Merge tag 'dt' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc
[deliverable/linux.git] / drivers / net / wireless / rt2x00 / rt2800pci.c
1 /*
2 Copyright (C) 2009 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
3 Copyright (C) 2009 Alban Browaeys <prahal@yahoo.com>
4 Copyright (C) 2009 Felix Fietkau <nbd@openwrt.org>
5 Copyright (C) 2009 Luis Correia <luis.f.correia@gmail.com>
6 Copyright (C) 2009 Mattias Nissler <mattias.nissler@gmx.de>
7 Copyright (C) 2009 Mark Asselstine <asselsm@gmail.com>
8 Copyright (C) 2009 Xose Vazquez Perez <xose.vazquez@gmail.com>
9 Copyright (C) 2009 Bart Zolnierkiewicz <bzolnier@gmail.com>
10 <http://rt2x00.serialmonkey.com>
11
12 This program is free software; you can redistribute it and/or modify
13 it under the terms of the GNU General Public License as published by
14 the Free Software Foundation; either version 2 of the License, or
15 (at your option) any later version.
16
17 This program is distributed in the hope that it will be useful,
18 but WITHOUT ANY WARRANTY; without even the implied warranty of
19 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 GNU General Public License for more details.
21
22 You should have received a copy of the GNU General Public License
23 along with this program; if not, write to the
24 Free Software Foundation, Inc.,
25 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
26 */
27
28 /*
29 Module: rt2800pci
30 Abstract: rt2800pci device specific routines.
31 Supported chipsets: RT2800E & RT2800ED.
32 */
33
34 #include <linux/delay.h>
35 #include <linux/etherdevice.h>
36 #include <linux/init.h>
37 #include <linux/kernel.h>
38 #include <linux/module.h>
39 #include <linux/pci.h>
40 #include <linux/platform_device.h>
41 #include <linux/eeprom_93cx6.h>
42
43 #include "rt2x00.h"
44 #include "rt2x00pci.h"
45 #include "rt2x00soc.h"
46 #include "rt2800lib.h"
47 #include "rt2800.h"
48 #include "rt2800pci.h"
49
50 /*
51 * Allow hardware encryption to be disabled.
52 */
53 static bool modparam_nohwcrypt = false;
54 module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
55 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
56
57 static void rt2800pci_mcu_status(struct rt2x00_dev *rt2x00dev, const u8 token)
58 {
59 unsigned int i;
60 u32 reg;
61
62 /*
63 * SOC devices don't support MCU requests.
64 */
65 if (rt2x00_is_soc(rt2x00dev))
66 return;
67
68 for (i = 0; i < 200; i++) {
69 rt2x00pci_register_read(rt2x00dev, H2M_MAILBOX_CID, &reg);
70
71 if ((rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD0) == token) ||
72 (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD1) == token) ||
73 (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD2) == token) ||
74 (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD3) == token))
75 break;
76
77 udelay(REGISTER_BUSY_DELAY);
78 }
79
80 if (i == 200)
81 ERROR(rt2x00dev, "MCU request failed, no response from hardware\n");
82
83 rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_STATUS, ~0);
84 rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CID, ~0);
85 }
86
87 #if defined(CONFIG_RALINK_RT288X) || defined(CONFIG_RALINK_RT305X)
88 static void rt2800pci_read_eeprom_soc(struct rt2x00_dev *rt2x00dev)
89 {
90 void __iomem *base_addr = ioremap(0x1F040000, EEPROM_SIZE);
91
92 memcpy_fromio(rt2x00dev->eeprom, base_addr, EEPROM_SIZE);
93
94 iounmap(base_addr);
95 }
96 #else
97 static inline void rt2800pci_read_eeprom_soc(struct rt2x00_dev *rt2x00dev)
98 {
99 }
100 #endif /* CONFIG_RALINK_RT288X || CONFIG_RALINK_RT305X */
101
102 #ifdef CONFIG_PCI
103 static void rt2800pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
104 {
105 struct rt2x00_dev *rt2x00dev = eeprom->data;
106 u32 reg;
107
108 rt2x00pci_register_read(rt2x00dev, E2PROM_CSR, &reg);
109
110 eeprom->reg_data_in = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_IN);
111 eeprom->reg_data_out = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_OUT);
112 eeprom->reg_data_clock =
113 !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_CLOCK);
114 eeprom->reg_chip_select =
115 !!rt2x00_get_field32(reg, E2PROM_CSR_CHIP_SELECT);
116 }
117
118 static void rt2800pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
119 {
120 struct rt2x00_dev *rt2x00dev = eeprom->data;
121 u32 reg = 0;
122
123 rt2x00_set_field32(&reg, E2PROM_CSR_DATA_IN, !!eeprom->reg_data_in);
124 rt2x00_set_field32(&reg, E2PROM_CSR_DATA_OUT, !!eeprom->reg_data_out);
125 rt2x00_set_field32(&reg, E2PROM_CSR_DATA_CLOCK,
126 !!eeprom->reg_data_clock);
127 rt2x00_set_field32(&reg, E2PROM_CSR_CHIP_SELECT,
128 !!eeprom->reg_chip_select);
129
130 rt2x00pci_register_write(rt2x00dev, E2PROM_CSR, reg);
131 }
132
133 static void rt2800pci_read_eeprom_pci(struct rt2x00_dev *rt2x00dev)
134 {
135 struct eeprom_93cx6 eeprom;
136 u32 reg;
137
138 rt2x00pci_register_read(rt2x00dev, E2PROM_CSR, &reg);
139
140 eeprom.data = rt2x00dev;
141 eeprom.register_read = rt2800pci_eepromregister_read;
142 eeprom.register_write = rt2800pci_eepromregister_write;
143 switch (rt2x00_get_field32(reg, E2PROM_CSR_TYPE))
144 {
145 case 0:
146 eeprom.width = PCI_EEPROM_WIDTH_93C46;
147 break;
148 case 1:
149 eeprom.width = PCI_EEPROM_WIDTH_93C66;
150 break;
151 default:
152 eeprom.width = PCI_EEPROM_WIDTH_93C86;
153 break;
154 }
155 eeprom.reg_data_in = 0;
156 eeprom.reg_data_out = 0;
157 eeprom.reg_data_clock = 0;
158 eeprom.reg_chip_select = 0;
159
160 eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
161 EEPROM_SIZE / sizeof(u16));
162 }
163
164 static int rt2800pci_efuse_detect(struct rt2x00_dev *rt2x00dev)
165 {
166 return rt2800_efuse_detect(rt2x00dev);
167 }
168
169 static inline void rt2800pci_read_eeprom_efuse(struct rt2x00_dev *rt2x00dev)
170 {
171 rt2800_read_eeprom_efuse(rt2x00dev);
172 }
173 #else
174 static inline void rt2800pci_read_eeprom_pci(struct rt2x00_dev *rt2x00dev)
175 {
176 }
177
178 static inline int rt2800pci_efuse_detect(struct rt2x00_dev *rt2x00dev)
179 {
180 return 0;
181 }
182
183 static inline void rt2800pci_read_eeprom_efuse(struct rt2x00_dev *rt2x00dev)
184 {
185 }
186 #endif /* CONFIG_PCI */
187
188 /*
189 * Queue handlers.
