mac80211: push rx status into skb->cb
[deliverable/linux.git] / drivers / net / wireless / rt2x00 / rt2x00dev.c
1 /*
2 Copyright (C) 2004 - 2009 rt2x00 SourceForge Project
3 <http://rt2x00.serialmonkey.com>
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the
17 Free Software Foundation, Inc.,
18 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 */
20
21 /*
22 Module: rt2x00lib
23 Abstract: rt2x00 generic device routines.
24 */
25
26 #include <linux/kernel.h>
27 #include <linux/module.h>
28
29 #include "rt2x00.h"
30 #include "rt2x00lib.h"
31
32 /*
33 * Radio control handlers.
34 */
35 int rt2x00lib_enable_radio(struct rt2x00_dev *rt2x00dev)
36 {
37 int status;
38
39 /*
40 * Don't enable the radio twice.
41 * And check if the hardware button has been disabled.
42 */
43 if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags) ||
44 test_bit(DEVICE_STATE_DISABLED_RADIO_HW, &rt2x00dev->flags))
45 return 0;
46
47 /*
48 * Initialize all data queues.
49 */
50 rt2x00queue_init_queues(rt2x00dev);
51
52 /*
53 * Enable radio.
54 */
55 status =
56 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_ON);
57 if (status)
58 return status;
59
60 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_ON);
61
62 rt2x00leds_led_radio(rt2x00dev, true);
63 rt2x00led_led_activity(rt2x00dev, true);
64
65 set_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags);
66
67 /*
68 * Enable RX.
69 */
70 rt2x00lib_toggle_rx(rt2x00dev, STATE_RADIO_RX_ON);
71
72 /*
73 * Start the TX queues.
74 */
75 ieee80211_wake_queues(rt2x00dev->hw);
76
77 return 0;
78 }
79
80 void rt2x00lib_disable_radio(struct rt2x00_dev *rt2x00dev)
81 {
82 if (!test_and_clear_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
83 return;
84
85 /*
86 * Stop the TX queues in mac80211.
87 */
88 ieee80211_stop_queues(rt2x00dev->hw);
89 rt2x00queue_stop_queues(rt2x00dev);
90
91 /*
92 * Disable RX.
93 */
94 rt2x00lib_toggle_rx(rt2x00dev, STATE_RADIO_RX_OFF);
95
96 /*
97 * Disable radio.
98 */
99 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_OFF);
100 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_OFF);
101 rt2x00led_led_activity(rt2x00dev, false);
102 rt2x00leds_led_radio(rt2x00dev, false);
103 }
104
105 void rt2x00lib_toggle_rx(struct rt2x00_dev *rt2x00dev, enum dev_state state)
106 {
107 /*
108 * When we are disabling the RX, we should also stop the link tuner.
109 */
110 if (state == STATE_RADIO_RX_OFF)
111 rt2x00link_stop_tuner(rt2x00dev);
112
113 rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
114
115 /*
116 * When we are enabling the RX, we should also start the link tuner.
117 */
118 if (state == STATE_RADIO_RX_ON)
119 rt2x00link_start_tuner(rt2x00dev);
120 }
121
122 static void rt2x00lib_packetfilter_scheduled(struct work_struct *work)
123 {
124 struct rt2x00_dev *rt2x00dev =
125 container_of(work, struct rt2x00_dev, filter_work);
126
127 rt2x00dev->ops->lib->config_filter(rt2x00dev, rt2x00dev->packet_filter);
128 }
129
130 static void rt2x00lib_intf_scheduled_iter(void *data, u8 *mac,
131 struct ieee80211_vif *vif)
132 {
133 struct rt2x00_dev *rt2x00dev = data;
134 struct rt2x00_intf *intf = vif_to_intf(vif);
135 struct ieee80211_bss_conf conf;
136 int delayed_flags;
137
138 /*
139 * Copy all data we need during this action under the protection
140 * of a spinlock. Otherwise race conditions might occur which results
141 * into an invalid configuration.
