Merge branch 'for-airlied' of git://people.freedesktop.org/~danvet/drm-intel into...
[deliverable/linux.git] / drivers / net / wireless / rt2x00 / rt2800pci.c
1 /*
2 Copyright (C) 2009 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
3 Copyright (C) 2009 Alban Browaeys <prahal@yahoo.com>
4 Copyright (C) 2009 Felix Fietkau <nbd@openwrt.org>
5 Copyright (C) 2009 Luis Correia <luis.f.correia@gmail.com>
6 Copyright (C) 2009 Mattias Nissler <mattias.nissler@gmx.de>
7 Copyright (C) 2009 Mark Asselstine <asselsm@gmail.com>
8 Copyright (C) 2009 Xose Vazquez Perez <xose.vazquez@gmail.com>
9 Copyright (C) 2009 Bart Zolnierkiewicz <bzolnier@gmail.com>
10 <http://rt2x00.serialmonkey.com>
11
12 This program is free software; you can redistribute it and/or modify
13 it under the terms of the GNU General Public License as published by
14 the Free Software Foundation; either version 2 of the License, or
15 (at your option) any later version.
16
17 This program is distributed in the hope that it will be useful,
18 but WITHOUT ANY WARRANTY; without even the implied warranty of
19 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 GNU General Public License for more details.
21
22 You should have received a copy of the GNU General Public License
23 along with this program; if not, write to the
24 Free Software Foundation, Inc.,
25 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
26 */
27
28 /*
29 Module: rt2800pci
30 Abstract: rt2800pci device specific routines.
31 Supported chipsets: RT2800E & RT2800ED.
32 */
33
34 #include <linux/delay.h>
35 #include <linux/etherdevice.h>
36 #include <linux/init.h>
37 #include <linux/kernel.h>
38 #include <linux/module.h>
39 #include <linux/pci.h>
40 #include <linux/platform_device.h>
41 #include <linux/eeprom_93cx6.h>
42
43 #include "rt2x00.h"
44 #include "rt2x00pci.h"
45 #include "rt2x00soc.h"
46 #include "rt2800lib.h"
47 #include "rt2800.h"
48 #include "rt2800pci.h"
49
50 /*
51 * Allow hardware encryption to be disabled.
52 */
53 static bool modparam_nohwcrypt = false;
54 module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
55 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
56
57 static void rt2800pci_mcu_status(struct rt2x00_dev *rt2x00dev, const u8 token)
58 {
59 unsigned int i;
60 u32 reg;
61
62 /*
63 * SOC devices don't support MCU requests.
64 */
65 if (rt2x00_is_soc(rt2x00dev))
66 return;
67
68 for (i = 0; i < 200; i++) {
69 rt2x00pci_register_read(rt2x00dev, H2M_MAILBOX_CID, &reg);
70
71 if ((rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD0) == token) ||
72 (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD1) == token) ||
73 (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD2) == token) ||
74 (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD3) == token))
75 break;
76
77 udelay(REGISTER_BUSY_DELAY);
78 }
79
80 if (i == 200)
81 ERROR(rt2x00dev, "MCU request failed, no response from hardware\n");
82
83 rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_STATUS, ~0);
84 rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CID, ~0);
85 }
86
87 #if defined(CONFIG_RALINK_RT288X) || defined(CONFIG_RALINK_RT305X)
88 static void rt2800pci_read_eeprom_soc(struct rt2x00_dev *rt2x00dev)
89 {
90 void __iomem *base_addr = ioremap(0x1F040000, EEPROM_SIZE);
91
92 memcpy_fromio(rt2x00dev->eeprom, base_addr, EEPROM_SIZE);
93
94 iounmap(base_addr);
95 }
96 #else
97 static inline void rt2800pci_read_eeprom_soc(struct rt2x00_dev *rt2x00dev)
98 {
99 }
100 #endif /* CONFIG_RALINK_RT288X || CONFIG_RALINK_RT305X */
101
102 #ifdef CONFIG_PCI
103 static void rt2800pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
104 {
105 struct rt2x00_dev *rt2x00dev = eeprom->data;
106 u32 reg;
107
108 rt2x00pci_register_read(rt2x00dev, E2PROM_CSR, &reg);
109
110 eeprom->reg_data_in = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_IN);
111 eeprom->reg_data_out = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_OUT);
112 eeprom->reg_data_clock =
113 !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_CLOCK);
114 eeprom->reg_chip_select =
115 !!rt2x00_get_field32(reg, E2PROM_CSR_CHIP_SELECT);
116 }
117
118 static void rt2800pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
119 {
120 struct rt2x00_dev *rt2x00dev = eeprom->data;
121 u32 reg = 0;
122
123 rt2x00_set_field32(&reg, E2PROM_CSR_DATA_IN, !!eeprom->reg_data_in);
124 rt2x00_set_field32(&reg, E2PROM_CSR_DATA_OUT, !!eeprom->reg_data_out);
125 rt2x00_set_field32(&reg, E2PROM_CSR_DATA_CLOCK,
126 !!eeprom->reg_data_clock);
127 rt2x00_set_field32(&reg, E2PROM_CSR_CHIP_SELECT,
128 !!eeprom->reg_chip_select);
129
130 rt2x00pci_register_write(rt2x00dev, E2PROM_CSR, reg);
131 }
132
133 static void rt2800pci_read_eeprom_pci(struct rt2x00_dev *rt2x00dev)
134 {
135 struct eeprom_93cx6 eeprom;
136 u32 reg;
137
138 rt2x00pci_register_read(rt2x00dev, E2PROM_CSR, &reg);
139
140 eeprom.data = rt2x00dev;
141 eeprom.register_read = rt2800pci_eepromregister_read;
142 eeprom.register_write = rt2800pci_eepromregister_write;
143 switch (rt2x00_get_field32(reg, E2PROM_CSR_TYPE))
144 {
145 case 0:
146 eeprom.width = PCI_EEPROM_WIDTH_93C46;
147 break;
148 case 1:
149 eeprom.width = PCI_EEPROM_WIDTH_93C66;
150 break;
151 default:
152 eeprom.width = PCI_EEPROM_WIDTH_93C86;
153 break;
154 }
155 eeprom.reg_data_in = 0;
156 eeprom.reg_data_out = 0;
157 eeprom.reg_data_clock = 0;
158 eeprom.reg_chip_select = 0;
159
160 eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
161 EEPROM_SIZE / sizeof(u16));
162 }
163
164 static int rt2800pci_efuse_detect(struct rt2x00_dev *rt2x00dev)
165 {
166 return rt2800_efuse_detect(rt2x00dev);
167 }
168
169 static inline void rt2800pci_read_eeprom_efuse(struct rt2x00_dev *rt2x00dev)
170 {
171 rt2800_read_eeprom_efuse(rt2x00dev);
172 }
173 #else
174 static inline void rt2800pci_read_eeprom_pci(struct rt2x00_dev *rt2x00dev)
175 {
176 }
177
178 static inline int rt2800pci_efuse_detect(struct rt2x00_dev *rt2x00dev)
179 {
180 return 0;
181 }
182
183 static inline void rt2800pci_read_eeprom_efuse(struct rt2x00_dev *rt2x00dev)
184 {
185 }
186 #endif /* CONFIG_PCI */
187
188 /*
189 * Queue handlers.