190 */
191 static void rt2800pci_start_queue(struct data_queue *queue)
192 {
193 struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
194 u32 reg;
195
196 switch (queue->qid) {
197 case QID_RX:
198 rt2x00pci_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
199 rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX, 1);
200 rt2x00pci_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
201 break;
202 case QID_BEACON:
203 rt2x00pci_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
204 rt2x00_set_field32(&reg, BCN_TIME_CFG_TSF_TICKING, 1);
205 rt2x00_set_field32(&reg, BCN_TIME_CFG_TBTT_ENABLE, 1);
206 rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_GEN, 1);
207 rt2x00pci_register_write(rt2x00dev, BCN_TIME_CFG, reg);
208
209 rt2x00pci_register_read(rt2x00dev, INT_TIMER_EN, &reg);
210 rt2x00_set_field32(&reg, INT_TIMER_EN_PRE_TBTT_TIMER, 1);
211 rt2x00pci_register_write(rt2x00dev, INT_TIMER_EN, reg);
212 break;
213 default:
214 break;
215 }
216 }
217
218 static void rt2800pci_kick_queue(struct data_queue *queue)
219 {
220 struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
221 struct queue_entry *entry;
222
223 switch (queue->qid) {
224 case QID_AC_VO:
225 case QID_AC_VI:
226 case QID_AC_BE:
227 case QID_AC_BK:
228 entry = rt2x00queue_get_entry(queue, Q_INDEX);
229 rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX(queue->qid),
230 entry->entry_idx);
231 break;
232 case QID_MGMT:
233 entry = rt2x00queue_get_entry(queue, Q_INDEX);
234 rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX(5),
235 entry->entry_idx);
236 break;
237 default:
238 break;
239 }
240 }
241
242 static void rt2800pci_stop_queue(struct data_queue *queue)
243 {
244 struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
245 u32 reg;
246
247 switch (queue->qid) {
248 case QID_RX:
249 rt2x00pci_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
250 rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX, 0);
251 rt2x00pci_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
252 break;
253 case QID_BEACON:
254 rt2x00pci_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
255 rt2x00_set_field32(&reg, BCN_TIME_CFG_TSF_TICKING, 0);
256 rt2x00_set_field32(&reg, BCN_TIME_CFG_TBTT_ENABLE, 0);
257 rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_GEN, 0);
258 rt2x00pci_register_write(rt2x00dev, BCN_TIME_CFG, reg);
259
260 rt2x00pci_register_read(rt2x00dev, INT_TIMER_EN, &reg);
261 rt2x00_set_field32(&reg, INT_TIMER_EN_PRE_TBTT_TIMER, 0);
262 rt2x00pci_register_write(rt2x00dev, INT_TIMER_EN, reg);
263
264 /*
265 * Wait for current invocation to finish. The tasklet
266 * won't be scheduled anymore afterwards since we disabled
267 * the TBTT and PRE TBTT timer.
268 */
269 tasklet_kill(&rt2x00dev->tbtt_tasklet);
270 tasklet_kill(&rt2x00dev->pretbtt_tasklet);
271
272 break;
273 default:
274 break;
275 }
276 }
277
278 /*
279 * Firmware functions
280 */
281 static char *rt2800pci_get_firmware_name(struct rt2x00_dev *rt2x00dev)
282 {
283 return FIRMWARE_RT2860;
284 }
285
286 static int rt2800pci_write_firmware(struct rt2x00_dev *rt2x00dev,
287 const u8 *data, const size_t len)
288 {
289 u32 reg;
290
291 /*
292 * enable Host program ram write selection
293 */
294 reg = 0;
295 rt2x00_set_field32(&reg, PBF_SYS_CTRL_HOST_RAM_WRITE, 1);
296 rt2x00pci_register_write(rt2x00dev, PBF_SYS_CTRL, reg);
297
298 /*
299 * Write firmware to device.
300 */
301 rt2x00pci_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE,
302 data, len);
303
304 rt2x00pci_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000);
305 rt2x00pci_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00001);
306
307 rt2x00pci_register_write(rt2x00dev, H2M_BBP_AGENT, 0);
308 rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
309
310 return 0;
311 }
312
313 /*
314 * Initialization functions.
315 */
316 static bool rt2800pci_get_entry_state(struct queue_entry *entry)
317 {
318 struct queue_entry_priv_pci *entry_priv = entry->priv_data;
319 u32 word;
320
321 if (entry->queue->qid == QID_RX) {
322 rt2x00_desc_read(entry_priv->desc, 1, &word);
323
324 return (!rt2x00_get_field32(word, RXD_W1_DMA_DONE));
325 } else {
326 rt2x00_desc_read(entry_priv->desc, 1, &word);
327
328 return (!rt2x00_get_field32(word, TXD_W1_DMA_DONE));
329 }
330 }
331
332 static void rt2800pci_clear_entry(struct queue_entry *entry)
333 {
334 struct queue_entry_priv_pci *entry_priv = entry->priv_data;
335 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
336 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
337 u32 word;
338
339 if (entry->queue->qid == QID_RX) {
340 rt2x00_desc_read(entry_priv->desc, 0, &word);
341 rt2x00_set_field32(&word, RXD_W0_SDP0, skbdesc->skb_dma);
342 rt2x00_desc_write(entry_priv->desc, 0, word);
343
344 rt2x00_desc_read(entry_priv->desc, 1, &word);
345 rt2x00_set_field32(&word, RXD_W1_DMA_DONE, 0);
346 rt2x00_desc_write(entry_priv->desc, 1, word);
347
348 /*
349 * Set RX IDX in register to inform hardware that we have
350 * handled this entry and it is available for reuse again.
351 */
352 rt2x00pci_register_write(rt2x00dev, RX_CRX_IDX,
353 entry->entry_idx);
354 } else {
355 rt2x00_desc_read(entry_priv->desc, 1, &word);
356 rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 1);
357 rt2x00_desc_write(entry_priv->desc, 1, word);
358 }
359 }
360
361 static int rt2800pci_init_queues(struct rt2x00_dev *rt2x00dev)
362 {
363 struct queue_entry_priv_pci *entry_priv;
364 u32 reg;
365
366 /*
367 * Initialize registers.
