Merge branch 'samsung/pinctrl' into next/drivers
[deliverable/linux.git] / drivers / net / wireless / rt2x00 / rt2x00dev.c
1 /*
2 Copyright (C) 2010 Willow Garage <http://www.willowgarage.com>
3 Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
4 <http://rt2x00.serialmonkey.com>
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the
18 Free Software Foundation, Inc.,
19 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
20 */
21
22 /*
23 Module: rt2x00lib
24 Abstract: rt2x00 generic device routines.
25 */
26
27 #include <linux/kernel.h>
28 #include <linux/module.h>
29 #include <linux/slab.h>
30 #include <linux/log2.h>
31
32 #include "rt2x00.h"
33 #include "rt2x00lib.h"
34
35 /*
36 * Utility functions.
37 */
38 u32 rt2x00lib_get_bssidx(struct rt2x00_dev *rt2x00dev,
39 struct ieee80211_vif *vif)
40 {
41 /*
42 * When in STA mode, bssidx is always 0 otherwise local_address[5]
43 * contains the bss number, see BSS_ID_MASK comments for details.
44 */
45 if (rt2x00dev->intf_sta_count)
46 return 0;
47 return vif->addr[5] & (rt2x00dev->ops->max_ap_intf - 1);
48 }
49 EXPORT_SYMBOL_GPL(rt2x00lib_get_bssidx);
50
51 /*
52 * Radio control handlers.
53 */
54 int rt2x00lib_enable_radio(struct rt2x00_dev *rt2x00dev)
55 {
56 int status;
57
58 /*
59 * Don't enable the radio twice.
60 * And check if the hardware button has been disabled.
61 */
62 if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
63 return 0;
64
65 /*
66 * Initialize all data queues.
67 */
68 rt2x00queue_init_queues(rt2x00dev);
69
70 /*
71 * Enable radio.
72 */
73 status =
74 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_ON);
75 if (status)
76 return status;
77
78 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_ON);
79
80 rt2x00leds_led_radio(rt2x00dev, true);
81 rt2x00led_led_activity(rt2x00dev, true);
82
83 set_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags);
84
85 /*
86 * Enable queues.
87 */
88 rt2x00queue_start_queues(rt2x00dev);
89 rt2x00link_start_tuner(rt2x00dev);
90 rt2x00link_start_agc(rt2x00dev);
91 if (test_bit(CAPABILITY_VCO_RECALIBRATION, &rt2x00dev->cap_flags))
92 rt2x00link_start_vcocal(rt2x00dev);
93
94 /*
95 * Start watchdog monitoring.
96 */
97 rt2x00link_start_watchdog(rt2x00dev);
98
99 return 0;
100 }
101
102 void rt2x00lib_disable_radio(struct rt2x00_dev *rt2x00dev)
103 {
104 if (!test_and_clear_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
105 return;
106
107 /*
108 * Stop watchdog monitoring.
109 */
110 rt2x00link_stop_watchdog(rt2x00dev);
111
112 /*
113 * Stop all queues
114 */
115 rt2x00link_stop_agc(rt2x00dev);
116 if (test_bit(CAPABILITY_VCO_RECALIBRATION, &rt2x00dev->cap_flags))
117 rt2x00link_stop_vcocal(rt2x00dev);
118 rt2x00link_stop_tuner(rt2x00dev);
119 rt2x00queue_stop_queues(rt2x00dev);
120 rt2x00queue_flush_queues(rt2x00dev, true);
121
122 /*
123 * Disable radio.
124 */
125 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_OFF);
126 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_OFF);
127 rt2x00led_led_activity(rt2x00dev, false);
128 rt2x00leds_led_radio(rt2x00dev, false);
129 }
130
131 static void rt2x00lib_intf_scheduled_iter(void *data, u8 *mac,
132 struct ieee80211_vif *vif)
133 {
134 struct rt2x00_dev *rt2x00dev = data;
135 struct rt2x00_intf *intf = vif_to_intf(vif);
136
137 /*
138 * It is possible the radio was disabled while the work had been
139 * scheduled. If that happens we should return here immediately,
140 * note that in the spinlock protected area above the delayed_flags
141 * have been cleared correctly.
142 */
143 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
144 return;
145
146 if (test_and_clear_bit(DELAYED_UPDATE_BEACON, &intf->delayed_flags))
147 rt2x00queue_update_beacon(rt2x00dev, vif);
148 }
149
150 static void rt2x00lib_intf_scheduled(struct work_struct *work)
151 {
152 struct rt2x00_dev *rt2x00dev =
153 container_of(work, struct rt2x00_dev, intf_work);
154
155 /*
156 * Iterate over each interface and perform the
157 * requested configurations.
