mwifiex: add custom IE framework
[deliverable/linux.git] / drivers / net / wireless / rt2x00 / rt2800pci.c
1 /*
2 Copyright (C) 2009 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
3 Copyright (C) 2009 Alban Browaeys <prahal@yahoo.com>
4 Copyright (C) 2009 Felix Fietkau <nbd@openwrt.org>
5 Copyright (C) 2009 Luis Correia <luis.f.correia@gmail.com>
6 Copyright (C) 2009 Mattias Nissler <mattias.nissler@gmx.de>
7 Copyright (C) 2009 Mark Asselstine <asselsm@gmail.com>
8 Copyright (C) 2009 Xose Vazquez Perez <xose.vazquez@gmail.com>
9 Copyright (C) 2009 Bart Zolnierkiewicz <bzolnier@gmail.com>
10 <http://rt2x00.serialmonkey.com>
11
12 This program is free software; you can redistribute it and/or modify
13 it under the terms of the GNU General Public License as published by
14 the Free Software Foundation; either version 2 of the License, or
15 (at your option) any later version.
16
17 This program is distributed in the hope that it will be useful,
18 but WITHOUT ANY WARRANTY; without even the implied warranty of
19 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 GNU General Public License for more details.
21
22 You should have received a copy of the GNU General Public License
23 along with this program; if not, write to the
24 Free Software Foundation, Inc.,
25 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
26 */
27
28 /*
29 Module: rt2800pci
30 Abstract: rt2800pci device specific routines.
31 Supported chipsets: RT2800E & RT2800ED.
32 */
33
34 #include <linux/delay.h>
35 #include <linux/etherdevice.h>
36 #include <linux/init.h>
37 #include <linux/kernel.h>
38 #include <linux/module.h>
39 #include <linux/pci.h>
40 #include <linux/platform_device.h>
41 #include <linux/eeprom_93cx6.h>
42
43 #include "rt2x00.h"
44 #include "rt2x00pci.h"
45 #include "rt2x00soc.h"
46 #include "rt2800lib.h"
47 #include "rt2800.h"
48 #include "rt2800pci.h"
49
50 /*
51 * Allow hardware encryption to be disabled.
52 */
53 static bool modparam_nohwcrypt = false;
54 module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
55 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
56
57 static void rt2800pci_mcu_status(struct rt2x00_dev *rt2x00dev, const u8 token)
58 {
59 unsigned int i;
60 u32 reg;
61
62 /*
63 * SOC devices don't support MCU requests.
64 */
65 if (rt2x00_is_soc(rt2x00dev))
66 return;
67
68 for (i = 0; i < 200; i++) {
69 rt2x00pci_register_read(rt2x00dev, H2M_MAILBOX_CID, &reg);
70
71 if ((rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD0) == token) ||
72 (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD1) == token) ||
73 (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD2) == token) ||
74 (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD3) == token))
75 break;
76
77 udelay(REGISTER_BUSY_DELAY);
78 }
79
80 if (i == 200)
81 ERROR(rt2x00dev, "MCU request failed, no response from hardware\n");
82
83 rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_STATUS, ~0);
84 rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CID, ~0);
85 }
86
87 #if defined(CONFIG_RALINK_RT288X) || defined(CONFIG_RALINK_RT305X)
88 static void rt2800pci_read_eeprom_soc(struct rt2x00_dev *rt2x00dev)
89 {
90 void __iomem *base_addr = ioremap(0x1F040000, EEPROM_SIZE);
91
92 memcpy_fromio(rt2x00dev->eeprom, base_addr, EEPROM_SIZE);
93
94 iounmap(base_addr);
95 }
96 #else
97 static inline void rt2800pci_read_eeprom_soc(struct rt2x00_dev *rt2x00dev)
98 {
99 }
100 #endif /* CONFIG_RALINK_RT288X || CONFIG_RALINK_RT305X */
101
102 #ifdef CONFIG_PCI
103 static void rt2800pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
104 {
105 struct rt2x00_dev *rt2x00dev = eeprom->data;
106 u32 reg;
107
108 rt2x00pci_register_read(rt2x00dev, E2PROM_CSR, &reg);
109
110 eeprom->reg_data_in = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_IN);
111 eeprom->reg_data_out = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_OUT);
112 eeprom->reg_data_clock =
113 !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_CLOCK);
114 eeprom->reg_chip_select =
115 !!rt2x00_get_field32(reg, E2PROM_CSR_CHIP_SELECT);
116 }
117
118 static void rt2800pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
119 {
120 struct rt2x00_dev *rt2x00dev = eeprom->data;
121 u32 reg = 0;
122
123 rt2x00_set_field32(&reg, E2PROM_CSR_DATA_IN, !!eeprom->reg_data_in);
124 rt2x00_set_field32(&reg, E2PROM_CSR_DATA_OUT, !!eeprom->reg_data_out);
125 rt2x00_set_field32(&reg, E2PROM_CSR_DATA_CLOCK,
126 !!eeprom->reg_data_clock);
127 rt2x00_set_field32(&reg, E2PROM_CSR_CHIP_SELECT,
128 !!eeprom->reg_chip_select);
129
130 rt2x00pci_register_write(rt2x00dev, E2PROM_CSR, reg);
131 }
132
133 static void rt2800pci_read_eeprom_pci(struct rt2x00_dev *rt2x00dev)
134 {
135 struct eeprom_93cx6 eeprom;
136 u32 reg;
137
138 rt2x00pci_register_read(rt2x00dev, E2PROM_CSR, &reg);
139
140 eeprom.data = rt2x00dev;
141 eeprom.register_read = rt2800pci_eepromregister_read;
142 eeprom.register_write = rt2800pci_eepromregister_write;
143 switch (rt2x00_get_field32(reg, E2PROM_CSR_TYPE))
144 {
145 case 0:
146 eeprom.width = PCI_EEPROM_WIDTH_93C46;
147 break;
148 case 1:
149 eeprom.width = PCI_EEPROM_WIDTH_93C66;
150 break;
151 default:
152 eeprom.width = PCI_EEPROM_WIDTH_93C86;
153 break;
154 }
155 eeprom.reg_data_in = 0;
156 eeprom.reg_data_out = 0;
157 eeprom.reg_data_clock = 0;
158 eeprom.reg_chip_select = 0;
159
160 eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
161 EEPROM_SIZE / sizeof(u16));
162 }
163
164 static int rt2800pci_efuse_detect(struct rt2x00_dev *rt2x00dev)
165 {
166 return rt2800_efuse_detect(rt2x00dev);
167 }
168
169 static inline void rt2800pci_read_eeprom_efuse(struct rt2x00_dev *rt2x00dev)
170 {
171 rt2800_read_eeprom_efuse(rt2x00dev);
172 }
173 #else
174 static inline void rt2800pci_read_eeprom_pci(struct rt2x00_dev *rt2x00dev)
175 {
176 }
177
178 static inline int rt2800pci_efuse_detect(struct rt2x00_dev *rt2x00dev)
179 {
180 return 0;
181 }
182
183 static inline void rt2800pci_read_eeprom_efuse(struct rt2x00_dev *rt2x00dev)
184 {
185 }
186 #endif /* CONFIG_PCI */
187
188 /*
189 * Queue handlers.
