rt2x00: rt2800pci: use rt2800mmio prefix for queue functions
[deliverable/linux.git] / drivers / net / wireless / rt2x00 / rt2800mmio.c
1 /* Copyright (C) 2009 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
2 * Copyright (C) 2009 Alban Browaeys <prahal@yahoo.com>
3 * Copyright (C) 2009 Felix Fietkau <nbd@openwrt.org>
4 * Copyright (C) 2009 Luis Correia <luis.f.correia@gmail.com>
5 * Copyright (C) 2009 Mattias Nissler <mattias.nissler@gmx.de>
6 * Copyright (C) 2009 Mark Asselstine <asselsm@gmail.com>
7 * Copyright (C) 2009 Xose Vazquez Perez <xose.vazquez@gmail.com>
8 * Copyright (C) 2009 Bart Zolnierkiewicz <bzolnier@gmail.com>
9 * <http://rt2x00.serialmonkey.com>
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2 of the License, or
14 * (at your option) any later version.
15 *
16 * This program is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 * GNU General Public License for more details.
20 *
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, write to the
23 * Free Software Foundation, Inc.,
24 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
25 */
26
27 /* Module: rt2800mmio
28 * Abstract: rt2800 MMIO device routines.
29 */
30
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/export.h>
34
35 #include "rt2x00.h"
36 #include "rt2x00mmio.h"
37 #include "rt2800.h"
38 #include "rt2800lib.h"
39 #include "rt2800mmio.h"
40
41 /*
42 * TX descriptor initialization
43 */
44 __le32 *rt2800mmio_get_txwi(struct queue_entry *entry)
45 {
46 return (__le32 *) entry->skb->data;
47 }
48 EXPORT_SYMBOL_GPL(rt2800mmio_get_txwi);
49
50 void rt2800mmio_write_tx_desc(struct queue_entry *entry,
51 struct txentry_desc *txdesc)
52 {
53 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
54 struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
55 __le32 *txd = entry_priv->desc;
56 u32 word;
57 const unsigned int txwi_size = entry->queue->winfo_size;
58
59 /*
60 * The buffers pointed by SD_PTR0/SD_LEN0 and SD_PTR1/SD_LEN1
61 * must contains a TXWI structure + 802.11 header + padding + 802.11
62 * data. We choose to have SD_PTR0/SD_LEN0 only contains TXWI and
63 * SD_PTR1/SD_LEN1 contains 802.11 header + padding + 802.11
64 * data. It means that LAST_SEC0 is always 0.
65 */
66
67 /*
68 * Initialize TX descriptor
69 */
70 word = 0;
71 rt2x00_set_field32(&word, TXD_W0_SD_PTR0, skbdesc->skb_dma);
72 rt2x00_desc_write(txd, 0, word);
73
74 word = 0;
75 rt2x00_set_field32(&word, TXD_W1_SD_LEN1, entry->skb->len);
76 rt2x00_set_field32(&word, TXD_W1_LAST_SEC1,
77 !test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
78 rt2x00_set_field32(&word, TXD_W1_BURST,
79 test_bit(ENTRY_TXD_BURST, &txdesc->flags));
80 rt2x00_set_field32(&word, TXD_W1_SD_LEN0, txwi_size);
81 rt2x00_set_field32(&word, TXD_W1_LAST_SEC0, 0);
82 rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 0);
83 rt2x00_desc_write(txd, 1, word);
84
85 word = 0;
86 rt2x00_set_field32(&word, TXD_W2_SD_PTR1,
87 skbdesc->skb_dma + txwi_size);
88 rt2x00_desc_write(txd, 2, word);
89
90 word = 0;
91 rt2x00_set_field32(&word, TXD_W3_WIV,
92 !test_bit(ENTRY_TXD_ENCRYPT_IV, &txdesc->flags));
93 rt2x00_set_field32(&word, TXD_W3_QSEL, 2);
94 rt2x00_desc_write(txd, 3, word);
95
96 /*
97 * Register descriptor details in skb frame descriptor.
98 */
99 skbdesc->desc = txd;
100 skbdesc->desc_len = TXD_DESC_SIZE;
101 }
102 EXPORT_SYMBOL_GPL(rt2800mmio_write_tx_desc);
103
104 /*
105 * RX control handlers
106 */
107 void rt2800mmio_fill_rxdone(struct queue_entry *entry,
108 struct rxdone_entry_desc *rxdesc)
109 {
110 struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
111 __le32 *rxd = entry_priv->desc;
112 u32 word;
113
114 rt2x00_desc_read(rxd, 3, &word);
115
116 if (rt2x00_get_field32(word, RXD_W3_CRC_ERROR))
117 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
118
119 /*
120 * Unfortunately we don't know the cipher type used during
121 * decryption. This prevents us from correct providing
122 * correct statistics through debugfs.