190 */
191 static void rt2800pci_start_queue(struct data_queue *queue)
192 {
193 struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
194 u32 reg;
195
196 switch (queue->qid) {
197 case QID_RX:
198 rt2x00pci_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
199 rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX, 1);
200 rt2x00pci_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
201 break;
202 case QID_BEACON:
203 rt2x00pci_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
204 rt2x00_set_field32(&reg, BCN_TIME_CFG_TSF_TICKING, 1);
205 rt2x00_set_field32(&reg, BCN_TIME_CFG_TBTT_ENABLE, 1);
206 rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_GEN, 1);
207 rt2x00pci_register_write(rt2x00dev, BCN_TIME_CFG, reg);
208
209 rt2x00pci_register_read(rt2x00dev, INT_TIMER_EN, &reg);
210 rt2x00_set_field32(&reg, INT_TIMER_EN_PRE_TBTT_TIMER, 1);
211 rt2x00pci_register_write(rt2x00dev, INT_TIMER_EN, reg);
212 break;
213 default:
214 break;
215 }
216 }
217
218 static void rt2800pci_kick_queue(struct data_queue *queue)
219 {
220 struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
221 struct queue_entry *entry;
222
223 switch (queue->qid) {
224 case QID_AC_VO:
225 case QID_AC_VI:
226 case QID_AC_BE:
227 case QID_AC_BK:
228 entry = rt2x00queue_get_entry(queue, Q_INDEX);
229 rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX(queue->qid),
230 entry->entry_idx);
231 break;
232 case QID_MGMT:
233 entry = rt2x00queue_get_entry(queue, Q_INDEX);
234 rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX(5),
235 entry->entry_idx);
236 break;
237 default:
238 break;
239 }
240 }
241
242 static void rt2800pci_stop_queue(struct data_queue *queue)
243 {
244 struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
245 u32 reg;
246
247 switch (queue->qid) {
248 case QID_RX:
249 rt2x00pci_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
250 rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX, 0);
251 rt2x00pci_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
252 break;
253 case QID_BEACON:
254 rt2x00pci_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
255 rt2x00_set_field32(&reg, BCN_TIME_CFG_TSF_TICKING, 0);
256 rt2x00_set_field32(&reg, BCN_TIME_CFG_TBTT_ENABLE, 0);
257 rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_GEN, 0);
258 rt2x00pci_register_write(rt2x00dev, BCN_TIME_CFG, reg);
259
260 rt2x00pci_register_read(rt2x00dev, INT_TIMER_EN, &reg);
261 rt2x00_set_field32(&reg, INT_TIMER_EN_PRE_TBTT_TIMER, 0);
262 rt2x00pci_register_write(rt2x00dev, INT_TIMER_EN, reg);
263
264 /*
265 * Wait for current invocation to finish. The tasklet
266 * won't be scheduled anymore afterwards since we disabled
267 * the TBTT and PRE TBTT timer.
268 */
269 tasklet_kill(&rt2x00dev->tbtt_tasklet);
270 tasklet_kill(&rt2x00dev->pretbtt_tasklet);
271
272 break;
273 default:
274 break;
275 }
276 }
277
278 /*
279 * Firmware functions
280 */
281 static char *rt2800pci_get_firmware_name(struct rt2x00_dev *rt2x00dev)
282 {
283 /*
284 * Chip rt3290 use specific 4KB firmware named rt3290.bin.
285 */
286 if (rt2x00_rt(rt2x00dev, RT3290))
287 return FIRMWARE_RT3290;
288 else
289 return FIRMWARE_RT2860;
290 }
291
292 static int rt2800pci_write_firmware(struct rt2x00_dev *rt2x00dev,
293 const u8 *data, const size_t len)
294 {
295 u32 reg;
296
297 /*
298 * enable Host program ram write selection
299 */
300 reg = 0;
301 rt2x00_set_field32(&reg, PBF_SYS_CTRL_HOST_RAM_WRITE, 1);
302 rt2x00pci_register_write(rt2x00dev, PBF_SYS_CTRL, reg);
303
304 /*
305 * Write firmware to device.
306 */
307 rt2x00pci_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE,
308 data, len);
309
310 rt2x00pci_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000);
311 rt2x00pci_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00001);
312
313 rt2x00pci_register_write(rt2x00dev, H2M_BBP_AGENT, 0);
314 rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
315
316 return 0;
317 }
318
319 /*
320 * Initialization functions.
321 */
322 static bool rt2800pci_get_entry_state(struct queue_entry *entry)
323 {
324 struct queue_entry_priv_pci *entry_priv = entry->priv_data;
325 u32 word;
326
327 if (entry->queue->qid == QID_RX) {
328 rt2x00_desc_read(entry_priv->desc, 1, &word);
329
330 return (!rt2x00_get_field32(word, RXD_W1_DMA_DONE));
331 } else {
332 rt2x00_desc_read(entry_priv->desc, 1, &word);
333
334 return (!rt2x00_get_field32(word, TXD_W1_DMA_DONE));
335 }
336 }
337
338 static void rt2800pci_clear_entry(struct queue_entry *entry)
339 {
340 struct queue_entry_priv_pci *entry_priv = entry->priv_data;
341 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
342 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
343 u32 word;
344
345 if (entry->queue->qid == QID_RX) {
346 rt2x00_desc_read(entry_priv->desc, 0, &word);
347 rt2x00_set_field32(&word, RXD_W0_SDP0, skbdesc->skb_dma);
348 rt2x00_desc_write(entry_priv->desc, 0, word);
349
350 rt2x00_desc_read(entry_priv->desc, 1, &word);
351 rt2x00_set_field32(&word, RXD_W1_DMA_DONE, 0);
352 rt2x00_desc_write(entry_priv->desc, 1, word);
353
354 /*
355 * Set RX IDX in register to inform hardware that we have
356 * handled this entry and it is available for reuse again.
357 */
358 rt2x00pci_register_write(rt2x00dev, RX_CRX_IDX,
359 entry->entry_idx);
360 } else {
361 rt2x00_desc_read(entry_priv->desc, 1, &word);
362 rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 1);
363 rt2x00_desc_write(entry_priv->desc, 1, word);
364 }
365 }
366
367 static int rt2800pci_init_queues(struct rt2x00_dev *rt2x00dev)
368 {
369 struct queue_entry_priv_pci *entry_priv;
370
371 /*
372 * Initialize registers.