190 */
191 static void rt2800pci_start_queue(struct data_queue *queue)
192 {
193 struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
194 u32 reg;
195
196 switch (queue->qid) {
197 case QID_RX:
198 rt2x00pci_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
199 rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX, 1);
200 rt2x00pci_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
201 break;
202 case QID_BEACON:
203 rt2x00pci_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
204 rt2x00_set_field32(&reg, BCN_TIME_CFG_TSF_TICKING, 1);
205 rt2x00_set_field32(&reg, BCN_TIME_CFG_TBTT_ENABLE, 1);
206 rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_GEN, 1);
207 rt2x00pci_register_write(rt2x00dev, BCN_TIME_CFG, reg);
208
209 rt2x00pci_register_read(rt2x00dev, INT_TIMER_EN, &reg);
210 rt2x00_set_field32(&reg, INT_TIMER_EN_PRE_TBTT_TIMER, 1);
211 rt2x00pci_register_write(rt2x00dev, INT_TIMER_EN, reg);
212 break;
213 default:
214 break;
215 }
216 }
217
218 static void rt2800pci_kick_queue(struct data_queue *queue)
219 {
220 struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
221 struct queue_entry *entry;
222
223 switch (queue->qid) {
224 case QID_AC_VO:
225 case QID_AC_VI:
226 case QID_AC_BE:
227 case QID_AC_BK:
228 entry = rt2x00queue_get_entry(queue, Q_INDEX);
229 rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX(queue->qid),
230 entry->entry_idx);
231 break;
232 case QID_MGMT:
233 entry = rt2x00queue_get_entry(queue, Q_INDEX);
234 rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX(5),
235 entry->entry_idx);
236 break;
237 default:
238 break;
239 }
240 }
241
242 static void rt2800pci_stop_queue(struct data_queue *queue)
243 {
244 struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
245 u32 reg;
246
247 switch (queue->qid) {
248 case QID_RX:
249 rt2x00pci_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
250 rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX, 0);
251 rt2x00pci_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
252 break;
253 case QID_BEACON:
254 rt2x00pci_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
255 rt2x00_set_field32(&reg, BCN_TIME_CFG_TSF_TICKING, 0);
256 rt2x00_set_field32(&reg, BCN_TIME_CFG_TBTT_ENABLE, 0);
257 rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_GEN, 0);
258 rt2x00pci_register_write(rt2x00dev, BCN_TIME_CFG, reg);
259
260 rt2x00pci_register_read(rt2x00dev, INT_TIMER_EN, &reg);
261 rt2x00_set_field32(&reg, INT_TIMER_EN_PRE_TBTT_TIMER, 0);
262 rt2x00pci_register_write(rt2x00dev, INT_TIMER_EN, reg);
263
264 /*
265 * Wait for current invocation to finish. The tasklet
266 * won't be scheduled anymore afterwards since we disabled
267 * the TBTT and PRE TBTT timer.
268 */
269 tasklet_kill(&rt2x00dev->tbtt_tasklet);
270 tasklet_kill(&rt2x00dev->pretbtt_tasklet);
271
272 break;
273 default:
274 break;
275 }
276 }
277
278 /*
279 * Firmware functions
280 */
281 static char *rt2800pci_get_firmware_name(struct rt2x00_dev *rt2x00dev)
282 {
283 return FIRMWARE_RT2860;
284 }
285
286 static int rt2800pci_write_firmware(struct rt2x00_dev *rt2x00dev,
287 const u8 *data, const size_t len)
288 {
289 u32 reg;
290
291 /*
292 * enable Host program ram write selection
293 */
294 reg = 0;
295 rt2x00_set_field32(&reg, PBF_SYS_CTRL_HOST_RAM_WRITE, 1);
296 rt2x00pci_register_write(rt2x00dev, PBF_SYS_CTRL, reg);
297
298 /*
299 * Write firmware to device.
300 */
301 rt2x00pci_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE,
302 data, len);
303
304 rt2x00pci_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000);
305 rt2x00pci_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00001);
306
307 rt2x00pci_register_write(rt2x00dev, H2M_BBP_AGENT, 0);
308 rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
309
310 return 0;
311 }
312
313 /*
314 * Initialization functions.
315 */
316 static bool rt2800pci_get_entry_state(struct queue_entry *entry)
317 {
318 struct queue_entry_priv_pci *entry_priv = entry->priv_data;
319 u32 word;
320
321 if (entry->queue->qid == QID_RX) {
322 rt2x00_desc_read(entry_priv->desc, 1, &word);
323
324 return (!rt2x00_get_field32(word, RXD_W1_DMA_DONE));
325 } else {
326 rt2x00_desc_read(entry_priv->desc, 1, &word);
327
328 return (!rt2x00_get_field32(word, TXD_W1_DMA_DONE));
329 }
330 }
331
332 static void rt2800pci_clear_entry(struct queue_entry *entry)
333 {
334 struct queue_entry_priv_pci *entry_priv = entry->priv_data;
335 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
336 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
337 u32 word;
338
339 if (entry->queue->qid == QID_RX) {
340 rt2x00_desc_read(entry_priv->desc, 0, &word);
341 rt2x00_set_field32(&word, RXD_W0_SDP0, skbdesc->skb_dma);
342 rt2x00_desc_write(entry_priv->desc, 0, word);
343
344 rt2x00_desc_read(entry_priv->desc, 1, &word);
345 rt2x00_set_field32(&word, RXD_W1_DMA_DONE, 0);
346 rt2x00_desc_write(entry_priv->desc, 1, word);
347
348 /*
349 * Set RX IDX in register to inform hardware that we have
350 * handled this entry and it is available for reuse again.
351 */
352 rt2x00pci_register_write(rt2x00dev, RX_CRX_IDX,
353 entry->entry_idx);
354 } else {
355 rt2x00_desc_read(entry_priv->desc, 1, &word);
356 rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 1);
357 rt2x00_desc_write(entry_priv->desc, 1, word);
358 }
359 }
360
361 static int rt2800pci_init_queues(struct rt2x00_dev *rt2x00dev)
362 {
363 struct queue_entry_priv_pci *entry_priv;
364
365 /*
366 * Initialize registers.
