hwmon: (gpio-fan) Change name used in hwmon_device_register_with_groups
[deliverable/linux.git] / drivers / net / wireless / rt2x00 / rt2x00.h
1 /*
2 Copyright (C) 2010 Willow Garage <http://www.willowgarage.com>
3 Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
4 Copyright (C) 2004 - 2009 Gertjan van Wingerde <gwingerde@gmail.com>
5 <http://rt2x00.serialmonkey.com>
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, see <http://www.gnu.org/licenses/>.
19 */
20
21 /*
22 Module: rt2x00
23 Abstract: rt2x00 global information.
24 */
25
26 #ifndef RT2X00_H
27 #define RT2X00_H
28
29 #include <linux/bitops.h>
30 #include <linux/interrupt.h>
31 #include <linux/skbuff.h>
32 #include <linux/workqueue.h>
33 #include <linux/firmware.h>
34 #include <linux/leds.h>
35 #include <linux/mutex.h>
36 #include <linux/etherdevice.h>
37 #include <linux/input-polldev.h>
38 #include <linux/kfifo.h>
39 #include <linux/hrtimer.h>
40 #include <linux/average.h>
41
42 #include <net/mac80211.h>
43
44 #include "rt2x00debug.h"
45 #include "rt2x00dump.h"
46 #include "rt2x00leds.h"
47 #include "rt2x00reg.h"
48 #include "rt2x00queue.h"
49
50 /*
51 * Module information.
52 */
53 #define DRV_VERSION "2.3.0"
54 #define DRV_PROJECT "http://rt2x00.serialmonkey.com"
55
56 /* Debug definitions.
57 * Debug output has to be enabled during compile time.
58 */
59 #ifdef CONFIG_RT2X00_DEBUG
60 #define DEBUG
61 #endif /* CONFIG_RT2X00_DEBUG */
62
63 /* Utility printing macros
64 * rt2x00_probe_err is for messages when rt2x00_dev is uninitialized
65 */
66 #define rt2x00_probe_err(fmt, ...) \
67 printk(KERN_ERR KBUILD_MODNAME ": %s: Error - " fmt, \
68 __func__, ##__VA_ARGS__)
69 #define rt2x00_err(dev, fmt, ...) \
70 wiphy_err((dev)->hw->wiphy, "%s: Error - " fmt, \
71 __func__, ##__VA_ARGS__)
72 #define rt2x00_warn(dev, fmt, ...) \
73 wiphy_warn((dev)->hw->wiphy, "%s: Warning - " fmt, \
74 __func__, ##__VA_ARGS__)
75 #define rt2x00_info(dev, fmt, ...) \
76 wiphy_info((dev)->hw->wiphy, "%s: Info - " fmt, \
77 __func__, ##__VA_ARGS__)
78
79 /* Various debug levels */
80 #define rt2x00_dbg(dev, fmt, ...) \
81 wiphy_dbg((dev)->hw->wiphy, "%s: Debug - " fmt, \
82 __func__, ##__VA_ARGS__)
83 #define rt2x00_eeprom_dbg(dev, fmt, ...) \
84 wiphy_dbg((dev)->hw->wiphy, "%s: EEPROM recovery - " fmt, \
85 __func__, ##__VA_ARGS__)
86
87 /*
88 * Duration calculations
89 * The rate variable passed is: 100kbs.
90 * To convert from bytes to bits we multiply size with 8,
91 * then the size is multiplied with 10 to make the
92 * real rate -> rate argument correction.
93 */
94 #define GET_DURATION(__size, __rate) (((__size) * 8 * 10) / (__rate))
95 #define GET_DURATION_RES(__size, __rate)(((__size) * 8 * 10) % (__rate))
96
97 /*
98 * Determine the number of L2 padding bytes required between the header and
99 * the payload.
100 */
101 #define L2PAD_SIZE(__hdrlen) (-(__hdrlen) & 3)
102
103 /*
104 * Determine the alignment requirement,
105 * to make sure the 802.11 payload is padded to a 4-byte boundrary
106 * we must determine the address of the payload and calculate the
107 * amount of bytes needed to move the data.
108 */
109 #define ALIGN_SIZE(__skb, __header) \
110 ( ((unsigned long)((__skb)->data + (__header))) & 3 )
111
112 /*
113 * Constants for extra TX headroom for alignment purposes.
114 */
115 #define RT2X00_ALIGN_SIZE 4 /* Only whole frame needs alignment */
116 #define RT2X00_L2PAD_SIZE 8 /* Both header & payload need alignment */
117
118 /*
119 * Standard timing and size defines.
120 * These values should follow the ieee80211 specifications.
121 */
122 #define ACK_SIZE 14
123 #define IEEE80211_HEADER 24
124 #define PLCP 48
125 #define BEACON 100
126 #define PREAMBLE 144
127 #define SHORT_PREAMBLE 72
128 #define SLOT_TIME 20
129 #define SHORT_SLOT_TIME 9
130 #define SIFS 10
131 #define PIFS ( SIFS + SLOT_TIME )
132 #define SHORT_PIFS ( SIFS + SHORT_SLOT_TIME )
133 #define DIFS ( PIFS + SLOT_TIME )
134 #define SHORT_DIFS ( SHORT_PIFS + SHORT_SLOT_TIME )
135 #define EIFS ( SIFS + DIFS + \
136 GET_DURATION(IEEE80211_HEADER + ACK_SIZE, 10) )
137 #define SHORT_EIFS ( SIFS + SHORT_DIFS + \
138 GET_DURATION(IEEE80211_HEADER + ACK_SIZE, 10) )
139
140 enum rt2x00_chip_intf {
141 RT2X00_CHIP_INTF_PCI,
142 RT2X00_CHIP_INTF_PCIE,
143 RT2X00_CHIP_INTF_USB,
144 RT2X00_CHIP_INTF_SOC,
145 };
146
147 /*
148 * Chipset identification
149 * The chipset on the device is composed of a RT and RF chip.
150 * The chipset combination is important for determining device capabilities.