368 */
369 entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
370 rt2x00pci_register_write(rt2x00dev, TX_BASE_PTR0, entry_priv->desc_dma);
371 rt2x00pci_register_write(rt2x00dev, TX_MAX_CNT0,
372 rt2x00dev->tx[0].limit);
373 rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX0, 0);
374 rt2x00pci_register_write(rt2x00dev, TX_DTX_IDX0, 0);
375
376 entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
377 rt2x00pci_register_write(rt2x00dev, TX_BASE_PTR1, entry_priv->desc_dma);
378 rt2x00pci_register_write(rt2x00dev, TX_MAX_CNT1,
379 rt2x00dev->tx[1].limit);
380 rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX1, 0);
381 rt2x00pci_register_write(rt2x00dev, TX_DTX_IDX1, 0);
382
383 entry_priv = rt2x00dev->tx[2].entries[0].priv_data;
384 rt2x00pci_register_write(rt2x00dev, TX_BASE_PTR2, entry_priv->desc_dma);
385 rt2x00pci_register_write(rt2x00dev, TX_MAX_CNT2,
386 rt2x00dev->tx[2].limit);
387 rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX2, 0);
388 rt2x00pci_register_write(rt2x00dev, TX_DTX_IDX2, 0);
389
390 entry_priv = rt2x00dev->tx[3].entries[0].priv_data;
391 rt2x00pci_register_write(rt2x00dev, TX_BASE_PTR3, entry_priv->desc_dma);
392 rt2x00pci_register_write(rt2x00dev, TX_MAX_CNT3,
393 rt2x00dev->tx[3].limit);
394 rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX3, 0);
395 rt2x00pci_register_write(rt2x00dev, TX_DTX_IDX3, 0);
396
397 entry_priv = rt2x00dev->rx->entries[0].priv_data;
398 rt2x00pci_register_write(rt2x00dev, RX_BASE_PTR, entry_priv->desc_dma);
399 rt2x00pci_register_write(rt2x00dev, RX_MAX_CNT,
400 rt2x00dev->rx[0].limit);
401 rt2x00pci_register_write(rt2x00dev, RX_CRX_IDX,
402 rt2x00dev->rx[0].limit - 1);
403 rt2x00pci_register_write(rt2x00dev, RX_DRX_IDX, 0);
404
405 /*
406 * Enable global DMA configuration
407 */
408 rt2x00pci_register_read(rt2x00dev, WPDMA_GLO_CFG, &reg);
409 rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_TX_DMA, 0);
410 rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_RX_DMA, 0);
411 rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1);
412 rt2x00pci_register_write(rt2x00dev, WPDMA_GLO_CFG, reg);
413
414 rt2x00pci_register_write(rt2x00dev, DELAY_INT_CFG, 0);
415
416 return 0;
417 }
418
419 /*
420 * Device state switch handlers.
421 */
422 static void rt2800pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
423 enum dev_state state)
424 {
425 u32 reg;
426 unsigned long flags;
427
428 /*
429 * When interrupts are being enabled, the interrupt registers
430 * should clear the register to assure a clean state.
431 */
432 if (state == STATE_RADIO_IRQ_ON) {
433 rt2x00pci_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
434 rt2x00pci_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
435 }
436
437 spin_lock_irqsave(&rt2x00dev->irqmask_lock, flags);
438 reg = 0;
439 if (state == STATE_RADIO_IRQ_ON) {
440 rt2x00_set_field32(&reg, INT_MASK_CSR_RX_DONE, 1);
441 rt2x00_set_field32(&reg, INT_MASK_CSR_TBTT, 1);
442 rt2x00_set_field32(&reg, INT_MASK_CSR_PRE_TBTT, 1);
443 rt2x00_set_field32(&reg, INT_MASK_CSR_TX_FIFO_STATUS, 1);
444 rt2x00_set_field32(&reg, INT_MASK_CSR_AUTO_WAKEUP, 1);
445 }
446 rt2x00pci_register_write(rt2x00dev, INT_MASK_CSR, reg);
447 spin_unlock_irqrestore(&rt2x00dev->irqmask_lock, flags);
448
449 if (state == STATE_RADIO_IRQ_OFF) {
450 /*
451 * Wait for possibly running tasklets to finish.
452 */
453 tasklet_kill(&rt2x00dev->txstatus_tasklet);
454 tasklet_kill(&rt2x00dev->rxdone_tasklet);
455 tasklet_kill(&rt2x00dev->autowake_tasklet);
456 tasklet_kill(&rt2x00dev->tbtt_tasklet);
457 tasklet_kill(&rt2x00dev->pretbtt_tasklet);
458 }
459 }
460
461 static int rt2800pci_init_registers(struct rt2x00_dev *rt2x00dev)
462 {
463 u32 reg;
464
465 /*
466 * Reset DMA indexes
467 */
468 rt2x00pci_register_read(rt2x00dev, WPDMA_RST_IDX, &reg);
469 rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX0, 1);
470 rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX1, 1);
471 rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX2, 1);
472 rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX3, 1);
473 rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX4, 1);
474 rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX5, 1);
475 rt2x00_set_field32(&reg, WPDMA_RST_IDX_DRX_IDX0, 1);
476 rt2x00pci_register_write(rt2x00dev, WPDMA_RST_IDX, reg);
477
478 rt2x00pci_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e1f);
479 rt2x00pci_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e00);
480
481 if (rt2x00_is_pcie(rt2x00dev) &&
482 (rt2x00_rt(rt2x00dev, RT3572) ||
483 rt2x00_rt(rt2x00dev, RT5390) ||
484 rt2x00_rt(rt2x00dev, RT5392))) {
485 rt2x00pci_register_read(rt2x00dev, AUX_CTRL, &reg);
486 rt2x00_set_field32(&reg, AUX_CTRL_FORCE_PCIE_CLK, 1);
487 rt2x00_set_field32(&reg, AUX_CTRL_WAKE_PCIE_EN, 1);
488 rt2x00pci_register_write(rt2x00dev, AUX_CTRL, reg);
489 }
490
491 rt2x00pci_register_write(rt2x00dev, PWR_PIN_CFG, 0x00000003);
492
493 reg = 0;
494 rt2x00_set_field32(&reg, MAC_SYS_CTRL_RESET_CSR, 1);
495 rt2x00_set_field32(&reg, MAC_SYS_CTRL_RESET_BBP, 1);
496 rt2x00pci_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
497