367 */
368 entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
369 rt2x00pci_register_write(rt2x00dev, TX_BASE_PTR0, entry_priv->desc_dma);
370 rt2x00pci_register_write(rt2x00dev, TX_MAX_CNT0,
371 rt2x00dev->tx[0].limit);
372 rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX0, 0);
373 rt2x00pci_register_write(rt2x00dev, TX_DTX_IDX0, 0);
374
375 entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
376 rt2x00pci_register_write(rt2x00dev, TX_BASE_PTR1, entry_priv->desc_dma);
377 rt2x00pci_register_write(rt2x00dev, TX_MAX_CNT1,
378 rt2x00dev->tx[1].limit);
379 rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX1, 0);
380 rt2x00pci_register_write(rt2x00dev, TX_DTX_IDX1, 0);
381
382 entry_priv = rt2x00dev->tx[2].entries[0].priv_data;
383 rt2x00pci_register_write(rt2x00dev, TX_BASE_PTR2, entry_priv->desc_dma);
384 rt2x00pci_register_write(rt2x00dev, TX_MAX_CNT2,
385 rt2x00dev->tx[2].limit);
386 rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX2, 0);
387 rt2x00pci_register_write(rt2x00dev, TX_DTX_IDX2, 0);
388
389 entry_priv = rt2x00dev->tx[3].entries[0].priv_data;
390 rt2x00pci_register_write(rt2x00dev, TX_BASE_PTR3, entry_priv->desc_dma);
391 rt2x00pci_register_write(rt2x00dev, TX_MAX_CNT3,
392 rt2x00dev->tx[3].limit);
393 rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX3, 0);
394 rt2x00pci_register_write(rt2x00dev, TX_DTX_IDX3, 0);
395
396 rt2x00pci_register_write(rt2x00dev, TX_BASE_PTR4, 0);
397 rt2x00pci_register_write(rt2x00dev, TX_MAX_CNT4, 0);
398 rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX4, 0);
399 rt2x00pci_register_write(rt2x00dev, TX_DTX_IDX4, 0);
400
401 rt2x00pci_register_write(rt2x00dev, TX_BASE_PTR5, 0);
402 rt2x00pci_register_write(rt2x00dev, TX_MAX_CNT5, 0);
403 rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX5, 0);
404 rt2x00pci_register_write(rt2x00dev, TX_DTX_IDX5, 0);
405
406 entry_priv = rt2x00dev->rx->entries[0].priv_data;
407 rt2x00pci_register_write(rt2x00dev, RX_BASE_PTR, entry_priv->desc_dma);
408 rt2x00pci_register_write(rt2x00dev, RX_MAX_CNT,
409 rt2x00dev->rx[0].limit);
410 rt2x00pci_register_write(rt2x00dev, RX_CRX_IDX,
411 rt2x00dev->rx[0].limit - 1);
412 rt2x00pci_register_write(rt2x00dev, RX_DRX_IDX, 0);
413
414 rt2800_disable_wpdma(rt2x00dev);
415
416 rt2x00pci_register_write(rt2x00dev, DELAY_INT_CFG, 0);
417
418 return 0;
419 }
420
421 /*
422 * Device state switch handlers.
423 */
424 static void rt2800pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
425 enum dev_state state)
426 {
427 u32 reg;
428 unsigned long flags;
429
430 /*
431 * When interrupts are being enabled, the interrupt registers
432 * should clear the register to assure a clean state.
433 */
434 if (state == STATE_RADIO_IRQ_ON) {
435 rt2x00pci_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
436 rt2x00pci_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
437 }
438
439 spin_lock_irqsave(&rt2x00dev->irqmask_lock, flags);
440 reg = 0;
441 if (state == STATE_RADIO_IRQ_ON) {
442 rt2x00_set_field32(&reg, INT_MASK_CSR_RX_DONE, 1);
443 rt2x00_set_field32(&reg, INT_MASK_CSR_TBTT, 1);
444 rt2x00_set_field32(&reg, INT_MASK_CSR_PRE_TBTT, 1);
445 rt2x00_set_field32(&reg, INT_MASK_CSR_TX_FIFO_STATUS, 1);
446 rt2x00_set_field32(&reg, INT_MASK_CSR_AUTO_WAKEUP, 1);
447 }
448 rt2x00pci_register_write(rt2x00dev, INT_MASK_CSR, reg);
449 spin_unlock_irqrestore(&rt2x00dev->irqmask_lock, flags);
450
451 if (state == STATE_RADIO_IRQ_OFF) {
452 /*
453 * Wait for possibly running tasklets to finish.
454 */
455 tasklet_kill(&rt2x00dev->txstatus_tasklet);
456 tasklet_kill(&rt2x00dev->rxdone_tasklet);
457 tasklet_kill(&rt2x00dev->autowake_tasklet);
458 tasklet_kill(&rt2x00dev->tbtt_tasklet);
459 tasklet_kill(&rt2x00dev->pretbtt_tasklet);
460 }
461 }
462
463 static int rt2800pci_init_registers(struct rt2x00_dev *rt2x00dev)
464 {
465 u32 reg;
466
467 /*
468 * Reset DMA indexes
469 */
470 rt2x00pci_register_read(rt2x00dev, WPDMA_RST_IDX, &reg);
471 rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX0, 1);
472 rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX1, 1);
473 rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX2, 1);
474 rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX3, 1);
475 rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX4, 1);
476 rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX5, 1);
477 rt2x00_set_field32(&reg, WPDMA_RST_IDX_DRX_IDX0, 1);
478 rt2x00pci_register_write(rt2x00dev, WPDMA_RST_IDX, reg);
479
480 rt2x00pci_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e1f);
481 rt2x00pci_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e00);
482
483 if (rt2x00_is_pcie(rt2x00dev) &&
484 (rt2x00_rt(rt2x00dev, RT3572) ||
485 rt2x00_rt(rt2x00dev, RT5390) ||
486 rt2x00_rt(rt2x00dev, RT5392))) {
487 rt2x00pci_register_read(rt2x00dev, AUX_CTRL, &reg);
488 rt2x00_set_field32(&reg, AUX_CTRL_FORCE_PCIE_CLK, 1);
489 rt2x00_set_field32(&reg, AUX_CTRL_WAKE_PCIE_EN, 1);