151 */
152 struct rt2x00_chip {
153 u16 rt;
154 #define RT2460 0x2460
155 #define RT2560 0x2560
156 #define RT2570 0x2570
157 #define RT2661 0x2661
158 #define RT2573 0x2573
159 #define RT2860 0x2860 /* 2.4GHz */
160 #define RT2872 0x2872 /* WSOC */
161 #define RT2883 0x2883 /* WSOC */
162 #define RT3070 0x3070
163 #define RT3071 0x3071
164 #define RT3090 0x3090 /* 2.4GHz PCIe */
165 #define RT3290 0x3290
166 #define RT3352 0x3352 /* WSOC */
167 #define RT3390 0x3390
168 #define RT3572 0x3572
169 #define RT3593 0x3593
170 #define RT3883 0x3883 /* WSOC */
171 #define RT5390 0x5390 /* 2.4GHz */
172 #define RT5392 0x5392 /* 2.4GHz */
173 #define RT5592 0x5592
174
175 u16 rf;
176 u16 rev;
177
178 enum rt2x00_chip_intf intf;
179 };
180
181 /*
182 * RF register values that belong to a particular channel.
183 */
184 struct rf_channel {
185 int channel;
186 u32 rf1;
187 u32 rf2;
188 u32 rf3;
189 u32 rf4;
190 };
191
192 /*
193 * Channel information structure
194 */
195 struct channel_info {
196 unsigned int flags;
197 #define GEOGRAPHY_ALLOWED 0x00000001
198
199 short max_power;
200 short default_power1;
201 short default_power2;
202 short default_power3;
203 };
204
205 /*
206 * Antenna setup values.
207 */
208 struct antenna_setup {
209 enum antenna rx;
210 enum antenna tx;
211 u8 rx_chain_num;
212 u8 tx_chain_num;
213 };
214
215 /*
216 * Quality statistics about the currently active link.
217 */
218 struct link_qual {
219 /*
220 * Statistics required for Link tuning by driver
221 * The rssi value is provided by rt2x00lib during the
222 * link_tuner() callback function.
223 * The false_cca field is filled during the link_stats()
224 * callback function and could be used during the
225 * link_tuner() callback function.
226 */
227 int rssi;
228 int false_cca;
229
230 /*
231 * VGC levels
232 * Hardware driver will tune the VGC level during each call
233 * to the link_tuner() callback function. This vgc_level is
234 * is determined based on the link quality statistics like
235 * average RSSI and the false CCA count.
236 *
237 * In some cases the drivers need to differentiate between
238 * the currently "desired" VGC level and the level configured
239 * in the hardware. The latter is important to reduce the
240 * number of BBP register reads to reduce register access
241 * overhead. For this reason we store both values here.
242 */
243 u8 vgc_level;
244 u8 vgc_level_reg;
245
246 /*
247 * Statistics required for Signal quality calculation.
248 * These fields might be changed during the link_stats()
249 * callback function.
250 */
251 int rx_success;
252 int rx_failed;
253 int tx_success;
254 int tx_failed;
255 };
256
257 /*
258 * Antenna settings about the currently active link.
259 */
260 struct link_ant {
261 /*
262 * Antenna flags
263 */
264 unsigned int flags;
265 #define ANTENNA_RX_DIVERSITY 0x00000001
266 #define ANTENNA_TX_DIVERSITY 0x00000002
267 #define ANTENNA_MODE_SAMPLE 0x00000004
268
269 /*
270 * Currently active TX/RX antenna setup.
271 * When software diversity is used, this will indicate
272 * which antenna is actually used at this time.
273 */
274 struct antenna_setup active;
275
276 /*
277 * RSSI history information for the antenna.
278 * Used to determine when to switch antenna
279 * when using software diversity.
280 */
281 int rssi_history;
282
283 /*
284 * Current RSSI average of the currently active antenna.
285 * Similar to the avg_rssi in the link_qual structure
286 * this value is updated by using the walking average.
287 */
288 struct ewma rssi_ant;
289 };
290
291 /*
292 * To optimize the quality of the link we need to store
293 * the quality of received frames and periodically
294 * optimize the link.
295 */
296 struct link {
297 /*
298 * Link tuner counter
299 * The number of times the link has been tuned
300 * since the radio has been switched on.
301 */
302 u32 count;
303
304 /*
305 * Quality measurement values.
306 */
307 struct link_qual qual;
308
309 /*
310 * TX/RX antenna setup.
311 */
312 struct link_ant ant;
313
314 /*
315 * Currently active average RSSI value
316 */
317 struct ewma avg_rssi;
318
319 /*
320 * Work structure for scheduling periodic link tuning.
321 */
322 struct delayed_work work;
323
324 /*
325 * Work structure for scheduling periodic watchdog monitoring.
326 * This work must be scheduled on the kernel workqueue, while
327 * all other work structures must be queued on the mac80211
328 * workqueue. This guarantees that the watchdog can schedule
329 * other work structures and wait for their completion in order
330 * to bring the device/driver back into the desired state.
331 */
332 struct delayed_work watchdog_work;
333
334 /*
335 * Work structure for scheduling periodic AGC adjustments.
336 */
337 struct delayed_work agc_work;
338
339 /*
340 * Work structure for scheduling periodic VCO calibration.
341 */
342 struct delayed_work vco_work;
343 };
344
345 enum rt2x00_delayed_flags {
346 DELAYED_UPDATE_BEACON,
347 };
348
349 /*
350 * Interface structure
351 * Per interface configuration details, this structure
352 * is allocated as the private data for ieee80211_vif.
353 */
354 struct rt2x00_intf {
355 /*
356 * beacon->skb must be protected with the mutex.
357 */
358 struct mutex beacon_skb_mutex;
359
360 /*
361 * Entry in the beacon queue which belongs to
362 * this interface. Each interface has its own
363 * dedicated beacon entry.
364 */
365 struct queue_entry *beacon;
366 bool enable_beacon;
367
368 /*
369 * Actions that needed rescheduling.
370 */
371 unsigned long delayed_flags;
372
373 /*
374 * Software sequence counter, this is only required
375 * for hardware which doesn't support hardware
376 * sequence counting.
377 */
378 atomic_t seqno;
379 };
380
381 static inline struct rt2x00_intf* vif_to_intf(struct ieee80211_vif *vif)
382 {
383 return (struct rt2x00_intf *)vif->drv_priv;
384 }
385
386 /**
387 * struct hw_mode_spec: Hardware specifications structure
388 *
389 * Details about the supported modes, rates and channels
390 * of a particular chipset. This is used by rt2x00lib
391 * to build the ieee80211_hw_mode array for mac80211.
392 *
393 * @supported_bands: Bitmask contained the supported bands (2.4GHz, 5.2GHz).
394 * @supported_rates: Rate types which are supported (CCK, OFDM).
