEY_MODE_BASE each word will have
1094 * 32 bits and contains the cipher types for 2 bssidx each.
1095 * Using the correct defines correctly will cause overhead,
1096 * so just calculate the correct offset.
1097 */
1098 field.bit_offset = 4 * (key->hw_key_idx % 8);
1099 field.bit_mask = 0x7 << field.bit_offset;
1100
1101 offset = SHARED_KEY_MODE_ENTRY(key->hw_key_idx / 8);
1102
1103 rt2800_register_read(rt2x00dev, offset, &reg);
1104 rt2x00_set_field32(&reg, field,
1105 (crypto->cmd == SET_KEY) * crypto->cipher);
1106 rt2800_register_write(rt2x00dev, offset, reg);
1107
1108 /*
1109 * Update WCID information
1110 */
1111 rt2800_config_wcid_attr(rt2x00dev, crypto, key);
1112
1113 return 0;
1114 }
1115 EXPORT_SYMBOL_GPL(rt2800_config_shared_key);
1116
1117 static inline int rt2800_find_pairwise_keyslot(struct rt2x00_dev *rt2x00dev)
1118 {
1119 int idx;
1120 u32 offset, reg;
1121
1122 /*
1123 * Search for the first free pairwise key entry and return the
1124 * corresponding index.
1125 *
1126 * Make sure the WCID starts _after_ the last possible shared key
1127 * entry (>32).
1128 *
1129 * Since parts of the pairwise key table might be shared with
1130 * the beacon frame buffers 6 & 7 we should only write into the
1131 * first 222 entries.
1132 */
1133 for (idx = 33; idx <= 222; idx++) {
1134 offset = MAC_WCID_ATTR_ENTRY(idx);
1135 rt2800_register_read(rt2x00dev, offset, &reg);
1136 if (!reg)
1137 return idx;
1138 }
1139 return -1;
1140 }
1141
1142 int rt2800_config_pairwise_key(struct rt2x00_dev *rt2x00dev,
1143 struct rt2x00lib_crypto *crypto,
1144 struct ieee80211_key_conf *key)
1145 {
1146 struct hw_key_entry key_entry;
1147 u32 offset;
1148 int idx;
1149
1150 if (crypto->cmd == SET_KEY) {
1151 idx = rt2800_find_pairwise_keyslot(rt2x00dev);
1152 if (idx < 0)
1153 return -ENOSPC;
1154 key->hw_key_idx = idx;
1155
1156 memcpy(key_entry.key, crypto->key,
1157 sizeof(key_entry.key));
1158 memcpy(key_entry.tx_mic, crypto->tx_mic,
1159 sizeof(key_entry.tx_mic));
1160 memcpy(key_entry.rx_mic, crypto->rx_mic,
1161 sizeof(key_entry.rx_mic));
1162
1163 offset = PAIRWISE_KEY_ENTRY(key->hw_key_idx);
1164 rt2800_register_multiwrite(rt2x00dev, offset,
1165 &key_entry, sizeof(key_entry));
1166 }
1167
1168 /*
1169 * Update WCID information
1170 */
1171 rt2800_config_wcid_attr(rt2x00dev, crypto, key);
1172
1173 return 0;
1174 }
1175 EXPORT_SYMBOL_GPL(rt2800_config_pairwise_key);
1176
1177 void rt2800_config_filter(struct rt2x00_dev *rt2x00dev,
1178 const unsigned int filter_flags)
1179 {
1180 u32 reg;
1181
1182 /*
1183 * Start configuration steps.
1184 * Note that the version error will always be dropped
1185 * and broadcast frames will always be accepted since
1186 * there is no filter for it at this time.
1187 */
1188 rt2800_register_read(rt2x00dev, RX_FILTER_CFG, &reg);
1189 rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_CRC_ERROR,
1190 !(filter_flags & FIF_FCSFAIL));
1191 rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_PHY_ERROR,
1192 !(filter_flags & FIF_PLCPFAIL));
1193 rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_NOT_TO_ME,
1194 !(filter_flags & FIF_PROMISC_IN_BSS));
1195 rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_NOT_MY_BSSD, 0);
1196 rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_VER_ERROR, 1);
1197 rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_MULTICAST,
1198 !(filter_flags & FIF_ALLMULTI));
1199 rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_BROADCAST, 0);
1200 rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_DUPLICATE, 1);
1201 rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_CF_END_ACK,
1202 !(filter_flags & FIF_CONTROL));
1203 rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_CF_END,
1204 !(filter_flags & FIF_CONTROL));
1205 rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_ACK,
1206 !(filter_flags & FIF_CONTROL));
1207 rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_CTS,
1208 !(filter_flags & FIF_CONTROL));
1209 rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_RTS,
1210 !(filter_flags & FIF_CONTROL));
1211 rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_PSPOLL,
1212 !(filter_flags & FIF_PSPOLL));
1213 rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_BA, 1);
1214 rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_BAR, 0);
1215 rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_CNTL,
1216 !(filter_flags & FIF_CONTROL));
1217 rt2800_register_write(rt2x00dev, RX_FILTER_CFG, reg);
1218 }
1219 EXPORT_SYMBOL_GPL(rt2800_config_filter);
1220
1221 void rt2800_config_intf(struct rt2x00_dev *rt2x00dev, struct rt2x00_intf *intf,
1222 struct rt2x00intf_conf *conf, const unsigned int flags)
1223 {
1224 u32 reg;
1225 bool update_bssid = false;
1226
1227 if (flags & CONFIG_UPDATE_TYPE) {
1228 /*
1229 * Enable synchronisation.
1230 */
1231 rt2800_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
1232 rt2x00_set_field32(&reg, BCN_TIME_CFG_TSF_SYNC, conf->sync);
1233 rt2800_register_write(rt2x00dev, BCN_TIME_CFG, reg);
1234
1235 if (conf->sync == TSF_SYNC_AP_NONE) {
1236 /*
1237 * Tune beacon queue transmit parameters for AP mode
1238 */
1239 rt2800_register_read(rt2x00dev, TBTT_SYNC_CFG, &reg);
1240 rt2x00_set_field32(&reg, TBTT_SYNC_CFG_BCN_CWMIN, 0);
1241 rt2x00_set_field32(&reg, TBTT_SYNC_CFG_BCN_AIFSN, 1);
1242 rt2x00_set_field32(&reg, TBTT_SYNC_CFG_BCN_EXP_WIN, 32);
1243 rt2x00_set_field32(&reg, TBTT_SYNC_CFG_TBTT_ADJUST, 0);
1244 rt2800_register_write(rt2x00dev, TBTT_SYNC_CFG, reg);
1245 } else {
1246 rt2800_register_read(rt2x00dev, TBTT_SYNC_CFG, &reg);
1247 rt2x00_set_field32(&reg, TBTT_SYNC_CFG_BCN_CWMIN, 4);
1248 rt2x00_set_field32(&reg, TBTT_SYNC_CFG_BCN_AIFSN, 2);
1249 rt2x00_set_field32(&reg, TBTT_SYNC_CFG_BCN_EXP_WIN, 32);
1250 rt2x00_set_field32(&reg, TBTT_SYNC_CFG_TBTT_ADJUST, 16);
1251 rt2800_register_write(rt2x00dev, TBTT_SYNC_CFG, reg);
1252 }
1253 }
1254
1255 if (flags & CONFIG_UPDATE_MAC) {
1256 if (flags & CONFIG_UPDATE_TYPE &&
1257 conf->sync == TSF_SYNC_AP_NONE) {
1258 /*
1259 * The BSSID register has to be set to our own mac
1260 * address in AP mode.
1261 */
1262 memcpy(conf->bssid, conf->mac, sizeof(conf->mac));
1263 update_bssid = true;
1264 }
1265
1266 if (!is_zero_ether_addr((const u8 *)conf->mac)) {
1267 reg = le32_to_cpu(conf->mac[1]);
1268 rt2x00_set_field32(&reg, MAC_ADDR_DW1_UNICAST_TO_ME_MASK, 0xff);
1269 conf->mac[1] = cpu_to_le32(reg);
1270 }
1271
1272 rt2800_register_multiwrite(rt2x00dev, MAC_ADDR_DW0,
1273 conf->mac, sizeof(conf->mac));
1274 }
1275
1276 if ((flags & CONFIG_UPDATE_BSSID) || update_bssid) {
1277 if (!is_zero_ether_addr((const u8 *)conf->bssid)) {
1278 reg = le32_to_cpu(conf->bssid[1]);
1279 rt2x00_set_field32(&reg, MAC_BSSID_DW1_BSS_ID_MASK, 3);
1280 rt2x00_set_field32(&reg, MAC_BSSID_DW1_BSS_BCN_NUM, 7);
1281 conf->bssid[1] = cpu_to_le32(reg);
1282 }
1283
1284 rt2800_register_multiwrite(rt2x00dev, MAC_BSSID_DW0,
1285 conf->bssid, sizeof(conf->bssid));
1286 }
1287 }
1288 EXPORT_SYMBOL_GPL(rt2800_config_intf);
1289
1290 static void rt2800_config_ht_opmode(struct rt2x00_dev *rt2x00dev,
1291 struct rt2x00lib_erp *erp)
1292 {
1293 bool any_sta_nongf = !!(erp->ht_opmode &
1294 IEEE80211_HT_OP_MODE_NON_GF_STA_PRSNT);
1295 u8 protection = erp->ht_opmode & IEEE80211_HT_OP_MODE_PROTECTION;
1296 u8 mm20_mode, mm40_mode, gf20_mode, gf40_mode;
1297 u16 mm20_rate, mm40_rate, gf20_rate, gf40_rate;
1298 u32 reg;
1299
1300 /* default protection rate for HT20: OFDM 24M */
1301 mm20_rate = gf20_rate = 0x4004;
1302
1303 /* default protection rate for HT40: duplicate OFDM 24M */
1304 mm40_rate = gf40_rate = 0x4084;
1305
1306 switch (protection) {
1307 case IEEE80211_HT_OP_MODE_PROTECTION_NONE:
1308 /*
1309 * All STAs in this BSS are HT20/40 but there might be
1310 * STAs not supporting greenfield mode.
1311 * => Disable protection for HT transmissions.
1312 */
1313 mm20_mode = mm40_mode = gf20_mode = gf40_mode = 0;
1314
1315 break;
1316 case IEEE80211_HT_OP_MODE_PROTECTION_20MHZ:
1317 /*
1318 * All STAs in this BSS are HT20 or HT20/40 but there
1319 * might be STAs not supporting greenfield mode.
1320 * => Protect all HT40 transmissions.
1321 */
1322 mm20_mode = gf20_mode = 0;
1323 mm40_mode = gf40_mode = 2;
1324
1325 break;
1326 case IEEE80211_HT_OP_MODE_PROTECTION_NONMEMBER:
1327 /*
1328 * Nonmember protection:
1329 * According to 802.11n we _should_ protect all
1330 * HT transmissions (but we don't have to).
1331 *
1332 * But if cts_protection is enabled we _shall_ protect
1333 * all HT transmissions using a CCK rate.
1334 *
1335 * And if any station is non GF we _shall_ protect
1336 * GF transmissions.
1337 *
1338 * We decide to protect everything
1339 * -> fall through to mixed mode.
1340 */
1341 case IEEE80211_HT_OP_MODE_PROTECTION_NONHT_MIXED:
1342 /*
1343 * Legacy STAs are present
1344 * => Protect all HT transmissions.
1345 */
1346 mm20_mode = mm40_mode = gf20_mode = gf40_mode = 2;
1347
1348 /*
1349 * If erp protection is needed we have to protect HT
1350 * transmissions with CCK 11M long preamble.
1351 */
1352 if (erp->cts_protection) {
1353 /* don't duplicate RTS/CTS in CCK mode */
1354 mm20_rate = mm40_rate = 0x0003;
1355 gf20_rate = gf40_rate = 0x0003;
1356 }
1357 break;
1358 }
1359
1360 /* check for STAs not supporting greenfield mode */
1361 if (any_sta_nongf)
1362 gf20_mode = gf40_mode = 2;
1363
1364 /* Update HT protection config */
1365 rt2800_register_read(rt2x00dev, MM20_PROT_CFG, &reg);
1366 rt2x00_set_field32(&reg, MM20_PROT_CFG_PROTECT_RATE, mm20_rate);
1367 rt2x00_set_field32(&reg, MM20_PROT_CFG_PROTECT_CTRL, mm20_mode);
1368 rt2800_register_write(rt2x00dev, MM20_PROT_CFG, reg);
1369
1370 rt2800_register_read(rt2x00dev, MM40_PROT_CFG, &reg);
1371 rt2x00_set_field32(&reg, MM40_PROT_CFG_PROTECT_RATE, mm40_rate);
1372 rt2x00_set_field32(&reg, MM40_PROT_CFG_PROTECT_CTRL, mm40_mode);
1373 rt2800_register_write(rt2x00dev, MM40_PROT_CFG, reg);
1374
1375 rt2800_register_read(rt2x00dev, GF20_PROT_CFG, &reg);
1376 rt2x00_set_field32(&reg, GF20_PROT_CFG_PROTECT_RATE, gf20_rate);
1377 rt2x00_set_field32(&reg, GF20_PROT_CFG_PROTECT_CTRL, gf20_mode);
1378 rt2800_register_write(rt2x00dev, GF20_PROT_CFG, reg);
1379
1380 rt2800_register_read(rt2x00dev, GF40_PROT_CFG, &reg);
1381 rt2x00_set_field32(&reg, GF40_PROT_CFG_PROTECT_RATE, gf40_rate);
1382 rt2x00_set_field32(&reg, GF40_PROT_CFG_PROTECT_CTRL, gf40_mode);
1383 rt2800_register_write(rt2x00dev, GF40_PROT_CFG, reg);
1384 }
1385
1386 void rt2800_config_erp(struct rt2x00_dev *rt2x00dev, struct rt2x00lib_erp *erp,
1387 u32 changed)
1388 {
1389 u32 reg;
1390
1391 if (changed & BSS_CHANGED_ERP_PREAMBLE) {
1392 rt2800_register_read(rt2x00dev, AUTO_RSP_CFG, &reg);
1393 rt2x00_set_field32(&reg, AUTO_RSP_CFG_BAC_ACK_POLICY,
1394 !!erp->short_preamble);
1395 rt2x00_set_field32(&reg, AUTO_RSP_CFG_AR_PREAMBLE,
1396 !!erp->short_preamble);
1397 rt2800_register_write(rt2x00dev, AUTO_RSP_CFG, reg);
1398 }
1399
1400 if (changed & BSS_CHANGED_ERP_CTS_PROT) {
1401 rt2800_register_read(rt2x00dev, OFDM_PROT_CFG, &reg);
1402 rt2x00_set_field32(&reg, OFDM_PROT_CFG_PROTECT_CTRL,
1403 erp->cts_protection ? 2 : 0);
1404 rt2800_register_write(rt2x00dev, OFDM_PROT_CFG, reg);
1405 }
1406
1407 if (changed & BSS_CHANGED_BASIC_RATES) {
1408 rt2800_register_write(rt2x00dev, LEGACY_BASIC_RATE,
1409 erp->basic_rates);
1410 rt2800_register_write(rt2x00dev, HT_BASIC_RATE, 0x00008003);
1411 }
1412
1413 if (changed & BSS_CHANGED_ERP_SLOT) {
1414 rt2800_register_read(rt2x00dev, BKOFF_SLOT_CFG, &reg);
1415 rt2x00_set_field32(&reg, BKOFF_SLOT_CFG_SLOT_TIME,
1416 erp->slot_time);
1417 rt2800_register_write(rt2x00dev, BKOFF_SLOT_CFG, reg);
1418
1419 rt2800_register_read(rt2x00dev, XIFS_TIME_CFG, &reg);
1420 rt2x00_set_field32(&reg, XIFS_TIME_CFG_EIFS, erp->eifs);
1421 rt2800_register_write(rt2x00dev, XIFS_TIME_CFG, reg);
1422 }
1423
1424 if (changed & BSS_CHANGED_BEACON_INT) {
1425 rt2800_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
1426 rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_INTERVAL,
1427 erp->beacon_int * 16);
1428 rt2800_register_write(rt2x00dev, BCN_TIME_CFG, reg);
1429 }
1430
1431 if (changed & BSS_CHANGED_HT)
1432 rt2800_config_ht_opmode(rt2x00dev, erp);
1433 }
1434 EXPORT_SYMBOL_GPL(rt2800_config_erp);
1435
1436 static void rt2800_set_ant_diversity(struct rt2x00_dev *rt2x00dev,
1437 enum antenna ant)
1438 {
1439 u32 reg;
1440 u8 eesk_pin = (ant == ANTENNA_A) ? 1 : 0;
1441 u8 gpio_bit3 = (ant == ANTENNA_A) ? 0 : 1;
1442
1443 if (rt2x00_is_pci(rt2x00dev)) {
1444 rt2800_register_read(rt2x00dev, E2PROM_CSR, &reg);
1445 rt2x00_set_field32(&reg, E2PROM_CSR_DATA_CLOCK, eesk_pin);
1446 rt2800_register_write(rt2x00dev, E2PROM_CSR, reg);
1447 } else if (rt2x00_is_usb(rt2x00dev))
1448 rt2800_mcu_request(rt2x00dev, MCU_ANT_SELECT, 0xff,
1449 eesk_pin, 0);
1450
1451 rt2800_register_read(rt2x00dev, GPIO_CTRL_CFG, &reg);
1452 rt2x00_set_field32(&reg, GPIO_CTRL_CFG_GPIOD_BIT3, 0);
1453 rt2x00_set_field32(&reg, GPIO_CTRL_CFG_BIT3, gpio_bit3);
1454 rt2800_register_write(rt2x00dev, GPIO_CTRL_CFG, reg);
1455 }
1456
1457 void rt2800_config_ant(struct rt2x00_dev *rt2x00dev, struct antenna_setup *ant)
1458 {
1459 u8 r1;
1460 u8 r3;
1461 u16 eeprom;
1462
1463 rt2800_bbp_read(rt2x00dev, 1, &r1);
1464 rt2800_bbp_read(rt2x00dev, 3, &r3);
1465
1466 /*
1467 * Configure the TX antenna.
1468 */
1469 switch (ant->tx_chain_num) {
1470 case 1:
1471 rt2x00_set_field8(&r1, BBP1_TX_ANTENNA, 0);
1472 break;
1473 case 2:
1474 rt2x00_set_field8(&r1, BBP1_TX_ANTENNA, 2);
1475 break;
1476 case 3:
1477 rt2x00_set_field8(&r1, BBP1_TX_ANTENNA, 0);
1478 break;
1479 }
1480
1481 /*
1482 * Configure the RX antenna.
1483 */
1484 switch (ant->rx_chain_num) {
1485 case 1:
1486 if (rt2x00_rt(rt2x00dev, RT3070) ||
1487 rt2x00_rt(rt2x00dev, RT3090) ||
1488 rt2x00_rt(rt2x00dev, RT3390)) {
1489 rt2x00_eeprom_read(rt2x00dev,
1490 EEPROM_NIC_CONF1, &eeprom);
1491 if (rt2x00_get_field16(eeprom,
1492 EEPROM_NIC_CONF1_ANT_DIVERSITY))
1493 rt2800_set_ant_diversity(rt2x00dev,
1494 rt2x00dev->default_ant.rx);
1495 }
1496 rt2x00_set_field8(&r3, BBP3_RX_ANTENNA, 0);
1497 break;
1498 case 2:
1499 rt2x00_set_field8(&r3, BBP3_RX_ANTENNA, 1);
1500 break;
1501 case 3:
1502 rt2x00_set_field8(&r3, BBP3_RX_ANTENNA, 2);
1503 break;
1504 }
1505
1506 rt2800_bbp_write(rt2x00dev, 3, r3);
1507 rt2800_bbp_write(rt2x00dev, 1, r1);
1508 }
1509 EXPORT_SYMBOL_GPL(rt2800_config_ant);
1510
1511 static void rt2800_config_lna_gain(struct rt2x00_dev *rt2x00dev,
1512 struct rt2x00lib_conf *libconf)
1513 {
1514 u16 eeprom;
1515 short lna_gain;
1516
1517 if (libconf->rf.channel <= 14) {
1518 rt2x00_eeprom_read(rt2x00dev, EEPROM_LNA, &eeprom);
1519 lna_gain = rt2x00_get_field16(eeprom, EEPROM_LNA_BG);
1520 } else if (libconf->rf.channel <= 64) {
1521 rt2x00_eeprom_read(rt2x00dev, EEPROM_LNA, &eeprom);
1522 lna_gain = rt2x00_get_field16(eeprom, EEPROM_LNA_A0);
1523 } else if (libconf->rf.channel <= 128) {
1524 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_BG2, &eeprom);
1525 lna_gain = rt2x00_get_field16(eeprom, EEPROM_RSSI_BG2_LNA_A1);
1526 } else {
1527 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_A2, &eeprom);
1528 lna_gain = rt2x00_get_field16(eeprom, EEPROM_RSSI_A2_LNA_A2);
1529 }
1530
1531 rt2x00dev->lna_gain = lna_gain;
1532 }
1533
1534 static void rt2800_config_channel_rf2xxx(struct rt2x00_dev *rt2x00dev,
1535 struct ieee80211_conf *conf,
1536 struct rf_channel *rf,
1537 struct channel_info *info)
1538 {
1539 rt2x00_set_field32(&rf->rf4, RF4_FREQ_OFFSET, rt2x00dev->freq_offset);
1540
1541 if (rt2x00dev->default_ant.tx_chain_num == 1)
1542 rt2x00_set_field32(&rf->rf2, RF2_ANTENNA_TX1, 1);
1543
1544 if (rt2x00dev->default_ant.rx_chain_num == 1) {
1545 rt2x00_set_field32(&rf->rf2, RF2_ANTENNA_RX1, 1);
1546 rt2x00_set_field32(&rf->rf2, RF2_ANTENNA_RX2, 1);
1547 } else if (rt2x00dev->default_ant.rx_chain_num == 2)
1548 rt2x00_set_field32(&rf->rf2, RF2_ANTENNA_RX2, 1);
1549
1550 if (rf->channel > 14) {
1551 /*
1552 * When TX power is below 0, we should increase it by 7 to
1553 * make it a positive value (Minimum value is -7).
1554 * However this means that values between 0 and 7 have
1555 * double meaning, and we should set a 7DBm boost flag.
