cfg80211: keep track of supported interface modes
[deliverable/linux.git] / drivers / net / wireless / rt2x00 / rt2x00dev.c
1 /*
2 Copyright (C) 2004 - 2008 rt2x00 SourceForge Project
3 <http://rt2x00.serialmonkey.com>
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the
17 Free Software Foundation, Inc.,
18 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 */
20
21 /*
22 Module: rt2x00lib
23 Abstract: rt2x00 generic device routines.
24 */
25
26 #include <linux/kernel.h>
27 #include <linux/module.h>
28
29 #include "rt2x00.h"
30 #include "rt2x00lib.h"
31
32 /*
33 * Link tuning handlers
34 */
35 void rt2x00lib_reset_link_tuner(struct rt2x00_dev *rt2x00dev)
36 {
37 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
38 return;
39
40 /*
41 * Reset link information.
42 * Both the currently active vgc level as well as
43 * the link tuner counter should be reset. Resetting
44 * the counter is important for devices where the
45 * device should only perform link tuning during the
46 * first minute after being enabled.
47 */
48 rt2x00dev->link.count = 0;
49 rt2x00dev->link.vgc_level = 0;
50
51 /*
52 * Reset the link tuner.
53 */
54 rt2x00dev->ops->lib->reset_tuner(rt2x00dev);
55 }
56
57 static void rt2x00lib_start_link_tuner(struct rt2x00_dev *rt2x00dev)
58 {
59 /*
60 * Clear all (possibly) pre-existing quality statistics.
61 */
62 memset(&rt2x00dev->link.qual, 0, sizeof(rt2x00dev->link.qual));
63
64 /*
65 * The RX and TX percentage should start at 50%
66 * this will assure we will get at least get some
67 * decent value when the link tuner starts.
68 * The value will be dropped and overwritten with
69 * the correct (measured )value anyway during the
70 * first run of the link tuner.
71 */
72 rt2x00dev->link.qual.rx_percentage = 50;
73 rt2x00dev->link.qual.tx_percentage = 50;
74
75 rt2x00lib_reset_link_tuner(rt2x00dev);
76
77 queue_delayed_work(rt2x00dev->hw->workqueue,
78 &rt2x00dev->link.work, LINK_TUNE_INTERVAL);
79 }
80
81 static void rt2x00lib_stop_link_tuner(struct rt2x00_dev *rt2x00dev)
82 {
83 cancel_delayed_work_sync(&rt2x00dev->link.work);
84 }
85
86 /*
87 * Radio control handlers.
88 */
89 int rt2x00lib_enable_radio(struct rt2x00_dev *rt2x00dev)
90 {
91 int status;
92
93 /*
94 * Don't enable the radio twice.
95 * And check if the hardware button has been disabled.
96 */
97 if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags) ||
98 test_bit(DEVICE_STATE_DISABLED_RADIO_HW, &rt2x00dev->flags))
99 return 0;
100
101 /*
102 * Initialize all data queues.
103 */
104 rt2x00queue_init_rx(rt2x00dev);
105 rt2x00queue_init_tx(rt2x00dev);
106
107 /*
108 * Enable radio.
109 */
110 status =
111 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_ON);
112 if (status)
113 return status;
114
115 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_ON);
116
117 rt2x00leds_led_radio(rt2x00dev, true);
118 rt2x00led_led_activity(rt2x00dev, true);
119
120 set_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags);
121
122 /*
123 * Enable RX.
124 */
125 rt2x00lib_toggle_rx(rt2x00dev, STATE_RADIO_RX_ON);
126
127 /*
128 * Start the TX queues.
129 */
130 ieee80211_wake_queues(rt2x00dev->hw);
131
132 return 0;
133 }
134
135 void rt2x00lib_disable_radio(struct rt2x00_dev *rt2x00dev)
136 {
137 if (!test_and_clear_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
138 return;
139
140 /*
141 * Stop the TX queues.
142 */
143 ieee80211_stop_queues(rt2x00dev->hw);
144
145 /*
146 * Disable RX.
147 */
148 rt2x00lib_toggle_rx(rt2x00dev, STATE_RADIO_RX_OFF);
149
150 /*
151 * Disable radio.
152 */
153 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_OFF);
154 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_OFF);
155 rt2x00led_led_activity(rt2x00dev, false);
156 rt2x00leds_led_radio(rt2x00dev, false);
157 }
158
159 void rt2x00lib_toggle_rx(struct rt2x00_dev *rt2x00dev, enum dev_state state)
160 {
161 /*
162 * When we are disabling the RX, we should also stop the link tuner.
163 */
164 if (state == STATE_RADIO_RX_OFF)
165 rt2x00lib_stop_link_tuner(rt2x00dev);
166
167 rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
168
169 /*
170 * When we are enabling the RX, we should also start the link tuner.
171 */
172 if (state == STATE_RADIO_RX_ON &&
173 (rt2x00dev->intf_ap_count || rt2x00dev->intf_sta_count))
174 rt2x00lib_start_link_tuner(rt2x00dev);
175 }
176
177 static void rt2x00lib_evaluate_antenna_sample(struct rt2x00_dev *rt2x00dev)
178 {
179 enum antenna rx = rt2x00dev->link.ant.active.rx;
180 enum antenna tx = rt2x00dev->link.ant.active.tx;
181 int sample_a =
182 rt2x00_get_link_ant_rssi_history(&rt2x00dev->link, ANTENNA_A);
183 int sample_b =
184 rt2x00_get_link_ant_rssi_history(&rt2x00dev->link, ANTENNA_B);
185
186 /*
187 * We are done sampling. Now we should evaluate the results.