142 */
143 spin_lock(&intf->lock);
144
145 memcpy(&conf, &vif->bss_conf, sizeof(conf));
146 delayed_flags = intf->delayed_flags;
147 intf->delayed_flags = 0;
148
149 spin_unlock(&intf->lock);
150
151 /*
152 * It is possible the radio was disabled while the work had been
153 * scheduled. If that happens we should return here immediately,
154 * note that in the spinlock protected area above the delayed_flags
155 * have been cleared correctly.
156 */
157 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
158 return;
159
160 if (delayed_flags & DELAYED_UPDATE_BEACON)
161 rt2x00queue_update_beacon(rt2x00dev, vif, true);
162
163 if (delayed_flags & DELAYED_CONFIG_ERP)
164 rt2x00lib_config_erp(rt2x00dev, intf, &conf);
165
166 if (delayed_flags & DELAYED_LED_ASSOC)
167 rt2x00leds_led_assoc(rt2x00dev, !!rt2x00dev->intf_associated);
168 }
169
170 static void rt2x00lib_intf_scheduled(struct work_struct *work)
171 {
172 struct rt2x00_dev *rt2x00dev =
173 container_of(work, struct rt2x00_dev, intf_work);
174
175 /*
176 * Iterate over each interface and perform the
177 * requested configurations.
178 */
179 ieee80211_iterate_active_interfaces(rt2x00dev->hw,
180 rt2x00lib_intf_scheduled_iter,
181 rt2x00dev);
182 }
183
184 /*
185 * Interrupt context handlers.
186 */
187 static void rt2x00lib_beacondone_iter(void *data, u8 *mac,
188 struct ieee80211_vif *vif)
189 {
190 struct rt2x00_dev *rt2x00dev = data;
191 struct rt2x00_intf *intf = vif_to_intf(vif);
192
193 if (vif->type != NL80211_IFTYPE_AP &&
194 vif->type != NL80211_IFTYPE_ADHOC &&
195 vif->type != NL80211_IFTYPE_MESH_POINT &&
196 vif->type != NL80211_IFTYPE_WDS)
197 return;
198
199 /*
200 * Clean up the beacon skb.
201 */
202 rt2x00queue_free_skb(rt2x00dev, intf->beacon->skb);
203 intf->beacon->skb = NULL;
204
205 spin_lock(&intf->lock);
206 intf->delayed_flags |= DELAYED_UPDATE_BEACON;
207 spin_unlock(&intf->lock);
208 }
209
210 void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev)
211 {
212 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
213 return;
214
215 ieee80211_iterate_active_interfaces_atomic(rt2x00dev->hw,
216 rt2x00lib_beacondone_iter,
217 rt2x00dev);
218
219 queue_work(rt2x00dev->hw->workqueue, &rt2x00dev->intf_work);
220 }
221 EXPORT_SYMBOL_GPL(rt2x00lib_beacondone);
222
223 void rt2x00lib_txdone(struct queue_entry *entry,
224 struct txdone_entry_desc *txdesc)
225 {
226 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
227 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
228 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
229 enum data_queue_qid qid = skb_get_queue_mapping(entry->skb);
230 unsigned int header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
231 u8 rate_idx, rate_flags;
232
233 /*
234 * Unmap the skb.
235 */
236 rt2x00queue_unmap_skb(rt2x00dev, entry->skb);
237
238 /*
239 * Remove L2 padding which was added during
240 */
241 if (test_bit(DRIVER_REQUIRE_L2PAD, &rt2x00dev->flags))
242 rt2x00queue_payload_align(entry->skb, true, header_length);
243
244 /*
245 * If the IV/EIV data was stripped from the frame before it was
246 * passed to the hardware, we should now reinsert it again because
247 * mac80211 will expect the the same data to be present it the
248 * frame as it was passed to us.
249 */
250 if (test_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags))
251 rt2x00crypto_tx_insert_iv(entry->skb, header_length);
252
253 /*
254 * Send frame to debugfs immediately, after this call is completed
255 * we are going to overwrite the skb->cb array.
256 */
257 rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_TXDONE, entry->skb);
258
259 /*
260 * Update TX statistics.