123 */
124 rxdesc->cipher_status = rt2x00_get_field32(word, RXD_W3_CIPHER_ERROR);
125
126 if (rt2x00_get_field32(word, RXD_W3_DECRYPTED)) {
127 /*
128 * Hardware has stripped IV/EIV data from 802.11 frame during
129 * decryption. Unfortunately the descriptor doesn't contain
130 * any fields with the EIV/IV data either, so they can't
131 * be restored by rt2x00lib.
132 */
133 rxdesc->flags |= RX_FLAG_IV_STRIPPED;
134
135 /*
136 * The hardware has already checked the Michael Mic and has
137 * stripped it from the frame. Signal this to mac80211.
138 */
139 rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;
140
141 if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
142 rxdesc->flags |= RX_FLAG_DECRYPTED;
143 else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
144 rxdesc->flags |= RX_FLAG_MMIC_ERROR;
145 }
146
147 if (rt2x00_get_field32(word, RXD_W3_MY_BSS))
148 rxdesc->dev_flags |= RXDONE_MY_BSS;
149
150 if (rt2x00_get_field32(word, RXD_W3_L2PAD))
151 rxdesc->dev_flags |= RXDONE_L2PAD;
152
153 /*
154 * Process the RXWI structure that is at the start of the buffer.
155 */
156 rt2800_process_rxwi(entry, rxdesc);
157 }
158 EXPORT_SYMBOL_GPL(rt2800mmio_fill_rxdone);
159
160 /*
161 * Interrupt functions.
162 */
163 static void rt2800mmio_wakeup(struct rt2x00_dev *rt2x00dev)
164 {
165 struct ieee80211_conf conf = { .flags = 0 };
166 struct rt2x00lib_conf libconf = { .conf = &conf };
167
168 rt2800_config(rt2x00dev, &libconf, IEEE80211_CONF_CHANGE_PS);
169 }
170
171 static bool rt2800mmio_txdone_entry_check(struct queue_entry *entry, u32 status)
172 {
173 __le32 *txwi;
174 u32 word;
175 int wcid, tx_wcid;
176
177 wcid = rt2x00_get_field32(status, TX_STA_FIFO_WCID);
178
179 txwi = rt2800_drv_get_txwi(entry);
180 rt2x00_desc_read(txwi, 1, &word);
181 tx_wcid = rt2x00_get_field32(word, TXWI_W1_WIRELESS_CLI_ID);
182
183 return (tx_wcid == wcid);
184 }
185
186 static bool rt2800mmio_txdone_find_entry(struct queue_entry *entry, void *data)
187 {
188 u32 status = *(u32 *)data;
189
190 /*
191 * rt2800pci hardware might reorder frames when exchanging traffic
192 * with multiple BA enabled STAs.
193 *
194 * For example, a tx queue
195 * [ STA1 | STA2 | STA1 | STA2 ]
196 * can result in tx status reports
197 * [ STA1 | STA1 | STA2 | STA2 ]
198 * when the hw decides to aggregate the frames for STA1 into one AMPDU.
199 *
200 * To mitigate this effect, associate the tx status to the first frame
201 * in the tx queue with a matching wcid.
202 */
203 if (rt2800mmio_txdone_entry_check(entry, status) &&
204 !test_bit(ENTRY_DATA_STATUS_SET, &entry->flags)) {
205 /*
206 * Got a matching frame, associate the tx status with
207 * the frame
208 */
209 entry->status = status;
210 set_bit(ENTRY_DATA_STATUS_SET, &entry->flags);
211 return true;
212 }
213
214 /* Check the next frame */
215 return false;
216 }
217
218 static bool rt2800mmio_txdone_match_first(struct queue_entry *entry, void *data)
219 {
220 u32 status = *(u32 *)data;
221
222 /*
223 * Find the first frame without tx status and assign this status to it
224 * regardless if it matches or not.