373 */
374 entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
375 rt2x00pci_register_write(rt2x00dev, TX_BASE_PTR0, entry_priv->desc_dma);
376 rt2x00pci_register_write(rt2x00dev, TX_MAX_CNT0,
377 rt2x00dev->tx[0].limit);
378 rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX0, 0);
379 rt2x00pci_register_write(rt2x00dev, TX_DTX_IDX0, 0);
380
381 entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
382 rt2x00pci_register_write(rt2x00dev, TX_BASE_PTR1, entry_priv->desc_dma);
383 rt2x00pci_register_write(rt2x00dev, TX_MAX_CNT1,
384 rt2x00dev->tx[1].limit);
385 rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX1, 0);
386 rt2x00pci_register_write(rt2x00dev, TX_DTX_IDX1, 0);
387
388 entry_priv = rt2x00dev->tx[2].entries[0].priv_data;
389 rt2x00pci_register_write(rt2x00dev, TX_BASE_PTR2, entry_priv->desc_dma);
390 rt2x00pci_register_write(rt2x00dev, TX_MAX_CNT2,
391 rt2x00dev->tx[2].limit);
392 rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX2, 0);
393 rt2x00pci_register_write(rt2x00dev, TX_DTX_IDX2, 0);
394
395 entry_priv = rt2x00dev->tx[3].entries[0].priv_data;
396 rt2x00pci_register_write(rt2x00dev, TX_BASE_PTR3, entry_priv->desc_dma);
397 rt2x00pci_register_write(rt2x00dev, TX_MAX_CNT3,
398 rt2x00dev->tx[3].limit);
399 rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX3, 0);
400 rt2x00pci_register_write(rt2x00dev, TX_DTX_IDX3, 0);
401
402 rt2x00pci_register_write(rt2x00dev, TX_BASE_PTR4, 0);
403 rt2x00pci_register_write(rt2x00dev, TX_MAX_CNT4, 0);
404 rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX4, 0);
405 rt2x00pci_register_write(rt2x00dev, TX_DTX_IDX4, 0);
406
407 rt2x00pci_register_write(rt2x00dev, TX_BASE_PTR5, 0);
408 rt2x00pci_register_write(rt2x00dev, TX_MAX_CNT5, 0);
409 rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX5, 0);
410 rt2x00pci_register_write(rt2x00dev, TX_DTX_IDX5, 0);
411
412 entry_priv = rt2x00dev->rx->entries[0].priv_data;
413 rt2x00pci_register_write(rt2x00dev, RX_BASE_PTR, entry_priv->desc_dma);
414 rt2x00pci_register_write(rt2x00dev, RX_MAX_CNT,
415 rt2x00dev->rx[0].limit);
416 rt2x00pci_register_write(rt2x00dev, RX_CRX_IDX,
417 rt2x00dev->rx[0].limit - 1);
418 rt2x00pci_register_write(rt2x00dev, RX_DRX_IDX, 0);
419
420 rt2800_disable_wpdma(rt2x00dev);
421
422 rt2x00pci_register_write(rt2x00dev, DELAY_INT_CFG, 0);
423
424 return 0;
425 }
426
427 /*
428 * Device state switch handlers.
429 */
430 static void rt2800pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
431 enum dev_state state)
432 {
433 u32 reg;
434 unsigned long flags;
435
436 /*
437 * When interrupts are being enabled, the interrupt registers
438 * should clear the register to assure a clean state.
439 */
440 if (state == STATE_RADIO_IRQ_ON) {
441 rt2x00pci_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
442 rt2x00pci_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
443 }
444
445 spin_lock_irqsave(&rt2x00dev->irqmask_lock, flags);
446 reg = 0;
447 if (state == STATE_RADIO_IRQ_ON) {
448 rt2x00_set_field32(&reg, INT_MASK_CSR_RX_DONE, 1);
449 rt2x00_set_field32(&reg, INT_MASK_CSR_TBTT, 1);
450 rt2x00_set_field32(&reg, INT_MASK_CSR_PRE_TBTT, 1);
451 rt2x00_set_field32(&reg, INT_MASK_CSR_TX_FIFO_STATUS, 1);
452 rt2x00_set_field32(&reg, INT_MASK_CSR_AUTO_WAKEUP, 1);
453 }
454 rt2x00pci_register_write(rt2x00dev, INT_MASK_CSR, reg);
455 spin_unlock_irqrestore(&rt2x00dev->irqmask_lock, flags);
456
457 if (state == STATE_RADIO_IRQ_OFF) {
458 /*
459 * Wait for possibly running tasklets to finish.
460 */
461 tasklet_kill(&rt2x00dev->txstatus_tasklet);
462 tasklet_kill(&rt2x00dev->rxdone_tasklet);
463 tasklet_kill(&rt2x00dev->autowake_tasklet);
464 tasklet_kill(&rt2x00dev->tbtt_tasklet);
465 tasklet_kill(&rt2x00dev->pretbtt_tasklet);
466 }
467 }
468
469 static int rt2800pci_init_registers(struct rt2x00_dev *rt2x00dev)
470 {
471 u32 reg;
472
473 /*
474 * Reset DMA indexes
475 */
476 rt2x00pci_register_read(rt2x00dev, WPDMA_RST_IDX, &reg);
477 rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX0, 1);
478 rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX1, 1);
479 rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX2, 1);
480 rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX3, 1);
481 rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX4, 1);
482 rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX5, 1);
483 rt2x00_set_field32(&reg, WPDMA_RST_IDX_DRX_IDX0, 1);
484 rt2x00pci_register_write(rt2x00dev, WPDMA_RST_IDX, reg);
485
486 rt2x00pci_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e1f);
487 rt2x00pci_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e00);
488
489 if (rt2x00_is_pcie(rt2x00dev) &&
490 (rt2x00_rt(rt2x00dev, RT3572) ||
491 rt2x00_rt(rt2x00dev, RT5390) ||
492 rt2x00_rt(rt2x00dev, RT5392))) {
493 rt2x00pci_register_read(rt2x00dev, AUX_CTRL, &reg);
494 rt2x00_set_field32(&reg, AUX_CTRL_FORCE_PCIE_CLK, 1);
495 rt2x00_set_field32(&reg, AUX_CTRL_WAKE_PCIE_EN, 1);
496 rt2x00pci_register_write(rt2x00dev, AUX_CTRL, reg);
497 }
498
499 rt2x00pci_register_write(rt2x00dev, PWR_PIN_CFG, 0x00000003);
500
501 reg = 0;
502 rt2x00_set_field32(&reg, MAC_SYS_CTRL_RESET_CSR, 1);
503 rt2x00_set_field32(&reg, MAC_SYS_CTRL_RESET_BBP, 1);
504 rt2x00pci_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