1556 */
1557 rt2x00_set_field32(&rf->rf3, RF3_TXPOWER_A_7DBM_BOOST,
1558 (info->default_power1 >= 0));
1559
1560 if (info->default_power1 < 0)
1561 info->default_power1 += 7;
1562
1563 rt2x00_set_field32(&rf->rf3, RF3_TXPOWER_A, info->default_power1);
1564
1565 rt2x00_set_field32(&rf->rf4, RF4_TXPOWER_A_7DBM_BOOST,
1566 (info->default_power2 >= 0));
1567
1568 if (info->default_power2 < 0)
1569 info->default_power2 += 7;
1570
1571 rt2x00_set_field32(&rf->rf4, RF4_TXPOWER_A, info->default_power2);
1572 } else {
1573 rt2x00_set_field32(&rf->rf3, RF3_TXPOWER_G, info->default_power1);
1574 rt2x00_set_field32(&rf->rf4, RF4_TXPOWER_G, info->default_power2);
1575 }
1576
1577 rt2x00_set_field32(&rf->rf4, RF4_HT40, conf_is_ht40(conf));
1578
1579 rt2800_rf_write(rt2x00dev, 1, rf->rf1);
1580 rt2800_rf_write(rt2x00dev, 2, rf->rf2);
1581 rt2800_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
1582 rt2800_rf_write(rt2x00dev, 4, rf->rf4);
1583
1584 udelay(200);
1585
1586 rt2800_rf_write(rt2x00dev, 1, rf->rf1);
1587 rt2800_rf_write(rt2x00dev, 2, rf->rf2);
1588 rt2800_rf_write(rt2x00dev, 3, rf->rf3 | 0x00000004);
1589 rt2800_rf_write(rt2x00dev, 4, rf->rf4);
1590
1591 udelay(200);
1592
1593 rt2800_rf_write(rt2x00dev, 1, rf->rf1);
1594 rt2800_rf_write(rt2x00dev, 2, rf->rf2);
1595 rt2800_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
1596 rt2800_rf_write(rt2x00dev, 4, rf->rf4);
1597 }
1598
1599 static void rt2800_config_channel_rf3xxx(struct rt2x00_dev *rt2x00dev,
1600 struct ieee80211_conf *conf,
1601 struct rf_channel *rf,
1602 struct channel_info *info)
1603 {
1604 u8 rfcsr;
1605
1606 rt2800_rfcsr_write(rt2x00dev, 2, rf->rf1);
1607 rt2800_rfcsr_write(rt2x00dev, 3, rf->rf3);
1608
1609 rt2800_rfcsr_read(rt2x00dev, 6, &rfcsr);
1610 rt2x00_set_field8(&rfcsr, RFCSR6_R1, rf->rf2);
1611 rt2800_rfcsr_write(rt2x00dev, 6, rfcsr);
1612
1613 rt2800_rfcsr_read(rt2x00dev, 12, &rfcsr);
1614 rt2x00_set_field8(&rfcsr, RFCSR12_TX_POWER, info->default_power1);
1615 rt2800_rfcsr_write(rt2x00dev, 12, rfcsr);
1616
1617 rt2800_rfcsr_read(rt2x00dev, 13, &rfcsr);
1618 rt2x00_set_field8(&rfcsr, RFCSR13_TX_POWER, info->default_power2);
1619 rt2800_rfcsr_write(rt2x00dev, 13, rfcsr);
1620
1621 rt2800_rfcsr_read(rt2x00dev, 23, &rfcsr);
1622 rt2x00_set_field8(&rfcsr, RFCSR23_FREQ_OFFSET, rt2x00dev->freq_offset);
1623 rt2800_rfcsr_write(rt2x00dev, 23, rfcsr);
1624
1625 rt2800_rfcsr_write(rt2x00dev, 24,
1626 rt2x00dev->calibration[conf_is_ht40(conf)]);
1627
1628 rt2800_rfcsr_read(rt2x00dev, 7, &rfcsr);
1629 rt2x00_set_field8(&rfcsr, RFCSR7_RF_TUNING, 1);
1630 rt2800_rfcsr_write(rt2x00dev, 7, rfcsr);
1631 }
1632
1633
1634 #define RT5390_POWER_BOUND 0x27
1635 #define RT5390_FREQ_OFFSET_BOUND 0x5f
1636
1637 static void rt2800_config_channel_rf53xx(struct rt2x00_dev *rt2x00dev,
1638 struct ieee80211_conf *conf,
1639 struct rf_channel *rf,
1640 struct channel_info *info)
1641 {
1642 u8 rfcsr;
1643
1644 rt2800_rfcsr_write(rt2x00dev, 8, rf->rf1);
1645 rt2800_rfcsr_write(rt2x00dev, 9, rf->rf3);
1646 rt2800_rfcsr_read(rt2x00dev, 11, &rfcsr);
1647 rt2x00_set_field8(&rfcsr, RFCSR11_R, rf->rf2);
1648 rt2800_rfcsr_write(rt2x00dev, 11, rfcsr);
1649
1650 rt2800_rfcsr_read(rt2x00dev, 49, &rfcsr);
1651 if (info->default_power1 > RT5390_POWER_BOUND)
1652 rt2x00_set_field8(&rfcsr, RFCSR49_TX, RT5390_POWER_BOUND);
1653 else
1654 rt2x00_set_field8(&rfcsr, RFCSR49_TX, info->default_power1);
1655 rt2800_rfcsr_write(rt2x00dev, 49, rfcsr);
1656
1657 rt2800_rfcsr_read(rt2x00dev, 1, &rfcsr);
1658 rt2x00_set_field8(&rfcsr, RFCSR1_RF_BLOCK_EN, 1);
1659 rt2x00_set_field8(&rfcsr, RFCSR1_PLL_PD, 1);
1660 rt2x00_set_field8(&rfcsr, RFCSR1_RX0_PD, 1);
1661 rt2x00_set_field8(&rfcsr, RFCSR1_TX0_PD, 1);
1662 rt2800_rfcsr_write(rt2x00dev, 1, rfcsr);
1663
1664 rt2800_rfcsr_read(rt2x00dev, 17, &rfcsr);
1665 if (rt2x00dev->freq_offset > RT5390_FREQ_OFFSET_BOUND)
1666 rt2x00_set_field8(&rfcsr, RFCSR17_CODE,
1667 RT5390_FREQ_OFFSET_BOUND);
1668 else
1669 rt2x00_set_field8(&rfcsr, RFCSR17_CODE, rt2x00dev->freq_offset);
1670 rt2800_rfcsr_write(rt2x00dev, 17, rfcsr);
1671
1672 if (rf->channel <= 14) {
1673 int idx = rf->channel-1;
1674
1675 if (test_bit(CAPABILITY_BT_COEXIST, &rt2x00dev->cap_flags)) {
1676 if (rt2x00_rt_rev_gte(rt2x00dev, RT5390, REV_RT5390F)) {
1677 /* r55/r59 value array of channel 1~14 */
1678 static const char r55_bt_rev[] = {0x83, 0x83,
1679 0x83, 0x73, 0x73, 0x63, 0x53, 0x53,
1680 0x53, 0x43, 0x43, 0x43, 0x43, 0x43};
1681 static const char r59_bt_rev[] = {0x0e, 0x0e,
1682 0x0e, 0x0e, 0x0e, 0x0b, 0x0a, 0x09,
1683 0x07, 0x07, 0x07, 0x07, 0x07, 0x07};
1684
1685 rt2800_rfcsr_write(rt2x00dev, 55,
1686 r55_bt_rev[idx]);
1687 rt2800_rfcsr_write(rt2x00dev, 59,
1688 r59_bt_rev[idx]);
1689 } else {
1690 static const char r59_bt[] = {0x8b, 0x8b, 0x8b,
1691 0x8b, 0x8b, 0x8b, 0x8b, 0x8a, 0x89,
1692 0x88, 0x88, 0x86, 0x85, 0x84};
1693
1694 rt2800_rfcsr_write(rt2x00dev, 59, r59_bt[idx]);
1695 }
1696 } else {
1697 if (rt2x00_rt_rev_gte(rt2x00dev, RT5390, REV_RT5390F)) {
1698 static const char r55_nonbt_rev[] = {0x23, 0x23,
1699 0x23, 0x23, 0x13, 0x13, 0x03, 0x03,
1700 0x03, 0x03, 0x03, 0x03, 0x03, 0x03};
1701 static const char r59_nonbt_rev[] = {0x07, 0x07,
1702 0x07, 0x07, 0x07, 0x07, 0x07, 0x07,
1703 0x07, 0x07, 0x06, 0x05, 0x04, 0x04};
1704
1705 rt2800_rfcsr_write(rt2x00dev, 55,
1706 r55_nonbt_rev[idx]);
1707 rt2800_rfcsr_write(rt2x00dev, 59,
1708 r59_nonbt_rev[idx]);
1709 } else if (rt2x00_rt(rt2x00dev, RT5390)) {
1710 static const char r59_non_bt[] = {0x8f, 0x8f,
1711 0x8f, 0x8f, 0x8f, 0x8f, 0x8f, 0x8d,
1712 0x8a, 0x88, 0x88, 0x87, 0x87, 0x86};
1713
1714 rt2800_rfcsr_write(rt2x00dev, 59,
1715 r59_non_bt[idx]);
1716 }
1717 }
1718 }
1719
1720 rt2800_rfcsr_read(rt2x00dev, 30, &rfcsr);
1721 rt2x00_set_field8(&rfcsr, RFCSR30_TX_H20M, 0);
1722 rt2x00_set_field8(&rfcsr, RFCSR30_RX_H20M, 0);
1723 rt2800_rfcsr_write(rt2x00dev, 30, rfcsr);
1724
1725 rt2800_rfcsr_read(rt2x00dev, 3, &rfcsr);
1726 rt2x00_set_field8(&rfcsr, RFCSR30_RF_CALIBRATION, 1);
1727 rt2800_rfcsr_write(rt2x00dev, 3, rfcsr);
1728 }
1729
1730 static void rt2800_config_channel(struct rt2x00_dev *rt2x00dev,
1731 struct ieee80211_conf *conf,
1732 struct rf_channel *rf,
1733 struct channel_info *info)
1734 {
1735 u32 reg;
1736 unsigned int tx_pin;
1737 u8 bbp;
1738
1739 if (rf->channel <= 14) {
1740 info->default_power1 = TXPOWER_G_TO_DEV(info->default_power1);
1741 info->default_power2 = TXPOWER_G_TO_DEV(info->default_power2);
1742 } else {
1743 info->default_power1 = TXPOWER_A_TO_DEV(info->default_power1);
1744 info->default_power2 = TXPOWER_A_TO_DEV(info->default_power2);
1745 }
1746
1747 if (rt2x00_rf(rt2x00dev, RF2020) ||
1748 rt2x00_rf(rt2x00dev, RF3020) ||
1749 rt2x00_rf(rt2x00dev, RF3021) ||
1750 rt2x00_rf(rt2x00dev, RF3022) ||
1751 rt2x00_rf(rt2x00dev, RF3052) ||
1752 rt2x00_rf(rt2x00dev, RF3320))
1753 rt2800_config_channel_rf3xxx(rt2x00dev, conf, rf, info);
1754 else if (rt2x00_rf(rt2x00dev, RF5370) ||
1755 rt2x00_rf(rt2x00dev, RF5390))
1756 rt2800_config_channel_rf53xx(rt2x00dev, conf, rf, info);
1757 else
1758 rt2800_config_channel_rf2xxx(rt2x00dev, conf, rf, info);
1759
1760 /*
1761 * Change BBP settings
1762 */
1763 rt2800_bbp_write(rt2x00dev, 62, 0x37 - rt2x00dev->lna_gain);
1764 rt2800_bbp_write(rt2x00dev, 63, 0x37 - rt2x00dev->lna_gain);
1765 rt2800_bbp_write(rt2x00dev, 64, 0x37 - rt2x00dev->lna_gain);
1766 rt2800_bbp_write(rt2x00dev, 86, 0);
1767
1768 if (rf->channel <= 14) {
1769 if (!rt2x00_rt(rt2x00dev, RT5390)) {
1770 if (test_bit(CAPABILITY_EXTERNAL_LNA_BG,
1771 &rt2x00dev->cap_flags)) {
1772 rt2800_bbp_write(rt2x00dev, 82, 0x62);
1773 rt2800_bbp_write(rt2x00dev, 75, 0x46);
1774 } else {
1775 rt2800_bbp_write(rt2x00dev, 82, 0x84);
1776 rt2800_bbp_write(rt2x00dev, 75, 0x50);
1777 }
1778 }
1779 } else {
1780 rt2800_bbp_write(rt2x00dev, 82, 0xf2);
1781
1782 if (test_bit(CAPABILITY_EXTERNAL_LNA_A, &rt2x00dev->cap_flags))
1783 rt2800_bbp_write(rt2x00dev, 75, 0x46);
1784 else
1785 rt2800_bbp_write(rt2x00dev, 75, 0x50);
1786 }
1787
1788 rt2800_register_read(rt2x00dev, TX_BAND_CFG, &reg);
1789 rt2x00_set_field32(&reg, TX_BAND_CFG_HT40_MINUS, conf_is_ht40_minus(conf));
1790 rt2x00_set_field32(&reg, TX_BAND_CFG_A, rf->channel > 14);
1791 rt2x00_set_field32(&reg, TX_BAND_CFG_BG, rf->channel <= 14);
1792 rt2800_register_write(rt2x00dev, TX_BAND_CFG, reg);
1793
1794 tx_pin = 0;
1795
1796 /* Turn on unused PA or LNA when not using 1T or 1R */
1797 if (rt2x00dev->default_ant.tx_chain_num == 2) {
1798 rt2x00_set_field32(&tx_pin, TX_PIN_CFG_PA_PE_A1_EN, 1);
1799 rt2x00_set_field32(&tx_pin, TX_PIN_CFG_PA_PE_G1_EN, 1);
1800 }
1801
1802 /* Turn on unused PA or LNA when not using 1T or 1R */
1803 if (rt2x00dev->default_ant.rx_chain_num == 2) {
1804 rt2x00_set_field32(&tx_pin, TX_PIN_CFG_LNA_PE_A1_EN, 1);
1805 rt2x00_set_field32(&tx_pin, TX_PIN_CFG_LNA_PE_G1_EN, 1);
1806 }
1807
1808 rt2x00_set_field32(&tx_pin, TX_PIN_CFG_LNA_PE_A0_EN, 1);
1809 rt2x00_set_field32(&tx_pin, TX_PIN_CFG_LNA_PE_G0_EN, 1);
1810 rt2x00_set_field32(&tx_pin, TX_PIN_CFG_RFTR_EN, 1);
1811 rt2x00_set_field32(&tx_pin, TX_PIN_CFG_TRSW_EN, 1);
1812 rt2x00_set_field32(&tx_pin, TX_PIN_CFG_PA_PE_G0_EN, rf->channel <= 14);
1813 rt2x00_set_field32(&tx_pin, TX_PIN_CFG_PA_PE_A0_EN, rf->channel > 14);
1814
1815 rt2800_register_write(rt2x00dev, TX_PIN_CFG, tx_pin);
1816
1817 rt2800_bbp_read(rt2x00dev, 4, &bbp);
1818 rt2x00_set_field8(&bbp, BBP4_BANDWIDTH, 2 * conf_is_ht40(conf));
1819 rt2800_bbp_write(rt2x00dev, 4, bbp);
1820
1821 rt2800_bbp_read(rt2x00dev, 3, &bbp);
1822 rt2x00_set_field8(&bbp, BBP3_HT40_MINUS, conf_is_ht40_minus(conf));
1823 rt2800_bbp_write(rt2x00dev, 3, bbp);
1824
1825 if (rt2x00_rt_rev(rt2x00dev, RT2860, REV_RT2860C)) {
1826 if (conf_is_ht40(conf)) {
1827 rt2800_bbp_write(rt2x00dev, 69, 0x1a);
1828 rt2800_bbp_write(rt2x00dev, 70, 0x0a);
1829 rt2800_bbp_write(rt2x00dev, 73, 0x16);
1830 } else {
1831 rt2800_bbp_write(rt2x00dev, 69, 0x16);
1832 rt2800_bbp_write(rt2x00dev, 70, 0x08);
1833 rt2800_bbp_write(rt2x00dev, 73, 0x11);
1834 }
1835 }
1836
1837 msleep(1);
1838
1839 /*
1840 * Clear channel statistic counters
1841 */
1842 rt2800_register_read(rt2x00dev, CH_IDLE_STA, &reg);
1843 rt2800_register_read(rt2x00dev, CH_BUSY_STA, &reg);
1844 rt2800_register_read(rt2x00dev, CH_BUSY_STA_SEC, &reg);
1845 }
1846
1847 static int rt2800_get_gain_calibration_delta(struct rt2x00_dev *rt2x00dev)
1848 {
1849 u8 tssi_bounds[9];
1850 u8 current_tssi;
1851 u16 eeprom;
1852 u8 step;
1853 int i;
1854
1855 /*
1856 * Read TSSI boundaries for temperature compensation from
1857 * the EEPROM.
1858 *
1859 * Array idx 0 1 2 3 4 5 6 7 8
1860 * Matching Delta value -4 -3 -2 -1 0 +1 +2 +3 +4
1861 * Example TSSI bounds 0xF0 0xD0 0xB5 0xA0 0x88 0x45 0x25 0x15 0x00
1862 */
1863 if (rt2x00dev->curr_band == IEEE80211_BAND_2GHZ) {
1864 rt2x00_eeprom_read(rt2x00dev, EEPROM_TSSI_BOUND_BG1, &eeprom);
1865 tssi_bounds[0] = rt2x00_get_field16(eeprom,
1866 EEPROM_TSSI_BOUND_BG1_MINUS4);
1867 tssi_bounds[1] = rt2x00_get_field16(eeprom,
1868 EEPROM_TSSI_BOUND_BG1_MINUS3);
1869
1870 rt2x00_eeprom_read(rt2x00dev, EEPROM_TSSI_BOUND_BG2, &eeprom);
1871 tssi_bounds[2] = rt2x00_get_field16(eeprom,
1872 EEPROM_TSSI_BOUND_BG2_MINUS2);
1873 tssi_bounds[3] = rt2x00_get_field16(eeprom,
1874 EEPROM_TSSI_BOUND_BG2_MINUS1);
1875
1876 rt2x00_eeprom_read(rt2x00dev, EEPROM_TSSI_BOUND_BG3, &eeprom);
1877 tssi_bounds[4] = rt2x00_get_field16(eeprom,
1878 EEPROM_TSSI_BOUND_BG3_REF);
1879 tssi_bounds[5] = rt2x00_get_field16(eeprom,
1880 EEPROM_TSSI_BOUND_BG3_PLUS1);
1881
1882 rt2x00_eeprom_read(rt2x00dev, EEPROM_TSSI_BOUND_BG4, &eeprom);
1883 tssi_bounds[6] = rt2x00_get_field16(eeprom,
1884 EEPROM_TSSI_BOUND_BG4_PLUS2);
1885 tssi_bounds[7] = rt2x00_get_field16(eeprom,
1886 EEPROM_TSSI_BOUND_BG4_PLUS3);
1887
1888 rt2x00_eeprom_read(rt2x00dev, EEPROM_TSSI_BOUND_BG5, &eeprom);
1889 tssi_bounds[8] = rt2x00_get_field16(eeprom,
1890 EEPROM_TSSI_BOUND_BG5_PLUS4);
1891
1892 step = rt2x00_get_field16(eeprom,
1893 EEPROM_TSSI_BOUND_BG5_AGC_STEP);
1894 } else {
1895 rt2x00_eeprom_read(rt2x00dev, EEPROM_TSSI_BOUND_A1, &eeprom);
1896 tssi_bounds[0] = rt2x00_get_field16(eeprom,
1897 EEPROM_TSSI_BOUND_A1_MINUS4);
1898 tssi_bounds[1] = rt2x00_get_field16(eeprom,
1899 EEPROM_TSSI_BOUND_A1_MINUS3);
1900
1901 rt2x00_eeprom_read(rt2x00dev, EEPROM_TSSI_BOUND_A2, &eeprom);
1902 tssi_bounds[2] = rt2x00_get_field16(eeprom,
1903 EEPROM_TSSI_BOUND_A2_MINUS2);
1904 tssi_bounds[3] = rt2x00_get_field16(eeprom,
1905 EEPROM_TSSI_BOUND_A2_MINUS1);
1906
1907 rt2x00_eeprom_read(rt2x00dev, EEPROM_TSSI_BOUND_A3, &eeprom);
1908 tssi_bounds[4] = rt2x00_get_field16(eeprom,
1909 EEPROM_TSSI_BOUND_A3_REF);
1910 tssi_bounds[5] = rt2x00_get_field16(eeprom,
1911 EEPROM_TSSI_BOUND_A3_PLUS1);
1912
1913 rt2x00_eeprom_read(rt2x00dev, EEPROM_TSSI_BOUND_A4, &eeprom);
1914 tssi_bounds[6] = rt2x00_get_field16(eeprom,
1915 EEPROM_TSSI_BOUND_A4_PLUS2);
1916 tssi_bounds[7] = rt2x00_get_field16(eeprom,
1917 EEPROM_TSSI_BOUND_A4_PLUS3);
1918
1919 rt2x00_eeprom_read(rt2x00dev, EEPROM_TSSI_BOUND_A5, &eeprom);
1920 tssi_bounds[8] = rt2x00_get_field16(eeprom,
1921 EEPROM_TSSI_BOUND_A5_PLUS4);
1922
1923 step = rt2x00_get_field16(eeprom,
1924 EEPROM_TSSI_BOUND_A5_AGC_STEP);
1925 }
1926
1927 /*
1928 * Check if temperature compensation is supported.
1929 */
1930 if (tssi_bounds[4] == 0xff)
1931 return 0;
1932
1933 /*
1934 * Read current TSSI (BBP 49).
1935 */
1936 rt2800_bbp_read(rt2x00dev, 49, &current_tssi);
1937
1938 /*
1939 * Compare TSSI value (BBP49) with the compensation boundaries
1940 * from the EEPROM and increase or decrease tx power.
1941 */
1942 for (i = 0; i <= 3; i++) {
1943 if (current_tssi > tssi_bounds[i])
1944 break;
1945 }
1946
1947 if (i == 4) {
1948 for (i = 8; i >= 5; i--) {
1949 if (current_tssi < tssi_bounds[i])
1950 break;
1951 }
1952 }
1953
1954 return (i - 4) * step;
1955 }
1956
1957 static int rt2800_get_txpower_bw_comp(struct rt2x00_dev *rt2x00dev,
1958 enum ieee80211_band band)
1959 {
1960 u16 eeprom;
1961 u8 comp_en;
1962 u8 comp_type;
1963 int comp_value = 0;
1964
1965 rt2x00_eeprom_read(rt2x00dev, EEPROM_TXPOWER_DELTA, &eeprom);
1966
1967 /*
1968 * HT40 compensation not required.