395 * @num_channels: Number of supported channels. This is used as array size
396 * for @tx_power_a, @tx_power_bg and @channels.
397 * @channels: Device/chipset specific channel values (See &struct rf_channel).
398 * @channels_info: Additional information for channels (See &struct channel_info).
399 * @ht: Driver HT Capabilities (See &ieee80211_sta_ht_cap).
400 */
401 struct hw_mode_spec {
402 unsigned int supported_bands;
403 #define SUPPORT_BAND_2GHZ 0x00000001
404 #define SUPPORT_BAND_5GHZ 0x00000002
405
406 unsigned int supported_rates;
407 #define SUPPORT_RATE_CCK 0x00000001
408 #define SUPPORT_RATE_OFDM 0x00000002
409
410 unsigned int num_channels;
411 const struct rf_channel *channels;
412 const struct channel_info *channels_info;
413
414 struct ieee80211_sta_ht_cap ht;
415 };
416
417 /*
418 * Configuration structure wrapper around the
419 * mac80211 configuration structure.
420 * When mac80211 configures the driver, rt2x00lib
421 * can precalculate values which are equal for all
422 * rt2x00 drivers. Those values can be stored in here.
423 */
424 struct rt2x00lib_conf {
425 struct ieee80211_conf *conf;
426
427 struct rf_channel rf;
428 struct channel_info channel;
429 };
430
431 /*
432 * Configuration structure for erp settings.
433 */
434 struct rt2x00lib_erp {
435 int short_preamble;
436 int cts_protection;
437
438 u32 basic_rates;
439
440 int slot_time;
441
442 short sifs;
443 short pifs;
444 short difs;
445 short eifs;
446
447 u16 beacon_int;
448 u16 ht_opmode;
449 };
450
451 /*
452 * Configuration structure for hardware encryption.
453 */
454 struct rt2x00lib_crypto {
455 enum cipher cipher;
456
457 enum set_key_cmd cmd;
458 const u8 *address;
459
460 u32 bssidx;
461
462 u8 key[16];
463 u8 tx_mic[8];
464 u8 rx_mic[8];
465
466 int wcid;
467 };
468
469 /*
470 * Configuration structure wrapper around the
471 * rt2x00 interface configuration handler.
472 */
473 struct rt2x00intf_conf {
474 /*
475 * Interface type
476 */
477 enum nl80211_iftype type;
478
479 /*
480 * TSF sync value, this is dependent on the operation type.
481 */
482 enum tsf_sync sync;
483
484 /*
485 * The MAC and BSSID addresses are simple array of bytes,
486 * these arrays are little endian, so when sending the addresses
487 * to the drivers, copy the it into a endian-signed variable.
488 *
489 * Note that all devices (except rt2500usb) have 32 bits
490 * register word sizes. This means that whatever variable we
491 * pass _must_ be a multiple of 32 bits. Otherwise the device
492 * might not accept what we are sending to it.
493 * This will also make it easier for the driver to write
494 * the data to the device.
495 */
496 __le32 mac[2];
497 __le32 bssid[2];
498 };
499
500 /*
501 * Private structure for storing STA details
502 * wcid: Wireless Client ID
503 */
504 struct rt2x00_sta {
505 int wcid;
506 };
507
508 static inline struct rt2x00_sta* sta_to_rt2x00_sta(struct ieee80211_sta *sta)
509 {
510 return (struct rt2x00_sta *)sta->drv_priv;
511 }
512
513 /*
514 * rt2x00lib callback functions.
515 */
516 struct rt2x00lib_ops {
517 /*
518 * Interrupt handlers.
519 */
520 irq_handler_t irq_handler;
521
522 /*
523 * TX status tasklet handler.
524 */
525 void (*txstatus_tasklet) (unsigned long data);
526 void (*pretbtt_tasklet) (unsigned long data);
527 void (*tbtt_tasklet) (unsigned long data);
528 void (*rxdone_tasklet) (unsigned long data);
529 void (*autowake_tasklet) (unsigned long data);
530
531 /*
532 * Device init handlers.
533 */
534 int (*probe_hw) (struct rt2x00_dev *rt2x00dev);
535 char *(*get_firmware_name) (struct rt2x00_dev *rt2x00dev);
536 int (*check_firmware) (struct rt2x00_dev *rt2x00dev,
537 const u8 *data, const size_t len);
538 int (*load_firmware) (struct rt2x00_dev *rt2x00dev,
539 const u8 *data, const size_t len);
540
541 /*
542 * Device initialization/deinitialization handlers.
543 */
544 int (*initialize) (struct rt2x00_dev *rt2x00dev);
545 void (*uninitialize) (struct rt2x00_dev *rt2x00dev);
546
547 /*
548 * queue initialization handlers
549 */
550 bool (*get_entry_state) (struct queue_entry *entry);
551 void (*clear_entry) (struct queue_entry *entry);
552
553 /*
554 * Radio control handlers.
555 */
556 int (*set_device_state) (struct rt2x00_dev *rt2x00dev,
557 enum dev_state state);
558 int (*rfkill_poll) (struct rt2x00_dev *rt2x00dev);
559 void (*link_stats) (struct rt2x00_dev *rt2x00dev,
560 struct link_qual *qual);
561 void (*reset_tuner) (struct rt2x00_dev *rt2x00dev,
562 struct link_qual *qual);
563 void (*link_tuner) (struct rt2x00_dev *rt2x00dev,
564 struct link_qual *qual, const u32 count);
565 void (*gain_calibration) (struct rt2x00_dev *rt2x00dev);
566 void (*vco_calibration) (struct rt2x00_dev *rt2x00dev);
567
568 /*
569 * Data queue handlers.
570 */
571 void (*watchdog) (struct rt2x00_dev *rt2x00dev);
572 void (*start_queue) (struct data_queue *queue);
573 void (*kick_queue) (struct data_queue *queue);
574 void (*stop_queue) (struct data_queue *queue);
575 void (*flush_queue) (struct data_queue *queue, bool drop);
576 void (*tx_dma_done) (struct queue_entry *entry);
577
578 /*
579 * TX control handlers
580 */
581 void (*write_tx_desc) (struct queue_entry *entry,
582 struct txentry_desc *txdesc);
583 void (*write_tx_data) (struct queue_entry *entry,
584 struct txentry_desc *txdesc);
585 void (*write_beacon) (struct queue_entry *entry,
586 struct txentry_desc *txdesc);
587 void (*clear_beacon) (struct queue_entry *entry);
588 int (*get_tx_data_len) (struct queue_entry *entry);
589
590 /*
591 * RX control handlers
592 */
593 void (*fill_rxdone) (struct queue_entry *entry,
594 struct rxdone_entry_desc *rxdesc);
595
596 /*
597 * Configuration handlers.