498 rt2x00pci_register_write(rt2x00dev, MAC_SYS_CTRL, 0x00000000);
499
500 return 0;
501 }
502
503 static int rt2800pci_enable_radio(struct rt2x00_dev *rt2x00dev)
504 {
505 int retval;
506
507 if (unlikely(rt2800_wait_wpdma_ready(rt2x00dev) ||
508 rt2800pci_init_queues(rt2x00dev)))
509 return -EIO;
510
511 retval = rt2800_enable_radio(rt2x00dev);
512 if (retval)
513 return retval;
514
515 /* After resume MCU_BOOT_SIGNAL will trash these. */
516 rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_STATUS, ~0);
517 rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CID, ~0);
518
519 rt2800_mcu_request(rt2x00dev, MCU_SLEEP, TOKEN_RADIO_OFF, 0xff, 0x02);
520 rt2800pci_mcu_status(rt2x00dev, TOKEN_RADIO_OFF);
521
522 rt2800_mcu_request(rt2x00dev, MCU_WAKEUP, TOKEN_WAKEUP, 0, 0);
523 rt2800pci_mcu_status(rt2x00dev, TOKEN_WAKEUP);
524
525 return retval;
526 }
527
528 static void rt2800pci_disable_radio(struct rt2x00_dev *rt2x00dev)
529 {
530 if (rt2x00_is_soc(rt2x00dev)) {
531 rt2800_disable_radio(rt2x00dev);
532 rt2x00pci_register_write(rt2x00dev, PWR_PIN_CFG, 0);
533 rt2x00pci_register_write(rt2x00dev, TX_PIN_CFG, 0);
534 }
535 }
536
537 static int rt2800pci_set_state(struct rt2x00_dev *rt2x00dev,
538 enum dev_state state)
539 {
540 if (state == STATE_AWAKE) {
541 rt2800_mcu_request(rt2x00dev, MCU_WAKEUP, TOKEN_WAKEUP,
542 0, 0x02);
543 rt2800pci_mcu_status(rt2x00dev, TOKEN_WAKEUP);
544 } else if (state == STATE_SLEEP) {
545 rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_STATUS,
546 0xffffffff);
547 rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CID,
548 0xffffffff);
549 rt2800_mcu_request(rt2x00dev, MCU_SLEEP, TOKEN_SLEEP,
550 0xff, 0x01);
551 }
552
553 return 0;
554 }
555
556 static int rt2800pci_set_device_state(struct rt2x00_dev *rt2x00dev,
557 enum dev_state state)
558 {
559 int retval = 0;
560
561 switch (state) {
562 case STATE_RADIO_ON:
563 retval = rt2800pci_enable_radio(rt2x00dev);
564 break;
565 case STATE_RADIO_OFF:
566 /*
567 * After the radio has been disabled, the device should
568 * be put to sleep for powersaving.
569 */
570 rt2800pci_disable_radio(rt2x00dev);
571 rt2800pci_set_state(rt2x00dev, STATE_SLEEP);
572 break;
573 case STATE_RADIO_IRQ_ON:
574 case STATE_RADIO_IRQ_OFF:
575 rt2800pci_toggle_irq(rt2x00dev, state);
576 break;
577 case STATE_DEEP_SLEEP:
578 case STATE_SLEEP:
579 case STATE_STANDBY:
580 case STATE_AWAKE:
581 retval = rt2800pci_set_state(rt2x00dev, state);
582 break;
583 default:
584 retval = -ENOTSUPP;
585 break;
586 }
587
588 if (unlikely(retval))
589 ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
590 state, retval);
591
592 return retval;
593 }
594
595 /*
596 * TX descriptor initialization
597 */
598 static __le32 *rt2800pci_get_txwi(struct queue_entry *entry)
599 {
600 return (__le32 *) entry->skb->data;
601 }
602
603 static void rt2800pci_write_tx_desc(struct queue_entry *entry,
604 struct txentry_desc *txdesc)
605 {
606 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
607 struct queue_entry_priv_pci *entry_priv = entry->priv_data;
608 __le32 *txd = entry_priv->desc;
609 u32 word;
610
611 /*
612 * The buffers pointed by SD_PTR0/SD_LEN0 and SD_PTR1/SD_LEN1
613 * must contains a TXWI structure + 802.11 header + padding + 802.11
614 * data. We choose to have SD_PTR0/SD_LEN0 only contains TXWI and
615 * SD_PTR1/SD_LEN1 contains 802.11 header + padding + 802.11
616 * data. It means that LAST_SEC0 is always 0.
617 */
618
619 /*
620 * Initialize TX descriptor
621 */
622 word = 0;
623 rt2x00_set_field32(&word, TXD_W0_SD_PTR0, skbdesc->skb_dma);
624 rt2x00_desc_write(txd, 0, word);
625
626 word = 0;
627 rt2x00_set_field32(&word, TXD_W1_SD_LEN1, entry->skb->len);
628 rt2x00_set_field32(&word, TXD_W1_LAST_SEC1,
629 !test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
630 rt2x00_set_field32(&word, TXD_W1_BURST,
631 test_bit(ENTRY_TXD_BURST, &txdesc->flags));
632 rt2x00_set_field32(&word, TXD_W1_SD_LEN0, TXWI_DESC_SIZE);
633 rt2x00_set_field32(&word, TXD_W1_LAST_SEC0, 0);
634 rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 0);
635 rt2x00_desc_write(txd, 1, word);
636
637 word = 0;
638 rt2x00_set_field32(&word, TXD_W2_SD_PTR1,
639 skbdesc->skb_dma + TXWI_DESC_SIZE);
640 rt2x00_desc_write(txd, 2, word);
641
642 word = 0;
643 rt2x00_set_field32(&word, TXD_W3_WIV,
644 !test_bit(ENTRY_TXD_ENCRYPT_IV, &txdesc->flags));
645 rt2x00_set_field32(&word, TXD_W3_QSEL, 2);
646 rt2x00_desc_write(txd, 3, word);
647
648 /*
649 * Register descriptor details in skb frame descriptor.
650 */
651 skbdesc->desc = txd;
652 skbdesc->desc_len = TXD_DESC_SIZE;
653 }
654
655 /*
656 * RX control handlers
657 */
658 static void rt2800pci_fill_rxdone(struct queue_entry *entry,
659 struct rxdone_entry_desc *rxdesc)
660 {
661 struct queue_entry_priv_pci *entry_priv = entry->priv_data;
662 __le32 *rxd = entry_priv->desc;
663 u32 word;
664
665 rt2x00_desc_read(rxd, 3, &word);
666
667 if (rt2x00_get_field32(word, RXD_W3_CRC_ERROR))
668 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
669
670 /*
671 * Unfortunately we don't know the cipher type used during
672 * decryption. This prevents us from correct providing
673 * correct statistics through debugfs.