1969 */
1970 if (eeprom == 0xffff ||
1971 !test_bit(CONFIG_CHANNEL_HT40, &rt2x00dev->flags))
1972 return 0;
1973
1974 if (band == IEEE80211_BAND_2GHZ) {
1975 comp_en = rt2x00_get_field16(eeprom,
1976 EEPROM_TXPOWER_DELTA_ENABLE_2G);
1977 if (comp_en) {
1978 comp_type = rt2x00_get_field16(eeprom,
1979 EEPROM_TXPOWER_DELTA_TYPE_2G);
1980 comp_value = rt2x00_get_field16(eeprom,
1981 EEPROM_TXPOWER_DELTA_VALUE_2G);
1982 if (!comp_type)
1983 comp_value = -comp_value;
1984 }
1985 } else {
1986 comp_en = rt2x00_get_field16(eeprom,
1987 EEPROM_TXPOWER_DELTA_ENABLE_5G);
1988 if (comp_en) {
1989 comp_type = rt2x00_get_field16(eeprom,
1990 EEPROM_TXPOWER_DELTA_TYPE_5G);
1991 comp_value = rt2x00_get_field16(eeprom,
1992 EEPROM_TXPOWER_DELTA_VALUE_5G);
1993 if (!comp_type)
1994 comp_value = -comp_value;
1995 }
1996 }
1997
1998 return comp_value;
1999 }
2000
2001 static u8 rt2800_compensate_txpower(struct rt2x00_dev *rt2x00dev, int is_rate_b,
2002 enum ieee80211_band band, int power_level,
2003 u8 txpower, int delta)
2004 {
2005 u32 reg;
2006 u16 eeprom;
2007 u8 criterion;
2008 u8 eirp_txpower;
2009 u8 eirp_txpower_criterion;
2010 u8 reg_limit;
2011
2012 if (!((band == IEEE80211_BAND_5GHZ) && is_rate_b))
2013 return txpower;
2014
2015 if (test_bit(CAPABILITY_POWER_LIMIT, &rt2x00dev->cap_flags)) {
2016 /*
2017 * Check if eirp txpower exceed txpower_limit.
2018 * We use OFDM 6M as criterion and its eirp txpower
2019 * is stored at EEPROM_EIRP_MAX_TX_POWER.
2020 * .11b data rate need add additional 4dbm
2021 * when calculating eirp txpower.
2022 */
2023 rt2800_register_read(rt2x00dev, TX_PWR_CFG_0, &reg);
2024 criterion = rt2x00_get_field32(reg, TX_PWR_CFG_0_6MBS);
2025
2026 rt2x00_eeprom_read(rt2x00dev,
2027 EEPROM_EIRP_MAX_TX_POWER, &eeprom);
2028
2029 if (band == IEEE80211_BAND_2GHZ)
2030 eirp_txpower_criterion = rt2x00_get_field16(eeprom,
2031 EEPROM_EIRP_MAX_TX_POWER_2GHZ);
2032 else
2033 eirp_txpower_criterion = rt2x00_get_field16(eeprom,
2034 EEPROM_EIRP_MAX_TX_POWER_5GHZ);
2035
2036 eirp_txpower = eirp_txpower_criterion + (txpower - criterion) +
2037 (is_rate_b ? 4 : 0) + delta;
2038
2039 reg_limit = (eirp_txpower > power_level) ?
2040 (eirp_txpower - power_level) : 0;
2041 } else
2042 reg_limit = 0;
2043
2044 return txpower + delta - reg_limit;
2045 }
2046
2047 static void rt2800_config_txpower(struct rt2x00_dev *rt2x00dev,
2048 enum ieee80211_band band,
2049 int power_level)
2050 {
2051 u8 txpower;
2052 u16 eeprom;
2053 int i, is_rate_b;
2054 u32 reg;
2055 u8 r1;
2056 u32 offset;
2057 int delta;
2058
2059 /*
2060 * Calculate HT40 compensation delta
2061 */
2062 delta = rt2800_get_txpower_bw_comp(rt2x00dev, band);
2063
2064 /*
2065 * calculate temperature compensation delta
2066 */
2067 delta += rt2800_get_gain_calibration_delta(rt2x00dev);
2068
2069 /*
2070 * set to normal bbp tx power control mode: +/- 0dBm
2071 */
2072 rt2800_bbp_read(rt2x00dev, 1, &r1);
2073 rt2x00_set_field8(&r1, BBP1_TX_POWER_CTRL, 0);
2074 rt2800_bbp_write(rt2x00dev, 1, r1);
2075 offset = TX_PWR_CFG_0;
2076
2077 for (i = 0; i < EEPROM_TXPOWER_BYRATE_SIZE; i += 2) {
2078 /* just to be safe */
2079 if (offset > TX_PWR_CFG_4)
2080 break;
2081
2082 rt2800_register_read(rt2x00dev, offset, &reg);
2083
2084 /* read the next four txpower values */
2085 rt2x00_eeprom_read(rt2x00dev, EEPROM_TXPOWER_BYRATE + i,
2086 &eeprom);
2087
2088 is_rate_b = i ? 0 : 1;
2089 /*
2090 * TX_PWR_CFG_0: 1MBS, TX_PWR_CFG_1: 24MBS,
2091 * TX_PWR_CFG_2: MCS4, TX_PWR_CFG_3: MCS12,
2092 * TX_PWR_CFG_4: unknown
2093 */
2094 txpower = rt2x00_get_field16(eeprom,
2095 EEPROM_TXPOWER_BYRATE_RATE0);
2096 txpower = rt2800_compensate_txpower(rt2x00dev, is_rate_b, band,
2097 power_level, txpower, delta);
2098 rt2x00_set_field32(&reg, TX_PWR_CFG_RATE0, txpower);
2099
2100 /*
2101 * TX_PWR_CFG_0: 2MBS, TX_PWR_CFG_1: 36MBS,
2102 * TX_PWR_CFG_2: MCS5, TX_PWR_CFG_3: MCS13,
2103 * TX_PWR_CFG_4: unknown
2104 */
2105 txpower = rt2x00_get_field16(eeprom,
2106 EEPROM_TXPOWER_BYRATE_RATE1);
2107 txpower = rt2800_compensate_txpower(rt2x00dev, is_rate_b, band,
2108 power_level, txpower, delta);
2109 rt2x00_set_field32(&reg, TX_PWR_CFG_RATE1, txpower);
2110
2111 /*
2112 * TX_PWR_CFG_0: 5.5MBS, TX_PWR_CFG_1: 48MBS,
2113 * TX_PWR_CFG_2: MCS6, TX_PWR_CFG_3: MCS14,
2114 * TX_PWR_CFG_4: unknown
2115 */
2116 txpower = rt2x00_get_field16(eeprom,
2117 EEPROM_TXPOWER_BYRATE_RATE2);
2118 txpower = rt2800_compensate_txpower(rt2x00dev, is_rate_b, band,
2119 power_level, txpower, delta);
2120 rt2x00_set_field32(&reg, TX_PWR_CFG_RATE2, txpower);
2121
2122 /*
2123 * TX_PWR_CFG_0: 11MBS, TX_PWR_CFG_1: 54MBS,
2124 * TX_PWR_CFG_2: MCS7, TX_PWR_CFG_3: MCS15,
2125 * TX_PWR_CFG_4: unknown
2126 */
2127 txpower = rt2x00_get_field16(eeprom,
2128 EEPROM_TXPOWER_BYRATE_RATE3);
2129 txpower = rt2800_compensate_txpower(rt2x00dev, is_rate_b, band,
2130 power_level, txpower, delta);
2131 rt2x00_set_field32(&reg, TX_PWR_CFG_RATE3, txpower);
2132
2133 /* read the next four txpower values */
2134 rt2x00_eeprom_read(rt2x00dev, EEPROM_TXPOWER_BYRATE + i + 1,
2135 &eeprom);
2136
2137 is_rate_b = 0;
2138 /*
2139 * TX_PWR_CFG_0: 6MBS, TX_PWR_CFG_1: MCS0,
2140 * TX_PWR_CFG_2: MCS8, TX_PWR_CFG_3: unknown,
2141 * TX_PWR_CFG_4: unknown
2142 */
2143 txpower = rt2x00_get_field16(eeprom,
2144 EEPROM_TXPOWER_BYRATE_RATE0);
2145 txpower = rt2800_compensate_txpower(rt2x00dev, is_rate_b, band,
2146 power_level, txpower, delta);
2147 rt2x00_set_field32(&reg, TX_PWR_CFG_RATE4, txpower);
2148
2149 /*
2150 * TX_PWR_CFG_0: 9MBS, TX_PWR_CFG_1: MCS1,
2151 * TX_PWR_CFG_2: MCS9, TX_PWR_CFG_3: unknown,
2152 * TX_PWR_CFG_4: unknown
2153 */
2154 txpower = rt2x00_get_field16(eeprom,
2155 EEPROM_TXPOWER_BYRATE_RATE1);
2156 txpower = rt2800_compensate_txpower(rt2x00dev, is_rate_b, band,
2157 power_level, txpower, delta);
2158 rt2x00_set_field32(&reg, TX_PWR_CFG_RATE5, txpower);
2159
2160 /*
2161 * TX_PWR_CFG_0: 12MBS, TX_PWR_CFG_1: MCS2,
2162 * TX_PWR_CFG_2: MCS10, TX_PWR_CFG_3: unknown,
2163 * TX_PWR_CFG_4: unknown
2164 */
2165 txpower = rt2x00_get_field16(eeprom,
2166 EEPROM_TXPOWER_BYRATE_RATE2);
2167 txpower = rt2800_compensate_txpower(rt2x00dev, is_rate_b, band,
2168 power_level, txpower, delta);
2169 rt2x00_set_field32(&reg, TX_PWR_CFG_RATE6, txpower);
2170
2171 /*
2172 * TX_PWR_CFG_0: 18MBS, TX_PWR_CFG_1: MCS3,
2173 * TX_PWR_CFG_2: MCS11, TX_PWR_CFG_3: unknown,
2174 * TX_PWR_CFG_4: unknown
2175 */
2176 txpower = rt2x00_get_field16(eeprom,
2177 EEPROM_TXPOWER_BYRATE_RATE3);
2178 txpower = rt2800_compensate_txpower(rt2x00dev, is_rate_b, band,
2179 power_level, txpower, delta);
2180 rt2x00_set_field32(&reg, TX_PWR_CFG_RATE7, txpower);
2181
2182 rt2800_register_write(rt2x00dev, offset, reg);
2183
2184 /* next TX_PWR_CFG register */
2185 offset += 4;
2186 }
2187 }
2188
2189 void rt2800_gain_calibration(struct rt2x00_dev *rt2x00dev)
2190 {
2191 rt2800_config_txpower(rt2x00dev, rt2x00dev->curr_band,
2192 rt2x00dev->tx_power);
2193 }
2194 EXPORT_SYMBOL_GPL(rt2800_gain_calibration);
2195
2196 static void rt2800_config_retry_limit(struct rt2x00_dev *rt2x00dev,
2197 struct rt2x00lib_conf *libconf)
2198 {
2199 u32 reg;
2200
2201 rt2800_register_read(rt2x00dev, TX_RTY_CFG, &reg);
2202 rt2x00_set_field32(&reg, TX_RTY_CFG_SHORT_RTY_LIMIT,
2203 libconf->conf->short_frame_max_tx_count);
2204 rt2x00_set_field32(&reg, TX_RTY_CFG_LONG_RTY_LIMIT,
2205 libconf->conf->long_frame_max_tx_count);
2206 rt2800_register_write(rt2x00dev, TX_RTY_CFG, reg);
2207 }
2208
2209 static void rt2800_config_ps(struct rt2x00_dev *rt2x00dev,
2210 struct rt2x00lib_conf *libconf)
2211 {
2212 enum dev_state state =
2213 (libconf->conf->flags & IEEE80211_CONF_PS) ?
2214 STATE_SLEEP : STATE_AWAKE;
2215 u32 reg;
2216
2217 if (state == STATE_SLEEP) {
2218 rt2800_register_write(rt2x00dev, AUTOWAKEUP_CFG, 0);
2219
2220 rt2800_register_read(rt2x00dev, AUTOWAKEUP_CFG, &reg);
2221 rt2x00_set_field32(&reg, AUTOWAKEUP_CFG_AUTO_LEAD_TIME, 5);
2222 rt2x00_set_field32(&reg, AUTOWAKEUP_CFG_TBCN_BEFORE_WAKE,
2223 libconf->conf->listen_interval - 1);
2224 rt2x00_set_field32(&reg, AUTOWAKEUP_CFG_AUTOWAKE, 1);
2225 rt2800_register_write(rt2x00dev, AUTOWAKEUP_CFG, reg);
2226
2227 rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
2228 } else {
2229 rt2800_register_read(rt2x00dev, AUTOWAKEUP_CFG, &reg);
2230 rt2x00_set_field32(&reg, AUTOWAKEUP_CFG_AUTO_LEAD_TIME, 0);
2231 rt2x00_set_field32(&reg, AUTOWAKEUP_CFG_TBCN_BEFORE_WAKE, 0);
2232 rt2x00_set_field32(&reg, AUTOWAKEUP_CFG_AUTOWAKE, 0);
2233 rt2800_register_write(rt2x00dev, AUTOWAKEUP_CFG, reg);
2234
2235 rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
2236 }
2237 }
2238
2239 void rt2800_config(struct rt2x00_dev *rt2x00dev,
2240 struct rt2x00lib_conf *libconf,
2241 const unsigned int flags)
2242 {
2243 /* Always recalculate LNA gain before changing configuration */
2244 rt2800_config_lna_gain(rt2x00dev, libconf);
2245
2246 if (flags & IEEE80211_CONF_CHANGE_CHANNEL) {
2247 rt2800_config_channel(rt2x00dev, libconf->conf,
2248 &libconf->rf, &libconf->channel);
2249 rt2800_config_txpower(rt2x00dev, libconf->conf->channel->band,
2250 libconf->conf->power_level);
2251 }
2252 if (flags & IEEE80211_CONF_CHANGE_POWER)
2253 rt2800_config_txpower(rt2x00dev, libconf->conf->channel->band,
2254 libconf->conf->power_level);
2255 if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
2256 rt2800_config_retry_limit(rt2x00dev, libconf);
2257 if (flags & IEEE80211_CONF_CHANGE_PS)
2258 rt2800_config_ps(rt2x00dev, libconf);
2259 }
2260 EXPORT_SYMBOL_GPL(rt2800_config);
2261
2262 /*
2263 * Link tuning
2264 */
2265 void rt2800_link_stats(struct rt2x00_dev *rt2x00dev, struct link_qual *qual)
2266 {
2267 u32 reg;
2268
2269 /*
2270 * Update FCS error count from register.
2271 */
2272 rt2800_register_read(rt2x00dev, RX_STA_CNT0, &reg);
2273 qual->rx_failed = rt2x00_get_field32(reg, RX_STA_CNT0_CRC_ERR);
2274 }
2275 EXPORT_SYMBOL_GPL(rt2800_link_stats);
2276
2277 static u8 rt2800_get_default_vgc(struct rt2x00_dev *rt2x00dev)
2278 {
2279 if (rt2x00dev->curr_band == IEEE80211_BAND_2GHZ) {
2280 if (rt2x00_rt(rt2x00dev, RT3070) ||
2281 rt2x00_rt(rt2x00dev, RT3071) ||
2282 rt2x00_rt(rt2x00dev, RT3090) ||
2283 rt2x00_rt(rt2x00dev, RT3390) ||
2284 rt2x00_rt(rt2x00dev, RT5390))
2285 return 0x1c + (2 * rt2x00dev->lna_gain);
2286 else
2287 return 0x2e + rt2x00dev->lna_gain;
2288 }
2289
2290 if (!test_bit(CONFIG_CHANNEL_HT40, &rt2x00dev->flags))
2291 return 0x32 + (rt2x00dev->lna_gain * 5) / 3;
2292 else
2293 return 0x3a + (rt2x00dev->lna_gain * 5) / 3;
2294 }
2295
2296 static inline void rt2800_set_vgc(struct rt2x00_dev *rt2x00dev,
2297 struct link_qual *qual, u8 vgc_level)
2298 {
2299 if (qual->vgc_level != vgc_level) {
2300 rt2800_bbp_write(rt2x00dev, 66, vgc_level);
2301 qual->vgc_level = vgc_level;
2302 qual->vgc_level_reg = vgc_level;
2303 }
2304 }
2305
2306 void rt2800_reset_tuner(struct rt2x00_dev *rt2x00dev, struct link_qual *qual)
2307 {
2308 rt2800_set_vgc(rt2x00dev, qual, rt2800_get_default_vgc(rt2x00dev));
2309 }
2310 EXPORT_SYMBOL_GPL(rt2800_reset_tuner);
2311
2312 void rt2800_link_tuner(struct rt2x00_dev *rt2x00dev, struct link_qual *qual,
2313 const u32 count)
2314 {
2315 if (rt2x00_rt_rev(rt2x00dev, RT2860, REV_RT2860C))
2316 return;
2317
2318 /*
2319 * When RSSI is better then -80 increase VGC level with 0x10
2320 */
2321 rt2800_set_vgc(rt2x00dev, qual,
2322 rt2800_get_default_vgc(rt2x00dev) +
2323 ((qual->rssi > -80) * 0x10));
2324 }
2325 EXPORT_SYMBOL_GPL(rt2800_link_tuner);
2326
2327 /*
2328 * Initialization functions.