158 */
159 ieee80211_iterate_active_interfaces(rt2x00dev->hw,
160 rt2x00lib_intf_scheduled_iter,
161 rt2x00dev);
162 }
163
164 static void rt2x00lib_autowakeup(struct work_struct *work)
165 {
166 struct rt2x00_dev *rt2x00dev =
167 container_of(work, struct rt2x00_dev, autowakeup_work.work);
168
169 if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
170 return;
171
172 if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
173 ERROR(rt2x00dev, "Device failed to wakeup.\n");
174 clear_bit(CONFIG_POWERSAVING, &rt2x00dev->flags);
175 }
176
177 /*
178 * Interrupt context handlers.
179 */
180 static void rt2x00lib_bc_buffer_iter(void *data, u8 *mac,
181 struct ieee80211_vif *vif)
182 {
183 struct rt2x00_dev *rt2x00dev = data;
184 struct sk_buff *skb;
185
186 /*
187 * Only AP mode interfaces do broad- and multicast buffering
188 */
189 if (vif->type != NL80211_IFTYPE_AP)
190 return;
191
192 /*
193 * Send out buffered broad- and multicast frames
194 */
195 skb = ieee80211_get_buffered_bc(rt2x00dev->hw, vif);
196 while (skb) {
197 rt2x00mac_tx(rt2x00dev->hw, skb);
198 skb = ieee80211_get_buffered_bc(rt2x00dev->hw, vif);
199 }
200 }
201
202 static void rt2x00lib_beaconupdate_iter(void *data, u8 *mac,
203 struct ieee80211_vif *vif)
204 {
205 struct rt2x00_dev *rt2x00dev = data;
206
207 if (vif->type != NL80211_IFTYPE_AP &&
208 vif->type != NL80211_IFTYPE_ADHOC &&
209 vif->type != NL80211_IFTYPE_MESH_POINT &&
210 vif->type != NL80211_IFTYPE_WDS)
211 return;
212
213 /*
214 * Update the beacon without locking. This is safe on PCI devices
215 * as they only update the beacon periodically here. This should
216 * never be called for USB devices.
217 */
218 WARN_ON(rt2x00_is_usb(rt2x00dev));
219 rt2x00queue_update_beacon_locked(rt2x00dev, vif);
220 }
221
222 void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev)
223 {
224 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
225 return;
226
227 /* send buffered bc/mc frames out for every bssid */
228 ieee80211_iterate_active_interfaces_atomic(rt2x00dev->hw,
229 rt2x00lib_bc_buffer_iter,
230 rt2x00dev);
231 /*
232 * Devices with pre tbtt interrupt don't need to update the beacon
233 * here as they will fetch the next beacon directly prior to
234 * transmission.
235 */
236 if (test_bit(CAPABILITY_PRE_TBTT_INTERRUPT, &rt2x00dev->cap_flags))
237 return;
238
239 /* fetch next beacon */
240 ieee80211_iterate_active_interfaces_atomic(rt2x00dev->hw,
241 rt2x00lib_beaconupdate_iter,
242 rt2x00dev);
243 }
244 EXPORT_SYMBOL_GPL(rt2x00lib_beacondone);
245
246 void rt2x00lib_pretbtt(struct rt2x00_dev *rt2x00dev)
247 {
248 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
249 return;
250
251 /* fetch next beacon */
252 ieee80211_iterate_active_interfaces_atomic(rt2x00dev->hw,
253 rt2x00lib_beaconupdate_iter,
254 rt2x00dev);
255 }
256 EXPORT_SYMBOL_GPL(rt2x00lib_pretbtt);
257
258 void rt2x00lib_dmastart(struct queue_entry *entry)
259 {
260 set_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
261 rt2x00queue_index_inc(entry, Q_INDEX);
262 }
263 EXPORT_SYMBOL_GPL(rt2x00lib_dmastart);
264
265 void rt2x00lib_dmadone(struct queue_entry *entry)
266 {
267 set_bit(ENTRY_DATA_STATUS_PENDING, &entry->flags);
268 clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
269 rt2x00queue_index_inc(entry, Q_INDEX_DMA_DONE);
270 }
271 EXPORT_SYMBOL_GPL(rt2x00lib_dmadone);
272
273 void rt2x00lib_txdone(struct queue_entry *entry,
274 struct txdone_entry_desc *txdesc)
275 {
276 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
277 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
278 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
279 unsigned int header_length, i;
280 u8 rate_idx, rate_flags, retry_rates;
281 u8 skbdesc_flags = skbdesc->flags;
282 bool success;
283
284 /*
285 * Unmap the skb.