261 */
262 rt2x00dev->link.qual.tx_success +=
263 test_bit(TXDONE_SUCCESS, &txdesc->flags) ||
264 test_bit(TXDONE_UNKNOWN, &txdesc->flags);
265 rt2x00dev->link.qual.tx_failed +=
266 test_bit(TXDONE_FAILURE, &txdesc->flags);
267
268 rate_idx = skbdesc->tx_rate_idx;
269 rate_flags = skbdesc->tx_rate_flags;
270
271 /*
272 * Initialize TX status
273 */
274 memset(&tx_info->status, 0, sizeof(tx_info->status));
275 tx_info->status.ack_signal = 0;
276 tx_info->status.rates[0].idx = rate_idx;
277 tx_info->status.rates[0].flags = rate_flags;
278 tx_info->status.rates[0].count = txdesc->retry + 1;
279 tx_info->status.rates[1].idx = -1; /* terminate */
280
281 if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK)) {
282 if (test_bit(TXDONE_SUCCESS, &txdesc->flags) ||
283 test_bit(TXDONE_UNKNOWN, &txdesc->flags))
284 tx_info->flags |= IEEE80211_TX_STAT_ACK;
285 else if (test_bit(TXDONE_FAILURE, &txdesc->flags))
286 rt2x00dev->low_level_stats.dot11ACKFailureCount++;
287 }
288
289 if (rate_flags & IEEE80211_TX_RC_USE_RTS_CTS) {
290 if (test_bit(TXDONE_SUCCESS, &txdesc->flags) ||
291 test_bit(TXDONE_UNKNOWN, &txdesc->flags))
292 rt2x00dev->low_level_stats.dot11RTSSuccessCount++;
293 else if (test_bit(TXDONE_FAILURE, &txdesc->flags))
294 rt2x00dev->low_level_stats.dot11RTSFailureCount++;
295 }
296
297 /*
298 * Only send the status report to mac80211 when TX status was
299 * requested by it. If this was a extra frame coming through
300 * a mac80211 library call (RTS/CTS) then we should not send the
301 * status report back.
302 */
303 if (tx_info->flags & IEEE80211_TX_CTL_REQ_TX_STATUS)
304 ieee80211_tx_status_irqsafe(rt2x00dev->hw, entry->skb);
305 else
306 dev_kfree_skb_irq(entry->skb);
307
308 /*
309 * Make this entry available for reuse.
310 */
311 entry->skb = NULL;
312 entry->flags = 0;
313
314 rt2x00dev->ops->lib->clear_entry(entry);
315
316 clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
317 rt2x00queue_index_inc(entry->queue, Q_INDEX_DONE);
318
319 /*
320 * If the data queue was below the threshold before the txdone
321 * handler we must make sure the packet queue in the mac80211 stack
322 * is reenabled when the txdone handler has finished.
323 */
324 if (!rt2x00queue_threshold(entry->queue))
325 ieee80211_wake_queue(rt2x00dev->hw, qid);
326 }
327 EXPORT_SYMBOL_GPL(rt2x00lib_txdone);
328
329 static int rt2x00lib_rxdone_read_signal(struct rt2x00_dev *rt2x00dev,
330 struct rxdone_entry_desc *rxdesc)
331 {
332 struct ieee80211_supported_band *sband;
333 const struct rt2x00_rate *rate;
334 unsigned int i;
335 int signal;
336 int type;
337
338 /*
339 * For non-HT rates the MCS value needs to contain the
340 * actually used rate modulation (CCK or OFDM).
341 */
342 if (rxdesc->dev_flags & RXDONE_SIGNAL_MCS)
343 signal = RATE_MCS(rxdesc->rate_mode, rxdesc->signal);
344 else
345 signal = rxdesc->signal;
346
347 type = (rxdesc->dev_flags & RXDONE_SIGNAL_MASK);
348
349 sband = &rt2x00dev->bands[rt2x00dev->curr_band];
350 for (i = 0; i < sband->n_bitrates; i++) {
351 rate = rt2x00_get_rate(sband->bitrates[i].hw_value);
352
353 if (((type == RXDONE_SIGNAL_PLCP) &&
354 (rate->plcp == signal)) ||
355 ((type == RXDONE_SIGNAL_BITRATE) &&
356 (rate->bitrate == signal)) ||
357 ((type == RXDONE_SIGNAL_MCS) &&
358 (rate->mcs == signal))) {
359 return i;
360 }
361 }
362
363 WARNING(rt2x00dev, "Frame received with unrecognized signal, "
364 "signal=0x%.4x, type=%d.\n", signal, type);
365 return 0;
366 }
367
368 void rt2x00lib_rxdone(struct rt2x00_dev *rt2x00dev,
369 struct queue_entry *entry)
370 {
371 struct rxdone_entry_desc rxdesc;
372 struct sk_buff *skb;
373 struct ieee80211_rx_status *rx_status = &rt2x00dev->rx_status;
374 unsigned int header_length;
375 bool l2pad;
376 int rate_idx;
377 /*
378 * Allocate a new sk_buffer. If no new buffer available, drop the
379 * received frame and reuse the existing buffer.