490 rt2x00pci_register_write(rt2x00dev, AUX_CTRL, reg);
491 }
492
493 rt2x00pci_register_write(rt2x00dev, PWR_PIN_CFG, 0x00000003);
494
495 reg = 0;
496 rt2x00_set_field32(&reg, MAC_SYS_CTRL_RESET_CSR, 1);
497 rt2x00_set_field32(&reg, MAC_SYS_CTRL_RESET_BBP, 1);
498 rt2x00pci_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
499
500 rt2x00pci_register_write(rt2x00dev, MAC_SYS_CTRL, 0x00000000);
501
502 return 0;
503 }
504
505 static int rt2800pci_enable_radio(struct rt2x00_dev *rt2x00dev)
506 {
507 int retval;
508
509 /* Wait for DMA, ignore error until we initialize queues. */
510 rt2800_wait_wpdma_ready(rt2x00dev);
511
512 if (unlikely(rt2800pci_init_queues(rt2x00dev)))
513 return -EIO;
514
515 retval = rt2800_enable_radio(rt2x00dev);
516 if (retval)
517 return retval;
518
519 /* After resume MCU_BOOT_SIGNAL will trash these. */
520 rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_STATUS, ~0);
521 rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CID, ~0);
522
523 rt2800_mcu_request(rt2x00dev, MCU_SLEEP, TOKEN_RADIO_OFF, 0xff, 0x02);
524 rt2800pci_mcu_status(rt2x00dev, TOKEN_RADIO_OFF);
525
526 rt2800_mcu_request(rt2x00dev, MCU_WAKEUP, TOKEN_WAKEUP, 0, 0);
527 rt2800pci_mcu_status(rt2x00dev, TOKEN_WAKEUP);
528
529 return retval;
530 }
531
532 static void rt2800pci_disable_radio(struct rt2x00_dev *rt2x00dev)
533 {
534 if (rt2x00_is_soc(rt2x00dev)) {
535 rt2800_disable_radio(rt2x00dev);
536 rt2x00pci_register_write(rt2x00dev, PWR_PIN_CFG, 0);
537 rt2x00pci_register_write(rt2x00dev, TX_PIN_CFG, 0);
538 }
539 }
540
541 static int rt2800pci_set_state(struct rt2x00_dev *rt2x00dev,
542 enum dev_state state)
543 {
544 if (state == STATE_AWAKE) {
545 rt2800_mcu_request(rt2x00dev, MCU_WAKEUP, TOKEN_WAKEUP,
546 0, 0x02);
547 rt2800pci_mcu_status(rt2x00dev, TOKEN_WAKEUP);
548 } else if (state == STATE_SLEEP) {
549 rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_STATUS,
550 0xffffffff);
551 rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CID,
552 0xffffffff);
553 rt2800_mcu_request(rt2x00dev, MCU_SLEEP, TOKEN_SLEEP,
554 0xff, 0x01);
555 }
556
557 return 0;
558 }
559
560 static int rt2800pci_set_device_state(struct rt2x00_dev *rt2x00dev,
561 enum dev_state state)
562 {
563 int retval = 0;
564
565 switch (state) {
566 case STATE_RADIO_ON:
567 retval = rt2800pci_enable_radio(rt2x00dev);
568 break;
569 case STATE_RADIO_OFF:
570 /*
571 * After the radio has been disabled, the device should
572 * be put to sleep for powersaving.
573 */
574 rt2800pci_disable_radio(rt2x00dev);
575 rt2800pci_set_state(rt2x00dev, STATE_SLEEP);
576 break;
577 case STATE_RADIO_IRQ_ON:
578 case STATE_RADIO_IRQ_OFF:
579 rt2800pci_toggle_irq(rt2x00dev, state);
580 break;
581 case STATE_DEEP_SLEEP:
582 case STATE_SLEEP:
583 case STATE_STANDBY:
584 case STATE_AWAKE:
585 retval = rt2800pci_set_state(rt2x00dev, state);
586 break;
587 default:
588 retval = -ENOTSUPP;
589 break;
590 }
591
592 if (unlikely(retval))
593 ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
594 state, retval);
595
596 return retval;
597 }
598
599 /*
600 * TX descriptor initialization
601 */
602 static __le32 *rt2800pci_get_txwi(struct queue_entry *entry)
603 {
604 return (__le32 *) entry->skb->data;
605 }
606
607 static void rt2800pci_write_tx_desc(struct queue_entry *entry,
608 struct txentry_desc *txdesc)
609 {
610 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
611 struct queue_entry_priv_pci *entry_priv = entry->priv_data;
612 __le32 *txd = entry_priv->desc;
613 u32 word;
614
615 /*
616 * The buffers pointed by SD_PTR0/SD_LEN0 and SD_PTR1/SD_LEN1
617 * must contains a TXWI structure + 802.11 header + padding + 802.11
618 * data. We choose to have SD_PTR0/SD_LEN0 only contains TXWI and
619 * SD_PTR1/SD_LEN1 contains 802.11 header + padding + 802.11
620 * data. It means that LAST_SEC0 is always 0.
621 */
622
623 /*
624 * Initialize TX descriptor
625 */
626 word = 0;
627 rt2x00_set_field32(&word, TXD_W0_SD_PTR0, skbdesc->skb_dma);
628 rt2x00_desc_write(txd, 0, word);
629
630 word = 0;
631 rt2x00_set_field32(&word, TXD_W1_SD_LEN1, entry->skb->len);
632 rt2x00_set_field32(&word, TXD_W1_LAST_SEC1,
633 !test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
634 rt2x00_set_field32(&word, TXD_W1_BURST,
635 test_bit(ENTRY_TXD_BURST, &txdesc->flags));
636 rt2x00_set_field32(&word, TXD_W1_SD_LEN0, TXWI_DESC_SIZE);
637 rt2x00_set_field32(&word, TXD_W1_LAST_SEC0, 0);
638 rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 0);
639 rt2x00_desc_write(txd, 1, word);
640
641 word = 0;
642 rt2x00_set_field32(&word, TXD_W2_SD_PTR1,
643 skbdesc->skb_dma + TXWI_DESC_SIZE);
644 rt2x00_desc_write(txd, 2, word);
645
646 word = 0;
647 rt2x00_set_field32(&word, TXD_W3_WIV,
648 !test_bit(ENTRY_TXD_ENCRYPT_IV, &txdesc->flags));
649 rt2x00_set_field32(&word, TXD_W3_QSEL, 2);
650 rt2x00_desc_write(txd, 3, word);
651
652 /*
653 * Register descriptor details in skb frame descriptor.