286 */
287 rt2x00queue_unmap_skb(entry);
288
289 /*
290 * Remove the extra tx headroom from the skb.
291 */
292 skb_pull(entry->skb, rt2x00dev->ops->extra_tx_headroom);
293
294 /*
295 * Signal that the TX descriptor is no longer in the skb.
296 */
297 skbdesc->flags &= ~SKBDESC_DESC_IN_SKB;
298
299 /*
300 * Determine the length of 802.11 header.
301 */
302 header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
303
304 /*
305 * Remove L2 padding which was added during
306 */
307 if (test_bit(REQUIRE_L2PAD, &rt2x00dev->cap_flags))
308 rt2x00queue_remove_l2pad(entry->skb, header_length);
309
310 /*
311 * If the IV/EIV data was stripped from the frame before it was
312 * passed to the hardware, we should now reinsert it again because
313 * mac80211 will expect the same data to be present it the
314 * frame as it was passed to us.
315 */
316 if (test_bit(CAPABILITY_HW_CRYPTO, &rt2x00dev->cap_flags))
317 rt2x00crypto_tx_insert_iv(entry->skb, header_length);
318
319 /*
320 * Send frame to debugfs immediately, after this call is completed
321 * we are going to overwrite the skb->cb array.
322 */
323 rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_TXDONE, entry->skb);
324
325 /*
326 * Determine if the frame has been successfully transmitted.
327 */
328 success =
329 test_bit(TXDONE_SUCCESS, &txdesc->flags) ||
330 test_bit(TXDONE_UNKNOWN, &txdesc->flags);
331
332 /*
333 * Update TX statistics.
334 */
335 rt2x00dev->link.qual.tx_success += success;
336 rt2x00dev->link.qual.tx_failed += !success;
337
338 rate_idx = skbdesc->tx_rate_idx;
339 rate_flags = skbdesc->tx_rate_flags;
340 retry_rates = test_bit(TXDONE_FALLBACK, &txdesc->flags) ?
341 (txdesc->retry + 1) : 1;
342
343 /*
344 * Initialize TX status
345 */
346 memset(&tx_info->status, 0, sizeof(tx_info->status));
347 tx_info->status.ack_signal = 0;
348
349 /*
350 * Frame was send with retries, hardware tried
351 * different rates to send out the frame, at each
352 * retry it lowered the rate 1 step except when the
353 * lowest rate was used.
354 */
355 for (i = 0; i < retry_rates && i < IEEE80211_TX_MAX_RATES; i++) {
356 tx_info->status.rates[i].idx = rate_idx - i;
357 tx_info->status.rates[i].flags = rate_flags;
358
359 if (rate_idx - i == 0) {
360 /*
361 * The lowest rate (index 0) was used until the
362 * number of max retries was reached.
363 */
364 tx_info->status.rates[i].count = retry_rates - i;
365 i++;
366 break;
367 }
368 tx_info->status.rates[i].count = 1;
369 }
370 if (i < (IEEE80211_TX_MAX_RATES - 1))
371 tx_info->status.rates[i].idx = -1; /* terminate */
372
373 if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK)) {
374 if (success)
375 tx_info->flags |= IEEE80211_TX_STAT_ACK;
376 else
377 rt2x00dev->low_level_stats.dot11ACKFailureCount++;
378 }
379
380 /*
381 * Every single frame has it's own tx status, hence report
382 * every frame as ampdu of size 1.
383 *
384 * TODO: if we can find out how many frames were aggregated
385 * by the hw we could provide the real ampdu_len to mac80211
386 * which would allow the rc algorithm to better decide on
387 * which rates are suitable.
388 */
389 if (test_bit(TXDONE_AMPDU, &txdesc->flags) ||
390 tx_info->flags & IEEE80211_TX_CTL_AMPDU) {
391 tx_info->flags |= IEEE80211_TX_STAT_AMPDU;
392 tx_info->status.ampdu_len = 1;
393 tx_info->status.ampdu_ack_len = success ? 1 : 0;
394 /*
395 * TODO: Need to tear down BA session here
396 * if not successful.