505
506 rt2x00pci_register_write(rt2x00dev, MAC_SYS_CTRL, 0x00000000);
507
508 return 0;
509 }
510
511 static int rt2800pci_enable_radio(struct rt2x00_dev *rt2x00dev)
512 {
513 int retval;
514
515 /* Wait for DMA, ignore error until we initialize queues. */
516 rt2800_wait_wpdma_ready(rt2x00dev);
517
518 if (unlikely(rt2800pci_init_queues(rt2x00dev)))
519 return -EIO;
520
521 retval = rt2800_enable_radio(rt2x00dev);
522 if (retval)
523 return retval;
524
525 /* After resume MCU_BOOT_SIGNAL will trash these. */
526 rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_STATUS, ~0);
527 rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CID, ~0);
528
529 rt2800_mcu_request(rt2x00dev, MCU_SLEEP, TOKEN_RADIO_OFF, 0xff, 0x02);
530 rt2800pci_mcu_status(rt2x00dev, TOKEN_RADIO_OFF);
531
532 rt2800_mcu_request(rt2x00dev, MCU_WAKEUP, TOKEN_WAKEUP, 0, 0);
533 rt2800pci_mcu_status(rt2x00dev, TOKEN_WAKEUP);
534
535 return retval;
536 }
537
538 static void rt2800pci_disable_radio(struct rt2x00_dev *rt2x00dev)
539 {
540 if (rt2x00_is_soc(rt2x00dev)) {
541 rt2800_disable_radio(rt2x00dev);
542 rt2x00pci_register_write(rt2x00dev, PWR_PIN_CFG, 0);
543 rt2x00pci_register_write(rt2x00dev, TX_PIN_CFG, 0);
544 }
545 }
546
547 static int rt2800pci_set_state(struct rt2x00_dev *rt2x00dev,
548 enum dev_state state)
549 {
550 if (state == STATE_AWAKE) {
551 rt2800_mcu_request(rt2x00dev, MCU_WAKEUP, TOKEN_WAKEUP,
552 0, 0x02);
553 rt2800pci_mcu_status(rt2x00dev, TOKEN_WAKEUP);
554 } else if (state == STATE_SLEEP) {
555 rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_STATUS,
556 0xffffffff);
557 rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CID,
558 0xffffffff);
559 rt2800_mcu_request(rt2x00dev, MCU_SLEEP, TOKEN_SLEEP,
560 0xff, 0x01);
561 }
562
563 return 0;
564 }
565
566 static int rt2800pci_set_device_state(struct rt2x00_dev *rt2x00dev,
567 enum dev_state state)
568 {
569 int retval = 0;
570
571 switch (state) {
572 case STATE_RADIO_ON:
573 retval = rt2800pci_enable_radio(rt2x00dev);
574 break;
575 case STATE_RADIO_OFF:
576 /*
577 * After the radio has been disabled, the device should
578 * be put to sleep for powersaving.
579 */
580 rt2800pci_disable_radio(rt2x00dev);
581 rt2800pci_set_state(rt2x00dev, STATE_SLEEP);
582 break;
583 case STATE_RADIO_IRQ_ON:
584 case STATE_RADIO_IRQ_OFF:
585 rt2800pci_toggle_irq(rt2x00dev, state);
586 break;
587 case STATE_DEEP_SLEEP:
588 case STATE_SLEEP:
589 case STATE_STANDBY:
590 case STATE_AWAKE:
591 retval = rt2800pci_set_state(rt2x00dev, state);
592 break;
593 default:
594 retval = -ENOTSUPP;
595 break;
596 }
597
598 if (unlikely(retval))
599 ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
600 state, retval);
601
602 return retval;
603 }
604
605 /*
606 * TX descriptor initialization
607 */
608 static __le32 *rt2800pci_get_txwi(struct queue_entry *entry)
609 {
610 return (__le32 *) entry->skb->data;
611 }
612
613 static void rt2800pci_write_tx_desc(struct queue_entry *entry,
614 struct txentry_desc *txdesc)
615 {
616 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
617 struct queue_entry_priv_pci *entry_priv = entry->priv_data;
618 __le32 *txd = entry_priv->desc;
619 u32 word;
620
621 /*
622 * The buffers pointed by SD_PTR0/SD_LEN0 and SD_PTR1/SD_LEN1
623 * must contains a TXWI structure + 802.11 header + padding + 802.11
624 * data. We choose to have SD_PTR0/SD_LEN0 only contains TXWI and
625 * SD_PTR1/SD_LEN1 contains 802.11 header + padding + 802.11
626 * data. It means that LAST_SEC0 is always 0.
627 */
628
629 /*
630 * Initialize TX descriptor
631 */
632 word = 0;
633 rt2x00_set_field32(&word, TXD_W0_SD_PTR0, skbdesc->skb_dma);
634 rt2x00_desc_write(txd, 0, word);
635
636 word = 0;
637 rt2x00_set_field32(&word, TXD_W1_SD_LEN1, entry->skb->len);
638 rt2x00_set_field32(&word, TXD_W1_LAST_SEC1,
639 !test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
640 rt2x00_set_field32(&word, TXD_W1_BURST,
641 test_bit(ENTRY_TXD_BURST, &txdesc->flags));
642 rt2x00_set_field32(&word, TXD_W1_SD_LEN0, TXWI_DESC_SIZE);
643 rt2x00_set_field32(&word, TXD_W1_LAST_SEC0, 0);
644 rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 0);
645 rt2x00_desc_write(txd, 1, word);
646
647 word = 0;
648 rt2x00_set_field32(&word, TXD_W2_SD_PTR1,
649 skbdesc->skb_dma + TXWI_DESC_SIZE);
650 rt2x00_desc_write(txd, 2, word);
651
652 word = 0;
653 rt2x00_set_field32(&word, TXD_W3_WIV,
654 !test_bit(ENTRY_TXD_ENCRYPT_IV, &txdesc->flags));
655 rt2x00_set_field32(&word, TXD_W3_QSEL, 2);
656 rt2x00_desc_write(txd, 3, word);
657
658 /*
659 * Register descriptor details in skb frame descriptor.
660 */
661 skbdesc->desc = txd;
662 skbdesc->desc_len = TXD_DESC_SIZE;
663 }
664
665 /*
666 * RX control handlers
667 */
668 static void rt2800pci_fill_rxdone(struct queue_entry *entry,
669 struct rxdone_entry_desc *rxdesc)
670 {
671 struct queue_entry_priv_pci *entry_priv = entry->priv_data;
672 __le32 *rxd = entry_priv->desc;
673 u32 word;
674
675 rt2x00_desc_read(rxd, 3, &word);
676
677 if (rt2x00_get_field32(word, RXD_W3_CRC_ERROR))
678 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
679
680 /*
681 * Unfortunately we don't know the cipher type used during
682 * decryption. This prevents us from correct providing
683 * correct statistics through debugfs.