598 */
599 int (*config_shared_key) (struct rt2x00_dev *rt2x00dev,
600 struct rt2x00lib_crypto *crypto,
601 struct ieee80211_key_conf *key);
602 int (*config_pairwise_key) (struct rt2x00_dev *rt2x00dev,
603 struct rt2x00lib_crypto *crypto,
604 struct ieee80211_key_conf *key);
605 void (*config_filter) (struct rt2x00_dev *rt2x00dev,
606 const unsigned int filter_flags);
607 void (*config_intf) (struct rt2x00_dev *rt2x00dev,
608 struct rt2x00_intf *intf,
609 struct rt2x00intf_conf *conf,
610 const unsigned int flags);
611 #define CONFIG_UPDATE_TYPE ( 1 << 1 )
612 #define CONFIG_UPDATE_MAC ( 1 << 2 )
613 #define CONFIG_UPDATE_BSSID ( 1 << 3 )
614
615 void (*config_erp) (struct rt2x00_dev *rt2x00dev,
616 struct rt2x00lib_erp *erp,
617 u32 changed);
618 void (*config_ant) (struct rt2x00_dev *rt2x00dev,
619 struct antenna_setup *ant);
620 void (*config) (struct rt2x00_dev *rt2x00dev,
621 struct rt2x00lib_conf *libconf,
622 const unsigned int changed_flags);
623 int (*sta_add) (struct rt2x00_dev *rt2x00dev,
624 struct ieee80211_vif *vif,
625 struct ieee80211_sta *sta);
626 int (*sta_remove) (struct rt2x00_dev *rt2x00dev,
627 int wcid);
628 };
629
630 /*
631 * rt2x00 driver callback operation structure.
632 */
633 struct rt2x00_ops {
634 const char *name;
635 const unsigned int drv_data_size;
636 const unsigned int max_ap_intf;
637 const unsigned int eeprom_size;
638 const unsigned int rf_size;
639 const unsigned int tx_queues;
640 void (*queue_init)(struct data_queue *queue);
641 const struct rt2x00lib_ops *lib;
642 const void *drv;
643 const struct ieee80211_ops *hw;
644 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
645 const struct rt2x00debug *debugfs;
646 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
647 };
648
649 /*
650 * rt2x00 state flags
651 */
652 enum rt2x00_state_flags {
653 /*
654 * Device flags
655 */
656 DEVICE_STATE_PRESENT,
657 DEVICE_STATE_REGISTERED_HW,
658 DEVICE_STATE_INITIALIZED,
659 DEVICE_STATE_STARTED,
660 DEVICE_STATE_ENABLED_RADIO,
661 DEVICE_STATE_SCANNING,
662
663 /*
664 * Driver configuration
665 */
666 CONFIG_CHANNEL_HT40,
667 CONFIG_POWERSAVING,
668 CONFIG_HT_DISABLED,
669 CONFIG_QOS_DISABLED,
670
671 /*
672 * Mark we currently are sequentially reading TX_STA_FIFO register
673 * FIXME: this is for only rt2800usb, should go to private data
674 */
675 TX_STATUS_READING,
676 };
677
678 /*
679 * rt2x00 capability flags
680 */
681 enum rt2x00_capability_flags {
682 /*
683 * Requirements
684 */
685 REQUIRE_FIRMWARE,
686 REQUIRE_BEACON_GUARD,
687 REQUIRE_ATIM_QUEUE,
688 REQUIRE_DMA,
689 REQUIRE_COPY_IV,
690 REQUIRE_L2PAD,
691 REQUIRE_TXSTATUS_FIFO,
692 REQUIRE_TASKLET_CONTEXT,
693 REQUIRE_SW_SEQNO,
694 REQUIRE_HT_TX_DESC,
695 REQUIRE_PS_AUTOWAKE,
696
697 /*
698 * Capabilities
699 */
700 CAPABILITY_HW_BUTTON,
701 CAPABILITY_HW_CRYPTO,
702 CAPABILITY_POWER_LIMIT,
703 CAPABILITY_CONTROL_FILTERS,
704 CAPABILITY_CONTROL_FILTER_PSPOLL,
705 CAPABILITY_PRE_TBTT_INTERRUPT,
706 CAPABILITY_LINK_TUNING,
707 CAPABILITY_FRAME_TYPE,
708 CAPABILITY_RF_SEQUENCE,
709 CAPABILITY_EXTERNAL_LNA_A,
710 CAPABILITY_EXTERNAL_LNA_BG,
711 CAPABILITY_DOUBLE_ANTENNA,
712 CAPABILITY_BT_COEXIST,
713 CAPABILITY_VCO_RECALIBRATION,
714 };
715
716 /*
717 * Interface combinations
718 */
719 enum {
720 IF_COMB_AP = 0,
721 NUM_IF_COMB,
722 };
723
724 /*
725 * rt2x00 device structure.
726 */
727 struct rt2x00_dev {
728 /*
729 * Device structure.
730 * The structure stored in here depends on the
731 * system bus (PCI or USB).
732 * When accessing this variable, the rt2x00dev_{pci,usb}
733 * macros should be used for correct typecasting.
734 */
735 struct device *dev;
736
737 /*
738 * Callback functions.
739 */
740 const struct rt2x00_ops *ops;
741
742 /*
743 * Driver data.
744 */
745 void *drv_data;
746
747 /*
748 * IEEE80211 control structure.
749 */
750 struct ieee80211_hw *hw;
751 struct ieee80211_supported_band bands[IEEE80211_NUM_BANDS];
752 enum ieee80211_band curr_band;
753 int curr_freq;
754
755 /*
756 * If enabled, the debugfs interface structures
757 * required for deregistration of debugfs.
758 */
759 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
760 struct rt2x00debug_intf *debugfs_intf;
761 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
762
763 /*
764 * LED structure for changing the LED status
765 * by mac8011 or the kernel.
766 */
767 #ifdef CONFIG_RT2X00_LIB_LEDS
768 struct rt2x00_led led_radio;
769 struct rt2x00_led led_assoc;
770 struct rt2x00_led led_qual;
771 u16 led_mcu_reg;
772 #endif /* CONFIG_RT2X00_LIB_LEDS */
773
774 /*
775 * Device state flags.