654 */
655 skbdesc->desc = txd;
656 skbdesc->desc_len = TXD_DESC_SIZE;
657 }
658
659 /*
660 * RX control handlers
661 */
662 static void rt2800pci_fill_rxdone(struct queue_entry *entry,
663 struct rxdone_entry_desc *rxdesc)
664 {
665 struct queue_entry_priv_pci *entry_priv = entry->priv_data;
666 __le32 *rxd = entry_priv->desc;
667 u32 word;
668
669 rt2x00_desc_read(rxd, 3, &word);
670
671 if (rt2x00_get_field32(word, RXD_W3_CRC_ERROR))
672 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
673
674 /*
675 * Unfortunately we don't know the cipher type used during
676 * decryption. This prevents us from correct providing
677 * correct statistics through debugfs.
678 */
679 rxdesc->cipher_status = rt2x00_get_field32(word, RXD_W3_CIPHER_ERROR);
680
681 if (rt2x00_get_field32(word, RXD_W3_DECRYPTED)) {
682 /*
683 * Hardware has stripped IV/EIV data from 802.11 frame during
684 * decryption. Unfortunately the descriptor doesn't contain
685 * any fields with the EIV/IV data either, so they can't
686 * be restored by rt2x00lib.
687 */
688 rxdesc->flags |= RX_FLAG_IV_STRIPPED;
689
690 /*
691 * The hardware has already checked the Michael Mic and has
692 * stripped it from the frame. Signal this to mac80211.
693 */
694 rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;
695
696 if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
697 rxdesc->flags |= RX_FLAG_DECRYPTED;
698 else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
699 rxdesc->flags |= RX_FLAG_MMIC_ERROR;
700 }
701
702 if (rt2x00_get_field32(word, RXD_W3_MY_BSS))
703 rxdesc->dev_flags |= RXDONE_MY_BSS;
704
705 if (rt2x00_get_field32(word, RXD_W3_L2PAD))
706 rxdesc->dev_flags |= RXDONE_L2PAD;
707
708 /*
709 * Process the RXWI structure that is at the start of the buffer.
710 */
711 rt2800_process_rxwi(entry, rxdesc);
712 }
713
714 /*
715 * Interrupt functions.
716 */
717 static void rt2800pci_wakeup(struct rt2x00_dev *rt2x00dev)
718 {
719 struct ieee80211_conf conf = { .flags = 0 };
720 struct rt2x00lib_conf libconf = { .conf = &conf };
721
722 rt2800_config(rt2x00dev, &libconf, IEEE80211_CONF_CHANGE_PS);
723 }
724
725 static bool rt2800pci_txdone(struct rt2x00_dev *rt2x00dev)
726 {
727 struct data_queue *queue;
728 struct queue_entry *entry;
729 u32 status;
730 u8 qid;
731 int max_tx_done = 16;
732
733 while (kfifo_get(&rt2x00dev->txstatus_fifo, &status)) {
734 qid = rt2x00_get_field32(status, TX_STA_FIFO_PID_QUEUE);
735 if (unlikely(qid >= QID_RX)) {
736 /*
737 * Unknown queue, this shouldn't happen. Just drop
738 * this tx status.
739 */
740 WARNING(rt2x00dev, "Got TX status report with "
741 "unexpected pid %u, dropping\n", qid);
742 break;
743 }
744
745 queue = rt2x00queue_get_tx_queue(rt2x00dev, qid);
746 if (unlikely(queue == NULL)) {
747 /*
748 * The queue is NULL, this shouldn't happen. Stop
749 * processing here and drop the tx status
750 */
751 WARNING(rt2x00dev, "Got TX status for an unavailable "
752 "queue %u, dropping\n", qid);
753 break;
754 }
755
756 if (unlikely(rt2x00queue_empty(queue))) {
757 /*
758 * The queue is empty. Stop processing here
759 * and drop the tx status.
760 */
761 WARNING(rt2x00dev, "Got TX status for an empty "
762 "queue %u, dropping\n", qid);
763 break;
764 }
765
766 entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
767 rt2800_txdone_entry(entry, status, rt2800pci_get_txwi(entry));
768
769 if (--max_tx_done == 0)
770 break;
771 }
772
773 return !max_tx_done;
774 }
775
776 static inline void rt2800pci_enable_interrupt(struct rt2x00_dev *rt2x00dev,
777 struct rt2x00_field32 irq_field)
778 {
779 u32 reg;
780
781 /*
782 * Enable a single interrupt. The interrupt mask register
783 * access needs locking.
784 */
785 spin_lock_irq(&rt2x00dev->irqmask_lock);
786 rt2x00pci_register_read(rt2x00dev, INT_MASK_CSR, &reg);
787 rt2x00_set_field32(&reg, irq_field, 1);
788 rt2x00pci_register_write(rt2x00dev, INT_MASK_CSR, reg);
789 spin_unlock_irq(&rt2x00dev->irqmask_lock);
790 }
791
792 static void rt2800pci_txstatus_tasklet(unsigned long data)
793 {
794 struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
795 if (rt2800pci_txdone(rt2x00dev))
796 tasklet_schedule(&rt2x00dev->txstatus_tasklet);
797
798 /*
799 * No need to enable the tx status interrupt here as we always
800 * leave it enabled to minimize the possibility of a tx status
801 * register overflow. See comment in interrupt handler.
802 */
803 }
804
805 static void rt2800pci_pretbtt_tasklet(unsigned long data)
806 {
807 struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
808 rt2x00lib_pretbtt(rt2x00dev);
809 if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
810 rt2800pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_PRE_TBTT);
811 }
812
813 static void rt2800pci_tbtt_tasklet(unsigned long data)
814 {
815 struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
816 struct rt2800_drv_data *drv_data = rt2x00dev->drv_data;
817 u32 reg;
818
819 rt2x00lib_beacondone(rt2x00dev);
820
821 if (rt2x00dev->intf_ap_count) {
822 /*
823 * The rt2800pci hardware tbtt timer is off by 1us per tbtt
824 * causing beacon skew and as a result causing problems with
825 * some powersaving clients over time. Shorten the beacon
826 * interval every 64 beacons by 64us to mitigate this effect.