188 */
189 rt2x00dev->link.ant.flags &= ~ANTENNA_MODE_SAMPLE;
190
191 /*
192 * During the last period we have sampled the RSSI
193 * from both antenna's. It now is time to determine
194 * which antenna demonstrated the best performance.
195 * When we are already on the antenna with the best
196 * performance, then there really is nothing for us
197 * left to do.
198 */
199 if (sample_a == sample_b)
200 return;
201
202 if (rt2x00dev->link.ant.flags & ANTENNA_RX_DIVERSITY)
203 rx = (sample_a > sample_b) ? ANTENNA_A : ANTENNA_B;
204
205 if (rt2x00dev->link.ant.flags & ANTENNA_TX_DIVERSITY)
206 tx = (sample_a > sample_b) ? ANTENNA_A : ANTENNA_B;
207
208 rt2x00lib_config_antenna(rt2x00dev, rx, tx);
209 }
210
211 static void rt2x00lib_evaluate_antenna_eval(struct rt2x00_dev *rt2x00dev)
212 {
213 enum antenna rx = rt2x00dev->link.ant.active.rx;
214 enum antenna tx = rt2x00dev->link.ant.active.tx;
215 int rssi_curr = rt2x00_get_link_ant_rssi(&rt2x00dev->link);
216 int rssi_old = rt2x00_update_ant_rssi(&rt2x00dev->link, rssi_curr);
217
218 /*
219 * Legacy driver indicates that we should swap antenna's
220 * when the difference in RSSI is greater that 5. This
221 * also should be done when the RSSI was actually better
222 * then the previous sample.
223 * When the difference exceeds the threshold we should
224 * sample the rssi from the other antenna to make a valid
225 * comparison between the 2 antennas.
226 */
227 if (abs(rssi_curr - rssi_old) < 5)
228 return;
229
230 rt2x00dev->link.ant.flags |= ANTENNA_MODE_SAMPLE;
231
232 if (rt2x00dev->link.ant.flags & ANTENNA_RX_DIVERSITY)
233 rx = (rx == ANTENNA_A) ? ANTENNA_B : ANTENNA_A;
234
235 if (rt2x00dev->link.ant.flags & ANTENNA_TX_DIVERSITY)
236 tx = (tx == ANTENNA_A) ? ANTENNA_B : ANTENNA_A;
237
238 rt2x00lib_config_antenna(rt2x00dev, rx, tx);
239 }
240
241 static void rt2x00lib_evaluate_antenna(struct rt2x00_dev *rt2x00dev)
242 {
243 /*
244 * Determine if software diversity is enabled for
245 * either the TX or RX antenna (or both).
246 * Always perform this check since within the link
247 * tuner interval the configuration might have changed.
248 */
249 rt2x00dev->link.ant.flags &= ~ANTENNA_RX_DIVERSITY;
250 rt2x00dev->link.ant.flags &= ~ANTENNA_TX_DIVERSITY;
251
252 if (rt2x00dev->hw->conf.antenna_sel_rx == 0 &&
253 rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY)
254 rt2x00dev->link.ant.flags |= ANTENNA_RX_DIVERSITY;
255 if (rt2x00dev->hw->conf.antenna_sel_tx == 0 &&
256 rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY)
257 rt2x00dev->link.ant.flags |= ANTENNA_TX_DIVERSITY;
258
259 if (!(rt2x00dev->link.ant.flags & ANTENNA_RX_DIVERSITY) &&
260 !(rt2x00dev->link.ant.flags & ANTENNA_TX_DIVERSITY)) {
261 rt2x00dev->link.ant.flags = 0;
262 return;
263 }
264
265 /*
266 * If we have only sampled the data over the last period
267 * we should now harvest the data. Otherwise just evaluate
268 * the data. The latter should only be performed once
269 * every 2 seconds.
270 */
271 if (rt2x00dev->link.ant.flags & ANTENNA_MODE_SAMPLE)
272 rt2x00lib_evaluate_antenna_sample(rt2x00dev);
273 else if (rt2x00dev->link.count & 1)
274 rt2x00lib_evaluate_antenna_eval(rt2x00dev);
275 }
276
277 static void rt2x00lib_update_link_stats(struct link *link, int rssi)
278 {
279 int avg_rssi = rssi;
280
281 /*
282 * Update global RSSI
283 */
284 if (link->qual.avg_rssi)
285 avg_rssi = MOVING_AVERAGE(link->qual.avg_rssi, rssi, 8);
286 link->qual.avg_rssi = avg_rssi;
287
288 /*
289 * Update antenna RSSI
290 */
291 if (link->ant.rssi_ant)
292 rssi = MOVING_AVERAGE(link->ant.rssi_ant, rssi, 8);
293 link->ant.rssi_ant = rssi;
294 }
295
296 static void rt2x00lib_precalculate_link_signal(struct link_qual *qual)
297 {
298 if (qual->rx_failed || qual->rx_success)
299 qual->rx_percentage =
300 (qual->rx_success * 100) /
301 (qual->rx_failed + qual->rx_success);
302 else
303 qual->rx_percentage = 50;
304
305 if (qual->tx_failed || qual->tx_success)
306 qual->tx_percentage =
307 (qual->tx_success * 100) /
308 (qual->tx_failed + qual->tx_success);
309 else
310 qual->tx_percentage = 50;
311
312 qual->rx_success = 0;
313 qual->rx_failed = 0;
314 qual->tx_success = 0;
315 qual->tx_failed = 0;
316 }
317
318 static int rt2x00lib_calculate_link_signal(struct rt2x00_dev *rt2x00dev,
319 int rssi)
320 {
321 int rssi_percentage = 0;
322 int signal;
323
324 /*
325 * We need a positive value for the RSSI.