674 */
675 rxdesc->cipher_status = rt2x00_get_field32(word, RXD_W3_CIPHER_ERROR);
676
677 if (rt2x00_get_field32(word, RXD_W3_DECRYPTED)) {
678 /*
679 * Hardware has stripped IV/EIV data from 802.11 frame during
680 * decryption. Unfortunately the descriptor doesn't contain
681 * any fields with the EIV/IV data either, so they can't
682 * be restored by rt2x00lib.
683 */
684 rxdesc->flags |= RX_FLAG_IV_STRIPPED;
685
686 /*
687 * The hardware has already checked the Michael Mic and has
688 * stripped it from the frame. Signal this to mac80211.
689 */
690 rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;
691
692 if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
693 rxdesc->flags |= RX_FLAG_DECRYPTED;
694 else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
695 rxdesc->flags |= RX_FLAG_MMIC_ERROR;
696 }
697
698 if (rt2x00_get_field32(word, RXD_W3_MY_BSS))
699 rxdesc->dev_flags |= RXDONE_MY_BSS;
700
701 if (rt2x00_get_field32(word, RXD_W3_L2PAD))
702 rxdesc->dev_flags |= RXDONE_L2PAD;
703
704 /*
705 * Process the RXWI structure that is at the start of the buffer.
706 */
707 rt2800_process_rxwi(entry, rxdesc);
708 }
709
710 /*
711 * Interrupt functions.
712 */
713 static void rt2800pci_wakeup(struct rt2x00_dev *rt2x00dev)
714 {
715 struct ieee80211_conf conf = { .flags = 0 };
716 struct rt2x00lib_conf libconf = { .conf = &conf };
717
718 rt2800_config(rt2x00dev, &libconf, IEEE80211_CONF_CHANGE_PS);
719 }
720
721 static bool rt2800pci_txdone(struct rt2x00_dev *rt2x00dev)
722 {
723 struct data_queue *queue;
724 struct queue_entry *entry;
725 u32 status;
726 u8 qid;
727 int max_tx_done = 16;
728
729 while (kfifo_get(&rt2x00dev->txstatus_fifo, &status)) {
730 qid = rt2x00_get_field32(status, TX_STA_FIFO_PID_QUEUE);
731 if (unlikely(qid >= QID_RX)) {
732 /*
733 * Unknown queue, this shouldn't happen. Just drop
734 * this tx status.
735 */
736 WARNING(rt2x00dev, "Got TX status report with "
737 "unexpected pid %u, dropping\n", qid);
738 break;
739 }
740
741 queue = rt2x00queue_get_tx_queue(rt2x00dev, qid);
742 if (unlikely(queue == NULL)) {
743 /*
744 * The queue is NULL, this shouldn't happen. Stop
745 * processing here and drop the tx status
746 */
747 WARNING(rt2x00dev, "Got TX status for an unavailable "
748 "queue %u, dropping\n", qid);
749 break;
750 }
751
752 if (unlikely(rt2x00queue_empty(queue))) {
753 /*
754 * The queue is empty. Stop processing here
755 * and drop the tx status.
756 */
757 WARNING(rt2x00dev, "Got TX status for an empty "
758 "queue %u, dropping\n", qid);
759 break;
760 }
761
762 entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
763 rt2800_txdone_entry(entry, status, rt2800pci_get_txwi(entry));
764
765 if (--max_tx_done == 0)
766 break;
767 }
768
769 return !max_tx_done;
770 }
771
772 static inline void rt2800pci_enable_interrupt(struct rt2x00_dev *rt2x00dev,
773 struct rt2x00_field32 irq_field)
774 {
775 u32 reg;
776
777 /*
778 * Enable a single interrupt. The interrupt mask register
779 * access needs locking.
780 */
781 spin_lock_irq(&rt2x00dev->irqmask_lock);
782 rt2x00pci_register_read(rt2x00dev, INT_MASK_CSR, &reg);
783 rt2x00_set_field32(&reg, irq_field, 1);
784 rt2x00pci_register_write(rt2x00dev, INT_MASK_CSR, reg);
785 spin_unlock_irq(&rt2x00dev->irqmask_lock);
786 }
787
788 static void rt2800pci_txstatus_tasklet(unsigned long data)
789 {
790 struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
791 if (rt2800pci_txdone(rt2x00dev))
792 tasklet_schedule(&rt2x00dev->txstatus_tasklet);
793
794 /*
795 * No need to enable the tx status interrupt here as we always
796 * leave it enabled to minimize the possibility of a tx status
797 * register overflow. See comment in interrupt handler.
798 */
799 }
800
801 static void rt2800pci_pretbtt_tasklet(unsigned long data)
802 {
803 struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
804 rt2x00lib_pretbtt(rt2x00dev);
805 if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
806 rt2800pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_PRE_TBTT);
807 }
808
809 static void rt2800pci_tbtt_tasklet(unsigned long data)
810 {
811 struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
812 struct rt2800_drv_data *drv_data = rt2x00dev->drv_data;
813 u32 reg;
814
815 rt2x00lib_beacondone(rt2x00dev);
816
817 if (rt2x00dev->intf_ap_count) {
818 /*
819 * The rt2800pci hardware tbtt timer is off by 1us per tbtt
820 * causing beacon skew and as a result causing problems with
821 * some powersaving clients over time. Shorten the beacon
822 * interval every 64 beacons by 64us to mitigate this effect.
823 */
824 if (drv_data->tbtt_tick == (BCN_TBTT_OFFSET - 2)) {
825 rt2x00pci_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
826 rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_INTERVAL,
827 (rt2x00dev->beacon_int * 16) - 1);
828 rt2x00pci_register_write(rt2x00dev, BCN_TIME_CFG, reg);
829 } else if (drv_data->tbtt_tick == (BCN_TBTT_OFFSET - 1)) {
830 rt2x00pci_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
831 rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_INTERVAL,
832 (rt2x00dev->beacon_int * 16));
833 rt2x00pci_register_write(rt2x00dev, BCN_TIME_CFG, reg);
834 }
835 drv_data->tbtt_tick++;
836 drv_data->tbtt_tick %= BCN_TBTT_OFFSET;
837 }
838
839 if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
840 rt2800pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_TBTT);
841 }
842
843 static void rt2800pci_rxdone_tasklet(unsigned long data)
844 {
845 struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
846 if (rt2x00pci_rxdone(rt2x00dev))
847 tasklet_schedule(&rt2x00dev->rxdone_tasklet);
848 else if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
849 rt2800pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_RX_DONE);
850 }
851
852 static void rt2800pci_autowake_tasklet(unsigned long data)
853 {
854 struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
855 rt2800pci_wakeup(rt2x00dev);
856 if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
857 rt2800pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_AUTO_WAKEUP);
858 }
859
860 static void rt2800pci_txstatus_interrupt(struct rt2x00_dev *rt2x00dev)
861 {
862 u32 status;
863 int i;
864
865 /*
866 * The TX_FIFO_STATUS interrupt needs special care. We should
867 * read TX_STA_FIFO but we should do it immediately as otherwise
868 * the register can overflow and we would lose status reports.