684 */
685 rxdesc->cipher_status = rt2x00_get_field32(word, RXD_W3_CIPHER_ERROR);
686
687 if (rt2x00_get_field32(word, RXD_W3_DECRYPTED)) {
688 /*
689 * Hardware has stripped IV/EIV data from 802.11 frame during
690 * decryption. Unfortunately the descriptor doesn't contain
691 * any fields with the EIV/IV data either, so they can't
692 * be restored by rt2x00lib.
693 */
694 rxdesc->flags |= RX_FLAG_IV_STRIPPED;
695
696 /*
697 * The hardware has already checked the Michael Mic and has
698 * stripped it from the frame. Signal this to mac80211.
699 */
700 rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;
701
702 if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
703 rxdesc->flags |= RX_FLAG_DECRYPTED;
704 else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
705 rxdesc->flags |= RX_FLAG_MMIC_ERROR;
706 }
707
708 if (rt2x00_get_field32(word, RXD_W3_MY_BSS))
709 rxdesc->dev_flags |= RXDONE_MY_BSS;
710
711 if (rt2x00_get_field32(word, RXD_W3_L2PAD))
712 rxdesc->dev_flags |= RXDONE_L2PAD;
713
714 /*
715 * Process the RXWI structure that is at the start of the buffer.
716 */
717 rt2800_process_rxwi(entry, rxdesc);
718 }
719
720 /*
721 * Interrupt functions.
722 */
723 static void rt2800pci_wakeup(struct rt2x00_dev *rt2x00dev)
724 {
725 struct ieee80211_conf conf = { .flags = 0 };
726 struct rt2x00lib_conf libconf = { .conf = &conf };
727
728 rt2800_config(rt2x00dev, &libconf, IEEE80211_CONF_CHANGE_PS);
729 }
730
731 static bool rt2800pci_txdone(struct rt2x00_dev *rt2x00dev)
732 {
733 struct data_queue *queue;
734 struct queue_entry *entry;
735 u32 status;
736 u8 qid;
737 int max_tx_done = 16;
738
739 while (kfifo_get(&rt2x00dev->txstatus_fifo, &status)) {
740 qid = rt2x00_get_field32(status, TX_STA_FIFO_PID_QUEUE);
741 if (unlikely(qid >= QID_RX)) {
742 /*
743 * Unknown queue, this shouldn't happen. Just drop
744 * this tx status.
745 */
746 WARNING(rt2x00dev, "Got TX status report with "
747 "unexpected pid %u, dropping\n", qid);
748 break;
749 }
750
751 queue = rt2x00queue_get_tx_queue(rt2x00dev, qid);
752 if (unlikely(queue == NULL)) {
753 /*
754 * The queue is NULL, this shouldn't happen. Stop
755 * processing here and drop the tx status
756 */
757 WARNING(rt2x00dev, "Got TX status for an unavailable "
758 "queue %u, dropping\n", qid);
759 break;
760 }
761
762 if (unlikely(rt2x00queue_empty(queue))) {
763 /*
764 * The queue is empty. Stop processing here
765 * and drop the tx status.
766 */
767 WARNING(rt2x00dev, "Got TX status for an empty "
768 "queue %u, dropping\n", qid);
769 break;
770 }
771
772 entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
773 rt2800_txdone_entry(entry, status, rt2800pci_get_txwi(entry));
774
775 if (--max_tx_done == 0)
776 break;
777 }
778
779 return !max_tx_done;
780 }
781
782 static inline void rt2800pci_enable_interrupt(struct rt2x00_dev *rt2x00dev,
783 struct rt2x00_field32 irq_field)
784 {
785 u32 reg;
786
787 /*
788 * Enable a single interrupt. The interrupt mask register
789 * access needs locking.
790 */
791 spin_lock_irq(&rt2x00dev->irqmask_lock);
792 rt2x00pci_register_read(rt2x00dev, INT_MASK_CSR, &reg);
793 rt2x00_set_field32(&reg, irq_field, 1);
794 rt2x00pci_register_write(rt2x00dev, INT_MASK_CSR, reg);
795 spin_unlock_irq(&rt2x00dev->irqmask_lock);
796 }
797
798 static void rt2800pci_txstatus_tasklet(unsigned long data)
799 {
800 struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
801 if (rt2800pci_txdone(rt2x00dev))
802 tasklet_schedule(&rt2x00dev->txstatus_tasklet);
803
804 /*
805 * No need to enable the tx status interrupt here as we always
806 * leave it enabled to minimize the possibility of a tx status
807 * register overflow. See comment in interrupt handler.
808 */
809 }
810
811 static void rt2800pci_pretbtt_tasklet(unsigned long data)
812 {
813 struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
814 rt2x00lib_pretbtt(rt2x00dev);
815 if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
816 rt2800pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_PRE_TBTT);
817 }
818
819 static void rt2800pci_tbtt_tasklet(unsigned long data)
820 {
821 struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
822 struct rt2800_drv_data *drv_data = rt2x00dev->drv_data;
823 u32 reg;
824
825 rt2x00lib_beacondone(rt2x00dev);
826
827 if (rt2x00dev->intf_ap_count) {
828 /*
829 * The rt2800pci hardware tbtt timer is off by 1us per tbtt
830 * causing beacon skew and as a result causing problems with
831 * some powersaving clients over time. Shorten the beacon
832 * interval every 64 beacons by 64us to mitigate this effect.
833 */
834 if (drv_data->tbtt_tick == (BCN_TBTT_OFFSET - 2)) {
835 rt2x00pci_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
836 rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_INTERVAL,
837 (rt2x00dev->beacon_int * 16) - 1);
838 rt2x00pci_register_write(rt2x00dev, BCN_TIME_CFG, reg);
839 } else if (drv_data->tbtt_tick == (BCN_TBTT_OFFSET - 1)) {
840 rt2x00pci_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
841 rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_INTERVAL,
842 (rt2x00dev->beacon_int * 16));
843 rt2x00pci_register_write(rt2x00dev, BCN_TIME_CFG, reg);
844 }
845 drv_data->tbtt_tick++;
846 drv_data->tbtt_tick %= BCN_TBTT_OFFSET;
847 }
848
849 if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
850 rt2800pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_TBTT);
851 }
852
853 static void rt2800pci_rxdone_tasklet(unsigned long data)
854 {
855 struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
856 if (rt2x00pci_rxdone(rt2x00dev))
857 tasklet_schedule(&rt2x00dev->rxdone_tasklet);
858 else if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
859 rt2800pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_RX_DONE);
860 }
861
862 static void rt2800pci_autowake_tasklet(unsigned long data)
863 {
864 struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
865 rt2800pci_wakeup(rt2x00dev);
866 if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
867 rt2800pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_AUTO_WAKEUP);
868 }
869
870 static void rt2800pci_txstatus_interrupt(struct rt2x00_dev *rt2x00dev)
871 {
872 u32 status;
873 int i;
874
875 /*
876 * The TX_FIFO_STATUS interrupt needs special care. We should
877 * read TX_STA_FIFO but we should do it immediately as otherwise
878 * the register can overflow and we would lose status reports.