380 */
381 skb = rt2x00queue_alloc_rxskb(rt2x00dev, entry);
382 if (!skb)
383 return;
384
385 /*
386 * Unmap the skb.
387 */
388 rt2x00queue_unmap_skb(rt2x00dev, entry->skb);
389
390 /*
391 * Extract the RXD details.
392 */
393 memset(&rxdesc, 0, sizeof(rxdesc));
394 rt2x00dev->ops->lib->fill_rxdone(entry, &rxdesc);
395
396 /* Trim buffer to correct size */
397 skb_trim(entry->skb, rxdesc.size);
398
399 /*
400 * The data behind the ieee80211 header must be
401 * aligned on a 4 byte boundary.
402 */
403 header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
404 l2pad = !!(rxdesc.dev_flags & RXDONE_L2PAD);
405
406 /*
407 * Hardware might have stripped the IV/EIV/ICV data,
408 * in that case it is possible that the data was
409 * provided seperately (through hardware descriptor)
410 * in which case we should reinsert the data into the frame.
411 */
412 if ((rxdesc.dev_flags & RXDONE_CRYPTO_IV) &&
413 (rxdesc.flags & RX_FLAG_IV_STRIPPED))
414 rt2x00crypto_rx_insert_iv(entry->skb, l2pad, header_length,
415 &rxdesc);
416 else
417 rt2x00queue_payload_align(entry->skb, l2pad, header_length);
418
419 /*
420 * Check if the frame was received using HT. In that case,
421 * the rate is the MCS index and should be passed to mac80211
422 * directly. Otherwise we need to translate the signal to
423 * the correct bitrate index.
424 */
425 if (rxdesc.rate_mode == RATE_MODE_CCK ||
426 rxdesc.rate_mode == RATE_MODE_OFDM) {
427 rate_idx = rt2x00lib_rxdone_read_signal(rt2x00dev, &rxdesc);
428 } else {
429 rxdesc.flags |= RX_FLAG_HT;
430 rate_idx = rxdesc.signal;
431 }
432
433 /*
434 * Update extra components
435 */
436 rt2x00link_update_stats(rt2x00dev, entry->skb, &rxdesc);
437 rt2x00debug_update_crypto(rt2x00dev, &rxdesc);
438
439 rx_status->mactime = rxdesc.timestamp;
440 rx_status->rate_idx = rate_idx;
441 rx_status->qual = rt2x00link_calculate_signal(rt2x00dev, rxdesc.rssi);
442 rx_status->signal = rxdesc.rssi;
443 rx_status->noise = rxdesc.noise;
444 rx_status->flag = rxdesc.flags;
445 rx_status->antenna = rt2x00dev->link.ant.active.rx;
446
447 /*
448 * Send frame to mac80211 & debugfs.
449 * mac80211 will clean up the skb structure.
450 */
451 rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_RXDONE, entry->skb);
452 memcpy(IEEE80211_SKB_RXCB(entry->skb), rx_status, sizeof(*rx_status));
453 ieee80211_rx_irqsafe(rt2x00dev->hw, entry->skb);
454
455 /*
456 * Replace the skb with the freshly allocated one.
457 */
458 entry->skb = skb;
459 entry->flags = 0;
460
461 rt2x00dev->ops->lib->clear_entry(entry);
462
463 rt2x00queue_index_inc(entry->queue, Q_INDEX);
464 }
465 EXPORT_SYMBOL_GPL(rt2x00lib_rxdone);
466
467 /*
468 * Driver initialization handlers.