827 */
828 if (drv_data->tbtt_tick == (BCN_TBTT_OFFSET - 2)) {
829 rt2x00pci_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
830 rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_INTERVAL,
831 (rt2x00dev->beacon_int * 16) - 1);
832 rt2x00pci_register_write(rt2x00dev, BCN_TIME_CFG, reg);
833 } else if (drv_data->tbtt_tick == (BCN_TBTT_OFFSET - 1)) {
834 rt2x00pci_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
835 rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_INTERVAL,
836 (rt2x00dev->beacon_int * 16));
837 rt2x00pci_register_write(rt2x00dev, BCN_TIME_CFG, reg);
838 }
839 drv_data->tbtt_tick++;
840 drv_data->tbtt_tick %= BCN_TBTT_OFFSET;
841 }
842
843 if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
844 rt2800pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_TBTT);
845 }
846
847 static void rt2800pci_rxdone_tasklet(unsigned long data)
848 {
849 struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
850 if (rt2x00pci_rxdone(rt2x00dev))
851 tasklet_schedule(&rt2x00dev->rxdone_tasklet);
852 else if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
853 rt2800pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_RX_DONE);
854 }
855
856 static void rt2800pci_autowake_tasklet(unsigned long data)
857 {
858 struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
859 rt2800pci_wakeup(rt2x00dev);
860 if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
861 rt2800pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_AUTO_WAKEUP);
862 }
863
864 static void rt2800pci_txstatus_interrupt(struct rt2x00_dev *rt2x00dev)
865 {
866 u32 status;
867 int i;
868
869 /*
870 * The TX_FIFO_STATUS interrupt needs special care. We should
871 * read TX_STA_FIFO but we should do it immediately as otherwise
872 * the register can overflow and we would lose status reports.
873 *
874 * Hence, read the TX_STA_FIFO register and copy all tx status
875 * reports into a kernel FIFO which is handled in the txstatus
876 * tasklet. We use a tasklet to process the tx status reports
877 * because we can schedule the tasklet multiple times (when the
878 * interrupt fires again during tx status processing).
879 *
880 * Furthermore we don't disable the TX_FIFO_STATUS
881 * interrupt here but leave it enabled so that the TX_STA_FIFO
882 * can also be read while the tx status tasklet gets executed.
883 *
884 * Since we have only one producer and one consumer we don't
885 * need to lock the kfifo.
886 */
887 for (i = 0; i < rt2x00dev->ops->tx->entry_num; i++) {
888 rt2x00pci_register_read(rt2x00dev, TX_STA_FIFO, &status);
889
890 if (!rt2x00_get_field32(status, TX_STA_FIFO_VALID))
891 break;
892
893 if (!kfifo_put(&rt2x00dev->txstatus_fifo, &status)) {
894 WARNING(rt2x00dev, "TX status FIFO overrun,"
895 "drop tx status report.\n");
896 break;
897 }
898 }
899
900 /* Schedule the tasklet for processing the tx status. */
901 tasklet_schedule(&rt2x00dev->txstatus_tasklet);
902 }
903
904 static irqreturn_t rt2800pci_interrupt(int irq, void *dev_instance)
905 {
906 struct rt2x00_dev *rt2x00dev = dev_instance;
907 u32 reg, mask;
908
909 /* Read status and ACK all interrupts */
910 rt2x00pci_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
911 rt2x00pci_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
912
913 if (!reg)
914 return IRQ_NONE;
915
916 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
917 return IRQ_HANDLED;
918
919 /*
920 * Since INT_MASK_CSR and INT_SOURCE_CSR use the same bits
921 * for interrupts and interrupt masks we can just use the value of
922 * INT_SOURCE_CSR to create the interrupt mask.
923 */
924 mask = ~reg;
925
926 if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TX_FIFO_STATUS)) {
927 rt2800pci_txstatus_interrupt(rt2x00dev);
928 /*
929 * Never disable the TX_FIFO_STATUS interrupt.
930 */
931 rt2x00_set_field32(&mask, INT_MASK_CSR_TX_FIFO_STATUS, 1);
932 }
933
934 if (rt2x00_get_field32(reg, INT_SOURCE_CSR_PRE_TBTT))
935 tasklet_hi_schedule(&rt2x00dev->pretbtt_tasklet);
936
937 if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TBTT))
938 tasklet_hi_schedule(&rt2x00dev->tbtt_tasklet);
939
940 if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RX_DONE))
941 tasklet_schedule(&rt2x00dev->rxdone_tasklet);
942
943 if (rt2x00_get_field32(reg, INT_SOURCE_CSR_AUTO_WAKEUP))
944 tasklet_schedule(&rt2x00dev->autowake_tasklet);
945
946 /*
947 * Disable all interrupts for which a tasklet was scheduled right now,
948 * the tasklet will reenable the appropriate interrupts.
949 */
950 spin_lock(&rt2x00dev->irqmask_lock);
951 rt2x00pci_register_read(rt2x00dev, INT_MASK_CSR, &reg);
952 reg &= mask;
953 rt2x00pci_register_write(rt2x00dev, INT_MASK_CSR, reg);
954 spin_unlock(&rt2x00dev->irqmask_lock);
955
956 return IRQ_HANDLED;
957 }
958
959 /*
960 * Device probe functions.
961 */
962 static int rt2800pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
963 {
964 /*
965 * Read EEPROM into buffer
966 */
967 if (rt2x00_is_soc(rt2x00dev))
968 rt2800pci_read_eeprom_soc(rt2x00dev);
969 else if (rt2800pci_efuse_detect(rt2x00dev))
970 rt2800pci_read_eeprom_efuse(rt2x00dev);
971 else
972 rt2800pci_read_eeprom_pci(rt2x00dev);
973
974 return rt2800_validate_eeprom(rt2x00dev);
975 }
976
977 static int rt2800pci_probe_hw(struct rt2x00_dev *rt2x00dev)
978 {
979 int retval;
980
981 /*
982 * Allocate eeprom data.
983 */
984 retval = rt2800pci_validate_eeprom(rt2x00dev);
985 if (retval)
986 return retval;
987
988 retval = rt2800_init_eeprom(rt2x00dev);
989 if (retval)
990 return retval;
991
992 /*
993 * Initialize hw specifications.
994 */
995 retval = rt2800_probe_hw_mode(rt2x00dev);
996 if (retval)
997 return retval;
998
999 /*
1000 * This device has multiple filters for control frames
1001 * and has a separate filter for PS Poll frames.
1002 */
1003 __set_bit(CAPABILITY_CONTROL_FILTERS, &rt2x00dev->cap_flags);
1004 __set_bit(CAPABILITY_CONTROL_FILTER_PSPOLL, &rt2x00dev->cap_flags);
1005
1006 /*
1007 * This device has a pre tbtt interrupt and thus fetches
1008 * a new beacon directly prior to transmission.
1009 */
1010 __set_bit(CAPABILITY_PRE_TBTT_INTERRUPT, &rt2x00dev->cap_flags);
1011
1012 /*
1013 * This device requires firmware.