225 */
226 if (!test_bit(ENTRY_DATA_STATUS_SET, &entry->flags)) {
227 /*
228 * Got a matching frame, associate the tx status with
229 * the frame
230 */
231 entry->status = status;
232 set_bit(ENTRY_DATA_STATUS_SET, &entry->flags);
233 return true;
234 }
235
236 /* Check the next frame */
237 return false;
238 }
239 static bool rt2800mmio_txdone_release_entries(struct queue_entry *entry,
240 void *data)
241 {
242 if (test_bit(ENTRY_DATA_STATUS_SET, &entry->flags)) {
243 rt2800_txdone_entry(entry, entry->status,
244 rt2800mmio_get_txwi(entry));
245 return false;
246 }
247
248 /* No more frames to release */
249 return true;
250 }
251
252 static bool rt2800mmio_txdone(struct rt2x00_dev *rt2x00dev)
253 {
254 struct data_queue *queue;
255 u32 status;
256 u8 qid;
257 int max_tx_done = 16;
258
259 while (kfifo_get(&rt2x00dev->txstatus_fifo, &status)) {
260 qid = rt2x00_get_field32(status, TX_STA_FIFO_PID_QUEUE);
261 if (unlikely(qid >= QID_RX)) {
262 /*
263 * Unknown queue, this shouldn't happen. Just drop
264 * this tx status.
265 */
266 rt2x00_warn(rt2x00dev, "Got TX status report with unexpected pid %u, dropping\n",
267 qid);
268 break;
269 }
270
271 queue = rt2x00queue_get_tx_queue(rt2x00dev, qid);
272 if (unlikely(queue == NULL)) {
273 /*
274 * The queue is NULL, this shouldn't happen. Stop
275 * processing here and drop the tx status
276 */
277 rt2x00_warn(rt2x00dev, "Got TX status for an unavailable queue %u, dropping\n",
278 qid);
279 break;
280 }
281
282 if (unlikely(rt2x00queue_empty(queue))) {
283 /*
284 * The queue is empty. Stop processing here
285 * and drop the tx status.
286 */
287 rt2x00_warn(rt2x00dev, "Got TX status for an empty queue %u, dropping\n",
288 qid);
289 break;
290 }
291
292 /*
293 * Let's associate this tx status with the first
294 * matching frame.
295 */
296 if (!rt2x00queue_for_each_entry(queue, Q_INDEX_DONE,
297 Q_INDEX, &status,
298 rt2800mmio_txdone_find_entry)) {
299 /*
300 * We cannot match the tx status to any frame, so just
301 * use the first one.
302 */
303 if (!rt2x00queue_for_each_entry(queue, Q_INDEX_DONE,
304 Q_INDEX, &status,
305 rt2800mmio_txdone_match_first)) {
306 rt2x00_warn(rt2x00dev, "No frame found for TX status on queue %u, dropping\n",
307 qid);
308 break;
309 }
310 }
311
312 /*
313 * Release all frames with a valid tx status.
314 */
315 rt2x00queue_for_each_entry(queue, Q_INDEX_DONE,
316 Q_INDEX, NULL,
317 rt2800mmio_txdone_release_entries);
318
319 if (--max_tx_done == 0)
320 break;
321 }
322
323 return !max_tx_done;
324 }
325
326 static inline void rt2800mmio_enable_interrupt(struct rt2x00_dev *rt2x00dev,
327 struct rt2x00_field32 irq_field)
328 {
329 u32 reg;
330
331 /*
332 * Enable a single interrupt. The interrupt mask register
333 * access needs locking.
334 */
335 spin_lock_irq(&rt2x00dev->irqmask_lock);
336 rt2x00mmio_register_read(rt2x00dev, INT_MASK_CSR, &reg);
337 rt2x00_set_field32(&reg, irq_field, 1);
338 rt2x00mmio_register_write(rt2x00dev, INT_MASK_CSR, reg);
339 spin_unlock_irq(&rt2x00dev->irqmask_lock);
340 }
341
342 void rt2800mmio_txstatus_tasklet(unsigned long data)
343 {
344 struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
345 if (rt2800mmio_txdone(rt2x00dev))
346 tasklet_schedule(&rt2x00dev->txstatus_tasklet);
347
348 /*
349 * No need to enable the tx status interrupt here as we always
350 * leave it enabled to minimize the possibility of a tx status
351 * register overflow. See comment in interrupt handler.