776 * In these flags the current status is stored.
777 * Access to these flags should occur atomically.
778 */
779 unsigned long flags;
780
781 /*
782 * Device capabiltiy flags.
783 * In these flags the device/driver capabilities are stored.
784 * Access to these flags should occur non-atomically.
785 */
786 unsigned long cap_flags;
787
788 /*
789 * Device information, Bus IRQ and name (PCI, SoC)
790 */
791 int irq;
792 const char *name;
793
794 /*
795 * Chipset identification.
796 */
797 struct rt2x00_chip chip;
798
799 /*
800 * hw capability specifications.
801 */
802 struct hw_mode_spec spec;
803
804 /*
805 * This is the default TX/RX antenna setup as indicated
806 * by the device's EEPROM.
807 */
808 struct antenna_setup default_ant;
809
810 /*
811 * Register pointers
812 * csr.base: CSR base register address. (PCI)
813 * csr.cache: CSR cache for usb_control_msg. (USB)
814 */
815 union csr {
816 void __iomem *base;
817 void *cache;
818 } csr;
819
820 /*
821 * Mutex to protect register accesses.
822 * For PCI and USB devices it protects against concurrent indirect
823 * register access (BBP, RF, MCU) since accessing those
824 * registers require multiple calls to the CSR registers.
825 * For USB devices it also protects the csr_cache since that
826 * field is used for normal CSR access and it cannot support
827 * multiple callers simultaneously.
828 */
829 struct mutex csr_mutex;
830
831 /*
832 * Current packet filter configuration for the device.
833 * This contains all currently active FIF_* flags send
834 * to us by mac80211 during configure_filter().
835 */
836 unsigned int packet_filter;
837
838 /*
839 * Interface details:
840 * - Open ap interface count.
841 * - Open sta interface count.
842 * - Association count.
843 * - Beaconing enabled count.
844 */
845 unsigned int intf_ap_count;
846 unsigned int intf_sta_count;
847 unsigned int intf_associated;
848 unsigned int intf_beaconing;
849
850 /*
851 * Interface combinations
852 */
853 struct ieee80211_iface_limit if_limits_ap;
854 struct ieee80211_iface_combination if_combinations[NUM_IF_COMB];
855
856 /*
857 * Link quality
858 */
859 struct link link;
860
861 /*
862 * EEPROM data.
863 */
864 __le16 *eeprom;
865
866 /*
867 * Active RF register values.
868 * These are stored here so we don't need
869 * to read the rf registers and can directly
870 * use this value instead.
871 * This field should be accessed by using
872 * rt2x00_rf_read() and rt2x00_rf_write().
873 */
874 u32 *rf;
875
876 /*
877 * LNA gain
878 */
879 short lna_gain;
880
881 /*
882 * Current TX power value.
883 */
884 u16 tx_power;
885
886 /*
887 * Current retry values.
888 */
889 u8 short_retry;
890 u8 long_retry;
891
892 /*
893 * Rssi <-> Dbm offset
894 */
895 u8 rssi_offset;
896
897 /*
898 * Frequency offset.
899 */
900 u8 freq_offset;
901
902 /*
903 * Association id.
904 */
905 u16 aid;
906
907 /*
908 * Beacon interval.
909 */
910 u16 beacon_int;
911
912 /**
913 * Timestamp of last received beacon
914 */
915 unsigned long last_beacon;
916
917 /*
918 * Low level statistics which will have
919 * to be kept up to date while device is running.
920 */
921 struct ieee80211_low_level_stats low_level_stats;
922
923 /**
924 * Work queue for all work which should not be placed
925 * on the mac80211 workqueue (because of dependencies
926 * between various work structures).
927 */
928 struct workqueue_struct *workqueue;
929
930 /*
931 * Scheduled work.
932 * NOTE: intf_work will use ieee80211_iterate_active_interfaces()
933 * which means it cannot be placed on the hw->workqueue
934 * due to RTNL locking requirements.
935 */
936 struct work_struct intf_work;
937
938 /**
939 * Scheduled work for TX/RX done handling (USB devices)
940 */
941 struct work_struct rxdone_work;
942 struct work_struct txdone_work;
943
944 /*
945 * Powersaving work
946 */
947 struct delayed_work autowakeup_work;
948 struct work_struct sleep_work;
949
950 /*
951 * Data queue arrays for RX, TX, Beacon and ATIM.
952 */
953 unsigned int data_queues;
954 struct data_queue *rx;
955 struct data_queue *tx;
956 struct data_queue *bcn;
957 struct data_queue *atim;
958
959 /*
960 * Firmware image.
961 */
962 const struct firmware *fw;
963
964 /*
965 * FIFO for storing tx status reports between isr and tasklet.
966 */
967 DECLARE_KFIFO_PTR(txstatus_fifo, u32);
968
969 /*
970 * Timer to ensure tx status reports are read (rt2800usb).
971 */
972 struct hrtimer txstatus_timer;
973
974 /*
975 * Tasklet for processing tx status reports (rt2800pci).
976 */
977 struct tasklet_struct txstatus_tasklet;
978 struct tasklet_struct pretbtt_tasklet;
979 struct tasklet_struct tbtt_tasklet;
980 struct tasklet_struct rxdone_tasklet;
981 struct tasklet_struct autowake_tasklet;
982
983 /*
984 * Used for VCO periodic calibration.
985 */
986 int rf_channel;
987
988 /*
989 * Protect the interrupt mask register.
990 */
991 spinlock_t irqmask_lock;
992
993 /*
994 * List of BlockAckReq TX entries that need driver BlockAck processing.
995 */
996 struct list_head bar_list;
997 spinlock_t bar_list_lock;
998
999 /* Extra TX headroom required for alignment purposes. */
1000 unsigned int extra_tx_headroom;
1001 };
1002
1003 struct rt2x00_bar_list_entry {
1004 struct list_head list;
1005 struct rcu_head head;
1006
1007 struct queue_entry *entry;
1008 int block_acked;
1009
1010 /* Relevant parts of the IEEE80211 BAR header */
1011 __u8 ra[6];
1012 __u8 ta[6];
1013 __le16 control;
1014 __le16 start_seq_num;
1015 };
1016
1017 /*
1018 * Register defines.