869 *
870 * Hence, read the TX_STA_FIFO register and copy all tx status
871 * reports into a kernel FIFO which is handled in the txstatus
872 * tasklet. We use a tasklet to process the tx status reports
873 * because we can schedule the tasklet multiple times (when the
874 * interrupt fires again during tx status processing).
875 *
876 * Furthermore we don't disable the TX_FIFO_STATUS
877 * interrupt here but leave it enabled so that the TX_STA_FIFO
878 * can also be read while the tx status tasklet gets executed.
879 *
880 * Since we have only one producer and one consumer we don't
881 * need to lock the kfifo.
882 */
883 for (i = 0; i < rt2x00dev->ops->tx->entry_num; i++) {
884 rt2x00pci_register_read(rt2x00dev, TX_STA_FIFO, &status);
885
886 if (!rt2x00_get_field32(status, TX_STA_FIFO_VALID))
887 break;
888
889 if (!kfifo_put(&rt2x00dev->txstatus_fifo, &status)) {
890 WARNING(rt2x00dev, "TX status FIFO overrun,"
891 "drop tx status report.\n");
892 break;
893 }
894 }
895
896 /* Schedule the tasklet for processing the tx status. */
897 tasklet_schedule(&rt2x00dev->txstatus_tasklet);
898 }
899
900 static irqreturn_t rt2800pci_interrupt(int irq, void *dev_instance)
901 {
902 struct rt2x00_dev *rt2x00dev = dev_instance;
903 u32 reg, mask;
904
905 /* Read status and ACK all interrupts */
906 rt2x00pci_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
907 rt2x00pci_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
908
909 if (!reg)
910 return IRQ_NONE;
911
912 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
913 return IRQ_HANDLED;
914
915 /*
916 * Since INT_MASK_CSR and INT_SOURCE_CSR use the same bits
917 * for interrupts and interrupt masks we can just use the value of
918 * INT_SOURCE_CSR to create the interrupt mask.
919 */
920 mask = ~reg;
921
922 if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TX_FIFO_STATUS)) {
923 rt2800pci_txstatus_interrupt(rt2x00dev);
924 /*
925 * Never disable the TX_FIFO_STATUS interrupt.
926 */
927 rt2x00_set_field32(&mask, INT_MASK_CSR_TX_FIFO_STATUS, 1);
928 }
929
930 if (rt2x00_get_field32(reg, INT_SOURCE_CSR_PRE_TBTT))
931 tasklet_hi_schedule(&rt2x00dev->pretbtt_tasklet);
932
933 if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TBTT))
934 tasklet_hi_schedule(&rt2x00dev->tbtt_tasklet);
935
936 if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RX_DONE))
937 tasklet_schedule(&rt2x00dev->rxdone_tasklet);
938
939 if (rt2x00_get_field32(reg, INT_SOURCE_CSR_AUTO_WAKEUP))
940 tasklet_schedule(&rt2x00dev->autowake_tasklet);
941
942 /*
943 * Disable all interrupts for which a tasklet was scheduled right now,
944 * the tasklet will reenable the appropriate interrupts.
945 */
946 spin_lock(&rt2x00dev->irqmask_lock);
947 rt2x00pci_register_read(rt2x00dev, INT_MASK_CSR, &reg);
948 reg &= mask;
949 rt2x00pci_register_write(rt2x00dev, INT_MASK_CSR, reg);
950 spin_unlock(&rt2x00dev->irqmask_lock);
951
952 return IRQ_HANDLED;
953 }
954
955 /*
956 * Device probe functions.
957 */
958 static int rt2800pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
959 {
960 /*
961 * Read EEPROM into buffer
962 */
963 if (rt2x00_is_soc(rt2x00dev))
964 rt2800pci_read_eeprom_soc(rt2x00dev);
965 else if (rt2800pci_efuse_detect(rt2x00dev))
966 rt2800pci_read_eeprom_efuse(rt2x00dev);
967 else
968 rt2800pci_read_eeprom_pci(rt2x00dev);
969
970 return rt2800_validate_eeprom(rt2x00dev);
971 }
972
973 static int rt2800pci_probe_hw(struct rt2x00_dev *rt2x00dev)
974 {
975 int retval;
976
977 /*
978 * Allocate eeprom data.
979 */
980 retval = rt2800pci_validate_eeprom(rt2x00dev);
981 if (retval)
982 return retval;
983
984 retval = rt2800_init_eeprom(rt2x00dev);
985 if (retval)
986 return retval;
987
988 /*
989 * Initialize hw specifications.
990 */
991 retval = rt2800_probe_hw_mode(rt2x00dev);
992 if (retval)
993 return retval;
994
995 /*
996 * This device has multiple filters for control frames
997 * and has a separate filter for PS Poll frames.
998 */
999 __set_bit(CAPABILITY_CONTROL_FILTERS, &rt2x00dev->cap_flags);
1000 __set_bit(CAPABILITY_CONTROL_FILTER_PSPOLL, &rt2x00dev->cap_flags);
1001
1002 /*
1003 * This device has a pre tbtt interrupt and thus fetches
1004 * a new beacon directly prior to transmission.
1005 */
1006 __set_bit(CAPABILITY_PRE_TBTT_INTERRUPT, &rt2x00dev->cap_flags);
1007
1008 /*
1009 * This device requires firmware.