326 */
327 if (rssi < 0)
328 rssi += rt2x00dev->rssi_offset;
329
330 /*
331 * Calculate the different percentages,
332 * which will be used for the signal.
333 */
334 if (rt2x00dev->rssi_offset)
335 rssi_percentage = (rssi * 100) / rt2x00dev->rssi_offset;
336
337 /*
338 * Add the individual percentages and use the WEIGHT
339 * defines to calculate the current link signal.
340 */
341 signal = ((WEIGHT_RSSI * rssi_percentage) +
342 (WEIGHT_TX * rt2x00dev->link.qual.tx_percentage) +
343 (WEIGHT_RX * rt2x00dev->link.qual.rx_percentage)) / 100;
344
345 return (signal > 100) ? 100 : signal;
346 }
347
348 static void rt2x00lib_link_tuner(struct work_struct *work)
349 {
350 struct rt2x00_dev *rt2x00dev =
351 container_of(work, struct rt2x00_dev, link.work.work);
352
353 /*
354 * When the radio is shutting down we should
355 * immediately cease all link tuning.
356 */
357 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
358 return;
359
360 /*
361 * Update statistics.
362 */
363 rt2x00dev->ops->lib->link_stats(rt2x00dev, &rt2x00dev->link.qual);
364 rt2x00dev->low_level_stats.dot11FCSErrorCount +=
365 rt2x00dev->link.qual.rx_failed;
366
367 /*
368 * Only perform the link tuning when Link tuning
369 * has been enabled (This could have been disabled from the EEPROM).
370 */
371 if (!test_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags))
372 rt2x00dev->ops->lib->link_tuner(rt2x00dev);
373
374 /*
375 * Precalculate a portion of the link signal which is
376 * in based on the tx/rx success/failure counters.
377 */
378 rt2x00lib_precalculate_link_signal(&rt2x00dev->link.qual);
379
380 /*
381 * Send a signal to the led to update the led signal strength.
382 */
383 rt2x00leds_led_quality(rt2x00dev, rt2x00dev->link.qual.avg_rssi);
384
385 /*
386 * Evaluate antenna setup, make this the last step since this could
387 * possibly reset some statistics.
388 */
389 rt2x00lib_evaluate_antenna(rt2x00dev);
390
391 /*
392 * Increase tuner counter, and reschedule the next link tuner run.
393 */
394 rt2x00dev->link.count++;
395 queue_delayed_work(rt2x00dev->hw->workqueue,
396 &rt2x00dev->link.work, LINK_TUNE_INTERVAL);
397 }
398
399 static void rt2x00lib_packetfilter_scheduled(struct work_struct *work)
400 {
401 struct rt2x00_dev *rt2x00dev =
402 container_of(work, struct rt2x00_dev, filter_work);
403
404 rt2x00dev->ops->lib->config_filter(rt2x00dev, rt2x00dev->packet_filter);
405 }
406
407 static void rt2x00lib_intf_scheduled_iter(void *data, u8 *mac,
408 struct ieee80211_vif *vif)
409 {
410 struct rt2x00_dev *rt2x00dev = data;
411 struct rt2x00_intf *intf = vif_to_intf(vif);
412 struct ieee80211_bss_conf conf;
413 int delayed_flags;
414
415 /*
416 * Copy all data we need during this action under the protection
417 * of a spinlock. Otherwise race conditions might occur which results
418 * into an invalid configuration.
419 */
420 spin_lock(&intf->lock);
421
422 memcpy(&conf, &intf->conf, sizeof(conf));
423 delayed_flags = intf->delayed_flags;
424 intf->delayed_flags = 0;
425
426 spin_unlock(&intf->lock);
427
428 /*
429 * It is possible the radio was disabled while the work had been
430 * scheduled. If that happens we should return here immediately,
431 * note that in the spinlock protected area above the delayed_flags
432 * have been cleared correctly.
433 */
434 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
435 return;
436
437 if (delayed_flags & DELAYED_UPDATE_BEACON)
438 rt2x00queue_update_beacon(rt2x00dev, vif);
439
440 if (delayed_flags & DELAYED_CONFIG_ERP)
441 rt2x00lib_config_erp(rt2x00dev, intf, &conf);
442
443 if (delayed_flags & DELAYED_LED_ASSOC)
444 rt2x00leds_led_assoc(rt2x00dev, !!rt2x00dev->intf_associated);
445 }
446
447 static void rt2x00lib_intf_scheduled(struct work_struct *work)
448 {
449 struct rt2x00_dev *rt2x00dev =
450 container_of(work, struct rt2x00_dev, intf_work);
451
452 /*
453 * Iterate over each interface and perform the
454 * requested configurations.
455 */
456 ieee80211_iterate_active_interfaces(rt2x00dev->hw,
457 rt2x00lib_intf_scheduled_iter,
458 rt2x00dev);
459 }
460
461 /*
462 * Interrupt context handlers.
463 */
464 static void rt2x00lib_beacondone_iter(void *data, u8 *mac,
465 struct ieee80211_vif *vif)
466 {
467 struct rt2x00_dev *rt2x00dev = data;
468 struct rt2x00_intf *intf = vif_to_intf(vif);
469
470 if (vif->type != IEEE80211_IF_TYPE_AP &&
471 vif->type != IEEE80211_IF_TYPE_IBSS)
472 return;
473
474 /*
475 * Clean up the beacon skb.