1019 * Some registers require multiple attempts before success,
1020 * in those cases REGISTER_BUSY_COUNT attempts should be
1021 * taken with a REGISTER_BUSY_DELAY interval.
1022 */
1023 #define REGISTER_BUSY_COUNT 100
1024 #define REGISTER_BUSY_DELAY 100
1025
1026 /*
1027 * Generic RF access.
1028 * The RF is being accessed by word index.
1029 */
1030 static inline void rt2x00_rf_read(struct rt2x00_dev *rt2x00dev,
1031 const unsigned int word, u32 *data)
1032 {
1033 BUG_ON(word < 1 || word > rt2x00dev->ops->rf_size / sizeof(u32));
1034 *data = rt2x00dev->rf[word - 1];
1035 }
1036
1037 static inline void rt2x00_rf_write(struct rt2x00_dev *rt2x00dev,
1038 const unsigned int word, u32 data)
1039 {
1040 BUG_ON(word < 1 || word > rt2x00dev->ops->rf_size / sizeof(u32));
1041 rt2x00dev->rf[word - 1] = data;
1042 }
1043
1044 /*
1045 * Generic EEPROM access. The EEPROM is being accessed by word or byte index.
1046 */
1047 static inline void *rt2x00_eeprom_addr(struct rt2x00_dev *rt2x00dev,
1048 const unsigned int word)
1049 {
1050 return (void *)&rt2x00dev->eeprom[word];
1051 }
1052
1053 static inline void rt2x00_eeprom_read(struct rt2x00_dev *rt2x00dev,
1054 const unsigned int word, u16 *data)
1055 {
1056 *data = le16_to_cpu(rt2x00dev->eeprom[word]);
1057 }
1058
1059 static inline void rt2x00_eeprom_write(struct rt2x00_dev *rt2x00dev,
1060 const unsigned int word, u16 data)
1061 {
1062 rt2x00dev->eeprom[word] = cpu_to_le16(data);
1063 }
1064
1065 static inline u8 rt2x00_eeprom_byte(struct rt2x00_dev *rt2x00dev,
1066 const unsigned int byte)
1067 {
1068 return *(((u8 *)rt2x00dev->eeprom) + byte);
1069 }
1070
1071 /*
1072 * Chipset handlers
1073 */
1074 static inline void rt2x00_set_chip(struct rt2x00_dev *rt2x00dev,
1075 const u16 rt, const u16 rf, const u16 rev)
1076 {
1077 rt2x00dev->chip.rt = rt;
1078 rt2x00dev->chip.rf = rf;
1079 rt2x00dev->chip.rev = rev;
1080
1081 rt2x00_info(rt2x00dev, "Chipset detected - rt: %04x, rf: %04x, rev: %04x\n",
1082 rt2x00dev->chip.rt, rt2x00dev->chip.rf,
1083 rt2x00dev->chip.rev);
1084 }
1085
1086 static inline void rt2x00_set_rt(struct rt2x00_dev *rt2x00dev,
1087 const u16 rt, const u16 rev)
1088 {
1089 rt2x00dev->chip.rt = rt;
1090 rt2x00dev->chip.rev = rev;
1091
1092 rt2x00_info(rt2x00dev, "RT chipset %04x, rev %04x detected\n",
1093 rt2x00dev->chip.rt, rt2x00dev->chip.rev);
1094 }
1095
1096 static inline void rt2x00_set_rf(struct rt2x00_dev *rt2x00dev, const u16 rf)
1097 {
1098 rt2x00dev->chip.rf = rf;
1099
1100 rt2x00_info(rt2x00dev, "RF chipset %04x detected\n",
1101 rt2x00dev->chip.rf);
1102 }
1103
1104 static inline bool rt2x00_rt(struct rt2x00_dev *rt2x00dev, const u16 rt)
1105 {
1106 return (rt2x00dev->chip.rt == rt);
1107 }
1108
1109 static inline bool rt2x00_rf(struct rt2x00_dev *rt2x00dev, const u16 rf)
1110 {
1111 return (rt2x00dev->chip.rf == rf);
1112 }
1113
1114 static inline u16 rt2x00_rev(struct rt2x00_dev *rt2x00dev)
1115 {
1116 return rt2x00dev->chip.rev;
1117 }
1118
1119 static inline bool rt2x00_rt_rev(struct rt2x00_dev *rt2x00dev,
1120 const u16 rt, const u16 rev)
1121 {
1122 return (rt2x00_rt(rt2x00dev, rt) && rt2x00_rev(rt2x00dev) == rev);
1123 }
1124
1125 static inline bool rt2x00_rt_rev_lt(struct rt2x00_dev *rt2x00dev,
1126 const u16 rt, const u16 rev)
1127 {
1128 return (rt2x00_rt(rt2x00dev, rt) && rt2x00_rev(rt2x00dev) < rev);
1129 }
1130
1131 static inline bool rt2x00_rt_rev_gte(struct rt2x00_dev *rt2x00dev,
1132 const u16 rt, const u16 rev)
1133 {
1134 return (rt2x00_rt(rt2x00dev, rt) && rt2x00_rev(rt2x00dev) >= rev);
1135 }
1136
1137 static inline void rt2x00_set_chip_intf(struct rt2x00_dev *rt2x00dev,
1138 enum rt2x00_chip_intf intf)
1139 {
1140 rt2x00dev->chip.intf = intf;
1141 }
1142
1143 static inline bool rt2x00_intf(struct rt2x00_dev *rt2x00dev,
1144 enum rt2x00_chip_intf intf)
1145 {
1146 return (rt2x00dev->chip.intf == intf);
1147 }
1148
1149 static inline bool rt2x00_is_pci(struct rt2x00_dev *rt2x00dev)
1150 {
1151 return rt2x00_intf(rt2x00dev, RT2X00_CHIP_INTF_PCI) ||
1152 rt2x00_intf(rt2x00dev, RT2X00_CHIP_INTF_PCIE);
1153 }
1154
1155 static inline bool rt2x00_is_pcie(struct rt2x00_dev *rt2x00dev)
1156 {
1157 return rt2x00_intf(rt2x00dev, RT2X00_CHIP_INTF_PCIE);
1158 }
1159
1160 static inline bool rt2x00_is_usb(struct rt2x00_dev *rt2x00dev)
1161 {
1162 return rt2x00_intf(rt2x00dev, RT2X00_CHIP_INTF_USB);
1163 }
1164
1165 static inline bool rt2x00_is_soc(struct rt2x00_dev *rt2x00dev)
1166 {
1167 return rt2x00_intf(rt2x00dev, RT2X00_CHIP_INTF_SOC);
1168 }
1169
1170 /* Helpers for capability flags */
1171
1172 static inline bool
1173 rt2x00_has_cap_flag(struct rt2x00_dev *rt2x00dev,
1174 enum rt2x00_capability_flags cap_flag)
1175 {
1176 return test_bit(cap_flag, &rt2x00dev->cap_flags);
1177 }
1178
1179 static inline bool
1180 rt2x00_has_cap_hw_crypto(struct rt2x00_dev *rt2x00dev)
1181 {
1182 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_HW_CRYPTO);