397 */
398 }
399
400 if (rate_flags & IEEE80211_TX_RC_USE_RTS_CTS) {
401 if (success)
402 rt2x00dev->low_level_stats.dot11RTSSuccessCount++;
403 else
404 rt2x00dev->low_level_stats.dot11RTSFailureCount++;
405 }
406
407 /*
408 * Only send the status report to mac80211 when it's a frame
409 * that originated in mac80211. If this was a extra frame coming
410 * through a mac80211 library call (RTS/CTS) then we should not
411 * send the status report back.
412 */
413 if (!(skbdesc_flags & SKBDESC_NOT_MAC80211)) {
414 if (test_bit(REQUIRE_TASKLET_CONTEXT, &rt2x00dev->cap_flags))
415 ieee80211_tx_status(rt2x00dev->hw, entry->skb);
416 else
417 ieee80211_tx_status_ni(rt2x00dev->hw, entry->skb);
418 } else
419 dev_kfree_skb_any(entry->skb);
420
421 /*
422 * Make this entry available for reuse.
423 */
424 entry->skb = NULL;
425 entry->flags = 0;
426
427 rt2x00dev->ops->lib->clear_entry(entry);
428
429 rt2x00queue_index_inc(entry, Q_INDEX_DONE);
430
431 /*
432 * If the data queue was below the threshold before the txdone
433 * handler we must make sure the packet queue in the mac80211 stack
434 * is reenabled when the txdone handler has finished. This has to be
435 * serialized with rt2x00mac_tx(), otherwise we can wake up queue
436 * before it was stopped.
437 */
438 spin_lock_bh(&entry->queue->tx_lock);
439 if (!rt2x00queue_threshold(entry->queue))
440 rt2x00queue_unpause_queue(entry->queue);
441 spin_unlock_bh(&entry->queue->tx_lock);
442 }
443 EXPORT_SYMBOL_GPL(rt2x00lib_txdone);
444
445 void rt2x00lib_txdone_noinfo(struct queue_entry *entry, u32 status)
446 {
447 struct txdone_entry_desc txdesc;
448
449 txdesc.flags = 0;
450 __set_bit(status, &txdesc.flags);
451 txdesc.retry = 0;
452
453 rt2x00lib_txdone(entry, &txdesc);
454 }
455 EXPORT_SYMBOL_GPL(rt2x00lib_txdone_noinfo);
456
457 static u8 *rt2x00lib_find_ie(u8 *data, unsigned int len, u8 ie)
458 {
459 struct ieee80211_mgmt *mgmt = (void *)data;
460 u8 *pos, *end;
461
462 pos = (u8 *)mgmt->u.beacon.variable;
463 end = data + len;
464 while (pos < end) {
465 if (pos + 2 + pos[1] > end)
466 return NULL;
467
468 if (pos[0] == ie)
469 return pos;
470
471 pos += 2 + pos[1];
472 }
473
474 return NULL;
475 }
476
477 static void rt2x00lib_sleep(struct work_struct *work)
478 {
479 struct rt2x00_dev *rt2x00dev =
480 container_of(work, struct rt2x00_dev, sleep_work);
481
482 if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
483 return;
484
485 /*
486 * Check again is powersaving is enabled, to prevent races from delayed
487 * work execution.