1014 */
1015 if (!rt2x00_is_soc(rt2x00dev))
1016 __set_bit(REQUIRE_FIRMWARE, &rt2x00dev->cap_flags);
1017 __set_bit(REQUIRE_DMA, &rt2x00dev->cap_flags);
1018 __set_bit(REQUIRE_L2PAD, &rt2x00dev->cap_flags);
1019 __set_bit(REQUIRE_TXSTATUS_FIFO, &rt2x00dev->cap_flags);
1020 __set_bit(REQUIRE_TASKLET_CONTEXT, &rt2x00dev->cap_flags);
1021 if (!modparam_nohwcrypt)
1022 __set_bit(CAPABILITY_HW_CRYPTO, &rt2x00dev->cap_flags);
1023 __set_bit(CAPABILITY_LINK_TUNING, &rt2x00dev->cap_flags);
1024 __set_bit(REQUIRE_HT_TX_DESC, &rt2x00dev->cap_flags);
1025
1026 /*
1027 * Set the rssi offset.
1028 */
1029 rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
1030
1031 return 0;
1032 }
1033
1034 static const struct ieee80211_ops rt2800pci_mac80211_ops = {
1035 .tx = rt2x00mac_tx,
1036 .start = rt2x00mac_start,
1037 .stop = rt2x00mac_stop,
1038 .add_interface = rt2x00mac_add_interface,
1039 .remove_interface = rt2x00mac_remove_interface,
1040 .config = rt2x00mac_config,
1041 .configure_filter = rt2x00mac_configure_filter,
1042 .set_key = rt2x00mac_set_key,
1043 .sw_scan_start = rt2x00mac_sw_scan_start,
1044 .sw_scan_complete = rt2x00mac_sw_scan_complete,
1045 .get_stats = rt2x00mac_get_stats,
1046 .get_tkip_seq = rt2800_get_tkip_seq,
1047 .set_rts_threshold = rt2800_set_rts_threshold,
1048 .sta_add = rt2x00mac_sta_add,
1049 .sta_remove = rt2x00mac_sta_remove,
1050 .bss_info_changed = rt2x00mac_bss_info_changed,
1051 .conf_tx = rt2800_conf_tx,
1052 .get_tsf = rt2800_get_tsf,
1053 .rfkill_poll = rt2x00mac_rfkill_poll,
1054 .ampdu_action = rt2800_ampdu_action,
1055 .flush = rt2x00mac_flush,
1056 .get_survey = rt2800_get_survey,
1057 .get_ringparam = rt2x00mac_get_ringparam,
1058 .tx_frames_pending = rt2x00mac_tx_frames_pending,
1059 };
1060
1061 static const struct rt2800_ops rt2800pci_rt2800_ops = {
1062 .register_read = rt2x00pci_register_read,
1063 .register_read_lock = rt2x00pci_register_read, /* same for PCI */
1064 .register_write = rt2x00pci_register_write,
1065 .register_write_lock = rt2x00pci_register_write, /* same for PCI */
1066 .register_multiread = rt2x00pci_register_multiread,
1067 .register_multiwrite = rt2x00pci_register_multiwrite,
1068 .regbusy_read = rt2x00pci_regbusy_read,
1069 .drv_write_firmware = rt2800pci_write_firmware,
1070 .drv_init_registers = rt2800pci_init_registers,
1071 .drv_get_txwi = rt2800pci_get_txwi,
1072 };
1073
1074 static const struct rt2x00lib_ops rt2800pci_rt2x00_ops = {
1075 .irq_handler = rt2800pci_interrupt,
1076 .txstatus_tasklet = rt2800pci_txstatus_tasklet,
1077 .pretbtt_tasklet = rt2800pci_pretbtt_tasklet,
1078 .tbtt_tasklet = rt2800pci_tbtt_tasklet,
1079 .rxdone_tasklet = rt2800pci_rxdone_tasklet,
1080 .autowake_tasklet = rt2800pci_autowake_tasklet,
1081 .probe_hw = rt2800pci_probe_hw,
1082 .get_firmware_name = rt2800pci_get_firmware_name,
1083 .check_firmware = rt2800_check_firmware,
1084 .load_firmware = rt2800_load_firmware,
1085 .initialize = rt2x00pci_initialize,
1086 .uninitialize = rt2x00pci_uninitialize,
1087 .get_entry_state = rt2800pci_get_entry_state,
1088 .clear_entry = rt2800pci_clear_entry,
1089 .set_device_state = rt2800pci_set_device_state,
1090 .rfkill_poll = rt2800_rfkill_poll,
1091 .link_stats = rt2800_link_stats,
1092 .reset_tuner = rt2800_reset_tuner,
1093 .link_tuner = rt2800_link_tuner,
1094 .gain_calibration = rt2800_gain_calibration,
1095 .vco_calibration = rt2800_vco_calibration,
1096 .start_queue = rt2800pci_start_queue,
1097 .kick_queue = rt2800pci_kick_queue,
1098 .stop_queue = rt2800pci_stop_queue,
1099 .flush_queue = rt2x00pci_flush_queue,
1100 .write_tx_desc = rt2800pci_write_tx_desc,
1101 .write_tx_data = rt2800_write_tx_data,
1102 .write_beacon = rt2800_write_beacon,
1103 .clear_beacon = rt2800_clear_beacon,
1104 .fill_rxdone = rt2800pci_fill_rxdone,
1105 .config_shared_key = rt2800_config_shared_key,
1106 .config_pairwise_key = rt2800_config_pairwise_key,
1107 .config_filter = rt2800_config_filter,
1108 .config_intf = rt2800_config_intf,
1109 .config_erp = rt2800_config_erp,
1110 .config_ant = rt2800_config_ant,
1111 .config = rt2800_config,
1112 .sta_add = rt2800_sta_add,
1113 .sta_remove = rt2800_sta_remove,
1114 };
1115
1116 static const struct data_queue_desc rt2800pci_queue_rx = {
1117 .entry_num = 128,
1118 .data_size = AGGREGATION_SIZE,
1119 .desc_size = RXD_DESC_SIZE,
1120 .priv_size = sizeof(struct queue_entry_priv_pci),
1121 };
1122
1123 static const struct data_queue_desc rt2800pci_queue_tx = {
1124 .entry_num = 64,
1125 .data_size = AGGREGATION_SIZE,
1126 .desc_size = TXD_DESC_SIZE,
1127 .priv_size = sizeof(struct queue_entry_priv_pci),
1128 };
1129
1130 static const struct data_queue_desc rt2800pci_queue_bcn = {
1131 .entry_num = 8,
1132 .data_size = 0, /* No DMA required for beacons */
1133 .desc_size = TXWI_DESC_SIZE,
1134 .priv_size = sizeof(struct queue_entry_priv_pci),
1135 };
1136
1137 static const struct rt2x00_ops rt2800pci_ops = {
1138 .name = KBUILD_MODNAME,
1139 .drv_data_size = sizeof(struct rt2800_drv_data),
1140 .max_sta_intf = 1,
1141 .max_ap_intf = 8,
1142 .eeprom_size = EEPROM_SIZE,
1143 .rf_size = RF_SIZE,
1144 .tx_queues = NUM_TX_QUEUES,
1145 .extra_tx_headroom = TXWI_DESC_SIZE,
1146 .rx = &rt2800pci_queue_rx,
1147 .tx = &rt2800pci_queue_tx,
1148 .bcn = &rt2800pci_queue_bcn,
1149 .lib = &rt2800pci_rt2x00_ops,
1150 .drv = &rt2800pci_rt2800_ops,
1151 .hw = &rt2800pci_mac80211_ops,
1152 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
1153 .debugfs = &rt2800_rt2x00debug,
1154 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1155 };
1156
1157 /*
1158 * RT2800pci module information.