476 */
477 rt2x00queue_free_skb(rt2x00dev, intf->beacon->skb);
478 intf->beacon->skb = NULL;
479
480 spin_lock(&intf->lock);
481 intf->delayed_flags |= DELAYED_UPDATE_BEACON;
482 spin_unlock(&intf->lock);
483 }
484
485 void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev)
486 {
487 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
488 return;
489
490 ieee80211_iterate_active_interfaces_atomic(rt2x00dev->hw,
491 rt2x00lib_beacondone_iter,
492 rt2x00dev);
493
494 schedule_work(&rt2x00dev->intf_work);
495 }
496 EXPORT_SYMBOL_GPL(rt2x00lib_beacondone);
497
498 void rt2x00lib_txdone(struct queue_entry *entry,
499 struct txdone_entry_desc *txdesc)
500 {
501 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
502 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
503 enum data_queue_qid qid = skb_get_queue_mapping(entry->skb);
504
505 /*
506 * Unmap the skb.
507 */
508 rt2x00queue_unmap_skb(rt2x00dev, entry->skb);
509
510 /*
511 * If the IV/EIV data was stripped from the frame before it was
512 * passed to the hardware, we should now reinsert it again because
513 * mac80211 will expect the the same data to be present it the
514 * frame as it was passed to us.
515 */
516 if (test_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags))
517 rt2x00crypto_tx_insert_iv(entry->skb);
518
519 /*
520 * Send frame to debugfs immediately, after this call is completed
521 * we are going to overwrite the skb->cb array.
522 */
523 rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_TXDONE, entry->skb);
524
525 /*
526 * Update TX statistics.
527 */
528 rt2x00dev->link.qual.tx_success +=
529 test_bit(TXDONE_SUCCESS, &txdesc->flags);
530 rt2x00dev->link.qual.tx_failed +=
531 test_bit(TXDONE_FAILURE, &txdesc->flags);
532
533 /*
534 * Initialize TX status
535 */
536 memset(&tx_info->status, 0, sizeof(tx_info->status));
537 tx_info->status.ack_signal = 0;
538 tx_info->status.excessive_retries =
539 test_bit(TXDONE_EXCESSIVE_RETRY, &txdesc->flags);
540 tx_info->status.retry_count = txdesc->retry;
541
542 if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK)) {
543 if (test_bit(TXDONE_SUCCESS, &txdesc->flags))
544 tx_info->flags |= IEEE80211_TX_STAT_ACK;
545 else if (test_bit(TXDONE_FAILURE, &txdesc->flags))
546 rt2x00dev->low_level_stats.dot11ACKFailureCount++;
547 }
548
549 if (tx_info->flags & IEEE80211_TX_CTL_USE_RTS_CTS) {
550 if (test_bit(TXDONE_SUCCESS, &txdesc->flags))
551 rt2x00dev->low_level_stats.dot11RTSSuccessCount++;
552 else if (test_bit(TXDONE_FAILURE, &txdesc->flags))
553 rt2x00dev->low_level_stats.dot11RTSFailureCount++;
554 }
555
556 /*
557 * Only send the status report to mac80211 when TX status was
558 * requested by it. If this was a extra frame coming through
559 * a mac80211 library call (RTS/CTS) then we should not send the
560 * status report back.
561 */
562 if (tx_info->flags & IEEE80211_TX_CTL_REQ_TX_STATUS)
563 ieee80211_tx_status_irqsafe(rt2x00dev->hw, entry->skb);
564 else
565 dev_kfree_skb_irq(entry->skb);
566
567 /*
568 * Make this entry available for reuse.
569 */
570 entry->skb = NULL;
571 entry->flags = 0;
572
573 rt2x00dev->ops->lib->init_txentry(rt2x00dev, entry);
574
575 clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
576 rt2x00queue_index_inc(entry->queue, Q_INDEX_DONE);
577
578 /*
579 * If the data queue was below the threshold before the txdone
580 * handler we must make sure the packet queue in the mac80211 stack
581 * is reenabled when the txdone handler has finished.
582 */
583 if (!rt2x00queue_threshold(entry->queue))
584 ieee80211_wake_queue(rt2x00dev->hw, qid);
585 }
586 EXPORT_SYMBOL_GPL(rt2x00lib_txdone);
587
588 void rt2x00lib_rxdone(struct rt2x00_dev *rt2x00dev,
589 struct queue_entry *entry)
590 {
591 struct rxdone_entry_desc rxdesc;
592 struct sk_buff *skb;
593 struct ieee80211_rx_status *rx_status = &rt2x00dev->rx_status;
594 struct ieee80211_supported_band *sband;
595 struct ieee80211_hdr *hdr;
596 const struct rt2x00_rate *rate;
597 unsigned int header_length;
598 unsigned int align;
599 unsigned int i;
600 int idx = -1;
601
602 /*
603 * Allocate a new sk_buffer. If no new buffer available, drop the
604 * received frame and reuse the existing buffer.
605 */
606 skb = rt2x00queue_alloc_rxskb(rt2x00dev, entry);
607 if (!skb)
608 return;
609
610 /*
611 * Unmap the skb.
612 */
613 rt2x00queue_unmap_skb(rt2x00dev, entry->skb);
614
615 /*
616 * Extract the RXD details.
617 */
618 memset(&rxdesc, 0, sizeof(rxdesc));
619 rt2x00dev->ops->lib->fill_rxdone(entry, &rxdesc);
620
621 /*
622 * The data behind the ieee80211 header must be
623 * aligned on a 4 byte boundary.