352 */
353 }
354 EXPORT_SYMBOL_GPL(rt2800mmio_txstatus_tasklet);
355
356 void rt2800mmio_pretbtt_tasklet(unsigned long data)
357 {
358 struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
359 rt2x00lib_pretbtt(rt2x00dev);
360 if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
361 rt2800mmio_enable_interrupt(rt2x00dev, INT_MASK_CSR_PRE_TBTT);
362 }
363 EXPORT_SYMBOL_GPL(rt2800mmio_pretbtt_tasklet);
364
365 void rt2800mmio_tbtt_tasklet(unsigned long data)
366 {
367 struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
368 struct rt2800_drv_data *drv_data = rt2x00dev->drv_data;
369 u32 reg;
370
371 rt2x00lib_beacondone(rt2x00dev);
372
373 if (rt2x00dev->intf_ap_count) {
374 /*
375 * The rt2800pci hardware tbtt timer is off by 1us per tbtt
376 * causing beacon skew and as a result causing problems with
377 * some powersaving clients over time. Shorten the beacon
378 * interval every 64 beacons by 64us to mitigate this effect.
379 */
380 if (drv_data->tbtt_tick == (BCN_TBTT_OFFSET - 2)) {
381 rt2x00mmio_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
382 rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_INTERVAL,
383 (rt2x00dev->beacon_int * 16) - 1);
384 rt2x00mmio_register_write(rt2x00dev, BCN_TIME_CFG, reg);
385 } else if (drv_data->tbtt_tick == (BCN_TBTT_OFFSET - 1)) {
386 rt2x00mmio_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
387 rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_INTERVAL,
388 (rt2x00dev->beacon_int * 16));
389 rt2x00mmio_register_write(rt2x00dev, BCN_TIME_CFG, reg);
390 }
391 drv_data->tbtt_tick++;
392 drv_data->tbtt_tick %= BCN_TBTT_OFFSET;
393 }
394
395 if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
396 rt2800mmio_enable_interrupt(rt2x00dev, INT_MASK_CSR_TBTT);
397 }
398 EXPORT_SYMBOL_GPL(rt2800mmio_tbtt_tasklet);
399
400 void rt2800mmio_rxdone_tasklet(unsigned long data)
401 {
402 struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
403 if (rt2x00mmio_rxdone(rt2x00dev))
404 tasklet_schedule(&rt2x00dev->rxdone_tasklet);
405 else if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
406 rt2800mmio_enable_interrupt(rt2x00dev, INT_MASK_CSR_RX_DONE);
407 }
408 EXPORT_SYMBOL_GPL(rt2800mmio_rxdone_tasklet);
409
410 void rt2800mmio_autowake_tasklet(unsigned long data)
411 {
412 struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
413 rt2800mmio_wakeup(rt2x00dev);
414 if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
415 rt2800mmio_enable_interrupt(rt2x00dev,
416 INT_MASK_CSR_AUTO_WAKEUP);
417 }
418 EXPORT_SYMBOL_GPL(rt2800mmio_autowake_tasklet);
419
420 static void rt2800mmio_txstatus_interrupt(struct rt2x00_dev *rt2x00dev)
421 {
422 u32 status;
423 int i;
424
425 /*
426 * The TX_FIFO_STATUS interrupt needs special care. We should
427 * read TX_STA_FIFO but we should do it immediately as otherwise
428 * the register can overflow and we would lose status reports.
429 *
430 * Hence, read the TX_STA_FIFO register and copy all tx status
431 * reports into a kernel FIFO which is handled in the txstatus
432 * tasklet. We use a tasklet to process the tx status reports
433 * because we can schedule the tasklet multiple times (when the
434 * interrupt fires again during tx status processing).
435 *
436 * Furthermore we don't disable the TX_FIFO_STATUS
437 * interrupt here but leave it enabled so that the TX_STA_FIFO
438 * can also be read while the tx status tasklet gets executed.
439 *
440 * Since we have only one producer and one consumer we don't
441 * need to lock the kfifo.
442 */
443 for (i = 0; i < rt2x00dev->tx->limit; i++) {
444 rt2x00mmio_register_read(rt2x00dev, TX_STA_FIFO, &status);
445
446 if (!rt2x00_get_field32(status, TX_STA_FIFO_VALID))
447 break;
448
449 if (!kfifo_put(&rt2x00dev->txstatus_fifo, &status)) {
450 rt2x00_warn(rt2x00dev, "TX status FIFO overrun, drop tx status report\n");
451 break;
452 }
453 }
454
455 /* Schedule the tasklet for processing the tx status. */
456 tasklet_schedule(&rt2x00dev->txstatus_tasklet);
457 }
458
459 irqreturn_t rt2800mmio_interrupt(int irq, void *dev_instance)
460 {
461 struct rt2x00_dev *rt2x00dev = dev_instance;
462 u32 reg, mask;
463
464 /* Read status and ACK all interrupts */
465 rt2x00mmio_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
466 rt2x00mmio_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
467
468 if (!reg)
469 return IRQ_NONE;
470
471 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
472 return IRQ_HANDLED;
473
474 /*
475 * Since INT_MASK_CSR and INT_SOURCE_CSR use the same bits
476 * for interrupts and interrupt masks we can just use the value of
477 * INT_SOURCE_CSR to create the interrupt mask.