1159 */
1160 #ifdef CONFIG_PCI
1161 static DEFINE_PCI_DEVICE_TABLE(rt2800pci_device_table) = {
1162 { PCI_DEVICE(0x1814, 0x0601) },
1163 { PCI_DEVICE(0x1814, 0x0681) },
1164 { PCI_DEVICE(0x1814, 0x0701) },
1165 { PCI_DEVICE(0x1814, 0x0781) },
1166 { PCI_DEVICE(0x1814, 0x3090) },
1167 { PCI_DEVICE(0x1814, 0x3091) },
1168 { PCI_DEVICE(0x1814, 0x3092) },
1169 { PCI_DEVICE(0x1432, 0x7708) },
1170 { PCI_DEVICE(0x1432, 0x7727) },
1171 { PCI_DEVICE(0x1432, 0x7728) },
1172 { PCI_DEVICE(0x1432, 0x7738) },
1173 { PCI_DEVICE(0x1432, 0x7748) },
1174 { PCI_DEVICE(0x1432, 0x7758) },
1175 { PCI_DEVICE(0x1432, 0x7768) },
1176 { PCI_DEVICE(0x1462, 0x891a) },
1177 { PCI_DEVICE(0x1a3b, 0x1059) },
1178 #ifdef CONFIG_RT2800PCI_RT33XX
1179 { PCI_DEVICE(0x1814, 0x3390) },
1180 #endif
1181 #ifdef CONFIG_RT2800PCI_RT35XX
1182 { PCI_DEVICE(0x1432, 0x7711) },
1183 { PCI_DEVICE(0x1432, 0x7722) },
1184 { PCI_DEVICE(0x1814, 0x3060) },
1185 { PCI_DEVICE(0x1814, 0x3062) },
1186 { PCI_DEVICE(0x1814, 0x3562) },
1187 { PCI_DEVICE(0x1814, 0x3592) },
1188 { PCI_DEVICE(0x1814, 0x3593) },
1189 #endif
1190 #ifdef CONFIG_RT2800PCI_RT53XX
1191 { PCI_DEVICE(0x1814, 0x5362) },
1192 { PCI_DEVICE(0x1814, 0x5390) },
1193 { PCI_DEVICE(0x1814, 0x5392) },
1194 { PCI_DEVICE(0x1814, 0x539a) },
1195 { PCI_DEVICE(0x1814, 0x539f) },
1196 #endif
1197 { 0, }
1198 };
1199 #endif /* CONFIG_PCI */
1200
1201 MODULE_AUTHOR(DRV_PROJECT);
1202 MODULE_VERSION(DRV_VERSION);
1203 MODULE_DESCRIPTION("Ralink RT2800 PCI & PCMCIA Wireless LAN driver.");
1204 MODULE_SUPPORTED_DEVICE("Ralink RT2860 PCI & PCMCIA chipset based cards");
1205 #ifdef CONFIG_PCI
1206 MODULE_FIRMWARE(FIRMWARE_RT2860);
1207 MODULE_DEVICE_TABLE(pci, rt2800pci_device_table);
1208 #endif /* CONFIG_PCI */
1209 MODULE_LICENSE("GPL");
1210
1211 #if defined(CONFIG_RALINK_RT288X) || defined(CONFIG_RALINK_RT305X)
1212 static int rt2800soc_probe(struct platform_device *pdev)
1213 {
1214 return rt2x00soc_probe(pdev, &rt2800pci_ops);
1215 }
1216
1217 static struct platform_driver rt2800soc_driver = {
1218 .driver = {
1219 .name = "rt2800_wmac",
1220 .owner = THIS_MODULE,
1221 .mod_name = KBUILD_MODNAME,
1222 },
1223 .probe = rt2800soc_probe,
1224 .remove = __devexit_p(rt2x00soc_remove),
1225 .suspend = rt2x00soc_suspend,
1226 .resume = rt2x00soc_resume,
1227 };
1228 #endif /* CONFIG_RALINK_RT288X || CONFIG_RALINK_RT305X */
1229
1230 #ifdef CONFIG_PCI
1231 static int rt2800pci_probe(struct pci_dev *pci_dev,
1232 const struct pci_device_id *id)
1233 {
1234 return rt2x00pci_probe(pci_dev, &rt2800pci_ops);
1235 }
1236
1237 static struct pci_driver rt2800pci_driver = {
1238 .name = KBUILD_MODNAME,
1239 .id_table = rt2800pci_device_table,
1240 .probe = rt2800pci_probe,
1241 .remove = __devexit_p(rt2x00pci_remove),
1242 .suspend = rt2x00pci_suspend,
1243 .resume = rt2x00pci_resume,
1244 };
1245 #endif /* CONFIG_PCI */
1246
1247 static int __init rt2800pci_init(void)
1248 {
1249 int ret = 0;
1250
1251 #if defined(CONFIG_RALINK_RT288X) || defined(CONFIG_RALINK_RT305X)
1252 ret = platform_driver_register(&rt2800soc_driver);
1253 if (ret)
1254 return ret;
1255 #endif
1256 #ifdef CONFIG_PCI
1257 ret = pci_register_driver(&rt2800pci_driver);
1258 if (ret) {
1259 #if defined(CONFIG_RALINK_RT288X) || defined(CONFIG_RALINK_RT305X)
1260 platform_driver_unregister(&rt2800soc_driver);
1261 #endif
1262 return ret;
1263 }
1264 #endif
1265
1266 return ret;
1267 }
1268
1269 static void __exit rt2800pci_exit(void)
1270 {
1271 #ifdef CONFIG_PCI
1272 pci_unregister_driver(&rt2800pci_driver);
1273 #endif
1274 #if defined(CONFIG_RALINK_RT288X) || defined(CONFIG_RALINK_RT305X)
1275 platform_driver_unregister(&rt2800soc_driver);
1276 #endif
1277 }
1278
1279 module_init(rt2800pci_init);
1280 module_exit(rt2800pci_exit);
This page took 0.056694 seconds and 5 git commands to generate.