469 */
470 const struct rt2x00_rate rt2x00_supported_rates[12] = {
471 {
472 .flags = DEV_RATE_CCK,
473 .bitrate = 10,
474 .ratemask = BIT(0),
475 .plcp = 0x00,
476 .mcs = RATE_MCS(RATE_MODE_CCK, 0),
477 },
478 {
479 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
480 .bitrate = 20,
481 .ratemask = BIT(1),
482 .plcp = 0x01,
483 .mcs = RATE_MCS(RATE_MODE_CCK, 1),
484 },
485 {
486 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
487 .bitrate = 55,
488 .ratemask = BIT(2),
489 .plcp = 0x02,
490 .mcs = RATE_MCS(RATE_MODE_CCK, 2),
491 },
492 {
493 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
494 .bitrate = 110,
495 .ratemask = BIT(3),
496 .plcp = 0x03,
497 .mcs = RATE_MCS(RATE_MODE_CCK, 3),
498 },
499 {
500 .flags = DEV_RATE_OFDM,
501 .bitrate = 60,
502 .ratemask = BIT(4),
503 .plcp = 0x0b,
504 .mcs = RATE_MCS(RATE_MODE_OFDM, 0),
505 },
506 {
507 .flags = DEV_RATE_OFDM,
508 .bitrate = 90,
509 .ratemask = BIT(5),
510 .plcp = 0x0f,
511 .mcs = RATE_MCS(RATE_MODE_OFDM, 1),
512 },
513 {
514 .flags = DEV_RATE_OFDM,
515 .bitrate = 120,
516 .ratemask = BIT(6),
517 .plcp = 0x0a,
518 .mcs = RATE_MCS(RATE_MODE_OFDM, 2),
519 },
520 {
521 .flags = DEV_RATE_OFDM,
522 .bitrate = 180,
523 .ratemask = BIT(7),
524 .plcp = 0x0e,
525 .mcs = RATE_MCS(RATE_MODE_OFDM, 3),
526 },
527 {
528 .flags = DEV_RATE_OFDM,
529 .bitrate = 240,
530 .ratemask = BIT(8),
531 .plcp = 0x09,
532 .mcs = RATE_MCS(RATE_MODE_OFDM, 4),
533 },
534 {
535 .flags = DEV_RATE_OFDM,
536 .bitrate = 360,
537 .ratemask = BIT(9),
538 .plcp = 0x0d,
539 .mcs = RATE_MCS(RATE_MODE_OFDM, 5),
540 },
541 {
542 .flags = DEV_RATE_OFDM,
543 .bitrate = 480,
544 .ratemask = BIT(10),
545 .plcp = 0x08,
546 .mcs = RATE_MCS(RATE_MODE_OFDM, 6),
547 },
548 {
549 .flags = DEV_RATE_OFDM,
550 .bitrate = 540,
551 .ratemask = BIT(11),
552 .plcp = 0x0c,
553 .mcs = RATE_MCS(RATE_MODE_OFDM, 7),
554 },
555 };
556
557 static void rt2x00lib_channel(struct ieee80211_channel *entry,
558 const int channel, const int tx_power,
559 const int value)
560 {
561 entry->center_freq = ieee80211_channel_to_frequency(channel);
562 entry->hw_value = value;
563 entry->max_power = tx_power;
564 entry->max_antenna_gain = 0xff;
565 }
566
567 static void rt2x00lib_rate(struct ieee80211_rate *entry,
568 const u16 index, const struct rt2x00_rate *rate)
569 {
570 entry->flags = 0;
571 entry->bitrate = rate->bitrate;
572 entry->hw_value =index;
573 entry->hw_value_short = index;
574
575 if (rate->flags & DEV_RATE_SHORT_PREAMBLE)
576 entry->flags |= IEEE80211_RATE_SHORT_PREAMBLE;
577 }
578
579 static int rt2x00lib_probe_hw_modes(struct rt2x00_dev *rt2x00dev,
580 struct hw_mode_spec *spec)
581 {
582 struct ieee80211_hw *hw = rt2x00dev->hw;
583 struct ieee80211_channel *channels;
584 struct ieee80211_rate *rates;
585 unsigned int num_rates;
586 unsigned int i;
587
588 num_rates = 0;
589 if (spec->supported_rates & SUPPORT_RATE_CCK)
590 num_rates += 4;
591 if (spec->supported_rates & SUPPORT_RATE_OFDM)
592 num_rates += 8;
593
594 channels = kzalloc(sizeof(*channels) * spec->num_channels, GFP_KERNEL);
595 if (!channels)
596 return -ENOMEM;
597
598 rates = kzalloc(sizeof(*rates) * num_rates, GFP_KERNEL);
599 if (!rates)
600 goto exit_free_channels;
601
602 /*
603 * Initialize Rate list.