1010 */
1011 if (!rt2x00_is_soc(rt2x00dev))
1012 __set_bit(REQUIRE_FIRMWARE, &rt2x00dev->cap_flags);
1013 __set_bit(REQUIRE_DMA, &rt2x00dev->cap_flags);
1014 __set_bit(REQUIRE_L2PAD, &rt2x00dev->cap_flags);
1015 __set_bit(REQUIRE_TXSTATUS_FIFO, &rt2x00dev->cap_flags);
1016 __set_bit(REQUIRE_TASKLET_CONTEXT, &rt2x00dev->cap_flags);
1017 if (!modparam_nohwcrypt)
1018 __set_bit(CAPABILITY_HW_CRYPTO, &rt2x00dev->cap_flags);
1019 __set_bit(CAPABILITY_LINK_TUNING, &rt2x00dev->cap_flags);
1020 __set_bit(REQUIRE_HT_TX_DESC, &rt2x00dev->cap_flags);
1021
1022 /*
1023 * Set the rssi offset.
1024 */
1025 rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
1026
1027 return 0;
1028 }
1029
1030 static const struct ieee80211_ops rt2800pci_mac80211_ops = {
1031 .tx = rt2x00mac_tx,
1032 .start = rt2x00mac_start,
1033 .stop = rt2x00mac_stop,
1034 .add_interface = rt2x00mac_add_interface,
1035 .remove_interface = rt2x00mac_remove_interface,
1036 .config = rt2x00mac_config,
1037 .configure_filter = rt2x00mac_configure_filter,
1038 .set_key = rt2x00mac_set_key,
1039 .sw_scan_start = rt2x00mac_sw_scan_start,
1040 .sw_scan_complete = rt2x00mac_sw_scan_complete,
1041 .get_stats = rt2x00mac_get_stats,
1042 .get_tkip_seq = rt2800_get_tkip_seq,
1043 .set_rts_threshold = rt2800_set_rts_threshold,
1044 .sta_add = rt2x00mac_sta_add,
1045 .sta_remove = rt2x00mac_sta_remove,
1046 .bss_info_changed = rt2x00mac_bss_info_changed,
1047 .conf_tx = rt2800_conf_tx,
1048 .get_tsf = rt2800_get_tsf,
1049 .rfkill_poll = rt2x00mac_rfkill_poll,
1050 .ampdu_action = rt2800_ampdu_action,
1051 .flush = rt2x00mac_flush,
1052 .get_survey = rt2800_get_survey,
1053 .get_ringparam = rt2x00mac_get_ringparam,
1054 .tx_frames_pending = rt2x00mac_tx_frames_pending,
1055 };
1056
1057 static const struct rt2800_ops rt2800pci_rt2800_ops = {
1058 .register_read = rt2x00pci_register_read,
1059 .register_read_lock = rt2x00pci_register_read, /* same for PCI */
1060 .register_write = rt2x00pci_register_write,
1061 .register_write_lock = rt2x00pci_register_write, /* same for PCI */
1062 .register_multiread = rt2x00pci_register_multiread,
1063 .register_multiwrite = rt2x00pci_register_multiwrite,
1064 .regbusy_read = rt2x00pci_regbusy_read,
1065 .drv_write_firmware = rt2800pci_write_firmware,
1066 .drv_init_registers = rt2800pci_init_registers,
1067 .drv_get_txwi = rt2800pci_get_txwi,
1068 };
1069
1070 static const struct rt2x00lib_ops rt2800pci_rt2x00_ops = {
1071 .irq_handler = rt2800pci_interrupt,
1072 .txstatus_tasklet = rt2800pci_txstatus_tasklet,
1073 .pretbtt_tasklet = rt2800pci_pretbtt_tasklet,
1074 .tbtt_tasklet = rt2800pci_tbtt_tasklet,
1075 .rxdone_tasklet = rt2800pci_rxdone_tasklet,
1076 .autowake_tasklet = rt2800pci_autowake_tasklet,
1077 .probe_hw = rt2800pci_probe_hw,
1078 .get_firmware_name = rt2800pci_get_firmware_name,
1079 .check_firmware = rt2800_check_firmware,
1080 .load_firmware = rt2800_load_firmware,
1081 .initialize = rt2x00pci_initialize,
1082 .uninitialize = rt2x00pci_uninitialize,
1083 .get_entry_state = rt2800pci_get_entry_state,
1084 .clear_entry = rt2800pci_clear_entry,
1085 .set_device_state = rt2800pci_set_device_state,
1086 .rfkill_poll = rt2800_rfkill_poll,
1087 .link_stats = rt2800_link_stats,
1088 .reset_tuner = rt2800_reset_tuner,
1089 .link_tuner = rt2800_link_tuner,
1090 .gain_calibration = rt2800_gain_calibration,
1091 .vco_calibration = rt2800_vco_calibration,
1092 .start_queue = rt2800pci_start_queue,
1093 .kick_queue = rt2800pci_kick_queue,
1094 .stop_queue = rt2800pci_stop_queue,
1095 .flush_queue = rt2x00pci_flush_queue,
1096 .write_tx_desc = rt2800pci_write_tx_desc,
1097 .write_tx_data = rt2800_write_tx_data,
1098 .write_beacon = rt2800_write_beacon,
1099 .clear_beacon = rt2800_clear_beacon,
1100 .fill_rxdone = rt2800pci_fill_rxdone,
1101 .config_shared_key = rt2800_config_shared_key,
1102 .config_pairwise_key = rt2800_config_pairwise_key,
1103 .config_filter = rt2800_config_filter,
1104 .config_intf = rt2800_config_intf,
1105 .config_erp = rt2800_config_erp,
1106 .config_ant = rt2800_config_ant,
1107 .config = rt2800_config,
1108 .sta_add = rt2800_sta_add,
1109 .sta_remove = rt2800_sta_remove,
1110 };
1111
1112 static const struct data_queue_desc rt2800pci_queue_rx = {
1113 .entry_num = 128,
1114 .data_size = AGGREGATION_SIZE,
1115 .desc_size = RXD_DESC_SIZE,
1116 .priv_size = sizeof(struct queue_entry_priv_pci),
1117 };
1118
1119 static const struct data_queue_desc rt2800pci_queue_tx = {
1120 .entry_num = 64,
1121 .data_size = AGGREGATION_SIZE,
1122 .desc_size = TXD_DESC_SIZE,
1123 .priv_size = sizeof(struct queue_entry_priv_pci),
1124 };
1125
1126 static const struct data_queue_desc rt2800pci_queue_bcn = {
1127 .entry_num = 8,
1128 .data_size = 0, /* No DMA required for beacons */
1129 .desc_size = TXWI_DESC_SIZE,
1130 .priv_size = sizeof(struct queue_entry_priv_pci),
1131 };
1132
1133 static const struct rt2x00_ops rt2800pci_ops = {
1134 .name = KBUILD_MODNAME,
1135 .drv_data_size = sizeof(struct rt2800_drv_data),
1136 .max_sta_intf = 1,
1137 .max_ap_intf = 8,
1138 .eeprom_size = EEPROM_SIZE,
1139 .rf_size = RF_SIZE,
1140 .tx_queues = NUM_TX_QUEUES,
1141 .extra_tx_headroom = TXWI_DESC_SIZE,
1142 .rx = &rt2800pci_queue_rx,
1143 .tx = &rt2800pci_queue_tx,
1144 .bcn = &rt2800pci_queue_bcn,
1145 .lib = &rt2800pci_rt2x00_ops,
1146 .drv = &rt2800pci_rt2800_ops,
1147 .hw = &rt2800pci_mac80211_ops,
1148 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
1149 .debugfs = &rt2800_rt2x00debug,
1150 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1151 };
1152
1153 /*
1154 * RT2800pci module information.