624 */
625 header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
626 align = ((unsigned long)(entry->skb->data + header_length)) & 3;
627
628 /*
629 * Hardware might have stripped the IV/EIV/ICV data,
630 * in that case it is possible that the data was
631 * provided seperately (through hardware descriptor)
632 * in which case we should reinsert the data into the frame.
633 */
634 if ((rxdesc.flags & RX_FLAG_IV_STRIPPED)) {
635 rt2x00crypto_rx_insert_iv(entry->skb, align,
636 header_length, &rxdesc);
637 } else if (align) {
638 skb_push(entry->skb, align);
639 /* Move entire frame in 1 command */
640 memmove(entry->skb->data, entry->skb->data + align,
641 rxdesc.size);
642 }
643
644 /* Update data pointers, trim buffer to correct size */
645 skb_trim(entry->skb, rxdesc.size);
646
647 /*
648 * Update RX statistics.
649 */
650 sband = &rt2x00dev->bands[rt2x00dev->curr_band];
651 for (i = 0; i < sband->n_bitrates; i++) {
652 rate = rt2x00_get_rate(sband->bitrates[i].hw_value);
653
654 if (((rxdesc.dev_flags & RXDONE_SIGNAL_PLCP) &&
655 (rate->plcp == rxdesc.signal)) ||
656 ((rxdesc.dev_flags & RXDONE_SIGNAL_BITRATE) &&
657 (rate->bitrate == rxdesc.signal))) {
658 idx = i;
659 break;
660 }
661 }
662
663 if (idx < 0) {
664 WARNING(rt2x00dev, "Frame received with unrecognized signal,"
665 "signal=0x%.2x, plcp=%d.\n", rxdesc.signal,
666 !!(rxdesc.dev_flags & RXDONE_SIGNAL_PLCP));
667 idx = 0;
668 }
669
670 /*
671 * Only update link status if this is a beacon frame carrying our bssid.
672 */
673 hdr = (struct ieee80211_hdr *)entry->skb->data;
674 if (ieee80211_is_beacon(hdr->frame_control) &&
675 (rxdesc.dev_flags & RXDONE_MY_BSS))
676 rt2x00lib_update_link_stats(&rt2x00dev->link, rxdesc.rssi);
677
678 rt2x00debug_update_crypto(rt2x00dev,
679 rxdesc.cipher,
680 rxdesc.cipher_status);
681
682 rt2x00dev->link.qual.rx_success++;
683
684 rx_status->mactime = rxdesc.timestamp;
685 rx_status->rate_idx = idx;
686 rx_status->qual =
687 rt2x00lib_calculate_link_signal(rt2x00dev, rxdesc.rssi);
688 rx_status->signal = rxdesc.rssi;
689 rx_status->flag = rxdesc.flags;
690 rx_status->antenna = rt2x00dev->link.ant.active.rx;
691
692 /*
693 * Send frame to mac80211 & debugfs.
694 * mac80211 will clean up the skb structure.
695 */
696 rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_RXDONE, entry->skb);
697 ieee80211_rx_irqsafe(rt2x00dev->hw, entry->skb, rx_status);
698
699 /*
700 * Replace the skb with the freshly allocated one.
701 */
702 entry->skb = skb;
703 entry->flags = 0;
704
705 rt2x00dev->ops->lib->init_rxentry(rt2x00dev, entry);
706
707 rt2x00queue_index_inc(entry->queue, Q_INDEX);
708 }
709 EXPORT_SYMBOL_GPL(rt2x00lib_rxdone);
710
711 /*
712 * Driver initialization handlers.
713 */
714 const struct rt2x00_rate rt2x00_supported_rates[12] = {
715 {
716 .flags = DEV_RATE_CCK | DEV_RATE_BASIC,
717 .bitrate = 10,
718 .ratemask = BIT(0),
719 .plcp = 0x00,
720 },
721 {
722 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE | DEV_RATE_BASIC,
723 .bitrate = 20,
724 .ratemask = BIT(1),
725 .plcp = 0x01,
726 },
727 {
728 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE | DEV_RATE_BASIC,
729 .bitrate = 55,
730 .ratemask = BIT(2),
731 .plcp = 0x02,
732 },
733 {
734 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE | DEV_RATE_BASIC,
735 .bitrate = 110,
736 .ratemask = BIT(3),
737 .plcp = 0x03,
738 },
739 {
740 .flags = DEV_RATE_OFDM | DEV_RATE_BASIC,
741 .bitrate = 60,
742 .ratemask = BIT(4),
743 .plcp = 0x0b,
744 },
745 {
746 .flags = DEV_RATE_OFDM,
747 .bitrate = 90,
748 .ratemask = BIT(5),
749 .plcp = 0x0f,
750 },
751 {
752 .flags = DEV_RATE_OFDM | DEV_RATE_BASIC,
753 .bitrate = 120,
754 .ratemask = BIT(6),
755 .plcp = 0x0a,
756 },
757 {
758 .flags = DEV_RATE_OFDM,
759 .bitrate = 180,
760 .ratemask = BIT(7),
761 .plcp = 0x0e,
762 },
763 {
764 .flags = DEV_RATE_OFDM | DEV_RATE_BASIC,
765 .bitrate = 240,
766 .ratemask = BIT(8),
767 .plcp = 0x09,
768 },
769 {
770 .flags = DEV_RATE_OFDM,
771 .bitrate = 360,
772 .ratemask = BIT(9),
773 .plcp = 0x0d,
774 },
775 {
776 .flags = DEV_RATE_OFDM,
777 .bitrate = 480,
778 .ratemask = BIT(10),
779 .plcp = 0x08,
780 },
781 {
782 .flags = DEV_RATE_OFDM,
783 .bitrate = 540,
784 .ratemask = BIT(11),
785 .plcp = 0x0c,
786 },
787 };
788
789 static void rt2x00lib_channel(struct ieee80211_channel *entry,