2329 */
2330 static int rt2800_init_registers(struct rt2x00_dev *rt2x00dev)
2331 {
2332 u32 reg;
2333 u16 eeprom;
2334 unsigned int i;
2335 int ret;
2336
2337 rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, &reg);
2338 rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_TX_DMA, 0);
2339 rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_DMA_BUSY, 0);
2340 rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_RX_DMA, 0);
2341 rt2x00_set_field32(&reg, WPDMA_GLO_CFG_RX_DMA_BUSY, 0);
2342 rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1);
2343 rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg);
2344
2345 ret = rt2800_drv_init_registers(rt2x00dev);
2346 if (ret)
2347 return ret;
2348
2349 rt2800_register_read(rt2x00dev, BCN_OFFSET0, &reg);
2350 rt2x00_set_field32(&reg, BCN_OFFSET0_BCN0, 0xe0); /* 0x3800 */
2351 rt2x00_set_field32(&reg, BCN_OFFSET0_BCN1, 0xe8); /* 0x3a00 */
2352 rt2x00_set_field32(&reg, BCN_OFFSET0_BCN2, 0xf0); /* 0x3c00 */
2353 rt2x00_set_field32(&reg, BCN_OFFSET0_BCN3, 0xf8); /* 0x3e00 */
2354 rt2800_register_write(rt2x00dev, BCN_OFFSET0, reg);
2355
2356 rt2800_register_read(rt2x00dev, BCN_OFFSET1, &reg);
2357 rt2x00_set_field32(&reg, BCN_OFFSET1_BCN4, 0xc8); /* 0x3200 */
2358 rt2x00_set_field32(&reg, BCN_OFFSET1_BCN5, 0xd0); /* 0x3400 */
2359 rt2x00_set_field32(&reg, BCN_OFFSET1_BCN6, 0x77); /* 0x1dc0 */
2360 rt2x00_set_field32(&reg, BCN_OFFSET1_BCN7, 0x6f); /* 0x1bc0 */
2361 rt2800_register_write(rt2x00dev, BCN_OFFSET1, reg);
2362
2363 rt2800_register_write(rt2x00dev, LEGACY_BASIC_RATE, 0x0000013f);
2364 rt2800_register_write(rt2x00dev, HT_BASIC_RATE, 0x00008003);
2365
2366 rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, 0x00000000);
2367
2368 rt2800_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
2369 rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_INTERVAL, 1600);
2370 rt2x00_set_field32(&reg, BCN_TIME_CFG_TSF_TICKING, 0);
2371 rt2x00_set_field32(&reg, BCN_TIME_CFG_TSF_SYNC, 0);
2372 rt2x00_set_field32(&reg, BCN_TIME_CFG_TBTT_ENABLE, 0);
2373 rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_GEN, 0);
2374 rt2x00_set_field32(&reg, BCN_TIME_CFG_TX_TIME_COMPENSATE, 0);
2375 rt2800_register_write(rt2x00dev, BCN_TIME_CFG, reg);
2376
2377 rt2800_config_filter(rt2x00dev, FIF_ALLMULTI);
2378
2379 rt2800_register_read(rt2x00dev, BKOFF_SLOT_CFG, &reg);
2380 rt2x00_set_field32(&reg, BKOFF_SLOT_CFG_SLOT_TIME, 9);
2381 rt2x00_set_field32(&reg, BKOFF_SLOT_CFG_CC_DELAY_TIME, 2);
2382 rt2800_register_write(rt2x00dev, BKOFF_SLOT_CFG, reg);
2383
2384 if (rt2x00_rt(rt2x00dev, RT3071) ||
2385 rt2x00_rt(rt2x00dev, RT3090) ||
2386 rt2x00_rt(rt2x00dev, RT3390)) {
2387 rt2800_register_write(rt2x00dev, TX_SW_CFG0, 0x00000400);
2388 rt2800_register_write(rt2x00dev, TX_SW_CFG1, 0x00000000);
2389 if (rt2x00_rt_rev_lt(rt2x00dev, RT3071, REV_RT3071E) ||
2390 rt2x00_rt_rev_lt(rt2x00dev, RT3090, REV_RT3090E) ||
2391 rt2x00_rt_rev_lt(rt2x00dev, RT3390, REV_RT3390E)) {
2392 rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC_CONF1, &eeprom);
2393 if (rt2x00_get_field16(eeprom, EEPROM_NIC_CONF1_DAC_TEST))
2394 rt2800_register_write(rt2x00dev, TX_SW_CFG2,
2395 0x0000002c);
2396 else
2397 rt2800_register_write(rt2x00dev, TX_SW_CFG2,
2398 0x0000000f);
2399 } else {
2400 rt2800_register_write(rt2x00dev, TX_SW_CFG2, 0x00000000);
2401 }
2402 } else if (rt2x00_rt(rt2x00dev, RT3070)) {
2403 rt2800_register_write(rt2x00dev, TX_SW_CFG0, 0x00000400);
2404
2405 if (rt2x00_rt_rev_lt(rt2x00dev, RT3070, REV_RT3070F)) {
2406 rt2800_register_write(rt2x00dev, TX_SW_CFG1, 0x00000000);
2407 rt2800_register_write(rt2x00dev, TX_SW_CFG2, 0x0000002c);
2408 } else {
2409 rt2800_register_write(rt2x00dev, TX_SW_CFG1, 0x00080606);
2410 rt2800_register_write(rt2x00dev, TX_SW_CFG2, 0x00000000);
2411 }
2412 } else if (rt2800_is_305x_soc(rt2x00dev)) {
2413 rt2800_register_write(rt2x00dev, TX_SW_CFG0, 0x00000400);
2414 rt2800_register_write(rt2x00dev, TX_SW_CFG1, 0x00000000);
2415 rt2800_register_write(rt2x00dev, TX_SW_CFG2, 0x00000030);
2416 } else if (rt2x00_rt(rt2x00dev, RT5390)) {
2417 rt2800_register_write(rt2x00dev, TX_SW_CFG0, 0x00000404);
2418 rt2800_register_write(rt2x00dev, TX_SW_CFG1, 0x00080606);
2419 rt2800_register_write(rt2x00dev, TX_SW_CFG2, 0x00000000);
2420 } else {
2421 rt2800_register_write(rt2x00dev, TX_SW_CFG0, 0x00000000);
2422 rt2800_register_write(rt2x00dev, TX_SW_CFG1, 0x00080606);
2423 }
2424
2425 rt2800_register_read(rt2x00dev, TX_LINK_CFG, &reg);
2426 rt2x00_set_field32(&reg, TX_LINK_CFG_REMOTE_MFB_LIFETIME, 32);
2427 rt2x00_set_field32(&reg, TX_LINK_CFG_MFB_ENABLE, 0);
2428 rt2x00_set_field32(&reg, TX_LINK_CFG_REMOTE_UMFS_ENABLE, 0);
2429 rt2x00_set_field32(&reg, TX_LINK_CFG_TX_MRQ_EN, 0);
2430 rt2x00_set_field32(&reg, TX_LINK_CFG_TX_RDG_EN, 0);
2431 rt2x00_set_field32(&reg, TX_LINK_CFG_TX_CF_ACK_EN, 1);
2432 rt2x00_set_field32(&reg, TX_LINK_CFG_REMOTE_MFB, 0);
2433 rt2x00_set_field32(&reg, TX_LINK_CFG_REMOTE_MFS, 0);
2434 rt2800_register_write(rt2x00dev, TX_LINK_CFG, reg);
2435
2436 rt2800_register_read(rt2x00dev, TX_TIMEOUT_CFG, &reg);
2437 rt2x00_set_field32(&reg, TX_TIMEOUT_CFG_MPDU_LIFETIME, 9);
2438 rt2x00_set_field32(&reg, TX_TIMEOUT_CFG_RX_ACK_TIMEOUT, 32);
2439 rt2x00_set_field32(&reg, TX_TIMEOUT_CFG_TX_OP_TIMEOUT, 10);
2440 rt2800_register_write(rt2x00dev, TX_TIMEOUT_CFG, reg);
2441
2442 rt2800_register_read(rt2x00dev, MAX_LEN_CFG, &reg);
2443 rt2x00_set_field32(&reg, MAX_LEN_CFG_MAX_MPDU, AGGREGATION_SIZE);
2444 if (rt2x00_rt_rev_gte(rt2x00dev, RT2872, REV_RT2872E) ||
2445 rt2x00_rt(rt2x00dev, RT2883) ||
2446 rt2x00_rt_rev_lt(rt2x00dev, RT3070, REV_RT3070E))
2447 rt2x00_set_field32(&reg, MAX_LEN_CFG_MAX_PSDU, 2);
2448 else
2449 rt2x00_set_field32(&reg, MAX_LEN_CFG_MAX_PSDU, 1);
2450 rt2x00_set_field32(&reg, MAX_LEN_CFG_MIN_PSDU, 0);
2451 rt2x00_set_field32(&reg, MAX_LEN_CFG_MIN_MPDU, 0);
2452 rt2800_register_write(rt2x00dev, MAX_LEN_CFG, reg);
2453
2454 rt2800_register_read(rt2x00dev, LED_CFG, &reg);
2455 rt2x00_set_field32(&reg, LED_CFG_ON_PERIOD, 70);
2456 rt2x00_set_field32(&reg, LED_CFG_OFF_PERIOD, 30);
2457 rt2x00_set_field32(&reg, LED_CFG_SLOW_BLINK_PERIOD, 3);
2458 rt2x00_set_field32(&reg, LED_CFG_R_LED_MODE, 3);
2459 rt2x00_set_field32(&reg, LED_CFG_G_LED_MODE, 3);
2460 rt2x00_set_field32(&reg, LED_CFG_Y_LED_MODE, 3);
2461 rt2x00_set_field32(&reg, LED_CFG_LED_POLAR, 1);
2462 rt2800_register_write(rt2x00dev, LED_CFG, reg);
2463
2464 rt2800_register_write(rt2x00dev, PBF_MAX_PCNT, 0x1f3fbf9f);
2465
2466 rt2800_register_read(rt2x00dev, TX_RTY_CFG, &reg);
2467 rt2x00_set_field32(&reg, TX_RTY_CFG_SHORT_RTY_LIMIT, 15);
2468 rt2x00_set_field32(&reg, TX_RTY_CFG_LONG_RTY_LIMIT, 31);
2469 rt2x00_set_field32(&reg, TX_RTY_CFG_LONG_RTY_THRE, 2000);
2470 rt2x00_set_field32(&reg, TX_RTY_CFG_NON_AGG_RTY_MODE, 0);
2471 rt2x00_set_field32(&reg, TX_RTY_CFG_AGG_RTY_MODE, 0);
2472 rt2x00_set_field32(&reg, TX_RTY_CFG_TX_AUTO_FB_ENABLE, 1);
2473 rt2800_register_write(rt2x00dev, TX_RTY_CFG, reg);
2474
2475 rt2800_register_read(rt2x00dev, AUTO_RSP_CFG, &reg);
2476 rt2x00_set_field32(&reg, AUTO_RSP_CFG_AUTORESPONDER, 1);
2477 rt2x00_set_field32(&reg, AUTO_RSP_CFG_BAC_ACK_POLICY, 1);
2478 rt2x00_set_field32(&reg, AUTO_RSP_CFG_CTS_40_MMODE, 0);
2479 rt2x00_set_field32(&reg, AUTO_RSP_CFG_CTS_40_MREF, 0);
2480 rt2x00_set_field32(&reg, AUTO_RSP_CFG_AR_PREAMBLE, 1);
2481 rt2x00_set_field32(&reg, AUTO_RSP_CFG_DUAL_CTS_EN, 0);
2482 rt2x00_set_field32(&reg, AUTO_RSP_CFG_ACK_CTS_PSM_BIT, 0);
2483 rt2800_register_write(rt2x00dev, AUTO_RSP_CFG, reg);
2484
2485 rt2800_register_read(rt2x00dev, CCK_PROT_CFG, &reg);
2486 rt2x00_set_field32(&reg, CCK_PROT_CFG_PROTECT_RATE, 3);
2487 rt2x00_set_field32(&reg, CCK_PROT_CFG_PROTECT_CTRL, 0);
2488 rt2x00_set_field32(&reg, CCK_PROT_CFG_PROTECT_NAV_SHORT, 1);
2489 rt2x00_set_field32(&reg, CCK_PROT_CFG_TX_OP_ALLOW_CCK, 1);
2490 rt2x00_set_field32(&reg, CCK_PROT_CFG_TX_OP_ALLOW_OFDM, 1);
2491 rt2x00_set_field32(&reg, CCK_PROT_CFG_TX_OP_ALLOW_MM20, 1);
2492 rt2x00_set_field32(&reg, CCK_PROT_CFG_TX_OP_ALLOW_MM40, 0);
2493 rt2x00_set_field32(&reg, CCK_PROT_CFG_TX_OP_ALLOW_GF20, 1);
2494 rt2x00_set_field32(&reg, CCK_PROT_CFG_TX_OP_ALLOW_GF40, 0);
2495 rt2x00_set_field32(&reg, CCK_PROT_CFG_RTS_TH_EN, 1);
2496 rt2800_register_write(rt2x00dev, CCK_PROT_CFG, reg);
2497
2498 rt2800_register_read(rt2x00dev, OFDM_PROT_CFG, &reg);
2499 rt2x00_set_field32(&reg, OFDM_PROT_CFG_PROTECT_RATE, 3);
2500 rt2x00_set_field32(&reg, OFDM_PROT_CFG_PROTECT_CTRL, 0);
2501 rt2x00_set_field32(&reg, OFDM_PROT_CFG_PROTECT_NAV_SHORT, 1);
2502 rt2x00_set_field32(&reg, OFDM_PROT_CFG_TX_OP_ALLOW_CCK, 1);
2503 rt2x00_set_field32(&reg, OFDM_PROT_CFG_TX_OP_ALLOW_OFDM, 1);
2504 rt2x00_set_field32(&reg, OFDM_PROT_CFG_TX_OP_ALLOW_MM20, 1);
2505 rt2x00_set_field32(&reg, OFDM_PROT_CFG_TX_OP_ALLOW_MM40, 0);
2506 rt2x00_set_field32(&reg, OFDM_PROT_CFG_TX_OP_ALLOW_GF20, 1);
2507 rt2x00_set_field32(&reg, OFDM_PROT_CFG_TX_OP_ALLOW_GF40, 0);
2508 rt2x00_set_field32(&reg, OFDM_PROT_CFG_RTS_TH_EN, 1);
2509 rt2800_register_write(rt2x00dev, OFDM_PROT_CFG, reg);
2510
2511 rt2800_register_read(rt2x00dev, MM20_PROT_CFG, &reg);
2512 rt2x00_set_field32(&reg, MM20_PROT_CFG_PROTECT_RATE, 0x4004);
2513 rt2x00_set_field32(&reg, MM20_PROT_CFG_PROTECT_CTRL, 0);
2514 rt2x00_set_field32(&reg, MM20_PROT_CFG_PROTECT_NAV_SHORT, 1);
2515 rt2x00_set_field32(&reg, MM20_PROT_CFG_TX_OP_ALLOW_CCK, 1);
2516 rt2x00_set_field32(&reg, MM20_PROT_CFG_TX_OP_ALLOW_OFDM, 1);
2517 rt2x00_set_field32(&reg, MM20_PROT_CFG_TX_OP_ALLOW_MM20, 1);
2518 rt2x00_set_field32(&reg, MM20_PROT_CFG_TX_OP_ALLOW_MM40, 0);
2519 rt2x00_set_field32(&reg, MM20_PROT_CFG_TX_OP_ALLOW_GF20, 1);
2520 rt2x00_set_field32(&reg, MM20_PROT_CFG_TX_OP_ALLOW_GF40, 0);
2521 rt2x00_set_field32(&reg, MM20_PROT_CFG_RTS_TH_EN, 0);
2522 rt2800_register_write(rt2x00dev, MM20_PROT_CFG, reg);
2523
2524 rt2800_register_read(rt2x00dev, MM40_PROT_CFG, &reg);
2525 rt2x00_set_field32(&reg, MM40_PROT_CFG_PROTECT_RATE, 0x4084);
2526 rt2x00_set_field32(&reg, MM40_PROT_CFG_PROTECT_CTRL, 0);
2527 rt2x00_set_field32(&reg, MM40_PROT_CFG_PROTECT_NAV_SHORT, 1);
2528 rt2x00_set_field32(&reg, MM40_PROT_CFG_TX_OP_ALLOW_CCK, 1);
2529 rt2x00_set_field32(&reg, MM40_PROT_CFG_TX_OP_ALLOW_OFDM, 1);
2530 rt2x00_set_field32(&reg, MM40_PROT_CFG_TX_OP_ALLOW_MM20, 1);
2531 rt2x00_set_field32(&reg, MM40_PROT_CFG_TX_OP_ALLOW_MM40, 1);
2532 rt2x00_set_field32(&reg, MM40_PROT_CFG_TX_OP_ALLOW_GF20, 1);
2533 rt2x00_set_field32(&reg, MM40_PROT_CFG_TX_OP_ALLOW_GF40, 1);
2534 rt2x00_set_field32(&reg, MM40_PROT_CFG_RTS_TH_EN, 0);
2535 rt2800_register_write(rt2x00dev, MM40_PROT_CFG, reg);
2536
2537 rt2800_register_read(rt2x00dev, GF20_PROT_CFG, &reg);
2538 rt2x00_set_field32(&reg, GF20_PROT_CFG_PROTECT_RATE, 0x4004);
2539 rt2x00_set_field32(&reg, GF20_PROT_CFG_PROTECT_CTRL, 0);
2540 rt2x00_set_field32(&reg, GF20_PROT_CFG_PROTECT_NAV_SHORT, 1);
2541 rt2x00_set_field32(&reg, GF20_PROT_CFG_TX_OP_ALLOW_CCK, 1);
2542 rt2x00_set_field32(&reg, GF20_PROT_CFG_TX_OP_ALLOW_OFDM, 1);
2543 rt2x00_set_field32(&reg, GF20_PROT_CFG_TX_OP_ALLOW_MM20, 1);
2544 rt2x00_set_field32(&reg, GF20_PROT_CFG_TX_OP_ALLOW_MM40, 0);
2545 rt2x00_set_field32(&reg, GF20_PROT_CFG_TX_OP_ALLOW_GF20, 1);
2546 rt2x00_set_field32(&reg, GF20_PROT_CFG_TX_OP_ALLOW_GF40, 0);
2547 rt2x00_set_field32(&reg, GF20_PROT_CFG_RTS_TH_EN, 0);
2548 rt2800_register_write(rt2x00dev, GF20_PROT_CFG, reg);
2549
2550 rt2800_register_read(rt2x00dev, GF40_PROT_CFG, &reg);
2551 rt2x00_set_field32(&reg, GF40_PROT_CFG_PROTECT_RATE, 0x4084);
2552 rt2x00_set_field32(&reg, GF40_PROT_CFG_PROTECT_CTRL, 0);
2553 rt2x00_set_field32(&reg, GF40_PROT_CFG_PROTECT_NAV_SHORT, 1);
2554 rt2x00_set_field32(&reg, GF40_PROT_CFG_TX_OP_ALLOW_CCK, 1);
2555 rt2x00_set_field32(&reg, GF40_PROT_CFG_TX_OP_ALLOW_OFDM, 1);
2556 rt2x00_set_field32(&reg, GF40_PROT_CFG_TX_OP_ALLOW_MM20, 1);
2557 rt2x00_set_field32(&reg, GF40_PROT_CFG_TX_OP_ALLOW_MM40, 1);
2558 rt2x00_set_field32(&reg, GF40_PROT_CFG_TX_OP_ALLOW_GF20, 1);
2559 rt2x00_set_field32(&reg, GF40_PROT_CFG_TX_OP_ALLOW_GF40, 1);
2560 rt2x00_set_field32(&reg, GF40_PROT_CFG_RTS_TH_EN, 0);
2561 rt2800_register_write(rt2x00dev, GF40_PROT_CFG, reg);
2562
2563 if (rt2x00_is_usb(rt2x00dev)) {
2564 rt2800_register_write(rt2x00dev, PBF_CFG, 0xf40006);
2565
2566 rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, &reg);
2567 rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_TX_DMA, 0);
2568 rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_DMA_BUSY, 0);
2569 rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_RX_DMA, 0);
2570 rt2x00_set_field32(&reg, WPDMA_GLO_CFG_RX_DMA_BUSY, 0);
2571 rt2x00_set_field32(&reg, WPDMA_GLO_CFG_WP_DMA_BURST_SIZE, 3);
2572 rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 0);
2573 rt2x00_set_field32(&reg, WPDMA_GLO_CFG_BIG_ENDIAN, 0);
2574 rt2x00_set_field32(&reg, WPDMA_GLO_CFG_RX_HDR_SCATTER, 0);
2575 rt2x00_set_field32(&reg, WPDMA_GLO_CFG_HDR_SEG_LEN, 0);
2576 rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg);
2577 }
2578
2579 /*
2580 * The legacy driver also sets TXOP_CTRL_CFG_RESERVED_TRUN_EN to 1
2581 * although it is reserved.
2582 */
2583 rt2800_register_read(rt2x00dev, TXOP_CTRL_CFG, &reg);
2584 rt2x00_set_field32(&reg, TXOP_CTRL_CFG_TIMEOUT_TRUN_EN, 1);
2585 rt2x00_set_field32(&reg, TXOP_CTRL_CFG_AC_TRUN_EN, 1);
2586 rt2x00_set_field32(&reg, TXOP_CTRL_CFG_TXRATEGRP_TRUN_EN, 1);
2587 rt2x00_set_field32(&reg, TXOP_CTRL_CFG_USER_MODE_TRUN_EN, 1);
2588 rt2x00_set_field32(&reg, TXOP_CTRL_CFG_MIMO_PS_TRUN_EN, 1);
2589 rt2x00_set_field32(&reg, TXOP_CTRL_CFG_RESERVED_TRUN_EN, 1);
2590 rt2x00_set_field32(&reg, TXOP_CTRL_CFG_LSIG_TXOP_EN, 0);
2591 rt2x00_set_field32(&reg, TXOP_CTRL_CFG_EXT_CCA_EN, 0);
2592 rt2x00_set_field32(&reg, TXOP_CTRL_CFG_EXT_CCA_DLY, 88);
2593 rt2x00_set_field32(&reg, TXOP_CTRL_CFG_EXT_CWMIN, 0);
2594 rt2800_register_write(rt2x00dev, TXOP_CTRL_CFG, reg);
2595
2596 rt2800_register_write(rt2x00dev, TXOP_HLDR_ET, 0x00000002);
2597
2598 rt2800_register_read(rt2x00dev, TX_RTS_CFG, &reg);
2599 rt2x00_set_field32(&reg, TX_RTS_CFG_AUTO_RTS_RETRY_LIMIT, 32);
2600 rt2x00_set_field32(&reg, TX_RTS_CFG_RTS_THRES,
2601 IEEE80211_MAX_RTS_THRESHOLD);
2602 rt2x00_set_field32(&reg, TX_RTS_CFG_RTS_FBK_EN, 0);
2603 rt2800_register_write(rt2x00dev, TX_RTS_CFG, reg);
2604
2605 rt2800_register_write(rt2x00dev, EXP_ACK_TIME, 0x002400ca);
2606
2607 /*
2608 * Usually the CCK SIFS time should be set to 10 and the OFDM SIFS
2609 * time should be set to 16. However, the original Ralink driver uses
2610 * 16 for both and indeed using a value of 10 for CCK SIFS results in
2611 * connection problems with 11g + CTS protection. Hence, use the same
2612 * defaults as the Ralink driver: 16 for both, CCK and OFDM SIFS.
2613 */
2614 rt2800_register_read(rt2x00dev, XIFS_TIME_CFG, &reg);
2615 rt2x00_set_field32(&reg, XIFS_TIME_CFG_CCKM_SIFS_TIME, 16);
2616 rt2x00_set_field32(&reg, XIFS_TIME_CFG_OFDM_SIFS_TIME, 16);
2617 rt2x00_set_field32(&reg, XIFS_TIME_CFG_OFDM_XIFS_TIME, 4);
2618 rt2x00_set_field32(&reg, XIFS_TIME_CFG_EIFS, 314);
2619 rt2x00_set_field32(&reg, XIFS_TIME_CFG_BB_RXEND_ENABLE, 1);
2620 rt2800_register_write(rt2x00dev, XIFS_TIME_CFG, reg);
2621
2622 rt2800_register_write(rt2x00dev, PWR_PIN_CFG, 0x00000003);
2623
2624 /*
2625 * ASIC will keep garbage value after boot, clear encryption keys.