604 */
605 for (i = 0; i < num_rates; i++)
606 rt2x00lib_rate(&rates[i], i, rt2x00_get_rate(i));
607
608 /*
609 * Initialize Channel list.
610 */
611 for (i = 0; i < spec->num_channels; i++) {
612 rt2x00lib_channel(&channels[i],
613 spec->channels[i].channel,
614 spec->channels_info[i].tx_power1, i);
615 }
616
617 /*
618 * Intitialize 802.11b, 802.11g
619 * Rates: CCK, OFDM.
620 * Channels: 2.4 GHz
621 */
622 if (spec->supported_bands & SUPPORT_BAND_2GHZ) {
623 rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_channels = 14;
624 rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_bitrates = num_rates;
625 rt2x00dev->bands[IEEE80211_BAND_2GHZ].channels = channels;
626 rt2x00dev->bands[IEEE80211_BAND_2GHZ].bitrates = rates;
627 hw->wiphy->bands[IEEE80211_BAND_2GHZ] =
628 &rt2x00dev->bands[IEEE80211_BAND_2GHZ];
629 memcpy(&rt2x00dev->bands[IEEE80211_BAND_2GHZ].ht_cap,
630 &spec->ht, sizeof(spec->ht));
631 }
632
633 /*
634 * Intitialize 802.11a
635 * Rates: OFDM.
636 * Channels: OFDM, UNII, HiperLAN2.
637 */
638 if (spec->supported_bands & SUPPORT_BAND_5GHZ) {
639 rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_channels =
640 spec->num_channels - 14;
641 rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_bitrates =
642 num_rates - 4;
643 rt2x00dev->bands[IEEE80211_BAND_5GHZ].channels = &channels[14];
644 rt2x00dev->bands[IEEE80211_BAND_5GHZ].bitrates = &rates[4];
645 hw->wiphy->bands[IEEE80211_BAND_5GHZ] =
646 &rt2x00dev->bands[IEEE80211_BAND_5GHZ];
647 memcpy(&rt2x00dev->bands[IEEE80211_BAND_5GHZ].ht_cap,
648 &spec->ht, sizeof(spec->ht));
649 }
650
651 return 0;
652
653 exit_free_channels:
654 kfree(channels);
655 ERROR(rt2x00dev, "Allocation ieee80211 modes failed.\n");
656 return -ENOMEM;
657 }
658
659 static void rt2x00lib_remove_hw(struct rt2x00_dev *rt2x00dev)
660 {
661 if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
662 ieee80211_unregister_hw(rt2x00dev->hw);
663
664 if (likely(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ])) {
665 kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->channels);
666 kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->bitrates);
667 rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ] = NULL;
668 rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_5GHZ] = NULL;
669 }
670
671 kfree(rt2x00dev->spec.channels_info);
672 }
673
674 static int rt2x00lib_probe_hw(struct rt2x00_dev *rt2x00dev)
675 {
676 struct hw_mode_spec *spec = &rt2x00dev->spec;
677 int status;
678
679 if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
680 return 0;
681
682 /*
683 * Initialize HW modes.
684 */
685 status = rt2x00lib_probe_hw_modes(rt2x00dev, spec);
686 if (status)
687 return status;
688
689 /*
690 * Initialize HW fields.
691 */
692 rt2x00dev->hw->queues = rt2x00dev->ops->tx_queues;
693
694 /*
695 * Register HW.