1183 }
1184
1185 static inline bool
1186 rt2x00_has_cap_power_limit(struct rt2x00_dev *rt2x00dev)
1187 {
1188 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_POWER_LIMIT);
1189 }
1190
1191 static inline bool
1192 rt2x00_has_cap_control_filters(struct rt2x00_dev *rt2x00dev)
1193 {
1194 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_CONTROL_FILTERS);
1195 }
1196
1197 static inline bool
1198 rt2x00_has_cap_control_filter_pspoll(struct rt2x00_dev *rt2x00dev)
1199 {
1200 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_CONTROL_FILTER_PSPOLL);
1201 }
1202
1203 static inline bool
1204 rt2x00_has_cap_pre_tbtt_interrupt(struct rt2x00_dev *rt2x00dev)
1205 {
1206 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_PRE_TBTT_INTERRUPT);
1207 }
1208
1209 static inline bool
1210 rt2x00_has_cap_link_tuning(struct rt2x00_dev *rt2x00dev)
1211 {
1212 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_LINK_TUNING);
1213 }
1214
1215 static inline bool
1216 rt2x00_has_cap_frame_type(struct rt2x00_dev *rt2x00dev)
1217 {
1218 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_FRAME_TYPE);
1219 }
1220
1221 static inline bool
1222 rt2x00_has_cap_rf_sequence(struct rt2x00_dev *rt2x00dev)
1223 {
1224 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_RF_SEQUENCE);
1225 }
1226
1227 static inline bool
1228 rt2x00_has_cap_external_lna_a(struct rt2x00_dev *rt2x00dev)
1229 {
1230 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_EXTERNAL_LNA_A);
1231 }
1232
1233 static inline bool
1234 rt2x00_has_cap_external_lna_bg(struct rt2x00_dev *rt2x00dev)
1235 {
1236 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_EXTERNAL_LNA_BG);
1237 }
1238
1239 static inline bool
1240 rt2x00_has_cap_double_antenna(struct rt2x00_dev *rt2x00dev)
1241 {
1242 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_DOUBLE_ANTENNA);
1243 }
1244
1245 static inline bool
1246 rt2x00_has_cap_bt_coexist(struct rt2x00_dev *rt2x00dev)
1247 {
1248 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_BT_COEXIST);
1249 }
1250
1251 static inline bool
1252 rt2x00_has_cap_vco_recalibration(struct rt2x00_dev *rt2x00dev)
1253 {
1254 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_VCO_RECALIBRATION);
1255 }
1256
1257 /**
1258 * rt2x00queue_map_txskb - Map a skb into DMA for TX purposes.
1259 * @entry: Pointer to &struct queue_entry
1260 *
1261 * Returns -ENOMEM if mapping fail, 0 otherwise.
1262 */
1263 int rt2x00queue_map_txskb(struct queue_entry *entry);
1264
1265 /**
1266 * rt2x00queue_unmap_skb - Unmap a skb from DMA.
1267 * @entry: Pointer to &struct queue_entry
1268 */
1269 void rt2x00queue_unmap_skb(struct queue_entry *entry);
1270
1271 /**
1272 * rt2x00queue_get_tx_queue - Convert tx queue index to queue pointer
1273 * @rt2x00dev: Pointer to &struct rt2x00_dev.
1274 * @queue: rt2x00 queue index (see &enum data_queue_qid).
1275 *
1276 * Returns NULL for non tx queues.
1277 */
1278 static inline struct data_queue *
1279 rt2x00queue_get_tx_queue(struct rt2x00_dev *rt2x00dev,
1280 const enum data_queue_qid queue)
1281 {
1282 if (queue < rt2x00dev->ops->tx_queues && rt2x00dev->tx)
1283 return &rt2x00dev->tx[queue];
1284
1285 if (queue == QID_ATIM)
1286 return rt2x00dev->atim;
1287
1288 return NULL;
1289 }
1290
1291 /**
1292 * rt2x00queue_get_entry - Get queue entry where the given index points to.
1293 * @queue: Pointer to &struct data_queue from where we obtain the entry.
1294 * @index: Index identifier for obtaining the correct index.
1295 */
1296 struct queue_entry *rt2x00queue_get_entry(struct data_queue *queue,
1297 enum queue_index index);
1298
1299 /**
1300 * rt2x00queue_pause_queue - Pause a data queue
1301 * @queue: Pointer to &struct data_queue.
1302 *
1303 * This function will pause the data queue locally, preventing
1304 * new frames to be added to the queue (while the hardware is
1305 * still allowed to run).
1306 */
1307 void rt2x00queue_pause_queue(struct data_queue *queue);
1308
1309 /**
1310 * rt2x00queue_unpause_queue - unpause a data queue
1311 * @queue: Pointer to &struct data_queue.
1312 *
1313 * This function will unpause the data queue locally, allowing
1314 * new frames to be added to the queue again.
1315 */
1316 void rt2x00queue_unpause_queue(struct data_queue *queue);
1317
1318 /**
1319 * rt2x00queue_start_queue - Start a data queue
1320 * @queue: Pointer to &struct data_queue.
1321 *
1322 * This function will start handling all pending frames in the queue.
1323 */
1324 void rt2x00queue_start_queue(struct data_queue *queue);
1325
1326 /**
1327 * rt2x00queue_stop_queue - Halt a data queue
1328 * @queue: Pointer to &struct data_queue.
1329 *
1330 * This function will stop all pending frames in the queue.
1331 */
1332 void rt2x00queue_stop_queue(struct data_queue *queue);
1333
1334 /**
1335 * rt2x00queue_flush_queue - Flush a data queue
1336 * @queue: Pointer to &struct data_queue.
1337 * @drop: True to drop all pending frames.