790 const int channel, const int tx_power,
791 const int value)
792 {
793 entry->center_freq = ieee80211_channel_to_frequency(channel);
794 entry->hw_value = value;
795 entry->max_power = tx_power;
796 entry->max_antenna_gain = 0xff;
797 }
798
799 static void rt2x00lib_rate(struct ieee80211_rate *entry,
800 const u16 index, const struct rt2x00_rate *rate)
801 {
802 entry->flags = 0;
803 entry->bitrate = rate->bitrate;
804 entry->hw_value = rt2x00_create_rate_hw_value(index, 0);
805 entry->hw_value_short = entry->hw_value;
806
807 if (rate->flags & DEV_RATE_SHORT_PREAMBLE) {
808 entry->flags |= IEEE80211_RATE_SHORT_PREAMBLE;
809 entry->hw_value_short |= rt2x00_create_rate_hw_value(index, 1);
810 }
811 }
812
813 static int rt2x00lib_probe_hw_modes(struct rt2x00_dev *rt2x00dev,
814 struct hw_mode_spec *spec)
815 {
816 struct ieee80211_hw *hw = rt2x00dev->hw;
817 struct ieee80211_channel *channels;
818 struct ieee80211_rate *rates;
819 unsigned int num_rates;
820 unsigned int i;
821
822 num_rates = 0;
823 if (spec->supported_rates & SUPPORT_RATE_CCK)
824 num_rates += 4;
825 if (spec->supported_rates & SUPPORT_RATE_OFDM)
826 num_rates += 8;
827
828 channels = kzalloc(sizeof(*channels) * spec->num_channels, GFP_KERNEL);
829 if (!channels)
830 return -ENOMEM;
831
832 rates = kzalloc(sizeof(*rates) * num_rates, GFP_KERNEL);
833 if (!rates)
834 goto exit_free_channels;
835
836 /*
837 * Initialize Rate list.
838 */
839 for (i = 0; i < num_rates; i++)
840 rt2x00lib_rate(&rates[i], i, rt2x00_get_rate(i));
841
842 /*
843 * Initialize Channel list.
844 */
845 for (i = 0; i < spec->num_channels; i++) {
846 rt2x00lib_channel(&channels[i],
847 spec->channels[i].channel,
848 spec->channels_info[i].tx_power1, i);
849 }
850
851 /*
852 * Intitialize 802.11b, 802.11g
853 * Rates: CCK, OFDM.
854 * Channels: 2.4 GHz
855 */
856 if (spec->supported_bands & SUPPORT_BAND_2GHZ) {
857 rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_channels = 14;
858 rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_bitrates = num_rates;
859 rt2x00dev->bands[IEEE80211_BAND_2GHZ].channels = channels;
860 rt2x00dev->bands[IEEE80211_BAND_2GHZ].bitrates = rates;
861 hw->wiphy->bands[IEEE80211_BAND_2GHZ] =
862 &rt2x00dev->bands[IEEE80211_BAND_2GHZ];
863 }
864
865 /*
866 * Intitialize 802.11a
867 * Rates: OFDM.
868 * Channels: OFDM, UNII, HiperLAN2.
869 */
870 if (spec->supported_bands & SUPPORT_BAND_5GHZ) {
871 rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_channels =
872 spec->num_channels - 14;
873 rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_bitrates =
874 num_rates - 4;
875 rt2x00dev->bands[IEEE80211_BAND_5GHZ].channels = &channels[14];
876 rt2x00dev->bands[IEEE80211_BAND_5GHZ].bitrates = &rates[4];
877 hw->wiphy->bands[IEEE80211_BAND_5GHZ] =
878 &rt2x00dev->bands[IEEE80211_BAND_5GHZ];
879 }
880
881 return 0;
882
883 exit_free_channels:
884 kfree(channels);
885 ERROR(rt2x00dev, "Allocation ieee80211 modes failed.\n");
886 return -ENOMEM;
887 }
888
889 static void rt2x00lib_remove_hw(struct rt2x00_dev *rt2x00dev)
890 {
891 if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
892 ieee80211_unregister_hw(rt2x00dev->hw);
893
894 if (likely(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ])) {
895 kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->channels);
896 kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->bitrates);
897 rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ] = NULL;
898 rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_5GHZ] = NULL;
899 }
900
901 kfree(rt2x00dev->spec.channels_info);
902 }
903
904 static int rt2x00lib_probe_hw(struct rt2x00_dev *rt2x00dev)
905 {
906 struct hw_mode_spec *spec = &rt2x00dev->spec;
907 int status;
908
909 if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
910 return 0;
911
912 /*
913 * Initialize HW modes.
914 */
915 status = rt2x00lib_probe_hw_modes(rt2x00dev, spec);
916 if (status)
917 return status;
918
919 /*
920 * Initialize HW fields.
921 */
922 rt2x00dev->hw->queues = rt2x00dev->ops->tx_queues;
923
924 /*
925 * Register HW.
926 */
927 status = ieee80211_register_hw(rt2x00dev->hw);
928 if (status) {
929 rt2x00lib_remove_hw(rt2x00dev);
930 return status;
931 }
932
933 set_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags);
934
935 return 0;
936 }
937
938 /*
939 * Initialization/uninitialization handlers.