2626 */
2627 for (i = 0; i < 4; i++)
2628 rt2800_register_write(rt2x00dev,
2629 SHARED_KEY_MODE_ENTRY(i), 0);
2630
2631 for (i = 0; i < 256; i++) {
2632 static const u32 wcid[2] = { 0xffffffff, 0x00ffffff };
2633 rt2800_register_multiwrite(rt2x00dev, MAC_WCID_ENTRY(i),
2634 wcid, sizeof(wcid));
2635
2636 rt2800_register_write(rt2x00dev, MAC_WCID_ATTR_ENTRY(i), 0);
2637 rt2800_register_write(rt2x00dev, MAC_IVEIV_ENTRY(i), 0);
2638 }
2639
2640 /*
2641 * Clear all beacons
2642 */
2643 rt2800_clear_beacon_register(rt2x00dev, HW_BEACON_BASE0);
2644 rt2800_clear_beacon_register(rt2x00dev, HW_BEACON_BASE1);
2645 rt2800_clear_beacon_register(rt2x00dev, HW_BEACON_BASE2);
2646 rt2800_clear_beacon_register(rt2x00dev, HW_BEACON_BASE3);
2647 rt2800_clear_beacon_register(rt2x00dev, HW_BEACON_BASE4);
2648 rt2800_clear_beacon_register(rt2x00dev, HW_BEACON_BASE5);
2649 rt2800_clear_beacon_register(rt2x00dev, HW_BEACON_BASE6);
2650 rt2800_clear_beacon_register(rt2x00dev, HW_BEACON_BASE7);
2651
2652 if (rt2x00_is_usb(rt2x00dev)) {
2653 rt2800_register_read(rt2x00dev, US_CYC_CNT, &reg);
2654 rt2x00_set_field32(&reg, US_CYC_CNT_CLOCK_CYCLE, 30);
2655 rt2800_register_write(rt2x00dev, US_CYC_CNT, reg);
2656 } else if (rt2x00_is_pcie(rt2x00dev)) {
2657 rt2800_register_read(rt2x00dev, US_CYC_CNT, &reg);
2658 rt2x00_set_field32(&reg, US_CYC_CNT_CLOCK_CYCLE, 125);
2659 rt2800_register_write(rt2x00dev, US_CYC_CNT, reg);
2660 }
2661
2662 rt2800_register_read(rt2x00dev, HT_FBK_CFG0, &reg);
2663 rt2x00_set_field32(&reg, HT_FBK_CFG0_HTMCS0FBK, 0);
2664 rt2x00_set_field32(&reg, HT_FBK_CFG0_HTMCS1FBK, 0);
2665 rt2x00_set_field32(&reg, HT_FBK_CFG0_HTMCS2FBK, 1);
2666 rt2x00_set_field32(&reg, HT_FBK_CFG0_HTMCS3FBK, 2);
2667 rt2x00_set_field32(&reg, HT_FBK_CFG0_HTMCS4FBK, 3);
2668 rt2x00_set_field32(&reg, HT_FBK_CFG0_HTMCS5FBK, 4);
2669 rt2x00_set_field32(&reg, HT_FBK_CFG0_HTMCS6FBK, 5);
2670 rt2x00_set_field32(&reg, HT_FBK_CFG0_HTMCS7FBK, 6);
2671 rt2800_register_write(rt2x00dev, HT_FBK_CFG0, reg);
2672
2673 rt2800_register_read(rt2x00dev, HT_FBK_CFG1, &reg);
2674 rt2x00_set_field32(&reg, HT_FBK_CFG1_HTMCS8FBK, 8);
2675 rt2x00_set_field32(&reg, HT_FBK_CFG1_HTMCS9FBK, 8);
2676 rt2x00_set_field32(&reg, HT_FBK_CFG1_HTMCS10FBK, 9);
2677 rt2x00_set_field32(&reg, HT_FBK_CFG1_HTMCS11FBK, 10);
2678 rt2x00_set_field32(&reg, HT_FBK_CFG1_HTMCS12FBK, 11);
2679 rt2x00_set_field32(&reg, HT_FBK_CFG1_HTMCS13FBK, 12);
2680 rt2x00_set_field32(&reg, HT_FBK_CFG1_HTMCS14FBK, 13);
2681 rt2x00_set_field32(&reg, HT_FBK_CFG1_HTMCS15FBK, 14);
2682 rt2800_register_write(rt2x00dev, HT_FBK_CFG1, reg);
2683
2684 rt2800_register_read(rt2x00dev, LG_FBK_CFG0, &reg);
2685 rt2x00_set_field32(&reg, LG_FBK_CFG0_OFDMMCS0FBK, 8);
2686 rt2x00_set_field32(&reg, LG_FBK_CFG0_OFDMMCS1FBK, 8);
2687 rt2x00_set_field32(&reg, LG_FBK_CFG0_OFDMMCS2FBK, 9);
2688 rt2x00_set_field32(&reg, LG_FBK_CFG0_OFDMMCS3FBK, 10);
2689 rt2x00_set_field32(&reg, LG_FBK_CFG0_OFDMMCS4FBK, 11);
2690 rt2x00_set_field32(&reg, LG_FBK_CFG0_OFDMMCS5FBK, 12);
2691 rt2x00_set_field32(&reg, LG_FBK_CFG0_OFDMMCS6FBK, 13);
2692 rt2x00_set_field32(&reg, LG_FBK_CFG0_OFDMMCS7FBK, 14);
2693 rt2800_register_write(rt2x00dev, LG_FBK_CFG0, reg);
2694
2695 rt2800_register_read(rt2x00dev, LG_FBK_CFG1, &reg);
2696 rt2x00_set_field32(&reg, LG_FBK_CFG0_CCKMCS0FBK, 0);
2697 rt2x00_set_field32(&reg, LG_FBK_CFG0_CCKMCS1FBK, 0);
2698 rt2x00_set_field32(&reg, LG_FBK_CFG0_CCKMCS2FBK, 1);
2699 rt2x00_set_field32(&reg, LG_FBK_CFG0_CCKMCS3FBK, 2);
2700 rt2800_register_write(rt2x00dev, LG_FBK_CFG1, reg);
2701
2702 /*
2703 * Do not force the BA window size, we use the TXWI to set it
2704 */
2705 rt2800_register_read(rt2x00dev, AMPDU_BA_WINSIZE, &reg);
2706 rt2x00_set_field32(&reg, AMPDU_BA_WINSIZE_FORCE_WINSIZE_ENABLE, 0);
2707 rt2x00_set_field32(&reg, AMPDU_BA_WINSIZE_FORCE_WINSIZE, 0);
2708 rt2800_register_write(rt2x00dev, AMPDU_BA_WINSIZE, reg);
2709
2710 /*
2711 * We must clear the error counters.
2712 * These registers are cleared on read,
2713 * so we may pass a useless variable to store the value.
2714 */
2715 rt2800_register_read(rt2x00dev, RX_STA_CNT0, &reg);
2716 rt2800_register_read(rt2x00dev, RX_STA_CNT1, &reg);
2717 rt2800_register_read(rt2x00dev, RX_STA_CNT2, &reg);
2718 rt2800_register_read(rt2x00dev, TX_STA_CNT0, &reg);
2719 rt2800_register_read(rt2x00dev, TX_STA_CNT1, &reg);
2720 rt2800_register_read(rt2x00dev, TX_STA_CNT2, &reg);
2721
2722 /*
2723 * Setup leadtime for pre tbtt interrupt to 6ms
2724 */
2725 rt2800_register_read(rt2x00dev, INT_TIMER_CFG, &reg);
2726 rt2x00_set_field32(&reg, INT_TIMER_CFG_PRE_TBTT_TIMER, 6 << 4);
2727 rt2800_register_write(rt2x00dev, INT_TIMER_CFG, reg);
2728
2729 /*
2730 * Set up channel statistics timer
2731 */
2732 rt2800_register_read(rt2x00dev, CH_TIME_CFG, &reg);
2733 rt2x00_set_field32(&reg, CH_TIME_CFG_EIFS_BUSY, 1);
2734 rt2x00_set_field32(&reg, CH_TIME_CFG_NAV_BUSY, 1);
2735 rt2x00_set_field32(&reg, CH_TIME_CFG_RX_BUSY, 1);
2736 rt2x00_set_field32(&reg, CH_TIME_CFG_TX_BUSY, 1);
2737 rt2x00_set_field32(&reg, CH_TIME_CFG_TMR_EN, 1);
2738 rt2800_register_write(rt2x00dev, CH_TIME_CFG, reg);
2739
2740 return 0;
2741 }
2742
2743 static int rt2800_wait_bbp_rf_ready(struct rt2x00_dev *rt2x00dev)
2744 {
2745 unsigned int i;
2746 u32 reg;
2747
2748 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
2749 rt2800_register_read(rt2x00dev, MAC_STATUS_CFG, &reg);
2750 if (!rt2x00_get_field32(reg, MAC_STATUS_CFG_BBP_RF_BUSY))
2751 return 0;
2752
2753 udelay(REGISTER_BUSY_DELAY);
2754 }
2755
2756 ERROR(rt2x00dev, "BBP/RF register access failed, aborting.\n");
2757 return -EACCES;
2758 }
2759
2760 static int rt2800_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
2761 {
2762 unsigned int i;
2763 u8 value;
2764
2765 /*
2766 * BBP was enabled after firmware was loaded,
2767 * but we need to reactivate it now.
2768 */
2769 rt2800_register_write(rt2x00dev, H2M_BBP_AGENT, 0);
2770 rt2800_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
2771 msleep(1);
2772
2773 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
2774 rt2800_bbp_read(rt2x00dev, 0, &value);
2775 if ((value != 0xff) && (value != 0x00))
2776 return 0;
2777 udelay(REGISTER_BUSY_DELAY);
2778 }
2779
2780 ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
2781 return -EACCES;
2782 }
2783
2784 static int rt2800_init_bbp(struct rt2x00_dev *rt2x00dev)
2785 {
2786 unsigned int i;
2787 u16 eeprom;
2788 u8 reg_id;
2789 u8 value;
2790
2791 if (unlikely(rt2800_wait_bbp_rf_ready(rt2x00dev) ||
2792 rt2800_wait_bbp_ready(rt2x00dev)))
2793 return -EACCES;
2794
2795 if (rt2x00_rt(rt2x00dev, RT5390)) {
2796 rt2800_bbp_read(rt2x00dev, 4, &value);
2797 rt2x00_set_field8(&value, BBP4_MAC_IF_CTRL, 1);
2798 rt2800_bbp_write(rt2x00dev, 4, value);
2799 }
2800
2801 if (rt2800_is_305x_soc(rt2x00dev) ||
2802 rt2x00_rt(rt2x00dev, RT5390))
2803 rt2800_bbp_write(rt2x00dev, 31, 0x08);
2804
2805 rt2800_bbp_write(rt2x00dev, 65, 0x2c);
2806 rt2800_bbp_write(rt2x00dev, 66, 0x38);
2807
2808 if (rt2x00_rt(rt2x00dev, RT5390))
2809 rt2800_bbp_write(rt2x00dev, 68, 0x0b);
2810
2811 if (rt2x00_rt_rev(rt2x00dev, RT2860, REV_RT2860C)) {
2812 rt2800_bbp_write(rt2x00dev, 69, 0x16);
2813 rt2800_bbp_write(rt2x00dev, 73, 0x12);
2814 } else if (rt2x00_rt(rt2x00dev, RT5390)) {
2815 rt2800_bbp_write(rt2x00dev, 69, 0x12);
2816 rt2800_bbp_write(rt2x00dev, 73, 0x13);
2817 rt2800_bbp_write(rt2x00dev, 75, 0x46);
2818 rt2800_bbp_write(rt2x00dev, 76, 0x28);
2819 rt2800_bbp_write(rt2x00dev, 77, 0x59);
2820 } else {
2821 rt2800_bbp_write(rt2x00dev, 69, 0x12);
2822 rt2800_bbp_write(rt2x00dev, 73, 0x10);
2823 }
2824
2825 rt2800_bbp_write(rt2x00dev, 70, 0x0a);
2826
2827 if (rt2x00_rt(rt2x00dev, RT3070) ||
2828 rt2x00_rt(rt2x00dev, RT3071) ||
2829 rt2x00_rt(rt2x00dev, RT3090) ||
2830 rt2x00_rt(rt2x00dev, RT3390) ||
2831 rt2x00_rt(rt2x00dev, RT5390)) {
2832 rt2800_bbp_write(rt2x00dev, 79, 0x13);
2833 rt2800_bbp_write(rt2x00dev, 80, 0x05);
2834 rt2800_bbp_write(rt2x00dev, 81, 0x33);
2835 } else if (rt2800_is_305x_soc(rt2x00dev)) {
2836 rt2800_bbp_write(rt2x00dev, 78, 0x0e);
2837 rt2800_bbp_write(rt2x00dev, 80, 0x08);
2838 } else {
2839 rt2800_bbp_write(rt2x00dev, 81, 0x37);
2840 }
2841
2842 rt2800_bbp_write(rt2x00dev, 82, 0x62);
2843 if (rt2x00_rt(rt2x00dev, RT5390))
2844 rt2800_bbp_write(rt2x00dev, 83, 0x7a);
2845 else
2846 rt2800_bbp_write(rt2x00dev, 83, 0x6a);
2847
2848 if (rt2x00_rt_rev(rt2x00dev, RT2860, REV_RT2860D))
2849 rt2800_bbp_write(rt2x00dev, 84, 0x19);
2850 else if (rt2x00_rt(rt2x00dev, RT5390))
2851 rt2800_bbp_write(rt2x00dev, 84, 0x9a);
2852 else
2853 rt2800_bbp_write(rt2x00dev, 84, 0x99);
2854
2855 if (rt2x00_rt(rt2x00dev, RT5390))
2856 rt2800_bbp_write(rt2x00dev, 86, 0x38);
2857 else
2858 rt2800_bbp_write(rt2x00dev, 86, 0x00);
2859
2860 rt2800_bbp_write(rt2x00dev, 91, 0x04);
2861
2862 if (rt2x00_rt(rt2x00dev, RT5390))
2863 rt2800_bbp_write(rt2x00dev, 92, 0x02);
2864 else
2865 rt2800_bbp_write(rt2x00dev, 92, 0x00);
2866
2867 if (rt2x00_rt_rev_gte(rt2x00dev, RT3070, REV_RT3070F) ||
2868 rt2x00_rt_rev_gte(rt2x00dev, RT3071, REV_RT3071E) ||
2869 rt2x00_rt_rev_gte(rt2x00dev, RT3090, REV_RT3090E) ||
2870 rt2x00_rt_rev_gte(rt2x00dev, RT3390, REV_RT3390E) ||
2871 rt2x00_rt(rt2x00dev, RT5390) ||
2872 rt2800_is_305x_soc(rt2x00dev))
2873 rt2800_bbp_write(rt2x00dev, 103, 0xc0);
2874 else
2875 rt2800_bbp_write(rt2x00dev, 103, 0x00);
2876
2877 if (rt2x00_rt(rt2x00dev, RT5390))
2878 rt2800_bbp_write(rt2x00dev, 104, 0x92);
2879
2880 if (rt2800_is_305x_soc(rt2x00dev))
2881 rt2800_bbp_write(rt2x00dev, 105, 0x01);
2882 else if (rt2x00_rt(rt2x00dev, RT5390))
2883 rt2800_bbp_write(rt2x00dev, 105, 0x3c);
2884 else
2885 rt2800_bbp_write(rt2x00dev, 105, 0x05);
2886
2887 if (rt2x00_rt(rt2x00dev, RT5390))
2888 rt2800_bbp_write(rt2x00dev, 106, 0x03);
2889 else
2890 rt2800_bbp_write(rt2x00dev, 106, 0x35);
2891
2892 if (rt2x00_rt(rt2x00dev, RT5390))
2893 rt2800_bbp_write(rt2x00dev, 128, 0x12);
2894
2895 if (rt2x00_rt(rt2x00dev, RT3071) ||
2896 rt2x00_rt(rt2x00dev, RT3090) ||
2897 rt2x00_rt(rt2x00dev, RT3390) ||
2898 rt2x00_rt(rt2x00dev, RT5390)) {
2899 rt2800_bbp_read(rt2x00dev, 138, &value);
2900
2901 rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC_CONF0, &eeprom);
2902 if (rt2x00_get_field16(eeprom, EEPROM_NIC_CONF0_TXPATH) == 1)
2903 value |= 0x20;
2904 if (rt2x00_get_field16(eeprom, EEPROM_NIC_CONF0_RXPATH) == 1)
2905 value &= ~0x02;
2906
2907 rt2800_bbp_write(rt2x00dev, 138, value);
2908 }
2909
2910 if (rt2x00_rt(rt2x00dev, RT5390)) {
2911 int ant, div_mode;
2912
2913 rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC_CONF1, &eeprom);
2914 div_mode = rt2x00_get_field16(eeprom,
2915 EEPROM_NIC_CONF1_ANT_DIVERSITY);
2916 ant = (div_mode == 3) ? 1 : 0;
2917
2918 /* check if this is a Bluetooth combo card */
2919 if (test_bit(CAPABILITY_BT_COEXIST, &rt2x00dev->cap_flags)) {
2920 u32 reg;
2921
2922 rt2800_register_read(rt2x00dev, GPIO_CTRL_CFG, &reg);
2923 rt2x00_set_field32(&reg, GPIO_CTRL_CFG_GPIOD_BIT3, 0);
2924 rt2x00_set_field32(&reg, GPIO_CTRL_CFG_GPIOD_BIT6, 0);
2925 rt2x00_set_field32(&reg, GPIO_CTRL_CFG_BIT3, 0);
2926 rt2x00_set_field32(&reg, GPIO_CTRL_CFG_BIT6, 0);
2927 if (ant == 0)
2928 rt2x00_set_field32(&reg, GPIO_CTRL_CFG_BIT3, 1);
2929 else if (ant == 1)
2930 rt2x00_set_field32(&reg, GPIO_CTRL_CFG_BIT6, 1);
2931 rt2800_register_write(rt2x00dev, GPIO_CTRL_CFG, reg);
2932 }
2933
2934 rt2800_bbp_read(rt2x00dev, 152, &value);
2935 if (ant == 0)
2936 rt2x00_set_field8(&value, BBP152_RX_DEFAULT_ANT, 1);
2937 else
2938 rt2x00_set_field8(&value, BBP152_RX_DEFAULT_ANT, 0);
2939 rt2800_bbp_write(rt2x00dev, 152, value);
2940
2941 /* Init frequency calibration */
2942 rt2800_bbp_write(rt2x00dev, 142, 1);
2943 rt2800_bbp_write(rt2x00dev, 143, 57);
2944 }
2945
2946 for (i = 0; i < EEPROM_BBP_SIZE; i++) {
2947 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
2948
2949 if (eeprom != 0xffff && eeprom != 0x0000) {
2950 reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
2951 value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
2952 rt2800_bbp_write(rt2x00dev, reg_id, value);
2953 }
2954 }
2955
2956 return 0;
2957 }
2958
2959 static u8 rt2800_init_rx_filter(struct rt2x00_dev *rt2x00dev,
2960 bool bw40, u8 rfcsr24, u8 filter_target)
2961 {
2962 unsigned int i;
2963 u8 bbp;
2964 u8 rfcsr;
2965 u8 passband;
2966 u8 stopband;
2967 u8 overtuned = 0;
2968
2969 rt2800_rfcsr_write(rt2x00dev, 24, rfcsr24);
2970
2971 rt2800_bbp_read(rt2x00dev, 4, &bbp);
2972 rt2x00_set_field8(&bbp, BBP4_BANDWIDTH, 2 * bw40);
2973 rt2800_bbp_write(rt2x00dev, 4, bbp);
2974
2975 rt2800_rfcsr_read(rt2x00dev, 31, &rfcsr);
2976 rt2x00_set_field8(&rfcsr, RFCSR31_RX_H20M, bw40);
2977 rt2800_rfcsr_write(rt2x00dev, 31, rfcsr);
2978
2979 rt2800_rfcsr_read(rt2x00dev, 22, &rfcsr);
2980 rt2x00_set_field8(&rfcsr, RFCSR22_BASEBAND_LOOPBACK, 1);
2981 rt2800_rfcsr_write(rt2x00dev, 22, rfcsr);
2982
2983 /*
2984 * Set power & frequency of passband test tone
2985 */
2986 rt2800_bbp_write(rt2x00dev, 24, 0);
2987
2988 for (i = 0; i < 100; i++) {
2989 rt2800_bbp_write(rt2x00dev, 25, 0x90);
2990 msleep(1);
2991
2992 rt2800_bbp_read(rt2x00dev, 55, &passband);
2993 if (passband)
2994 break;
2995 }
2996
2997 /*
2998 * Set power & frequency of stopband test tone
2999 */
3000 rt2800_bbp_write(rt2x00dev, 24, 0x06);
3001
3002 for (i = 0; i < 100; i++) {
3003 rt2800_bbp_write(rt2x00dev, 25, 0x90);
3004 msleep(1);
3005
3006 rt2800_bbp_read(rt2x00dev, 55, &stopband);
3007
3008 if ((passband - stopband) <= filter_target) {
3009 rfcsr24++;
3010 overtuned += ((passband - stopband) == filter_target);
3011 } else
3012 break;
3013
3014 rt2800_rfcsr_write(rt2x00dev, 24, rfcsr24);
3015 }
3016
3017 rfcsr24 -= !!overtuned;
3018
3019 rt2800_rfcsr_write(rt2x00dev, 24, rfcsr24);
3020 return rfcsr24;
3021 }
3022
3023 static int rt2800_init_rfcsr(struct rt2x00_dev *rt2x00dev)
3024 {
3025 u8 rfcsr;
3026 u8 bbp;
3027 u32 reg;
3028 u16 eeprom;
3029
3030 if (!rt2x00_rt(rt2x00dev, RT3070) &&
3031 !rt2x00_rt(rt2x00dev, RT3071) &&
3032 !rt2x00_rt(rt2x00dev, RT3090) &&
3033 !rt2x00_rt(rt2x00dev, RT3390) &&
3034 !rt2x00_rt(rt2x00dev, RT5390) &&
3035 !rt2800_is_305x_soc(rt2x00dev))
3036 return 0;
3037
3038 /*
3039 * Init RF calibration.