696 */
697 status = ieee80211_register_hw(rt2x00dev->hw);
698 if (status)
699 return status;
700
701 set_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags);
702
703 return 0;
704 }
705
706 /*
707 * Initialization/uninitialization handlers.
708 */
709 static void rt2x00lib_uninitialize(struct rt2x00_dev *rt2x00dev)
710 {
711 if (!test_and_clear_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
712 return;
713
714 /*
715 * Unregister extra components.
716 */
717 rt2x00rfkill_unregister(rt2x00dev);
718
719 /*
720 * Allow the HW to uninitialize.
721 */
722 rt2x00dev->ops->lib->uninitialize(rt2x00dev);
723
724 /*
725 * Free allocated queue entries.
726 */
727 rt2x00queue_uninitialize(rt2x00dev);
728 }
729
730 static int rt2x00lib_initialize(struct rt2x00_dev *rt2x00dev)
731 {
732 int status;
733
734 if (test_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
735 return 0;
736
737 /*
738 * Allocate all queue entries.
739 */
740 status = rt2x00queue_initialize(rt2x00dev);
741 if (status)
742 return status;
743
744 /*
745 * Initialize the device.
746 */
747 status = rt2x00dev->ops->lib->initialize(rt2x00dev);
748 if (status) {
749 rt2x00queue_uninitialize(rt2x00dev);
750 return status;
751 }
752
753 set_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags);
754
755 /*
756 * Register the extra components.
757 */
758 rt2x00rfkill_register(rt2x00dev);
759
760 return 0;
761 }
762
763 int rt2x00lib_start(struct rt2x00_dev *rt2x00dev)
764 {
765 int retval;
766
767 if (test_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
768 return 0;
769
770 /*
771 * If this is the first interface which is added,
772 * we should load the firmware now.
773 */
774 retval = rt2x00lib_load_firmware(rt2x00dev);
775 if (retval)
776 return retval;
777
778 /*
779 * Initialize the device.
780 */
781 retval = rt2x00lib_initialize(rt2x00dev);
782 if (retval)
783 return retval;
784
785 rt2x00dev->intf_ap_count = 0;
786 rt2x00dev->intf_sta_count = 0;
787 rt2x00dev->intf_associated = 0;
788
789 set_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags);
790
791 return 0;
792 }
793
794 void rt2x00lib_stop(struct rt2x00_dev *rt2x00dev)
795 {
796 if (!test_and_clear_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
797 return;
798
799 /*
800 * Perhaps we can add something smarter here,
801 * but for now just disabling the radio should do.
802 */
803 rt2x00lib_disable_radio(rt2x00dev);
804
805 rt2x00dev->intf_ap_count = 0;
806 rt2x00dev->intf_sta_count = 0;
807 rt2x00dev->intf_associated = 0;
808 }
809
810 /*
811 * driver allocation handlers.
812 */
813 int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev)
814 {
815 int retval = -ENOMEM;
816
817 mutex_init(&rt2x00dev->csr_mutex);
818
819 /*
820 * Make room for rt2x00_intf inside the per-interface
821 * structure ieee80211_vif.
822 */
823 rt2x00dev->hw->vif_data_size = sizeof(struct rt2x00_intf);
824
825 /*
826 * Determine which operating modes are supported, all modes
827 * which require beaconing, depend on the availability of
828 * beacon entries.
829 */
830 rt2x00dev->hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION);
831 if (rt2x00dev->ops->bcn->entry_num > 0)
832 rt2x00dev->hw->wiphy->interface_modes |=
833 BIT(NL80211_IFTYPE_ADHOC) |
834 BIT(NL80211_IFTYPE_AP) |
835 BIT(NL80211_IFTYPE_MESH_POINT) |
836 BIT(NL80211_IFTYPE_WDS);
837
838 /*
839 * Let the driver probe the device to detect the capabilities.
840 */
841 retval = rt2x00dev->ops->lib->probe_hw(rt2x00dev);
842 if (retval) {
843 ERROR(rt2x00dev, "Failed to allocate device.\n");
844 goto exit;
845 }
846
847 /*
848 * Initialize configuration work.
849 */
850 INIT_WORK(&rt2x00dev->intf_work, rt2x00lib_intf_scheduled);
851 INIT_WORK(&rt2x00dev->filter_work, rt2x00lib_packetfilter_scheduled);
852
853 /*
854 * Allocate queue array.