940 */
941 static void rt2x00lib_uninitialize(struct rt2x00_dev *rt2x00dev)
942 {
943 if (!test_and_clear_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
944 return;
945
946 /*
947 * Unregister extra components.
948 */
949 rt2x00rfkill_unregister(rt2x00dev);
950
951 /*
952 * Allow the HW to uninitialize.
953 */
954 rt2x00dev->ops->lib->uninitialize(rt2x00dev);
955
956 /*
957 * Free allocated queue entries.
958 */
959 rt2x00queue_uninitialize(rt2x00dev);
960 }
961
962 static int rt2x00lib_initialize(struct rt2x00_dev *rt2x00dev)
963 {
964 int status;
965
966 if (test_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
967 return 0;
968
969 /*
970 * Allocate all queue entries.
971 */
972 status = rt2x00queue_initialize(rt2x00dev);
973 if (status)
974 return status;
975
976 /*
977 * Initialize the device.
978 */
979 status = rt2x00dev->ops->lib->initialize(rt2x00dev);
980 if (status) {
981 rt2x00queue_uninitialize(rt2x00dev);
982 return status;
983 }
984
985 set_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags);
986
987 /*
988 * Register the extra components.
989 */
990 rt2x00rfkill_register(rt2x00dev);
991
992 return 0;
993 }
994
995 int rt2x00lib_start(struct rt2x00_dev *rt2x00dev)
996 {
997 int retval;
998
999 if (test_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
1000 return 0;
1001
1002 /*
1003 * If this is the first interface which is added,
1004 * we should load the firmware now.
1005 */
1006 retval = rt2x00lib_load_firmware(rt2x00dev);
1007 if (retval)
1008 return retval;
1009
1010 /*
1011 * Initialize the device.
1012 */
1013 retval = rt2x00lib_initialize(rt2x00dev);
1014 if (retval)
1015 return retval;
1016
1017 rt2x00dev->intf_ap_count = 0;
1018 rt2x00dev->intf_sta_count = 0;
1019 rt2x00dev->intf_associated = 0;
1020
1021 set_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags);
1022
1023 return 0;
1024 }
1025
1026 void rt2x00lib_stop(struct rt2x00_dev *rt2x00dev)
1027 {
1028 if (!test_and_clear_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
1029 return;
1030
1031 /*
1032 * Perhaps we can add something smarter here,
1033 * but for now just disabling the radio should do.
1034 */
1035 rt2x00lib_disable_radio(rt2x00dev);
1036
1037 rt2x00dev->intf_ap_count = 0;
1038 rt2x00dev->intf_sta_count = 0;
1039 rt2x00dev->intf_associated = 0;
1040 }
1041
1042 /*
1043 * driver allocation handlers.
1044 */
1045 int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev)
1046 {
1047 int retval = -ENOMEM;
1048
1049 /*
1050 * Make room for rt2x00_intf inside the per-interface
1051 * structure ieee80211_vif.
1052 */
1053 rt2x00dev->hw->vif_data_size = sizeof(struct rt2x00_intf);
1054
1055 rt2x00dev->hw->wiphy->interface_modes =
1056 BIT(NL80211_IFTYPE_AP) |
1057 BIT(NL80211_IFTYPE_STATION) |
1058 BIT(NL80211_IFTYPE_ADHOC);
1059
1060 /*
1061 * Let the driver probe the device to detect the capabilities.
1062 */
1063 retval = rt2x00dev->ops->lib->probe_hw(rt2x00dev);
1064 if (retval) {
1065 ERROR(rt2x00dev, "Failed to allocate device.\n");
1066 goto exit;
1067 }
1068
1069 /*
1070 * Initialize configuration work.
1071 */
1072 INIT_WORK(&rt2x00dev->intf_work, rt2x00lib_intf_scheduled);
1073 INIT_WORK(&rt2x00dev->filter_work, rt2x00lib_packetfilter_scheduled);
1074 INIT_DELAYED_WORK(&rt2x00dev->link.work, rt2x00lib_link_tuner);
1075
1076 /*
1077 * Allocate queue array.
1078 */
1079 retval = rt2x00queue_allocate(rt2x00dev);
1080 if (retval)
1081 goto exit;
1082
1083 /*
1084 * Initialize ieee80211 structure.
1085 */
1086 retval = rt2x00lib_probe_hw(rt2x00dev);
1087 if (retval) {
1088 ERROR(rt2x00dev, "Failed to initialize hw.\n");
1089 goto exit;
1090 }
1091
1092 /*
1093 * Register extra components.
1094 */
1095 rt2x00leds_register(rt2x00dev);
1096 rt2x00rfkill_allocate(rt2x00dev);
1097 rt2x00debug_register(rt2x00dev);
1098
1099 set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1100
1101 return 0;
1102
1103 exit:
1104 rt2x00lib_remove_dev(rt2x00dev);
1105
1106 return retval;
1107 }
1108 EXPORT_SYMBOL_GPL(rt2x00lib_probe_dev);
1109
1110 void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev)
1111 {
1112 clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1113
1114 /*
1115 * Disable radio.
1116 */
1117 rt2x00lib_disable_radio(rt2x00dev);
1118
1119 /*
1120 * Uninitialize device.
1121 */
1122 rt2x00lib_uninitialize(rt2x00dev);
1123
1124 /*
1125 * Free extra components
1126 */
1127 rt2x00debug_deregister(rt2x00dev);
1128 rt2x00rfkill_free(rt2x00dev);
1129 rt2x00leds_unregister(rt2x00dev);
1130
1131 /*
1132 * Free ieee80211_hw memory.