879 *
880 * Hence, read the TX_STA_FIFO register and copy all tx status
881 * reports into a kernel FIFO which is handled in the txstatus
882 * tasklet. We use a tasklet to process the tx status reports
883 * because we can schedule the tasklet multiple times (when the
884 * interrupt fires again during tx status processing).
885 *
886 * Furthermore we don't disable the TX_FIFO_STATUS
887 * interrupt here but leave it enabled so that the TX_STA_FIFO
888 * can also be read while the tx status tasklet gets executed.
889 *
890 * Since we have only one producer and one consumer we don't
891 * need to lock the kfifo.
892 */
893 for (i = 0; i < rt2x00dev->ops->tx->entry_num; i++) {
894 rt2x00pci_register_read(rt2x00dev, TX_STA_FIFO, &status);
895
896 if (!rt2x00_get_field32(status, TX_STA_FIFO_VALID))
897 break;
898
899 if (!kfifo_put(&rt2x00dev->txstatus_fifo, &status)) {
900 WARNING(rt2x00dev, "TX status FIFO overrun,"
901 "drop tx status report.\n");
902 break;
903 }
904 }
905
906 /* Schedule the tasklet for processing the tx status. */
907 tasklet_schedule(&rt2x00dev->txstatus_tasklet);
908 }
909
910 static irqreturn_t rt2800pci_interrupt(int irq, void *dev_instance)
911 {
912 struct rt2x00_dev *rt2x00dev = dev_instance;
913 u32 reg, mask;
914
915 /* Read status and ACK all interrupts */
916 rt2x00pci_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
917 rt2x00pci_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
918
919 if (!reg)
920 return IRQ_NONE;
921
922 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
923 return IRQ_HANDLED;
924
925 /*
926 * Since INT_MASK_CSR and INT_SOURCE_CSR use the same bits
927 * for interrupts and interrupt masks we can just use the value of
928 * INT_SOURCE_CSR to create the interrupt mask.
929 */
930 mask = ~reg;
931
932 if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TX_FIFO_STATUS)) {
933 rt2800pci_txstatus_interrupt(rt2x00dev);
934 /*
935 * Never disable the TX_FIFO_STATUS interrupt.
936 */
937 rt2x00_set_field32(&mask, INT_MASK_CSR_TX_FIFO_STATUS, 1);
938 }
939
940 if (rt2x00_get_field32(reg, INT_SOURCE_CSR_PRE_TBTT))
941 tasklet_hi_schedule(&rt2x00dev->pretbtt_tasklet);
942
943 if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TBTT))
944 tasklet_hi_schedule(&rt2x00dev->tbtt_tasklet);
945
946 if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RX_DONE))
947 tasklet_schedule(&rt2x00dev->rxdone_tasklet);
948
949 if (rt2x00_get_field32(reg, INT_SOURCE_CSR_AUTO_WAKEUP))
950 tasklet_schedule(&rt2x00dev->autowake_tasklet);
951
952 /*
953 * Disable all interrupts for which a tasklet was scheduled right now,
954 * the tasklet will reenable the appropriate interrupts.
955 */
956 spin_lock(&rt2x00dev->irqmask_lock);
957 rt2x00pci_register_read(rt2x00dev, INT_MASK_CSR, &reg);
958 reg &= mask;
959 rt2x00pci_register_write(rt2x00dev, INT_MASK_CSR, reg);
960 spin_unlock(&rt2x00dev->irqmask_lock);
961
962 return IRQ_HANDLED;
963 }
964
965 /*
966 * Device probe functions.
967 */
968 static int rt2800pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
969 {
970 /*
971 * Read EEPROM into buffer
972 */
973 if (rt2x00_is_soc(rt2x00dev))
974 rt2800pci_read_eeprom_soc(rt2x00dev);
975 else if (rt2800pci_efuse_detect(rt2x00dev))
976 rt2800pci_read_eeprom_efuse(rt2x00dev);
977 else
978 rt2800pci_read_eeprom_pci(rt2x00dev);
979
980 return rt2800_validate_eeprom(rt2x00dev);
981 }
982
983 static int rt2800pci_probe_hw(struct rt2x00_dev *rt2x00dev)
984 {
985 int retval;
986 u32 reg;
987
988 /*
989 * Allocate eeprom data.
990 */
991 retval = rt2800pci_validate_eeprom(rt2x00dev);
992 if (retval)
993 return retval;
994
995 retval = rt2800_init_eeprom(rt2x00dev);
996 if (retval)
997 return retval;
998
999 /*
1000 * Enable rfkill polling by setting GPIO direction of the
1001 * rfkill switch GPIO pin correctly.
1002 */
1003 rt2x00pci_register_read(rt2x00dev, GPIO_CTRL_CFG, &reg);
1004 rt2x00_set_field32(&reg, GPIO_CTRL_CFG_GPIOD_BIT2, 1);
1005 rt2x00pci_register_write(rt2x00dev, GPIO_CTRL_CFG, reg);
1006
1007 /*
1008 * Initialize hw specifications.
1009 */
1010 retval = rt2800_probe_hw_mode(rt2x00dev);
1011 if (retval)
1012 return retval;
1013
1014 /*
1015 * This device has multiple filters for control frames
1016 * and has a separate filter for PS Poll frames.
1017 */
1018 __set_bit(CAPABILITY_CONTROL_FILTERS, &rt2x00dev->cap_flags);
1019 __set_bit(CAPABILITY_CONTROL_FILTER_PSPOLL, &rt2x00dev->cap_flags);
1020
1021 /*
1022 * This device has a pre tbtt interrupt and thus fetches
1023 * a new beacon directly prior to transmission.
1024 */
1025 __set_bit(CAPABILITY_PRE_TBTT_INTERRUPT, &rt2x00dev->cap_flags);
1026
1027 /*
1028 * This device requires firmware.