3040 */
3041 if (rt2x00_rt(rt2x00dev, RT5390)) {
3042 rt2800_rfcsr_read(rt2x00dev, 2, &rfcsr);
3043 rt2x00_set_field8(&rfcsr, RFCSR2_RESCAL_EN, 1);
3044 rt2800_rfcsr_write(rt2x00dev, 2, rfcsr);
3045 msleep(1);
3046 rt2x00_set_field8(&rfcsr, RFCSR2_RESCAL_EN, 0);
3047 rt2800_rfcsr_write(rt2x00dev, 2, rfcsr);
3048 } else {
3049 rt2800_rfcsr_read(rt2x00dev, 30, &rfcsr);
3050 rt2x00_set_field8(&rfcsr, RFCSR30_RF_CALIBRATION, 1);
3051 rt2800_rfcsr_write(rt2x00dev, 30, rfcsr);
3052 msleep(1);
3053 rt2x00_set_field8(&rfcsr, RFCSR30_RF_CALIBRATION, 0);
3054 rt2800_rfcsr_write(rt2x00dev, 30, rfcsr);
3055 }
3056
3057 if (rt2x00_rt(rt2x00dev, RT3070) ||
3058 rt2x00_rt(rt2x00dev, RT3071) ||
3059 rt2x00_rt(rt2x00dev, RT3090)) {
3060 rt2800_rfcsr_write(rt2x00dev, 4, 0x40);
3061 rt2800_rfcsr_write(rt2x00dev, 5, 0x03);
3062 rt2800_rfcsr_write(rt2x00dev, 6, 0x02);
3063 rt2800_rfcsr_write(rt2x00dev, 7, 0x60);
3064 rt2800_rfcsr_write(rt2x00dev, 9, 0x0f);
3065 rt2800_rfcsr_write(rt2x00dev, 10, 0x41);
3066 rt2800_rfcsr_write(rt2x00dev, 11, 0x21);
3067 rt2800_rfcsr_write(rt2x00dev, 12, 0x7b);
3068 rt2800_rfcsr_write(rt2x00dev, 14, 0x90);
3069 rt2800_rfcsr_write(rt2x00dev, 15, 0x58);
3070 rt2800_rfcsr_write(rt2x00dev, 16, 0xb3);
3071 rt2800_rfcsr_write(rt2x00dev, 17, 0x92);
3072 rt2800_rfcsr_write(rt2x00dev, 18, 0x2c);
3073 rt2800_rfcsr_write(rt2x00dev, 19, 0x02);
3074 rt2800_rfcsr_write(rt2x00dev, 20, 0xba);
3075 rt2800_rfcsr_write(rt2x00dev, 21, 0xdb);
3076 rt2800_rfcsr_write(rt2x00dev, 24, 0x16);
3077 rt2800_rfcsr_write(rt2x00dev, 25, 0x01);
3078 rt2800_rfcsr_write(rt2x00dev, 29, 0x1f);
3079 } else if (rt2x00_rt(rt2x00dev, RT3390)) {
3080 rt2800_rfcsr_write(rt2x00dev, 0, 0xa0);
3081 rt2800_rfcsr_write(rt2x00dev, 1, 0xe1);
3082 rt2800_rfcsr_write(rt2x00dev, 2, 0xf1);
3083 rt2800_rfcsr_write(rt2x00dev, 3, 0x62);
3084 rt2800_rfcsr_write(rt2x00dev, 4, 0x40);
3085 rt2800_rfcsr_write(rt2x00dev, 5, 0x8b);
3086 rt2800_rfcsr_write(rt2x00dev, 6, 0x42);
3087 rt2800_rfcsr_write(rt2x00dev, 7, 0x34);
3088 rt2800_rfcsr_write(rt2x00dev, 8, 0x00);
3089 rt2800_rfcsr_write(rt2x00dev, 9, 0xc0);
3090 rt2800_rfcsr_write(rt2x00dev, 10, 0x61);
3091 rt2800_rfcsr_write(rt2x00dev, 11, 0x21);
3092 rt2800_rfcsr_write(rt2x00dev, 12, 0x3b);
3093 rt2800_rfcsr_write(rt2x00dev, 13, 0xe0);
3094 rt2800_rfcsr_write(rt2x00dev, 14, 0x90);
3095 rt2800_rfcsr_write(rt2x00dev, 15, 0x53);
3096 rt2800_rfcsr_write(rt2x00dev, 16, 0xe0);
3097 rt2800_rfcsr_write(rt2x00dev, 17, 0x94);
3098 rt2800_rfcsr_write(rt2x00dev, 18, 0x5c);
3099 rt2800_rfcsr_write(rt2x00dev, 19, 0x4a);
3100 rt2800_rfcsr_write(rt2x00dev, 20, 0xb2);
3101 rt2800_rfcsr_write(rt2x00dev, 21, 0xf6);
3102 rt2800_rfcsr_write(rt2x00dev, 22, 0x00);
3103 rt2800_rfcsr_write(rt2x00dev, 23, 0x14);
3104 rt2800_rfcsr_write(rt2x00dev, 24, 0x08);
3105 rt2800_rfcsr_write(rt2x00dev, 25, 0x3d);
3106 rt2800_rfcsr_write(rt2x00dev, 26, 0x85);
3107 rt2800_rfcsr_write(rt2x00dev, 27, 0x00);
3108 rt2800_rfcsr_write(rt2x00dev, 28, 0x41);
3109 rt2800_rfcsr_write(rt2x00dev, 29, 0x8f);
3110 rt2800_rfcsr_write(rt2x00dev, 30, 0x20);
3111 rt2800_rfcsr_write(rt2x00dev, 31, 0x0f);
3112 } else if (rt2800_is_305x_soc(rt2x00dev)) {
3113 rt2800_rfcsr_write(rt2x00dev, 0, 0x50);
3114 rt2800_rfcsr_write(rt2x00dev, 1, 0x01);
3115 rt2800_rfcsr_write(rt2x00dev, 2, 0xf7);
3116 rt2800_rfcsr_write(rt2x00dev, 3, 0x75);
3117 rt2800_rfcsr_write(rt2x00dev, 4, 0x40);
3118 rt2800_rfcsr_write(rt2x00dev, 5, 0x03);
3119 rt2800_rfcsr_write(rt2x00dev, 6, 0x02);
3120 rt2800_rfcsr_write(rt2x00dev, 7, 0x50);
3121 rt2800_rfcsr_write(rt2x00dev, 8, 0x39);
3122 rt2800_rfcsr_write(rt2x00dev, 9, 0x0f);
3123 rt2800_rfcsr_write(rt2x00dev, 10, 0x60);
3124 rt2800_rfcsr_write(rt2x00dev, 11, 0x21);
3125 rt2800_rfcsr_write(rt2x00dev, 12, 0x75);
3126 rt2800_rfcsr_write(rt2x00dev, 13, 0x75);
3127 rt2800_rfcsr_write(rt2x00dev, 14, 0x90);
3128 rt2800_rfcsr_write(rt2x00dev, 15, 0x58);
3129 rt2800_rfcsr_write(rt2x00dev, 16, 0xb3);
3130 rt2800_rfcsr_write(rt2x00dev, 17, 0x92);
3131 rt2800_rfcsr_write(rt2x00dev, 18, 0x2c);
3132 rt2800_rfcsr_write(rt2x00dev, 19, 0x02);
3133 rt2800_rfcsr_write(rt2x00dev, 20, 0xba);
3134 rt2800_rfcsr_write(rt2x00dev, 21, 0xdb);
3135 rt2800_rfcsr_write(rt2x00dev, 22, 0x00);
3136 rt2800_rfcsr_write(rt2x00dev, 23, 0x31);
3137 rt2800_rfcsr_write(rt2x00dev, 24, 0x08);
3138 rt2800_rfcsr_write(rt2x00dev, 25, 0x01);
3139 rt2800_rfcsr_write(rt2x00dev, 26, 0x25);
3140 rt2800_rfcsr_write(rt2x00dev, 27, 0x23);
3141 rt2800_rfcsr_write(rt2x00dev, 28, 0x13);
3142 rt2800_rfcsr_write(rt2x00dev, 29, 0x83);
3143 rt2800_rfcsr_write(rt2x00dev, 30, 0x00);
3144 rt2800_rfcsr_write(rt2x00dev, 31, 0x00);
3145 return 0;
3146 } else if (rt2x00_rt(rt2x00dev, RT5390)) {
3147 rt2800_rfcsr_write(rt2x00dev, 1, 0x0f);
3148 rt2800_rfcsr_write(rt2x00dev, 2, 0x80);
3149 rt2800_rfcsr_write(rt2x00dev, 3, 0x88);
3150 rt2800_rfcsr_write(rt2x00dev, 5, 0x10);
3151 if (rt2x00_rt_rev_gte(rt2x00dev, RT5390, REV_RT5390F))
3152 rt2800_rfcsr_write(rt2x00dev, 6, 0xe0);
3153 else
3154 rt2800_rfcsr_write(rt2x00dev, 6, 0xa0);
3155 rt2800_rfcsr_write(rt2x00dev, 7, 0x00);
3156 rt2800_rfcsr_write(rt2x00dev, 10, 0x53);
3157 rt2800_rfcsr_write(rt2x00dev, 11, 0x4a);
3158 rt2800_rfcsr_write(rt2x00dev, 12, 0xc6);
3159 rt2800_rfcsr_write(rt2x00dev, 13, 0x9f);
3160 rt2800_rfcsr_write(rt2x00dev, 14, 0x00);
3161 rt2800_rfcsr_write(rt2x00dev, 15, 0x00);
3162 rt2800_rfcsr_write(rt2x00dev, 16, 0x00);
3163 rt2800_rfcsr_write(rt2x00dev, 18, 0x03);
3164 rt2800_rfcsr_write(rt2x00dev, 19, 0x00);
3165
3166 rt2800_rfcsr_write(rt2x00dev, 20, 0x00);
3167 rt2800_rfcsr_write(rt2x00dev, 21, 0x00);
3168 rt2800_rfcsr_write(rt2x00dev, 22, 0x20);
3169 rt2800_rfcsr_write(rt2x00dev, 23, 0x00);
3170 rt2800_rfcsr_write(rt2x00dev, 24, 0x00);
3171 if (rt2x00_rt_rev_gte(rt2x00dev, RT5390, REV_RT5390F))
3172 rt2800_rfcsr_write(rt2x00dev, 25, 0x80);
3173 else
3174 rt2800_rfcsr_write(rt2x00dev, 25, 0xc0);
3175 rt2800_rfcsr_write(rt2x00dev, 26, 0x00);
3176 rt2800_rfcsr_write(rt2x00dev, 27, 0x09);
3177 rt2800_rfcsr_write(rt2x00dev, 28, 0x00);
3178 rt2800_rfcsr_write(rt2x00dev, 29, 0x10);
3179
3180 rt2800_rfcsr_write(rt2x00dev, 30, 0x00);
3181 rt2800_rfcsr_write(rt2x00dev, 31, 0x80);
3182 rt2800_rfcsr_write(rt2x00dev, 32, 0x80);
3183 rt2800_rfcsr_write(rt2x00dev, 33, 0x00);
3184 rt2800_rfcsr_write(rt2x00dev, 34, 0x07);
3185 rt2800_rfcsr_write(rt2x00dev, 35, 0x12);
3186 rt2800_rfcsr_write(rt2x00dev, 36, 0x00);
3187 rt2800_rfcsr_write(rt2x00dev, 37, 0x08);
3188 rt2800_rfcsr_write(rt2x00dev, 38, 0x85);
3189 rt2800_rfcsr_write(rt2x00dev, 39, 0x1b);
3190
3191 if (rt2x00_rt_rev_gte(rt2x00dev, RT5390, REV_RT5390F))
3192 rt2800_rfcsr_write(rt2x00dev, 40, 0x0b);
3193 else
3194 rt2800_rfcsr_write(rt2x00dev, 40, 0x4b);
3195 rt2800_rfcsr_write(rt2x00dev, 41, 0xbb);
3196 rt2800_rfcsr_write(rt2x00dev, 42, 0xd2);
3197 rt2800_rfcsr_write(rt2x00dev, 43, 0x9a);
3198 rt2800_rfcsr_write(rt2x00dev, 44, 0x0e);
3199 rt2800_rfcsr_write(rt2x00dev, 45, 0xa2);
3200 if (rt2x00_rt_rev_gte(rt2x00dev, RT5390, REV_RT5390F))
3201 rt2800_rfcsr_write(rt2x00dev, 46, 0x73);
3202 else
3203 rt2800_rfcsr_write(rt2x00dev, 46, 0x7b);
3204 rt2800_rfcsr_write(rt2x00dev, 47, 0x00);
3205 rt2800_rfcsr_write(rt2x00dev, 48, 0x10);
3206 rt2800_rfcsr_write(rt2x00dev, 49, 0x94);
3207
3208 rt2800_rfcsr_write(rt2x00dev, 52, 0x38);
3209 if (rt2x00_rt_rev_gte(rt2x00dev, RT5390, REV_RT5390F))
3210 rt2800_rfcsr_write(rt2x00dev, 53, 0x00);
3211 else
3212 rt2800_rfcsr_write(rt2x00dev, 53, 0x84);
3213 rt2800_rfcsr_write(rt2x00dev, 54, 0x78);
3214 rt2800_rfcsr_write(rt2x00dev, 55, 0x44);
3215 rt2800_rfcsr_write(rt2x00dev, 56, 0x22);
3216 rt2800_rfcsr_write(rt2x00dev, 57, 0x80);
3217 rt2800_rfcsr_write(rt2x00dev, 58, 0x7f);
3218 rt2800_rfcsr_write(rt2x00dev, 59, 0x63);
3219
3220 rt2800_rfcsr_write(rt2x00dev, 60, 0x45);
3221 if (rt2x00_rt_rev_gte(rt2x00dev, RT5390, REV_RT5390F))
3222 rt2800_rfcsr_write(rt2x00dev, 61, 0xd1);
3223 else
3224 rt2800_rfcsr_write(rt2x00dev, 61, 0xdd);
3225 rt2800_rfcsr_write(rt2x00dev, 62, 0x00);
3226 rt2800_rfcsr_write(rt2x00dev, 63, 0x00);
3227 }
3228
3229 if (rt2x00_rt_rev_lt(rt2x00dev, RT3070, REV_RT3070F)) {
3230 rt2800_register_read(rt2x00dev, LDO_CFG0, &reg);
3231 rt2x00_set_field32(&reg, LDO_CFG0_BGSEL, 1);
3232 rt2x00_set_field32(&reg, LDO_CFG0_LDO_CORE_VLEVEL, 3);
3233 rt2800_register_write(rt2x00dev, LDO_CFG0, reg);
3234 } else if (rt2x00_rt(rt2x00dev, RT3071) ||
3235 rt2x00_rt(rt2x00dev, RT3090)) {
3236 rt2800_rfcsr_write(rt2x00dev, 31, 0x14);
3237
3238 rt2800_rfcsr_read(rt2x00dev, 6, &rfcsr);
3239 rt2x00_set_field8(&rfcsr, RFCSR6_R2, 1);
3240 rt2800_rfcsr_write(rt2x00dev, 6, rfcsr);
3241
3242 rt2800_register_read(rt2x00dev, LDO_CFG0, &reg);
3243 rt2x00_set_field32(&reg, LDO_CFG0_BGSEL, 1);
3244 if (rt2x00_rt_rev_lt(rt2x00dev, RT3071, REV_RT3071E) ||
3245 rt2x00_rt_rev_lt(rt2x00dev, RT3090, REV_RT3090E)) {
3246 rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC_CONF1, &eeprom);
3247 if (rt2x00_get_field16(eeprom, EEPROM_NIC_CONF1_DAC_TEST))
3248 rt2x00_set_field32(&reg, LDO_CFG0_LDO_CORE_VLEVEL, 3);
3249 else
3250 rt2x00_set_field32(&reg, LDO_CFG0_LDO_CORE_VLEVEL, 0);
3251 }
3252 rt2800_register_write(rt2x00dev, LDO_CFG0, reg);
3253
3254 rt2800_register_read(rt2x00dev, GPIO_SWITCH, &reg);
3255 rt2x00_set_field32(&reg, GPIO_SWITCH_5, 0);
3256 rt2800_register_write(rt2x00dev, GPIO_SWITCH, reg);
3257 } else if (rt2x00_rt(rt2x00dev, RT3390)) {
3258 rt2800_register_read(rt2x00dev, GPIO_SWITCH, &reg);
3259 rt2x00_set_field32(&reg, GPIO_SWITCH_5, 0);
3260 rt2800_register_write(rt2x00dev, GPIO_SWITCH, reg);
3261 }
3262
3263 /*
3264 * Set RX Filter calibration for 20MHz and 40MHz
3265 */
3266 if (rt2x00_rt(rt2x00dev, RT3070)) {
3267 rt2x00dev->calibration[0] =
3268 rt2800_init_rx_filter(rt2x00dev, false, 0x07, 0x16);
3269 rt2x00dev->calibration[1] =
3270 rt2800_init_rx_filter(rt2x00dev, true, 0x27, 0x19);
3271 } else if (rt2x00_rt(rt2x00dev, RT3071) ||
3272 rt2x00_rt(rt2x00dev, RT3090) ||
3273 rt2x00_rt(rt2x00dev, RT3390)) {
3274 rt2x00dev->calibration[0] =
3275 rt2800_init_rx_filter(rt2x00dev, false, 0x07, 0x13);
3276 rt2x00dev->calibration[1] =
3277 rt2800_init_rx_filter(rt2x00dev, true, 0x27, 0x15);
3278 }
3279
3280 if (!rt2x00_rt(rt2x00dev, RT5390)) {
3281 /*
3282 * Set back to initial state
3283 */
3284 rt2800_bbp_write(rt2x00dev, 24, 0);
3285
3286 rt2800_rfcsr_read(rt2x00dev, 22, &rfcsr);
3287 rt2x00_set_field8(&rfcsr, RFCSR22_BASEBAND_LOOPBACK, 0);
3288 rt2800_rfcsr_write(rt2x00dev, 22, rfcsr);
3289
3290 /*
3291 * Set BBP back to BW20
3292 */
3293 rt2800_bbp_read(rt2x00dev, 4, &bbp);
3294 rt2x00_set_field8(&bbp, BBP4_BANDWIDTH, 0);
3295 rt2800_bbp_write(rt2x00dev, 4, bbp);
3296 }
3297
3298 if (rt2x00_rt_rev_lt(rt2x00dev, RT3070, REV_RT3070F) ||
3299 rt2x00_rt_rev_lt(rt2x00dev, RT3071, REV_RT3071E) ||
3300 rt2x00_rt_rev_lt(rt2x00dev, RT3090, REV_RT3090E) ||
3301 rt2x00_rt_rev_lt(rt2x00dev, RT3390, REV_RT3390E))
3302 rt2800_rfcsr_write(rt2x00dev, 27, 0x03);
3303
3304 rt2800_register_read(rt2x00dev, OPT_14_CSR, &reg);
3305 rt2x00_set_field32(&reg, OPT_14_CSR_BIT0, 1);
3306 rt2800_register_write(rt2x00dev, OPT_14_CSR, reg);
3307
3308 if (!rt2x00_rt(rt2x00dev, RT5390)) {
3309 rt2800_rfcsr_read(rt2x00dev, 17, &rfcsr);
3310 rt2x00_set_field8(&rfcsr, RFCSR17_TX_LO1_EN, 0);
3311 if (rt2x00_rt(rt2x00dev, RT3070) ||
3312 rt2x00_rt_rev_lt(rt2x00dev, RT3071, REV_RT3071E) ||
3313 rt2x00_rt_rev_lt(rt2x00dev, RT3090, REV_RT3090E) ||
3314 rt2x00_rt_rev_lt(rt2x00dev, RT3390, REV_RT3390E)) {
3315 if (!test_bit(CAPABILITY_EXTERNAL_LNA_BG,
3316 &rt2x00dev->cap_flags))
3317 rt2x00_set_field8(&rfcsr, RFCSR17_R, 1);
3318 }
3319 rt2x00_eeprom_read(rt2x00dev, EEPROM_TXMIXER_GAIN_BG, &eeprom);
3320 if (rt2x00_get_field16(eeprom, EEPROM_TXMIXER_GAIN_BG_VAL) >= 1)
3321 rt2x00_set_field8(&rfcsr, RFCSR17_TXMIXER_GAIN,
3322 rt2x00_get_field16(eeprom,
3323 EEPROM_TXMIXER_GAIN_BG_VAL));
3324 rt2800_rfcsr_write(rt2x00dev, 17, rfcsr);
3325 }
3326
3327 if (rt2x00_rt(rt2x00dev, RT3090)) {
3328 rt2800_bbp_read(rt2x00dev, 138, &bbp);
3329
3330 /* Turn off unused DAC1 and ADC1 to reduce power consumption */
3331 rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC_CONF0, &eeprom);
3332 if (rt2x00_get_field16(eeprom, EEPROM_NIC_CONF0_RXPATH) == 1)
3333 rt2x00_set_field8(&bbp, BBP138_RX_ADC1, 0);
3334 if (rt2x00_get_field16(eeprom, EEPROM_NIC_CONF0_TXPATH) == 1)
3335 rt2x00_set_field8(&bbp, BBP138_TX_DAC1, 1);
3336
3337 rt2800_bbp_write(rt2x00dev, 138, bbp);
3338 }
3339
3340 if (rt2x00_rt(rt2x00dev, RT3071) ||
3341 rt2x00_rt(rt2x00dev, RT3090) ||
3342 rt2x00_rt(rt2x00dev, RT3390)) {
3343 rt2800_rfcsr_read(rt2x00dev, 1, &rfcsr);
3344 rt2x00_set_field8(&rfcsr, RFCSR1_RF_BLOCK_EN, 1);
3345 rt2x00_set_field8(&rfcsr, RFCSR1_RX0_PD, 0);
3346 rt2x00_set_field8(&rfcsr, RFCSR1_TX0_PD, 0);
3347 rt2x00_set_field8(&rfcsr, RFCSR1_RX1_PD, 1);
3348 rt2x00_set_field8(&rfcsr, RFCSR1_TX1_PD, 1);
3349 rt2800_rfcsr_write(rt2x00dev, 1, rfcsr);
3350
3351 rt2800_rfcsr_read(rt2x00dev, 15, &rfcsr);
3352 rt2x00_set_field8(&rfcsr, RFCSR15_TX_LO2_EN, 0);
3353 rt2800_rfcsr_write(rt2x00dev, 15, rfcsr);
3354
3355 rt2800_rfcsr_read(rt2x00dev, 20, &rfcsr);
3356 rt2x00_set_field8(&rfcsr, RFCSR20_RX_LO1_EN, 0);
3357 rt2800_rfcsr_write(rt2x00dev, 20, rfcsr);
3358
3359 rt2800_rfcsr_read(rt2x00dev, 21, &rfcsr);
3360 rt2x00_set_field8(&rfcsr, RFCSR21_RX_LO2_EN, 0);
3361 rt2800_rfcsr_write(rt2x00dev, 21, rfcsr);
3362 }
3363
3364 if (rt2x00_rt(rt2x00dev, RT3070)) {
3365 rt2800_rfcsr_read(rt2x00dev, 27, &rfcsr);
3366 if (rt2x00_rt_rev_lt(rt2x00dev, RT3070, REV_RT3070F))
3367 rt2x00_set_field8(&rfcsr, RFCSR27_R1, 3);
3368 else
3369 rt2x00_set_field8(&rfcsr, RFCSR27_R1, 0);
3370 rt2x00_set_field8(&rfcsr, RFCSR27_R2, 0);
3371 rt2x00_set_field8(&rfcsr, RFCSR27_R3, 0);
3372 rt2x00_set_field8(&rfcsr, RFCSR27_R4, 0);
3373 rt2800_rfcsr_write(rt2x00dev, 27, rfcsr);
3374 }
3375
3376 if (rt2x00_rt(rt2x00dev, RT5390)) {
3377 rt2800_rfcsr_read(rt2x00dev, 38, &rfcsr);
3378 rt2x00_set_field8(&rfcsr, RFCSR38_RX_LO1_EN, 0);
3379 rt2800_rfcsr_write(rt2x00dev, 38, rfcsr);
3380
3381 rt2800_rfcsr_read(rt2x00dev, 39, &rfcsr);
3382 rt2x00_set_field8(&rfcsr, RFCSR39_RX_LO2_EN, 0);
3383 rt2800_rfcsr_write(rt2x00dev, 39, rfcsr);
3384
3385 rt2800_rfcsr_read(rt2x00dev, 30, &rfcsr);
3386 rt2x00_set_field8(&rfcsr, RFCSR30_RX_VCM, 2);
3387 rt2800_rfcsr_write(rt2x00dev, 30, rfcsr);
3388 }
3389
3390 return 0;
3391 }
3392
3393 int rt2800_enable_radio(struct rt2x00_dev *rt2x00dev)
3394 {
3395 u32 reg;
3396 u16 word;
3397
3398 /*
3399 * Initialize all registers.
3400 */
3401 if (unlikely(rt2800_wait_wpdma_ready(rt2x00dev) ||
3402 rt2800_init_registers(rt2x00dev) ||
3403 rt2800_init_bbp(rt2x00dev) ||
3404 rt2800_init_rfcsr(rt2x00dev)))
3405 return -EIO;
3406
3407 /*
3408 * Send signal to firmware during boot time.
3409 */
3410 rt2800_mcu_request(rt2x00dev, MCU_BOOT_SIGNAL, 0, 0, 0);
3411
3412 if (rt2x00_is_usb(rt2x00dev) &&
3413 (rt2x00_rt(rt2x00dev, RT3070) ||
3414 rt2x00_rt(rt2x00dev, RT3071) ||
3415 rt2x00_rt(rt2x00dev, RT3572))) {
3416 udelay(200);
3417 rt2800_mcu_request(rt2x00dev, MCU_CURRENT, 0, 0, 0);
3418 udelay(10);
3419 }
3420
3421 /*
3422 * Enable RX.