478 */
479 mask = ~reg;
480
481 if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TX_FIFO_STATUS)) {
482 rt2800mmio_txstatus_interrupt(rt2x00dev);
483 /*
484 * Never disable the TX_FIFO_STATUS interrupt.
485 */
486 rt2x00_set_field32(&mask, INT_MASK_CSR_TX_FIFO_STATUS, 1);
487 }
488
489 if (rt2x00_get_field32(reg, INT_SOURCE_CSR_PRE_TBTT))
490 tasklet_hi_schedule(&rt2x00dev->pretbtt_tasklet);
491
492 if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TBTT))
493 tasklet_hi_schedule(&rt2x00dev->tbtt_tasklet);
494
495 if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RX_DONE))
496 tasklet_schedule(&rt2x00dev->rxdone_tasklet);
497
498 if (rt2x00_get_field32(reg, INT_SOURCE_CSR_AUTO_WAKEUP))
499 tasklet_schedule(&rt2x00dev->autowake_tasklet);
500
501 /*
502 * Disable all interrupts for which a tasklet was scheduled right now,
503 * the tasklet will reenable the appropriate interrupts.
504 */
505 spin_lock(&rt2x00dev->irqmask_lock);
506 rt2x00mmio_register_read(rt2x00dev, INT_MASK_CSR, &reg);
507 reg &= mask;
508 rt2x00mmio_register_write(rt2x00dev, INT_MASK_CSR, reg);
509 spin_unlock(&rt2x00dev->irqmask_lock);
510
511 return IRQ_HANDLED;
512 }
513 EXPORT_SYMBOL_GPL(rt2800mmio_interrupt);
514
515 void rt2800mmio_toggle_irq(struct rt2x00_dev *rt2x00dev,
516 enum dev_state state)
517 {
518 u32 reg;
519 unsigned long flags;
520
521 /*
522 * When interrupts are being enabled, the interrupt registers
523 * should clear the register to assure a clean state.
524 */
525 if (state == STATE_RADIO_IRQ_ON) {
526 rt2x00mmio_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
527 rt2x00mmio_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
528 }
529
530 spin_lock_irqsave(&rt2x00dev->irqmask_lock, flags);
531 reg = 0;
532 if (state == STATE_RADIO_IRQ_ON) {
533 rt2x00_set_field32(&reg, INT_MASK_CSR_RX_DONE, 1);
534 rt2x00_set_field32(&reg, INT_MASK_CSR_TBTT, 1);
535 rt2x00_set_field32(&reg, INT_MASK_CSR_PRE_TBTT, 1);
536 rt2x00_set_field32(&reg, INT_MASK_CSR_TX_FIFO_STATUS, 1);
537 rt2x00_set_field32(&reg, INT_MASK_CSR_AUTO_WAKEUP, 1);
538 }
539 rt2x00mmio_register_write(rt2x00dev, INT_MASK_CSR, reg);
540 spin_unlock_irqrestore(&rt2x00dev->irqmask_lock, flags);
541
542 if (state == STATE_RADIO_IRQ_OFF) {
543 /*
544 * Wait for possibly running tasklets to finish.
545 */
546 tasklet_kill(&rt2x00dev->txstatus_tasklet);
547 tasklet_kill(&rt2x00dev->rxdone_tasklet);
548 tasklet_kill(&rt2x00dev->autowake_tasklet);
549 tasklet_kill(&rt2x00dev->tbtt_tasklet);
550 tasklet_kill(&rt2x00dev->pretbtt_tasklet);
551 }
552 }
553 EXPORT_SYMBOL_GPL(rt2800mmio_toggle_irq);
554
555 MODULE_AUTHOR(DRV_PROJECT);
556 MODULE_VERSION(DRV_VERSION);
557 MODULE_DESCRIPTION("rt2800 MMIO library");
558 MODULE_LICENSE("GPL");
This page took 0.079448 seconds and 5 git commands to generate.