1133 */
1134 rt2x00lib_remove_hw(rt2x00dev);
1135
1136 /*
1137 * Free firmware image.
1138 */
1139 rt2x00lib_free_firmware(rt2x00dev);
1140
1141 /*
1142 * Free queue structures.
1143 */
1144 rt2x00queue_free(rt2x00dev);
1145 }
1146 EXPORT_SYMBOL_GPL(rt2x00lib_remove_dev);
1147
1148 /*
1149 * Device state handlers
1150 */
1151 #ifdef CONFIG_PM
1152 int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state)
1153 {
1154 int retval;
1155
1156 NOTICE(rt2x00dev, "Going to sleep.\n");
1157
1158 /*
1159 * Only continue if mac80211 has open interfaces.
1160 */
1161 if (!test_and_clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags) ||
1162 !test_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
1163 goto exit;
1164
1165 set_bit(DEVICE_STATE_STARTED_SUSPEND, &rt2x00dev->flags);
1166
1167 /*
1168 * Disable radio.
1169 */
1170 rt2x00lib_stop(rt2x00dev);
1171 rt2x00lib_uninitialize(rt2x00dev);
1172
1173 /*
1174 * Suspend/disable extra components.
1175 */
1176 rt2x00leds_suspend(rt2x00dev);
1177 rt2x00debug_deregister(rt2x00dev);
1178
1179 exit:
1180 /*
1181 * Set device mode to sleep for power management,
1182 * on some hardware this call seems to consistently fail.
1183 * From the specifications it is hard to tell why it fails,
1184 * and if this is a "bad thing".
1185 * Overall it is safe to just ignore the failure and
1186 * continue suspending. The only downside is that the
1187 * device will not be in optimal power save mode, but with
1188 * the radio and the other components already disabled the
1189 * device is as good as disabled.
1190 */
1191 retval = rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_SLEEP);
1192 if (retval)
1193 WARNING(rt2x00dev, "Device failed to enter sleep state, "
1194 "continue suspending.\n");
1195
1196 return 0;
1197 }
1198 EXPORT_SYMBOL_GPL(rt2x00lib_suspend);
1199
1200 static void rt2x00lib_resume_intf(void *data, u8 *mac,
1201 struct ieee80211_vif *vif)
1202 {
1203 struct rt2x00_dev *rt2x00dev = data;
1204 struct rt2x00_intf *intf = vif_to_intf(vif);
1205
1206 spin_lock(&intf->lock);
1207
1208 rt2x00lib_config_intf(rt2x00dev, intf,
1209 vif->type, intf->mac, intf->bssid);
1210
1211
1212 /*
1213 * Master or Ad-hoc mode require a new beacon update.
1214 */
1215 if (vif->type == IEEE80211_IF_TYPE_AP ||
1216 vif->type == IEEE80211_IF_TYPE_IBSS)
1217 intf->delayed_flags |= DELAYED_UPDATE_BEACON;
1218
1219 spin_unlock(&intf->lock);
1220 }
1221
1222 int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev)
1223 {
1224 int retval;
1225
1226 NOTICE(rt2x00dev, "Waking up.\n");
1227
1228 /*
1229 * Restore/enable extra components.
1230 */
1231 rt2x00debug_register(rt2x00dev);
1232 rt2x00leds_resume(rt2x00dev);
1233
1234 /*
1235 * Only continue if mac80211 had open interfaces.
1236 */
1237 if (!test_and_clear_bit(DEVICE_STATE_STARTED_SUSPEND, &rt2x00dev->flags))
1238 return 0;
1239
1240 /*
1241 * Reinitialize device and all active interfaces.
1242 */
1243 retval = rt2x00lib_start(rt2x00dev);
1244 if (retval)
1245 goto exit;
1246
1247 /*
1248 * Reconfigure device.
1249 */
1250 retval = rt2x00mac_config(rt2x00dev->hw, &rt2x00dev->hw->conf);
1251 if (retval)
1252 goto exit;
1253
1254 /*
1255 * Iterator over each active interface to
1256 * reconfigure the hardware.
1257 */
1258 ieee80211_iterate_active_interfaces(rt2x00dev->hw,
1259 rt2x00lib_resume_intf, rt2x00dev);
1260
1261 /*
1262 * We are ready again to receive requests from mac80211.
1263 */
1264 set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1265
1266 /*
1267 * It is possible that during that mac80211 has attempted
1268 * to send frames while we were suspending or resuming.
1269 * In that case we have disabled the TX queue and should
1270 * now enable it again
1271 */
1272 ieee80211_wake_queues(rt2x00dev->hw);
1273
1274 /*
1275 * During interface iteration we might have changed the
1276 * delayed_flags, time to handles the event by calling
1277 * the work handler directly.
1278 */
1279 rt2x00lib_intf_scheduled(&rt2x00dev->intf_work);
1280
1281 return 0;
1282
1283 exit:
1284 rt2x00lib_stop(rt2x00dev);
1285 rt2x00lib_uninitialize(rt2x00dev);
1286 rt2x00debug_deregister(rt2x00dev);
1287
1288 return retval;
1289 }
1290 EXPORT_SYMBOL_GPL(rt2x00lib_resume);
1291 #endif /* CONFIG_PM */
1292
1293 /*
1294 * rt2x00lib module information.
1295 */
1296 MODULE_AUTHOR(DRV_PROJECT);
1297 MODULE_VERSION(DRV_VERSION);
1298 MODULE_DESCRIPTION("rt2x00 library");
1299 MODULE_LICENSE("GPL");
This page took 0.08044 seconds and 5 git commands to generate.