1029 */
1030 if (!rt2x00_is_soc(rt2x00dev))
1031 __set_bit(REQUIRE_FIRMWARE, &rt2x00dev->cap_flags);
1032 __set_bit(REQUIRE_DMA, &rt2x00dev->cap_flags);
1033 __set_bit(REQUIRE_L2PAD, &rt2x00dev->cap_flags);
1034 __set_bit(REQUIRE_TXSTATUS_FIFO, &rt2x00dev->cap_flags);
1035 __set_bit(REQUIRE_TASKLET_CONTEXT, &rt2x00dev->cap_flags);
1036 if (!modparam_nohwcrypt)
1037 __set_bit(CAPABILITY_HW_CRYPTO, &rt2x00dev->cap_flags);
1038 __set_bit(CAPABILITY_LINK_TUNING, &rt2x00dev->cap_flags);
1039 __set_bit(REQUIRE_HT_TX_DESC, &rt2x00dev->cap_flags);
1040
1041 /*
1042 * Set the rssi offset.
1043 */
1044 rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
1045
1046 return 0;
1047 }
1048
1049 static const struct ieee80211_ops rt2800pci_mac80211_ops = {
1050 .tx = rt2x00mac_tx,
1051 .start = rt2x00mac_start,
1052 .stop = rt2x00mac_stop,
1053 .add_interface = rt2x00mac_add_interface,
1054 .remove_interface = rt2x00mac_remove_interface,
1055 .config = rt2x00mac_config,
1056 .configure_filter = rt2x00mac_configure_filter,
1057 .set_key = rt2x00mac_set_key,
1058 .sw_scan_start = rt2x00mac_sw_scan_start,
1059 .sw_scan_complete = rt2x00mac_sw_scan_complete,
1060 .get_stats = rt2x00mac_get_stats,
1061 .get_tkip_seq = rt2800_get_tkip_seq,
1062 .set_rts_threshold = rt2800_set_rts_threshold,
1063 .sta_add = rt2x00mac_sta_add,
1064 .sta_remove = rt2x00mac_sta_remove,
1065 .bss_info_changed = rt2x00mac_bss_info_changed,
1066 .conf_tx = rt2800_conf_tx,
1067 .get_tsf = rt2800_get_tsf,
1068 .rfkill_poll = rt2x00mac_rfkill_poll,
1069 .ampdu_action = rt2800_ampdu_action,
1070 .flush = rt2x00mac_flush,
1071 .get_survey = rt2800_get_survey,
1072 .get_ringparam = rt2x00mac_get_ringparam,
1073 .tx_frames_pending = rt2x00mac_tx_frames_pending,
1074 };
1075
1076 static const struct rt2800_ops rt2800pci_rt2800_ops = {
1077 .register_read = rt2x00pci_register_read,
1078 .register_read_lock = rt2x00pci_register_read, /* same for PCI */
1079 .register_write = rt2x00pci_register_write,
1080 .register_write_lock = rt2x00pci_register_write, /* same for PCI */
1081 .register_multiread = rt2x00pci_register_multiread,
1082 .register_multiwrite = rt2x00pci_register_multiwrite,
1083 .regbusy_read = rt2x00pci_regbusy_read,
1084 .drv_write_firmware = rt2800pci_write_firmware,
1085 .drv_init_registers = rt2800pci_init_registers,
1086 .drv_get_txwi = rt2800pci_get_txwi,
1087 };
1088
1089 static const struct rt2x00lib_ops rt2800pci_rt2x00_ops = {
1090 .irq_handler = rt2800pci_interrupt,
1091 .txstatus_tasklet = rt2800pci_txstatus_tasklet,
1092 .pretbtt_tasklet = rt2800pci_pretbtt_tasklet,
1093 .tbtt_tasklet = rt2800pci_tbtt_tasklet,
1094 .rxdone_tasklet = rt2800pci_rxdone_tasklet,
1095 .autowake_tasklet = rt2800pci_autowake_tasklet,
1096 .probe_hw = rt2800pci_probe_hw,
1097 .get_firmware_name = rt2800pci_get_firmware_name,
1098 .check_firmware = rt2800_check_firmware,
1099 .load_firmware = rt2800_load_firmware,
1100 .initialize = rt2x00pci_initialize,
1101 .uninitialize = rt2x00pci_uninitialize,
1102 .get_entry_state = rt2800pci_get_entry_state,
1103 .clear_entry = rt2800pci_clear_entry,
1104 .set_device_state = rt2800pci_set_device_state,
1105 .rfkill_poll = rt2800_rfkill_poll,
1106 .link_stats = rt2800_link_stats,
1107 .reset_tuner = rt2800_reset_tuner,
1108 .link_tuner = rt2800_link_tuner,
1109 .gain_calibration = rt2800_gain_calibration,
1110 .vco_calibration = rt2800_vco_calibration,
1111 .start_queue = rt2800pci_start_queue,
1112 .kick_queue = rt2800pci_kick_queue,
1113 .stop_queue = rt2800pci_stop_queue,
1114 .flush_queue = rt2x00pci_flush_queue,
1115 .write_tx_desc = rt2800pci_write_tx_desc,
1116 .write_tx_data = rt2800_write_tx_data,
1117 .write_beacon = rt2800_write_beacon,
1118 .clear_beacon = rt2800_clear_beacon,
1119 .fill_rxdone = rt2800pci_fill_rxdone,
1120 .config_shared_key = rt2800_config_shared_key,
1121 .config_pairwise_key = rt2800_config_pairwise_key,
1122 .config_filter = rt2800_config_filter,
1123 .config_intf = rt2800_config_intf,
1124 .config_erp = rt2800_config_erp,
1125 .config_ant = rt2800_config_ant,
1126 .config = rt2800_config,
1127 .sta_add = rt2800_sta_add,
1128 .sta_remove = rt2800_sta_remove,
1129 };
1130
1131 static const struct data_queue_desc rt2800pci_queue_rx = {
1132 .entry_num = 128,
1133 .data_size = AGGREGATION_SIZE,
1134 .desc_size = RXD_DESC_SIZE,
1135 .priv_size = sizeof(struct queue_entry_priv_pci),
1136 };
1137
1138 static const struct data_queue_desc rt2800pci_queue_tx = {
1139 .entry_num = 64,
1140 .data_size = AGGREGATION_SIZE,
1141 .desc_size = TXD_DESC_SIZE,
1142 .priv_size = sizeof(struct queue_entry_priv_pci),
1143 };
1144
1145 static const struct data_queue_desc rt2800pci_queue_bcn = {
1146 .entry_num = 8,
1147 .data_size = 0, /* No DMA required for beacons */
1148 .desc_size = TXWI_DESC_SIZE,
1149 .priv_size = sizeof(struct queue_entry_priv_pci),
1150 };
1151
1152 static const struct rt2x00_ops rt2800pci_ops = {
1153 .name = KBUILD_MODNAME,
1154 .drv_data_size = sizeof(struct rt2800_drv_data),
1155 .max_sta_intf = 1,
1156 .max_ap_intf = 8,
1157 .eeprom_size = EEPROM_SIZE,
1158 .rf_size = RF_SIZE,
1159 .tx_queues = NUM_TX_QUEUES,
1160 .extra_tx_headroom = TXWI_DESC_SIZE,
1161 .rx = &rt2800pci_queue_rx,
1162 .tx = &rt2800pci_queue_tx,
1163 .bcn = &rt2800pci_queue_bcn,
1164 .lib = &rt2800pci_rt2x00_ops,
1165 .drv = &rt2800pci_rt2800_ops,
1166 .hw = &rt2800pci_mac80211_ops,
1167 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
1168 .debugfs = &rt2800_rt2x00debug,
1169 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1170 };
1171
1172 /*
1173 * RT2800pci module information.