1338 *
1339 * This function will flush the queue. After this call
1340 * the queue is guaranteed to be empty.
1341 */
1342 void rt2x00queue_flush_queue(struct data_queue *queue, bool drop);
1343
1344 /**
1345 * rt2x00queue_start_queues - Start all data queues
1346 * @rt2x00dev: Pointer to &struct rt2x00_dev.
1347 *
1348 * This function will loop through all available queues to start them
1349 */
1350 void rt2x00queue_start_queues(struct rt2x00_dev *rt2x00dev);
1351
1352 /**
1353 * rt2x00queue_stop_queues - Halt all data queues
1354 * @rt2x00dev: Pointer to &struct rt2x00_dev.
1355 *
1356 * This function will loop through all available queues to stop
1357 * any pending frames.
1358 */
1359 void rt2x00queue_stop_queues(struct rt2x00_dev *rt2x00dev);
1360
1361 /**
1362 * rt2x00queue_flush_queues - Flush all data queues
1363 * @rt2x00dev: Pointer to &struct rt2x00_dev.
1364 * @drop: True to drop all pending frames.
1365 *
1366 * This function will loop through all available queues to flush
1367 * any pending frames.
1368 */
1369 void rt2x00queue_flush_queues(struct rt2x00_dev *rt2x00dev, bool drop);
1370
1371 /*
1372 * Debugfs handlers.
1373 */
1374 /**
1375 * rt2x00debug_dump_frame - Dump a frame to userspace through debugfs.
1376 * @rt2x00dev: Pointer to &struct rt2x00_dev.
1377 * @type: The type of frame that is being dumped.
1378 * @skb: The skb containing the frame to be dumped.
1379 */
1380 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
1381 void rt2x00debug_dump_frame(struct rt2x00_dev *rt2x00dev,
1382 enum rt2x00_dump_type type, struct sk_buff *skb);
1383 #else
1384 static inline void rt2x00debug_dump_frame(struct rt2x00_dev *rt2x00dev,
1385 enum rt2x00_dump_type type,
1386 struct sk_buff *skb)
1387 {
1388 }
1389 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1390
1391 /*
1392 * Utility functions.
1393 */
1394 u32 rt2x00lib_get_bssidx(struct rt2x00_dev *rt2x00dev,
1395 struct ieee80211_vif *vif);
1396
1397 /*
1398 * Interrupt context handlers.
1399 */
1400 void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev);
1401 void rt2x00lib_pretbtt(struct rt2x00_dev *rt2x00dev);
1402 void rt2x00lib_dmastart(struct queue_entry *entry);
1403 void rt2x00lib_dmadone(struct queue_entry *entry);
1404 void rt2x00lib_txdone(struct queue_entry *entry,
1405 struct txdone_entry_desc *txdesc);
1406 void rt2x00lib_txdone_noinfo(struct queue_entry *entry, u32 status);
1407 void rt2x00lib_rxdone(struct queue_entry *entry, gfp_t gfp);
1408
1409 /*
1410 * mac80211 handlers.
1411 */
1412 void rt2x00mac_tx(struct ieee80211_hw *hw,
1413 struct ieee80211_tx_control *control,
1414 struct sk_buff *skb);
1415 int rt2x00mac_start(struct ieee80211_hw *hw);
1416 void rt2x00mac_stop(struct ieee80211_hw *hw);
1417 int rt2x00mac_add_interface(struct ieee80211_hw *hw,
1418 struct ieee80211_vif *vif);
1419 void rt2x00mac_remove_interface(struct ieee80211_hw *hw,
1420 struct ieee80211_vif *vif);
1421 int rt2x00mac_config(struct ieee80211_hw *hw, u32 changed);
1422 void rt2x00mac_configure_filter(struct ieee80211_hw *hw,
1423 unsigned int changed_flags,
1424 unsigned int *total_flags,
1425 u64 multicast);
1426 int rt2x00mac_set_tim(struct ieee80211_hw *hw, struct ieee80211_sta *sta,
1427 bool set);
1428 #ifdef CONFIG_RT2X00_LIB_CRYPTO
1429 int rt2x00mac_set_key(struct ieee80211_hw *hw, enum set_key_cmd cmd,
1430 struct ieee80211_vif *vif, struct ieee80211_sta *sta,
1431 struct ieee80211_key_conf *key);
1432 #else
1433 #define rt2x00mac_set_key NULL
1434 #endif /* CONFIG_RT2X00_LIB_CRYPTO */
1435 int rt2x00mac_sta_add(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
1436 struct ieee80211_sta *sta);
1437 int rt2x00mac_sta_remove(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
1438 struct ieee80211_sta *sta);
1439 void rt2x00mac_sw_scan_start(struct ieee80211_hw *hw);
1440 void rt2x00mac_sw_scan_complete(struct ieee80211_hw *hw);
1441 int rt2x00mac_get_stats(struct ieee80211_hw *hw,
1442 struct ieee80211_low_level_stats *stats);
1443 void rt2x00mac_bss_info_changed(struct ieee80211_hw *hw,
1444 struct ieee80211_vif *vif,
1445 struct ieee80211_bss_conf *bss_conf,
1446 u32 changes);
1447 int rt2x00mac_conf_tx(struct ieee80211_hw *hw,
1448 struct ieee80211_vif *vif, u16 queue,
1449 const struct ieee80211_tx_queue_params *params);
1450 void rt2x00mac_rfkill_poll(struct ieee80211_hw *hw);
1451 void rt2x00mac_flush(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
1452 u32 queues, bool drop);
1453 int rt2x00mac_set_antenna(struct ieee80211_hw *hw, u32 tx_ant, u32 rx_ant);
1454 int rt2x00mac_get_antenna(struct ieee80211_hw *hw, u32 *tx_ant, u32 *rx_ant);
1455 void rt2x00mac_get_ringparam(struct ieee80211_hw *hw,
1456 u32 *tx, u32 *tx_max, u32 *rx, u32 *rx_max);
1457 bool rt2x00mac_tx_frames_pending(struct ieee80211_hw *hw);
1458
1459 /*
1460 * Driver allocation handlers.
1461 */
1462 int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev);
1463 void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev);
1464 #ifdef CONFIG_PM
1465 int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state);
1466 int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev);
1467 #endif /* CONFIG_PM */
1468
1469 #endif /* RT2X00_H */
This page took 0.118084 seconds and 5 git commands to generate.