3423 */
3424 rt2800_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
3425 rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_TX, 1);
3426 rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX, 0);
3427 rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
3428
3429 udelay(50);
3430
3431 rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, &reg);
3432 rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_TX_DMA, 1);
3433 rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_RX_DMA, 1);
3434 rt2x00_set_field32(&reg, WPDMA_GLO_CFG_WP_DMA_BURST_SIZE, 2);
3435 rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1);
3436 rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg);
3437
3438 rt2800_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
3439 rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_TX, 1);
3440 rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX, 1);
3441 rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
3442
3443 /*
3444 * Initialize LED control
3445 */
3446 rt2x00_eeprom_read(rt2x00dev, EEPROM_LED_AG_CONF, &word);
3447 rt2800_mcu_request(rt2x00dev, MCU_LED_AG_CONF, 0xff,
3448 word & 0xff, (word >> 8) & 0xff);
3449
3450 rt2x00_eeprom_read(rt2x00dev, EEPROM_LED_ACT_CONF, &word);
3451 rt2800_mcu_request(rt2x00dev, MCU_LED_ACT_CONF, 0xff,
3452 word & 0xff, (word >> 8) & 0xff);
3453
3454 rt2x00_eeprom_read(rt2x00dev, EEPROM_LED_POLARITY, &word);
3455 rt2800_mcu_request(rt2x00dev, MCU_LED_LED_POLARITY, 0xff,
3456 word & 0xff, (word >> 8) & 0xff);
3457
3458 return 0;
3459 }
3460 EXPORT_SYMBOL_GPL(rt2800_enable_radio);
3461
3462 void rt2800_disable_radio(struct rt2x00_dev *rt2x00dev)
3463 {
3464 u32 reg;
3465
3466 rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, &reg);
3467 rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_TX_DMA, 0);
3468 rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_RX_DMA, 0);
3469 rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg);
3470
3471 /* Wait for DMA, ignore error */
3472 rt2800_wait_wpdma_ready(rt2x00dev);
3473
3474 rt2800_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
3475 rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_TX, 0);
3476 rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX, 0);
3477 rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
3478 }
3479 EXPORT_SYMBOL_GPL(rt2800_disable_radio);
3480
3481 int rt2800_efuse_detect(struct rt2x00_dev *rt2x00dev)
3482 {
3483 u32 reg;
3484
3485 rt2800_register_read(rt2x00dev, EFUSE_CTRL, &reg);
3486
3487 return rt2x00_get_field32(reg, EFUSE_CTRL_PRESENT);
3488 }
3489 EXPORT_SYMBOL_GPL(rt2800_efuse_detect);
3490
3491 static void rt2800_efuse_read(struct rt2x00_dev *rt2x00dev, unsigned int i)
3492 {
3493 u32 reg;
3494
3495 mutex_lock(&rt2x00dev->csr_mutex);
3496
3497 rt2800_register_read_lock(rt2x00dev, EFUSE_CTRL, &reg);
3498 rt2x00_set_field32(&reg, EFUSE_CTRL_ADDRESS_IN, i);
3499 rt2x00_set_field32(&reg, EFUSE_CTRL_MODE, 0);
3500 rt2x00_set_field32(&reg, EFUSE_CTRL_KICK, 1);
3501 rt2800_register_write_lock(rt2x00dev, EFUSE_CTRL, reg);
3502
3503 /* Wait until the EEPROM has been loaded */
3504 rt2800_regbusy_read(rt2x00dev, EFUSE_CTRL, EFUSE_CTRL_KICK, &reg);
3505
3506 /* Apparently the data is read from end to start */
3507 rt2800_register_read_lock(rt2x00dev, EFUSE_DATA3,
3508 (u32 *)&rt2x00dev->eeprom[i]);
3509 rt2800_register_read_lock(rt2x00dev, EFUSE_DATA2,
3510 (u32 *)&rt2x00dev->eeprom[i + 2]);
3511 rt2800_register_read_lock(rt2x00dev, EFUSE_DATA1,
3512 (u32 *)&rt2x00dev->eeprom[i + 4]);
3513 rt2800_register_read_lock(rt2x00dev, EFUSE_DATA0,
3514 (u32 *)&rt2x00dev->eeprom[i + 6]);
3515
3516 mutex_unlock(&rt2x00dev->csr_mutex);
3517 }
3518
3519 void rt2800_read_eeprom_efuse(struct rt2x00_dev *rt2x00dev)
3520 {
3521 unsigned int i;
3522
3523 for (i = 0; i < EEPROM_SIZE / sizeof(u16); i += 8)
3524 rt2800_efuse_read(rt2x00dev, i);
3525 }
3526 EXPORT_SYMBOL_GPL(rt2800_read_eeprom_efuse);
3527
3528 int rt2800_validate_eeprom(struct rt2x00_dev *rt2x00dev)
3529 {
3530 u16 word;
3531 u8 *mac;
3532 u8 default_lna_gain;
3533
3534 /*
3535 * Start validation of the data that has been read.
3536 */
3537 mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
3538 if (!is_valid_ether_addr(mac)) {
3539 random_ether_addr(mac);
3540 EEPROM(rt2x00dev, "MAC: %pM\n", mac);
3541 }
3542
3543 rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC_CONF0, &word);
3544 if (word == 0xffff) {
3545 rt2x00_set_field16(&word, EEPROM_NIC_CONF0_RXPATH, 2);
3546 rt2x00_set_field16(&word, EEPROM_NIC_CONF0_TXPATH, 1);
3547 rt2x00_set_field16(&word, EEPROM_NIC_CONF0_RF_TYPE, RF2820);
3548 rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC_CONF0, word);
3549 EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
3550 } else if (rt2x00_rt(rt2x00dev, RT2860) ||
3551 rt2x00_rt(rt2x00dev, RT2872)) {
3552 /*
3553 * There is a max of 2 RX streams for RT28x0 series
3554 */
3555 if (rt2x00_get_field16(word, EEPROM_NIC_CONF0_RXPATH) > 2)
3556 rt2x00_set_field16(&word, EEPROM_NIC_CONF0_RXPATH, 2);
3557 rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC_CONF0, word);
3558 }
3559
3560 rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC_CONF1, &word);
3561 if (word == 0xffff) {
3562 rt2x00_set_field16(&word, EEPROM_NIC_CONF1_HW_RADIO, 0);
3563 rt2x00_set_field16(&word, EEPROM_NIC_CONF1_EXTERNAL_TX_ALC, 0);
3564 rt2x00_set_field16(&word, EEPROM_NIC_CONF1_EXTERNAL_LNA_2G, 0);
3565 rt2x00_set_field16(&word, EEPROM_NIC_CONF1_EXTERNAL_LNA_5G, 0);
3566 rt2x00_set_field16(&word, EEPROM_NIC_CONF1_CARDBUS_ACCEL, 0);
3567 rt2x00_set_field16(&word, EEPROM_NIC_CONF1_BW40M_SB_2G, 0);
3568 rt2x00_set_field16(&word, EEPROM_NIC_CONF1_BW40M_SB_5G, 0);
3569 rt2x00_set_field16(&word, EEPROM_NIC_CONF1_WPS_PBC, 0);
3570 rt2x00_set_field16(&word, EEPROM_NIC_CONF1_BW40M_2G, 0);
3571 rt2x00_set_field16(&word, EEPROM_NIC_CONF1_BW40M_5G, 0);
3572 rt2x00_set_field16(&word, EEPROM_NIC_CONF1_BROADBAND_EXT_LNA, 0);
3573 rt2x00_set_field16(&word, EEPROM_NIC_CONF1_ANT_DIVERSITY, 0);
3574 rt2x00_set_field16(&word, EEPROM_NIC_CONF1_INTERNAL_TX_ALC, 0);
3575 rt2x00_set_field16(&word, EEPROM_NIC_CONF1_BT_COEXIST, 0);
3576 rt2x00_set_field16(&word, EEPROM_NIC_CONF1_DAC_TEST, 0);
3577 rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC_CONF1, word);
3578 EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
3579 }
3580
3581 rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &word);
3582 if ((word & 0x00ff) == 0x00ff) {
3583 rt2x00_set_field16(&word, EEPROM_FREQ_OFFSET, 0);
3584 rt2x00_eeprom_write(rt2x00dev, EEPROM_FREQ, word);
3585 EEPROM(rt2x00dev, "Freq: 0x%04x\n", word);
3586 }
3587 if ((word & 0xff00) == 0xff00) {
3588 rt2x00_set_field16(&word, EEPROM_FREQ_LED_MODE,
3589 LED_MODE_TXRX_ACTIVITY);
3590 rt2x00_set_field16(&word, EEPROM_FREQ_LED_POLARITY, 0);
3591 rt2x00_eeprom_write(rt2x00dev, EEPROM_FREQ, word);
3592 rt2x00_eeprom_write(rt2x00dev, EEPROM_LED_AG_CONF, 0x5555);
3593 rt2x00_eeprom_write(rt2x00dev, EEPROM_LED_ACT_CONF, 0x2221);
3594 rt2x00_eeprom_write(rt2x00dev, EEPROM_LED_POLARITY, 0xa9f8);
3595 EEPROM(rt2x00dev, "Led Mode: 0x%04x\n", word);
3596 }
3597
3598 /*
3599 * During the LNA validation we are going to use
3600 * lna0 as correct value. Note that EEPROM_LNA
3601 * is never validated.
3602 */
3603 rt2x00_eeprom_read(rt2x00dev, EEPROM_LNA, &word);
3604 default_lna_gain = rt2x00_get_field16(word, EEPROM_LNA_A0);
3605
3606 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_BG, &word);
3607 if (abs(rt2x00_get_field16(word, EEPROM_RSSI_BG_OFFSET0)) > 10)
3608 rt2x00_set_field16(&word, EEPROM_RSSI_BG_OFFSET0, 0);
3609 if (abs(rt2x00_get_field16(word, EEPROM_RSSI_BG_OFFSET1)) > 10)
3610 rt2x00_set_field16(&word, EEPROM_RSSI_BG_OFFSET1, 0);
3611 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_BG, word);
3612
3613 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_BG2, &word);
3614 if (abs(rt2x00_get_field16(word, EEPROM_RSSI_BG2_OFFSET2)) > 10)
3615 rt2x00_set_field16(&word, EEPROM_RSSI_BG2_OFFSET2, 0);
3616 if (rt2x00_get_field16(word, EEPROM_RSSI_BG2_LNA_A1) == 0x00 ||
3617 rt2x00_get_field16(word, EEPROM_RSSI_BG2_LNA_A1) == 0xff)
3618 rt2x00_set_field16(&word, EEPROM_RSSI_BG2_LNA_A1,
3619 default_lna_gain);
3620 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_BG2, word);
3621
3622 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_A, &word);
3623 if (abs(rt2x00_get_field16(word, EEPROM_RSSI_A_OFFSET0)) > 10)
3624 rt2x00_set_field16(&word, EEPROM_RSSI_A_OFFSET0, 0);
3625 if (abs(rt2x00_get_field16(word, EEPROM_RSSI_A_OFFSET1)) > 10)
3626 rt2x00_set_field16(&word, EEPROM_RSSI_A_OFFSET1, 0);
3627 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_A, word);
3628
3629 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_A2, &word);
3630 if (abs(rt2x00_get_field16(word, EEPROM_RSSI_A2_OFFSET2)) > 10)
3631 rt2x00_set_field16(&word, EEPROM_RSSI_A2_OFFSET2, 0);
3632 if (rt2x00_get_field16(word, EEPROM_RSSI_A2_LNA_A2) == 0x00 ||
3633 rt2x00_get_field16(word, EEPROM_RSSI_A2_LNA_A2) == 0xff)
3634 rt2x00_set_field16(&word, EEPROM_RSSI_A2_LNA_A2,
3635 default_lna_gain);
3636 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_A2, word);
3637
3638 return 0;
3639 }
3640 EXPORT_SYMBOL_GPL(rt2800_validate_eeprom);
3641
3642 int rt2800_init_eeprom(struct rt2x00_dev *rt2x00dev)
3643 {
3644 u32 reg;
3645 u16 value;
3646 u16 eeprom;
3647
3648 /*
3649 * Read EEPROM word for configuration.
3650 */
3651 rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC_CONF0, &eeprom);
3652
3653 /*
3654 * Identify RF chipset by EEPROM value
3655 * RT28xx/RT30xx: defined in "EEPROM_NIC_CONF0_RF_TYPE" field
3656 * RT53xx: defined in "EEPROM_CHIP_ID" field
3657 */
3658 rt2800_register_read(rt2x00dev, MAC_CSR0, &reg);
3659 if (rt2x00_get_field32(reg, MAC_CSR0_CHIPSET) == RT5390)
3660 rt2x00_eeprom_read(rt2x00dev, EEPROM_CHIP_ID, &value);
3661 else
3662 value = rt2x00_get_field16(eeprom, EEPROM_NIC_CONF0_RF_TYPE);
3663
3664 rt2x00_set_chip(rt2x00dev, rt2x00_get_field32(reg, MAC_CSR0_CHIPSET),
3665 value, rt2x00_get_field32(reg, MAC_CSR0_REVISION));
3666
3667 if (!rt2x00_rt(rt2x00dev, RT2860) &&
3668 !rt2x00_rt(rt2x00dev, RT2872) &&
3669 !rt2x00_rt(rt2x00dev, RT2883) &&
3670 !rt2x00_rt(rt2x00dev, RT3070) &&
3671 !rt2x00_rt(rt2x00dev, RT3071) &&
3672 !rt2x00_rt(rt2x00dev, RT3090) &&
3673 !rt2x00_rt(rt2x00dev, RT3390) &&
3674 !rt2x00_rt(rt2x00dev, RT3572) &&
3675 !rt2x00_rt(rt2x00dev, RT5390)) {
3676 ERROR(rt2x00dev, "Invalid RT chipset detected.\n");
3677 return -ENODEV;
3678 }
3679
3680 if (!rt2x00_rf(rt2x00dev, RF2820) &&
3681 !rt2x00_rf(rt2x00dev, RF2850) &&
3682 !rt2x00_rf(rt2x00dev, RF2720) &&
3683 !rt2x00_rf(rt2x00dev, RF2750) &&
3684 !rt2x00_rf(rt2x00dev, RF3020) &&
3685 !rt2x00_rf(rt2x00dev, RF2020) &&
3686 !rt2x00_rf(rt2x00dev, RF3021) &&
3687 !rt2x00_rf(rt2x00dev, RF3022) &&
3688 !rt2x00_rf(rt2x00dev, RF3052) &&
3689 !rt2x00_rf(rt2x00dev, RF3320) &&
3690 !rt2x00_rf(rt2x00dev, RF5370) &&
3691 !rt2x00_rf(rt2x00dev, RF5390)) {
3692 ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
3693 return -ENODEV;
3694 }
3695
3696 /*
3697 * Identify default antenna configuration.
3698 */
3699 rt2x00dev->default_ant.tx_chain_num =
3700 rt2x00_get_field16(eeprom, EEPROM_NIC_CONF0_TXPATH);
3701 rt2x00dev->default_ant.rx_chain_num =
3702 rt2x00_get_field16(eeprom, EEPROM_NIC_CONF0_RXPATH);
3703
3704 rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC_CONF1, &eeprom);
3705
3706 if (rt2x00_rt(rt2x00dev, RT3070) ||
3707 rt2x00_rt(rt2x00dev, RT3090) ||
3708 rt2x00_rt(rt2x00dev, RT3390)) {
3709 value = rt2x00_get_field16(eeprom,
3710 EEPROM_NIC_CONF1_ANT_DIVERSITY);
3711 switch (value) {
3712 case 0:
3713 case 1:
3714 case 2:
3715 rt2x00dev->default_ant.tx = ANTENNA_A;
3716 rt2x00dev->default_ant.rx = ANTENNA_A;
3717 break;
3718 case 3:
3719 rt2x00dev->default_ant.tx = ANTENNA_A;
3720 rt2x00dev->default_ant.rx = ANTENNA_B;
3721 break;
3722 }
3723 } else {
3724 rt2x00dev->default_ant.tx = ANTENNA_A;
3725 rt2x00dev->default_ant.rx = ANTENNA_A;
3726 }
3727
3728 /*
3729 * Determine external LNA informations.
3730 */
3731 if (rt2x00_get_field16(eeprom, EEPROM_NIC_CONF1_EXTERNAL_LNA_5G))
3732 __set_bit(CAPABILITY_EXTERNAL_LNA_A, &rt2x00dev->cap_flags);
3733 if (rt2x00_get_field16(eeprom, EEPROM_NIC_CONF1_EXTERNAL_LNA_2G))
3734 __set_bit(CAPABILITY_EXTERNAL_LNA_BG, &rt2x00dev->cap_flags);
3735
3736 /*
3737 * Detect if this device has an hardware controlled radio.
3738 */
3739 if (rt2x00_get_field16(eeprom, EEPROM_NIC_CONF1_HW_RADIO))
3740 __set_bit(CAPABILITY_HW_BUTTON, &rt2x00dev->cap_flags);
3741
3742 /*
3743 * Detect if this device has Bluetooth co-existence.
3744 */
3745 if (rt2x00_get_field16(eeprom, EEPROM_NIC_CONF1_BT_COEXIST))
3746 __set_bit(CAPABILITY_BT_COEXIST, &rt2x00dev->cap_flags);
3747
3748 /*
3749 * Read frequency offset and RF programming sequence.
3750 */
3751 rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &eeprom);
3752 rt2x00dev->freq_offset = rt2x00_get_field16(eeprom, EEPROM_FREQ_OFFSET);
3753
3754 /*
3755 * Store led settings, for correct led behaviour.
3756 */
3757 #ifdef CONFIG_RT2X00_LIB_LEDS
3758 rt2800_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
3759 rt2800_init_led(rt2x00dev, &rt2x00dev->led_assoc, LED_TYPE_ASSOC);
3760 rt2800_init_led(rt2x00dev, &rt2x00dev->led_qual, LED_TYPE_QUALITY);
3761
3762 rt2x00dev->led_mcu_reg = eeprom;
3763 #endif /* CONFIG_RT2X00_LIB_LEDS */
3764
3765 /*
3766 * Check if support EIRP tx power limit feature.