1174 */
1175 #ifdef CONFIG_PCI
1176 static DEFINE_PCI_DEVICE_TABLE(rt2800pci_device_table) = {
1177 { PCI_DEVICE(0x1814, 0x0601) },
1178 { PCI_DEVICE(0x1814, 0x0681) },
1179 { PCI_DEVICE(0x1814, 0x0701) },
1180 { PCI_DEVICE(0x1814, 0x0781) },
1181 { PCI_DEVICE(0x1814, 0x3090) },
1182 { PCI_DEVICE(0x1814, 0x3091) },
1183 { PCI_DEVICE(0x1814, 0x3092) },
1184 { PCI_DEVICE(0x1432, 0x7708) },
1185 { PCI_DEVICE(0x1432, 0x7727) },
1186 { PCI_DEVICE(0x1432, 0x7728) },
1187 { PCI_DEVICE(0x1432, 0x7738) },
1188 { PCI_DEVICE(0x1432, 0x7748) },
1189 { PCI_DEVICE(0x1432, 0x7758) },
1190 { PCI_DEVICE(0x1432, 0x7768) },
1191 { PCI_DEVICE(0x1462, 0x891a) },
1192 { PCI_DEVICE(0x1a3b, 0x1059) },
1193 #ifdef CONFIG_RT2800PCI_RT3290
1194 { PCI_DEVICE(0x1814, 0x3290) },
1195 #endif
1196 #ifdef CONFIG_RT2800PCI_RT33XX
1197 { PCI_DEVICE(0x1814, 0x3390) },
1198 #endif
1199 #ifdef CONFIG_RT2800PCI_RT35XX
1200 { PCI_DEVICE(0x1432, 0x7711) },
1201 { PCI_DEVICE(0x1432, 0x7722) },
1202 { PCI_DEVICE(0x1814, 0x3060) },
1203 { PCI_DEVICE(0x1814, 0x3062) },
1204 { PCI_DEVICE(0x1814, 0x3562) },
1205 { PCI_DEVICE(0x1814, 0x3592) },
1206 { PCI_DEVICE(0x1814, 0x3593) },
1207 #endif
1208 #ifdef CONFIG_RT2800PCI_RT53XX
1209 { PCI_DEVICE(0x1814, 0x5360) },
1210 { PCI_DEVICE(0x1814, 0x5362) },
1211 { PCI_DEVICE(0x1814, 0x5390) },
1212 { PCI_DEVICE(0x1814, 0x5392) },
1213 { PCI_DEVICE(0x1814, 0x539a) },
1214 { PCI_DEVICE(0x1814, 0x539b) },
1215 { PCI_DEVICE(0x1814, 0x539f) },
1216 #endif
1217 { 0, }
1218 };
1219 #endif /* CONFIG_PCI */
1220
1221 MODULE_AUTHOR(DRV_PROJECT);
1222 MODULE_VERSION(DRV_VERSION);
1223 MODULE_DESCRIPTION("Ralink RT2800 PCI & PCMCIA Wireless LAN driver.");
1224 MODULE_SUPPORTED_DEVICE("Ralink RT2860 PCI & PCMCIA chipset based cards");
1225 #ifdef CONFIG_PCI
1226 MODULE_FIRMWARE(FIRMWARE_RT2860);
1227 MODULE_DEVICE_TABLE(pci, rt2800pci_device_table);
1228 #endif /* CONFIG_PCI */
1229 MODULE_LICENSE("GPL");
1230
1231 #if defined(CONFIG_RALINK_RT288X) || defined(CONFIG_RALINK_RT305X)
1232 static int rt2800soc_probe(struct platform_device *pdev)
1233 {
1234 return rt2x00soc_probe(pdev, &rt2800pci_ops);
1235 }
1236
1237 static struct platform_driver rt2800soc_driver = {
1238 .driver = {
1239 .name = "rt2800_wmac",
1240 .owner = THIS_MODULE,
1241 .mod_name = KBUILD_MODNAME,
1242 },
1243 .probe = rt2800soc_probe,
1244 .remove = __devexit_p(rt2x00soc_remove),
1245 .suspend = rt2x00soc_suspend,
1246 .resume = rt2x00soc_resume,
1247 };
1248 #endif /* CONFIG_RALINK_RT288X || CONFIG_RALINK_RT305X */
1249
1250 #ifdef CONFIG_PCI
1251 static int rt2800pci_probe(struct pci_dev *pci_dev,
1252 const struct pci_device_id *id)
1253 {
1254 return rt2x00pci_probe(pci_dev, &rt2800pci_ops);
1255 }
1256
1257 static struct pci_driver rt2800pci_driver = {
1258 .name = KBUILD_MODNAME,
1259 .id_table = rt2800pci_device_table,
1260 .probe = rt2800pci_probe,
1261 .remove = __devexit_p(rt2x00pci_remove),
1262 .suspend = rt2x00pci_suspend,
1263 .resume = rt2x00pci_resume,
1264 };
1265 #endif /* CONFIG_PCI */
1266
1267 static int __init rt2800pci_init(void)
1268 {
1269 int ret = 0;
1270
1271 #if defined(CONFIG_RALINK_RT288X) || defined(CONFIG_RALINK_RT305X)
1272 ret = platform_driver_register(&rt2800soc_driver);
1273 if (ret)
1274 return ret;
1275 #endif
1276 #ifdef CONFIG_PCI
1277 ret = pci_register_driver(&rt2800pci_driver);
1278 if (ret) {
1279 #if defined(CONFIG_RALINK_RT288X) || defined(CONFIG_RALINK_RT305X)
1280 platform_driver_unregister(&rt2800soc_driver);
1281 #endif
1282 return ret;
1283 }
1284 #endif
1285
1286 return ret;
1287 }
1288
1289 static void __exit rt2800pci_exit(void)
1290 {
1291 #ifdef CONFIG_PCI
1292 pci_unregister_driver(&rt2800pci_driver);
1293 #endif
1294 #if defined(CONFIG_RALINK_RT288X) || defined(CONFIG_RALINK_RT305X)
1295 platform_driver_unregister(&rt2800soc_driver);
1296 #endif
1297 }
1298
1299 module_init(rt2800pci_init);
1300 module_exit(rt2800pci_exit);
This page took 0.058227 seconds and 5 git commands to generate.