1155 */
1156 #ifdef CONFIG_PCI
1157 static DEFINE_PCI_DEVICE_TABLE(rt2800pci_device_table) = {
1158 { PCI_DEVICE(0x1814, 0x0601) },
1159 { PCI_DEVICE(0x1814, 0x0681) },
1160 { PCI_DEVICE(0x1814, 0x0701) },
1161 { PCI_DEVICE(0x1814, 0x0781) },
1162 { PCI_DEVICE(0x1814, 0x3090) },
1163 { PCI_DEVICE(0x1814, 0x3091) },
1164 { PCI_DEVICE(0x1814, 0x3092) },
1165 { PCI_DEVICE(0x1432, 0x7708) },
1166 { PCI_DEVICE(0x1432, 0x7727) },
1167 { PCI_DEVICE(0x1432, 0x7728) },
1168 { PCI_DEVICE(0x1432, 0x7738) },
1169 { PCI_DEVICE(0x1432, 0x7748) },
1170 { PCI_DEVICE(0x1432, 0x7758) },
1171 { PCI_DEVICE(0x1432, 0x7768) },
1172 { PCI_DEVICE(0x1462, 0x891a) },
1173 { PCI_DEVICE(0x1a3b, 0x1059) },
1174 #ifdef CONFIG_RT2800PCI_RT33XX
1175 { PCI_DEVICE(0x1814, 0x3390) },
1176 #endif
1177 #ifdef CONFIG_RT2800PCI_RT35XX
1178 { PCI_DEVICE(0x1432, 0x7711) },
1179 { PCI_DEVICE(0x1432, 0x7722) },
1180 { PCI_DEVICE(0x1814, 0x3060) },
1181 { PCI_DEVICE(0x1814, 0x3062) },
1182 { PCI_DEVICE(0x1814, 0x3562) },
1183 { PCI_DEVICE(0x1814, 0x3592) },
1184 { PCI_DEVICE(0x1814, 0x3593) },
1185 #endif
1186 #ifdef CONFIG_RT2800PCI_RT53XX
1187 { PCI_DEVICE(0x1814, 0x5390) },
1188 { PCI_DEVICE(0x1814, 0x539a) },
1189 { PCI_DEVICE(0x1814, 0x539f) },
1190 #endif
1191 { 0, }
1192 };
1193 #endif /* CONFIG_PCI */
1194
1195 MODULE_AUTHOR(DRV_PROJECT);
1196 MODULE_VERSION(DRV_VERSION);
1197 MODULE_DESCRIPTION("Ralink RT2800 PCI & PCMCIA Wireless LAN driver.");
1198 MODULE_SUPPORTED_DEVICE("Ralink RT2860 PCI & PCMCIA chipset based cards");
1199 #ifdef CONFIG_PCI
1200 MODULE_FIRMWARE(FIRMWARE_RT2860);
1201 MODULE_DEVICE_TABLE(pci, rt2800pci_device_table);
1202 #endif /* CONFIG_PCI */
1203 MODULE_LICENSE("GPL");
1204
1205 #if defined(CONFIG_RALINK_RT288X) || defined(CONFIG_RALINK_RT305X)
1206 static int rt2800soc_probe(struct platform_device *pdev)
1207 {
1208 return rt2x00soc_probe(pdev, &rt2800pci_ops);
1209 }
1210
1211 static struct platform_driver rt2800soc_driver = {
1212 .driver = {
1213 .name = "rt2800_wmac",
1214 .owner = THIS_MODULE,
1215 .mod_name = KBUILD_MODNAME,
1216 },
1217 .probe = rt2800soc_probe,
1218 .remove = __devexit_p(rt2x00soc_remove),
1219 .suspend = rt2x00soc_suspend,
1220 .resume = rt2x00soc_resume,
1221 };
1222 #endif /* CONFIG_RALINK_RT288X || CONFIG_RALINK_RT305X */
1223
1224 #ifdef CONFIG_PCI
1225 static int rt2800pci_probe(struct pci_dev *pci_dev,
1226 const struct pci_device_id *id)
1227 {
1228 return rt2x00pci_probe(pci_dev, &rt2800pci_ops);
1229 }
1230
1231 static struct pci_driver rt2800pci_driver = {
1232 .name = KBUILD_MODNAME,
1233 .id_table = rt2800pci_device_table,
1234 .probe = rt2800pci_probe,
1235 .remove = __devexit_p(rt2x00pci_remove),
1236 .suspend = rt2x00pci_suspend,
1237 .resume = rt2x00pci_resume,
1238 };
1239 #endif /* CONFIG_PCI */
1240
1241 static int __init rt2800pci_init(void)
1242 {
1243 int ret = 0;
1244
1245 #if defined(CONFIG_RALINK_RT288X) || defined(CONFIG_RALINK_RT305X)
1246 ret = platform_driver_register(&rt2800soc_driver);
1247 if (ret)
1248 return ret;
1249 #endif
1250 #ifdef CONFIG_PCI
1251 ret = pci_register_driver(&rt2800pci_driver);
1252 if (ret) {
1253 #if defined(CONFIG_RALINK_RT288X) || defined(CONFIG_RALINK_RT305X)
1254 platform_driver_unregister(&rt2800soc_driver);
1255 #endif
1256 return ret;
1257 }
1258 #endif
1259
1260 return ret;
1261 }
1262
1263 static void __exit rt2800pci_exit(void)
1264 {
1265 #ifdef CONFIG_PCI
1266 pci_unregister_driver(&rt2800pci_driver);
1267 #endif
1268 #if defined(CONFIG_RALINK_RT288X) || defined(CONFIG_RALINK_RT305X)
1269 platform_driver_unregister(&rt2800soc_driver);
1270 #endif
1271 }
1272
1273 module_init(rt2800pci_init);
1274 module_exit(rt2800pci_exit);
This page took 0.076298 seconds and 6 git commands to generate.