855 */
856 retval = rt2x00queue_allocate(rt2x00dev);
857 if (retval)
858 goto exit;
859
860 /*
861 * Initialize ieee80211 structure.
862 */
863 retval = rt2x00lib_probe_hw(rt2x00dev);
864 if (retval) {
865 ERROR(rt2x00dev, "Failed to initialize hw.\n");
866 goto exit;
867 }
868
869 /*
870 * Register extra components.
871 */
872 rt2x00link_register(rt2x00dev);
873 rt2x00leds_register(rt2x00dev);
874 rt2x00rfkill_allocate(rt2x00dev);
875 rt2x00debug_register(rt2x00dev);
876
877 set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
878
879 return 0;
880
881 exit:
882 rt2x00lib_remove_dev(rt2x00dev);
883
884 return retval;
885 }
886 EXPORT_SYMBOL_GPL(rt2x00lib_probe_dev);
887
888 void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev)
889 {
890 clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
891
892 /*
893 * Disable radio.
894 */
895 rt2x00lib_disable_radio(rt2x00dev);
896
897 /*
898 * Uninitialize device.
899 */
900 rt2x00lib_uninitialize(rt2x00dev);
901
902 /*
903 * Free extra components
904 */
905 rt2x00debug_deregister(rt2x00dev);
906 rt2x00rfkill_free(rt2x00dev);
907 rt2x00leds_unregister(rt2x00dev);
908
909 /*
910 * Free ieee80211_hw memory.
911 */
912 rt2x00lib_remove_hw(rt2x00dev);
913
914 /*
915 * Free firmware image.
916 */
917 rt2x00lib_free_firmware(rt2x00dev);
918
919 /*
920 * Free queue structures.
921 */
922 rt2x00queue_free(rt2x00dev);
923 }
924 EXPORT_SYMBOL_GPL(rt2x00lib_remove_dev);
925
926 /*
927 * Device state handlers
928 */
929 #ifdef CONFIG_PM
930 int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state)
931 {
932 NOTICE(rt2x00dev, "Going to sleep.\n");
933
934 /*
935 * Prevent mac80211 from accessing driver while suspended.
936 */
937 if (!test_and_clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
938 return 0;
939
940 /*
941 * Cleanup as much as possible.
942 */
943 rt2x00lib_uninitialize(rt2x00dev);
944
945 /*
946 * Suspend/disable extra components.
947 */
948 rt2x00leds_suspend(rt2x00dev);
949 rt2x00debug_deregister(rt2x00dev);
950
951 /*
952 * Set device mode to sleep for power management,
953 * on some hardware this call seems to consistently fail.
954 * From the specifications it is hard to tell why it fails,
955 * and if this is a "bad thing".
956 * Overall it is safe to just ignore the failure and
957 * continue suspending. The only downside is that the
958 * device will not be in optimal power save mode, but with
959 * the radio and the other components already disabled the
960 * device is as good as disabled.
961 */
962 if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_SLEEP))
963 WARNING(rt2x00dev, "Device failed to enter sleep state, "
964 "continue suspending.\n");
965
966 return 0;
967 }
968 EXPORT_SYMBOL_GPL(rt2x00lib_suspend);
969
970 int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev)
971 {
972 NOTICE(rt2x00dev, "Waking up.\n");
973
974 /*
975 * Restore/enable extra components.
976 */
977 rt2x00debug_register(rt2x00dev);
978 rt2x00leds_resume(rt2x00dev);
979
980 /*
981 * We are ready again to receive requests from mac80211.
982 */
983 set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
984
985 return 0;
986 }
987 EXPORT_SYMBOL_GPL(rt2x00lib_resume);
988 #endif /* CONFIG_PM */
989
990 /*
991 * rt2x00lib module information.
992 */
993 MODULE_AUTHOR(DRV_PROJECT);
994 MODULE_VERSION(DRV_VERSION);
995 MODULE_DESCRIPTION("rt2x00 library");
996 MODULE_LICENSE("GPL");
This page took 0.053805 seconds and 5 git commands to generate.