3767 */
3768 rt2x00_eeprom_read(rt2x00dev, EEPROM_EIRP_MAX_TX_POWER, &eeprom);
3769
3770 if (rt2x00_get_field16(eeprom, EEPROM_EIRP_MAX_TX_POWER_2GHZ) <
3771 EIRP_MAX_TX_POWER_LIMIT)
3772 __set_bit(CAPABILITY_POWER_LIMIT, &rt2x00dev->cap_flags);
3773
3774 return 0;
3775 }
3776 EXPORT_SYMBOL_GPL(rt2800_init_eeprom);
3777
3778 /*
3779 * RF value list for rt28xx
3780 * Supports: 2.4 GHz (all) & 5.2 GHz (RF2850 & RF2750)
3781 */
3782 static const struct rf_channel rf_vals[] = {
3783 { 1, 0x18402ecc, 0x184c0786, 0x1816b455, 0x1800510b },
3784 { 2, 0x18402ecc, 0x184c0786, 0x18168a55, 0x1800519f },
3785 { 3, 0x18402ecc, 0x184c078a, 0x18168a55, 0x1800518b },
3786 { 4, 0x18402ecc, 0x184c078a, 0x18168a55, 0x1800519f },
3787 { 5, 0x18402ecc, 0x184c078e, 0x18168a55, 0x1800518b },
3788 { 6, 0x18402ecc, 0x184c078e, 0x18168a55, 0x1800519f },
3789 { 7, 0x18402ecc, 0x184c0792, 0x18168a55, 0x1800518b },
3790 { 8, 0x18402ecc, 0x184c0792, 0x18168a55, 0x1800519f },
3791 { 9, 0x18402ecc, 0x184c0796, 0x18168a55, 0x1800518b },
3792 { 10, 0x18402ecc, 0x184c0796, 0x18168a55, 0x1800519f },
3793 { 11, 0x18402ecc, 0x184c079a, 0x18168a55, 0x1800518b },
3794 { 12, 0x18402ecc, 0x184c079a, 0x18168a55, 0x1800519f },
3795 { 13, 0x18402ecc, 0x184c079e, 0x18168a55, 0x1800518b },
3796 { 14, 0x18402ecc, 0x184c07a2, 0x18168a55, 0x18005193 },
3797
3798 /* 802.11 UNI / HyperLan 2 */
3799 { 36, 0x18402ecc, 0x184c099a, 0x18158a55, 0x180ed1a3 },
3800 { 38, 0x18402ecc, 0x184c099e, 0x18158a55, 0x180ed193 },
3801 { 40, 0x18402ec8, 0x184c0682, 0x18158a55, 0x180ed183 },
3802 { 44, 0x18402ec8, 0x184c0682, 0x18158a55, 0x180ed1a3 },
3803 { 46, 0x18402ec8, 0x184c0686, 0x18158a55, 0x180ed18b },
3804 { 48, 0x18402ec8, 0x184c0686, 0x18158a55, 0x180ed19b },
3805 { 52, 0x18402ec8, 0x184c068a, 0x18158a55, 0x180ed193 },
3806 { 54, 0x18402ec8, 0x184c068a, 0x18158a55, 0x180ed1a3 },
3807 { 56, 0x18402ec8, 0x184c068e, 0x18158a55, 0x180ed18b },
3808 { 60, 0x18402ec8, 0x184c0692, 0x18158a55, 0x180ed183 },
3809 { 62, 0x18402ec8, 0x184c0692, 0x18158a55, 0x180ed193 },
3810 { 64, 0x18402ec8, 0x184c0692, 0x18158a55, 0x180ed1a3 },
3811
3812 /* 802.11 HyperLan 2 */
3813 { 100, 0x18402ec8, 0x184c06b2, 0x18178a55, 0x180ed783 },
3814 { 102, 0x18402ec8, 0x184c06b2, 0x18578a55, 0x180ed793 },
3815 { 104, 0x18402ec8, 0x185c06b2, 0x18578a55, 0x180ed1a3 },
3816 { 108, 0x18402ecc, 0x185c0a32, 0x18578a55, 0x180ed193 },
3817 { 110, 0x18402ecc, 0x184c0a36, 0x18178a55, 0x180ed183 },
3818 { 112, 0x18402ecc, 0x184c0a36, 0x18178a55, 0x180ed19b },
3819 { 116, 0x18402ecc, 0x184c0a3a, 0x18178a55, 0x180ed1a3 },
3820 { 118, 0x18402ecc, 0x184c0a3e, 0x18178a55, 0x180ed193 },
3821 { 120, 0x18402ec4, 0x184c0382, 0x18178a55, 0x180ed183 },
3822 { 124, 0x18402ec4, 0x184c0382, 0x18178a55, 0x180ed193 },
3823 { 126, 0x18402ec4, 0x184c0382, 0x18178a55, 0x180ed15b },
3824 { 128, 0x18402ec4, 0x184c0382, 0x18178a55, 0x180ed1a3 },
3825 { 132, 0x18402ec4, 0x184c0386, 0x18178a55, 0x180ed18b },
3826 { 134, 0x18402ec4, 0x184c0386, 0x18178a55, 0x180ed193 },
3827 { 136, 0x18402ec4, 0x184c0386, 0x18178a55, 0x180ed19b },
3828 { 140, 0x18402ec4, 0x184c038a, 0x18178a55, 0x180ed183 },
3829
3830 /* 802.11 UNII */
3831 { 149, 0x18402ec4, 0x184c038a, 0x18178a55, 0x180ed1a7 },
3832 { 151, 0x18402ec4, 0x184c038e, 0x18178a55, 0x180ed187 },
3833 { 153, 0x18402ec4, 0x184c038e, 0x18178a55, 0x180ed18f },
3834 { 157, 0x18402ec4, 0x184c038e, 0x18178a55, 0x180ed19f },
3835 { 159, 0x18402ec4, 0x184c038e, 0x18178a55, 0x180ed1a7 },
3836 { 161, 0x18402ec4, 0x184c0392, 0x18178a55, 0x180ed187 },
3837 { 165, 0x18402ec4, 0x184c0392, 0x18178a55, 0x180ed197 },
3838 { 167, 0x18402ec4, 0x184c03d2, 0x18179855, 0x1815531f },
3839 { 169, 0x18402ec4, 0x184c03d2, 0x18179855, 0x18155327 },
3840 { 171, 0x18402ec4, 0x184c03d6, 0x18179855, 0x18155307 },
3841 { 173, 0x18402ec4, 0x184c03d6, 0x18179855, 0x1815530f },
3842
3843 /* 802.11 Japan */
3844 { 184, 0x15002ccc, 0x1500491e, 0x1509be55, 0x150c0a0b },
3845 { 188, 0x15002ccc, 0x15004922, 0x1509be55, 0x150c0a13 },
3846 { 192, 0x15002ccc, 0x15004926, 0x1509be55, 0x150c0a1b },
3847 { 196, 0x15002ccc, 0x1500492a, 0x1509be55, 0x150c0a23 },
3848 { 208, 0x15002ccc, 0x1500493a, 0x1509be55, 0x150c0a13 },
3849 { 212, 0x15002ccc, 0x1500493e, 0x1509be55, 0x150c0a1b },
3850 { 216, 0x15002ccc, 0x15004982, 0x1509be55, 0x150c0a23 },
3851 };
3852
3853 /*
3854 * RF value list for rt3xxx
3855 * Supports: 2.4 GHz (all) & 5.2 GHz (RF3052)
3856 */
3857 static const struct rf_channel rf_vals_3x[] = {
3858 {1, 241, 2, 2 },
3859 {2, 241, 2, 7 },
3860 {3, 242, 2, 2 },
3861 {4, 242, 2, 7 },
3862 {5, 243, 2, 2 },
3863 {6, 243, 2, 7 },
3864 {7, 244, 2, 2 },
3865 {8, 244, 2, 7 },
3866 {9, 245, 2, 2 },
3867 {10, 245, 2, 7 },
3868 {11, 246, 2, 2 },
3869 {12, 246, 2, 7 },
3870 {13, 247, 2, 2 },
3871 {14, 248, 2, 4 },
3872
3873 /* 802.11 UNI / HyperLan 2 */
3874 {36, 0x56, 0, 4},
3875 {38, 0x56, 0, 6},
3876 {40, 0x56, 0, 8},
3877 {44, 0x57, 0, 0},
3878 {46, 0x57, 0, 2},
3879 {48, 0x57, 0, 4},
3880 {52, 0x57, 0, 8},
3881 {54, 0x57, 0, 10},
3882 {56, 0x58, 0, 0},
3883 {60, 0x58, 0, 4},
3884 {62, 0x58, 0, 6},
3885 {64, 0x58, 0, 8},
3886
3887 /* 802.11 HyperLan 2 */
3888 {100, 0x5b, 0, 8},
3889 {102, 0x5b, 0, 10},
3890 {104, 0x5c, 0, 0},
3891 {108, 0x5c, 0, 4},
3892 {110, 0x5c, 0, 6},
3893 {112, 0x5c, 0, 8},
3894 {116, 0x5d, 0, 0},
3895 {118, 0x5d, 0, 2},
3896 {120, 0x5d, 0, 4},
3897 {124, 0x5d, 0, 8},
3898 {126, 0x5d, 0, 10},
3899 {128, 0x5e, 0, 0},
3900 {132, 0x5e, 0, 4},
3901 {134, 0x5e, 0, 6},
3902 {136, 0x5e, 0, 8},
3903 {140, 0x5f, 0, 0},
3904
3905 /* 802.11 UNII */
3906 {149, 0x5f, 0, 9},
3907 {151, 0x5f, 0, 11},
3908 {153, 0x60, 0, 1},
3909 {157, 0x60, 0, 5},
3910 {159, 0x60, 0, 7},
3911 {161, 0x60, 0, 9},
3912 {165, 0x61, 0, 1},
3913 {167, 0x61, 0, 3},
3914 {169, 0x61, 0, 5},
3915 {171, 0x61, 0, 7},
3916 {173, 0x61, 0, 9},
3917 };
3918
3919 int rt2800_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
3920 {
3921 struct hw_mode_spec *spec = &rt2x00dev->spec;
3922 struct channel_info *info;
3923 char *default_power1;
3924 char *default_power2;
3925 unsigned int i;
3926 u16 eeprom;
3927
3928 /*
3929 * Disable powersaving as default on PCI devices.
3930 */
3931 if (rt2x00_is_pci(rt2x00dev) || rt2x00_is_soc(rt2x00dev))
3932 rt2x00dev->hw->wiphy->flags &= ~WIPHY_FLAG_PS_ON_BY_DEFAULT;
3933
3934 /*
3935 * Initialize all hw fields.
3936 */
3937 rt2x00dev->hw->flags =
3938 IEEE80211_HW_SIGNAL_DBM |
3939 IEEE80211_HW_SUPPORTS_PS |
3940 IEEE80211_HW_PS_NULLFUNC_STACK |
3941 IEEE80211_HW_AMPDU_AGGREGATION;
3942 /*
3943 * Don't set IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING for USB devices
3944 * unless we are capable of sending the buffered frames out after the
3945 * DTIM transmission using rt2x00lib_beacondone. This will send out
3946 * multicast and broadcast traffic immediately instead of buffering it
3947 * infinitly and thus dropping it after some time.
3948 */
3949 if (!rt2x00_is_usb(rt2x00dev))
3950 rt2x00dev->hw->flags |=
3951 IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING;
3952
3953 SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
3954 SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
3955 rt2x00_eeprom_addr(rt2x00dev,
3956 EEPROM_MAC_ADDR_0));
3957
3958 /*
3959 * As rt2800 has a global fallback table we cannot specify
3960 * more then one tx rate per frame but since the hw will
3961 * try several rates (based on the fallback table) we should
3962 * initialize max_report_rates to the maximum number of rates
3963 * we are going to try. Otherwise mac80211 will truncate our
3964 * reported tx rates and the rc algortihm will end up with
3965 * incorrect data.
3966 */
3967 rt2x00dev->hw->max_rates = 1;
3968 rt2x00dev->hw->max_report_rates = 7;
3969 rt2x00dev->hw->max_rate_tries = 1;
3970
3971 rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC_CONF0, &eeprom);
3972
3973 /*
3974 * Initialize hw_mode information.
3975 */
3976 spec->supported_bands = SUPPORT_BAND_2GHZ;
3977 spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
3978
3979 if (rt2x00_rf(rt2x00dev, RF2820) ||
3980 rt2x00_rf(rt2x00dev, RF2720)) {
3981 spec->num_channels = 14;
3982 spec->channels = rf_vals;
3983 } else if (rt2x00_rf(rt2x00dev, RF2850) ||
3984 rt2x00_rf(rt2x00dev, RF2750)) {
3985 spec->supported_bands |= SUPPORT_BAND_5GHZ;
3986 spec->num_channels = ARRAY_SIZE(rf_vals);
3987 spec->channels = rf_vals;
3988 } else if (rt2x00_rf(rt2x00dev, RF3020) ||
3989 rt2x00_rf(rt2x00dev, RF2020) ||
3990 rt2x00_rf(rt2x00dev, RF3021) ||
3991 rt2x00_rf(rt2x00dev, RF3022) ||
3992 rt2x00_rf(rt2x00dev, RF3320) ||
3993 rt2x00_rf(rt2x00dev, RF5370) ||
3994 rt2x00_rf(rt2x00dev, RF5390)) {
3995 spec->num_channels = 14;
3996 spec->channels = rf_vals_3x;
3997 } else if (rt2x00_rf(rt2x00dev, RF3052)) {
3998 spec->supported_bands |= SUPPORT_BAND_5GHZ;
3999 spec->num_channels = ARRAY_SIZE(rf_vals_3x);
4000 spec->channels = rf_vals_3x;
4001 }
4002
4003 /*
4004 * Initialize HT information.
4005 */
4006 if (!rt2x00_rf(rt2x00dev, RF2020))
4007 spec->ht.ht_supported = true;
4008 else
4009 spec->ht.ht_supported = false;
4010
4011 spec->ht.cap =
4012 IEEE80211_HT_CAP_SUP_WIDTH_20_40 |
4013 IEEE80211_HT_CAP_GRN_FLD |
4014 IEEE80211_HT_CAP_SGI_20 |
4015 IEEE80211_HT_CAP_SGI_40;
4016
4017 if (rt2x00_get_field16(eeprom, EEPROM_NIC_CONF0_TXPATH) >= 2)
4018 spec->ht.cap |= IEEE80211_HT_CAP_TX_STBC;
4019
4020 spec->ht.cap |=
4021 rt2x00_get_field16(eeprom, EEPROM_NIC_CONF0_RXPATH) <<
4022 IEEE80211_HT_CAP_RX_STBC_SHIFT;
4023
4024 spec->ht.ampdu_factor = 3;
4025 spec->ht.ampdu_density = 4;
4026 spec->ht.mcs.tx_params =
4027 IEEE80211_HT_MCS_TX_DEFINED |
4028 IEEE80211_HT_MCS_TX_RX_DIFF |
4029 ((rt2x00_get_field16(eeprom, EEPROM_NIC_CONF0_TXPATH) - 1) <<
4030 IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT);
4031
4032 switch (rt2x00_get_field16(eeprom, EEPROM_NIC_CONF0_RXPATH)) {
4033 case 3:
4034 spec->ht.mcs.rx_mask[2] = 0xff;
4035 case 2:
4036 spec->ht.mcs.rx_mask[1] = 0xff;
4037 case 1:
4038 spec->ht.mcs.rx_mask[0] = 0xff;
4039 spec->ht.mcs.rx_mask[4] = 0x1; /* MCS32 */
4040 break;
4041 }
4042
4043 /*
4044 * Create channel information array
4045 */
4046 info = kcalloc(spec->num_channels, sizeof(*info), GFP_KERNEL);
4047 if (!info)
4048 return -ENOMEM;
4049
4050 spec->channels_info = info;
4051
4052 default_power1 = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_BG1);
4053 default_power2 = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_BG2);
4054
4055 for (i = 0; i < 14; i++) {
4056 info[i].default_power1 = default_power1[i];
4057 info[i].default_power2 = default_power2[i];
4058 }
4059
4060 if (spec->num_channels > 14) {
4061 default_power1 = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_A1);
4062 default_power2 = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_A2);
4063
4064 for (i = 14; i < spec->num_channels; i++) {
4065 info[i].default_power1 = default_power1[i];
4066 info[i].default_power2 = default_power2[i];
4067 }
4068 }
4069
4070 return 0;
4071 }
4072 EXPORT_SYMBOL_GPL(rt2800_probe_hw_mode);
4073
4074 /*
4075 * IEEE80211 stack callback functions.
4076 */
4077 void rt2800_get_tkip_seq(struct ieee80211_hw *hw, u8 hw_key_idx, u32 *iv32,
4078 u16 *iv16)
4079 {
4080 struct rt2x00_dev *rt2x00dev = hw->priv;
4081 struct mac_iveiv_entry iveiv_entry;
4082 u32 offset;
4083
4084 offset = MAC_IVEIV_ENTRY(hw_key_idx);
4085 rt2800_register_multiread(rt2x00dev, offset,
4086 &iveiv_entry, sizeof(iveiv_entry));
4087
4088 memcpy(iv16, &iveiv_entry.iv[0], sizeof(*iv16));
4089 memcpy(iv32, &iveiv_entry.iv[4], sizeof(*iv32));
4090 }
4091 EXPORT_SYMBOL_GPL(rt2800_get_tkip_seq);
4092
4093 int rt2800_set_rts_threshold(struct ieee80211_hw *hw, u32 value)
4094 {
4095 struct rt2x00_dev *rt2x00dev = hw->priv;
4096 u32 reg;
4097 bool enabled = (value < IEEE80211_MAX_RTS_THRESHOLD);
4098
4099 rt2800_register_read(rt2x00dev, TX_RTS_CFG, &reg);
4100 rt2x00_set_field32(&reg, TX_RTS_CFG_RTS_THRES, value);
4101 rt2800_register_write(rt2x00dev, TX_RTS_CFG, reg);
4102
4103 rt2800_register_read(rt2x00dev, CCK_PROT_CFG, &reg);
4104 rt2x00_set_field32(&reg, CCK_PROT_CFG_RTS_TH_EN, enabled);
4105 rt2800_register_write(rt2x00dev, CCK_PROT_CFG, reg);
4106
4107 rt2800_register_read(rt2x00dev, OFDM_PROT_CFG, &reg);
4108 rt2x00_set_field32(&reg, OFDM_PROT_CFG_RTS_TH_EN, enabled);
4109 rt2800_register_write(rt2x00dev, OFDM_PROT_CFG, reg);
4110
4111 rt2800_register_read(rt2x00dev, MM20_PROT_CFG, &reg);
4112 rt2x00_set_field32(&reg, MM20_PROT_CFG_RTS_TH_EN, enabled);
4113 rt2800_register_write(rt2x00dev, MM20_PROT_CFG, reg);
4114
4115 rt2800_register_read(rt2x00dev, MM40_PROT_CFG, &reg);
4116 rt2x00_set_field32(&reg, MM40_PROT_CFG_RTS_TH_EN, enabled);
4117 rt2800_register_write(rt2x00dev, MM40_PROT_CFG, reg);
4118
4119 rt2800_register_read(rt2x00dev, GF20_PROT_CFG, &reg);
4120 rt2x00_set_field32(&reg, GF20_PROT_CFG_RTS_TH_EN, enabled);
4121 rt2800_register_write(rt2x00dev, GF20_PROT_CFG, reg);
4122
4123 rt2800_register_read(rt2x00dev, GF40_PROT_CFG, &reg);
4124 rt2x00_set_field32(&reg, GF40_PROT_CFG_RTS_TH_EN, enabled);
4125 rt2800_register_write(rt2x00dev, GF40_PROT_CFG, reg);
4126
4127 return 0;
4128 }
4129 EXPORT_SYMBOL_GPL(rt2800_set_rts_threshold);
4130
4131 int rt2800_conf_tx(struct ieee80211_hw *hw, u16 queue_idx,
4132 const struct ieee80211_tx_queue_params *params)
4133 {
4134 struct rt2x00_dev *rt2x00dev = hw->priv;
4135 struct data_queue *queue;
4136 struct rt2x00_field32 field;
4137 int retval;
4138 u32 reg;
4139 u32 offset;
4140
4141 /*
4142 * First pass the configuration through rt2x00lib, that will
4143 * update the queue settings and validate the input. After that
4144 * we are free to update the registers based on the value
4145 * in the queue parameter.
4146 */
4147 retval = rt2x00mac_conf_tx(hw, queue_idx, params);
4148 if (retval)
4149 return retval;
4150
4151 /*
4152 * We only need to perform additional register initialization
4153 * for WMM queues/
4154 */
4155 if (queue_idx >= 4)
4156 return 0;
4157
4158 queue = rt2x00queue_get_tx_queue(rt2x00dev, queue_idx);
4159
4160 /* Update WMM TXOP register */
4161 offset = WMM_TXOP0_CFG + (sizeof(u32) * (!!(queue_idx & 2)));
4162 field.bit_offset = (queue_idx & 1) * 16;
4163 field.bit_mask = 0xffff << field.bit_offset;
4164
4165 rt2800_register_read(rt2x00dev, offset, &reg);
4166 rt2x00_set_field32(&reg, field, queue->txop);
4167 rt2800_register_write(rt2x00dev, offset, reg);
4168
4169 /* Update WMM registers */
4170 field.bit_offset = queue_idx * 4;
4171 field.bit_mask = 0xf << field.bit_offset;
4172
4173 rt2800_register_read(rt2x00dev, WMM_AIFSN_CFG, &reg);
4174 rt2x00_set_field32(&reg, field, queue->aifs);
4175 rt2800_register_write(rt2x00dev, WMM_AIFSN_CFG, reg);
4176
4177 rt2800_register_read(rt2x00dev, WMM_CWMIN_CFG, &reg);
4178 rt2x00_set_field32(&reg, field, queue->cw_min);
4179 rt2800_register_write(rt2x00dev, WMM_CWMIN_CFG, reg);
4180
4181 rt2800_register_read(rt2x00dev, WMM_CWMAX_CFG, &reg);
4182 rt2x00_set_field32(&reg, field, queue->cw_max);
4183 rt2800_register_write(rt2x00dev, WMM_CWMAX_CFG, reg);
4184
4185 /* Update EDCA registers */
4186 offset = EDCA_AC0_CFG + (sizeof(u32) * queue_idx);
4187
4188 rt2800_register_read(rt2x00dev, offset, &reg);
4189 rt2x00_set_field32(&reg, EDCA_AC0_CFG_TX_OP, queue->txop);
4190 rt2x00_set_field32(&reg, EDCA_AC0_CFG_AIFSN, queue->aifs);
4191 rt2x00_set_field32(&reg, EDCA_AC0_CFG_CWMIN, queue->cw_min);
4192 rt2x00_set_field32(&reg, EDCA_AC0_CFG_CWMAX, queue->cw_max);
4193 rt2800_register_write(rt2x00dev, offset, reg);
4194
4195 return 0;
4196 }
4197 EXPORT_SYMBOL_GPL(rt2800_conf_tx);
4198
4199 u64 rt2800_get_tsf(struct ieee80211_hw *hw)
4200 {
4201 struct rt2x00_dev *rt2x00dev = hw->priv;
4202 u64 tsf;
4203 u32 reg;
4204
4205 rt2800_register_read(rt2x00dev, TSF_TIMER_DW1, &reg);
4206 tsf = (u64) rt2x00_get_field32(reg, TSF_TIMER_DW1_HIGH_WORD) << 32;
4207 rt2800_register_read(rt2x00dev, TSF_TIMER_DW0, &reg);
4208 tsf |= rt2x00_get_field32(reg, TSF_TIMER_DW0_LOW_WORD);
4209
4210 return tsf;
4211 }
4212 EXPORT_SYMBOL_GPL(rt2800_get_tsf);
4213
4214 int rt2800_ampdu_action(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
4215 enum ieee80211_ampdu_mlme_action action,
4216 struct ieee80211_sta *sta, u16 tid, u16 *ssn,
4217 u8 buf_size)
4218 {
4219 int ret = 0;
4220
4221 switch (action) {
4222 case IEEE80211_AMPDU_RX_START:
4223 case IEEE80211_AMPDU_RX_STOP:
4224 /*
4225 * The hw itself takes care of setting up BlockAck mechanisms.
4226 * So, we only have to allow mac80211 to nagotiate a BlockAck
4227 * agreement. Once that is done, the hw will BlockAck incoming
4228 * AMPDUs without further setup.
4229 */
4230 break;
4231 case IEEE80211_AMPDU_TX_START:
4232 ieee80211_start_tx_ba_cb_irqsafe(vif, sta->addr, tid);
4233 break;
4234 case IEEE80211_AMPDU_TX_STOP:
4235 ieee80211_stop_tx_ba_cb_irqsafe(vif, sta->addr, tid);
4236 break;
4237 case IEEE80211_AMPDU_TX_OPERATIONAL:
4238 break;
4239 default:
4240 WARNING((struct rt2x00_dev *)hw->priv, "Unknown AMPDU action\n");
4241 }
4242
4243 return ret;
4244 }
4245 EXPORT_SYMBOL_GPL(rt2800_ampdu_action);
4246
4247 int rt2800_get_survey(struct ieee80211_hw *hw, int idx,
4248 struct survey_info *survey)
4249 {
4250 struct rt2x00_dev *rt2x00dev = hw->priv;
4251 struct ieee80211_conf *conf = &hw->conf;
4252 u32 idle, busy, busy_ext;
4253
4254 if (idx != 0)
4255 return -ENOENT;
4256
4257 survey->channel = conf->channel;
4258
4259 rt2800_register_read(rt2x00dev, CH_IDLE_STA, &idle);
4260 rt2800_register_read(rt2x00dev, CH_BUSY_STA, &busy);
4261 rt2800_register_read(rt2x00dev, CH_BUSY_STA_SEC, &busy_ext);
4262
4263 if (idle || busy) {
4264 survey->filled = SURVEY_INFO_CHANNEL_TIME |
4265 SURVEY_INFO_CHANNEL_TIME_BUSY |
4266 SURVEY_INFO_CHANNEL_TIME_EXT_BUSY;
4267
4268 survey->channel_time = (idle + busy) / 1000;
4269 survey->channel_time_busy = busy / 1000;
4270 survey->channel_time_ext_busy = busy_ext / 1000;
4271 }
4272
4273 return 0;
4274
4275 }
4276 EXPORT_SYMBOL_GPL(rt2800_get_survey);
4277
4278 MODULE_AUTHOR(DRV_PROJECT ", Bartlomiej Zolnierkiewicz");
4279 MODULE_VERSION(DRV_VERSION);
4280 MODULE_DESCRIPTION("Ralink RT2800 library");
4281 MODULE_LICENSE("GPL");
This page took 0.27247 seconds and 5 git commands to generate.