488 */
489 if (!test_bit(CONFIG_POWERSAVING, &rt2x00dev->flags))
490 rt2x00lib_config(rt2x00dev, &rt2x00dev->hw->conf,
491 IEEE80211_CONF_CHANGE_PS);
492 }
493
494 static void rt2x00lib_rxdone_check_ps(struct rt2x00_dev *rt2x00dev,
495 struct sk_buff *skb,
496 struct rxdone_entry_desc *rxdesc)
497 {
498 struct ieee80211_hdr *hdr = (void *) skb->data;
499 struct ieee80211_tim_ie *tim_ie;
500 u8 *tim;
501 u8 tim_len;
502 bool cam;
503
504 /* If this is not a beacon, or if mac80211 has no powersaving
505 * configured, or if the device is already in powersaving mode
506 * we can exit now. */
507 if (likely(!ieee80211_is_beacon(hdr->frame_control) ||
508 !(rt2x00dev->hw->conf.flags & IEEE80211_CONF_PS)))
509 return;
510
511 /* min. beacon length + FCS_LEN */
512 if (skb->len <= 40 + FCS_LEN)
513 return;
514
515 /* and only beacons from the associated BSSID, please */
516 if (!(rxdesc->dev_flags & RXDONE_MY_BSS) ||
517 !rt2x00dev->aid)
518 return;
519
520 rt2x00dev->last_beacon = jiffies;
521
522 tim = rt2x00lib_find_ie(skb->data, skb->len - FCS_LEN, WLAN_EID_TIM);
523 if (!tim)
524 return;
525
526 if (tim[1] < sizeof(*tim_ie))
527 return;
528
529 tim_len = tim[1];
530 tim_ie = (struct ieee80211_tim_ie *) &tim[2];
531
532 /* Check whenever the PHY can be turned off again. */
533
534 /* 1. What about buffered unicast traffic for our AID? */
535 cam = ieee80211_check_tim(tim_ie, tim_len, rt2x00dev->aid);
536
537 /* 2. Maybe the AP wants to send multicast/broadcast data? */
538 cam |= (tim_ie->bitmap_ctrl & 0x01);
539
540 if (!cam && !test_bit(CONFIG_POWERSAVING, &rt2x00dev->flags))
541 queue_work(rt2x00dev->workqueue, &rt2x00dev->sleep_work);
542 }
543
544 static int rt2x00lib_rxdone_read_signal(struct rt2x00_dev *rt2x00dev,
545 struct rxdone_entry_desc *rxdesc)
546 {
547 struct ieee80211_supported_band *sband;
548 const struct rt2x00_rate *rate;
549 unsigned int i;
550 int signal = rxdesc->signal;
551 int type = (rxdesc->dev_flags & RXDONE_SIGNAL_MASK);
552
553 switch (rxdesc->rate_mode) {
554 case RATE_MODE_CCK:
555 case RATE_MODE_OFDM:
556 /*
557 * For non-HT rates the MCS value needs to contain the
558 * actually used rate modulation (CCK or OFDM).
559 */
560 if (rxdesc->dev_flags & RXDONE_SIGNAL_MCS)
561 signal = RATE_MCS(rxdesc->rate_mode, signal);
562
563 sband = &rt2x00dev->bands[rt2x00dev->curr_band];
564 for (i = 0; i < sband->n_bitrates; i++) {
565 rate = rt2x00_get_rate(sband->bitrates[i].hw_value);
566 if (((type == RXDONE_SIGNAL_PLCP) &&
567 (rate->plcp == signal)) ||
568 ((type == RXDONE_SIGNAL_BITRATE) &&
569 (rate->bitrate == signal)) ||
570 ((type == RXDONE_SIGNAL_MCS) &&
571 (rate->mcs == signal))) {
572 return i;
573 }
574 }
575 break;
576 case RATE_MODE_HT_MIX:
577 case RATE_MODE_HT_GREENFIELD:
578 if (signal >= 0 && signal <= 76)
579 return signal;
580 break;
581 default:
582 break;
583 }
584
585 WARNING(rt2x00dev, "Frame received with unrecognized signal, "
586 "mode=0x%.4x, signal=0x%.4x, type=%d.\n",
587 rxdesc->rate_mode, signal, type);
588 return 0;
589 }
590
591 void rt2x00lib_rxdone(struct queue_entry *entry, gfp_t gfp)
592 {
593 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
594 struct rxdone_entry_desc rxdesc;
595 struct sk_buff *skb;
596 struct ieee80211_rx_status *rx_status;
597 unsigned int header_length;
598 int rate_idx;
599
600 if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags) ||
601 !test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
602 goto submit_entry;
603
604 if (test_bit(ENTRY_DATA_IO_FAILED, &entry->flags))
605 goto submit_entry;
606
607 /*
608 * Allocate a new sk_buffer. If no new buffer available, drop the
609 * received frame and reuse the existing buffer.
610 */
611 skb = rt2x00queue_alloc_rxskb(entry, gfp);
612 if (!skb)
613 goto submit_entry;
614
615 /*
616 * Unmap the skb.
617 */
618 rt2x00queue_unmap_skb(entry);
619
620 /*
621 * Extract the RXD details.
622 */
623 memset(&rxdesc, 0, sizeof(rxdesc));
624 rt2x00dev->ops->lib->fill_rxdone(entry, &rxdesc);
625
626 /*
627 * Check for valid size in case we get corrupted descriptor from
628 * hardware.
629 */
630 if (unlikely(rxdesc.size == 0 ||
631 rxdesc.size > entry->queue->data_size)) {
632 WARNING(rt2x00dev, "Wrong frame size %d max %d.\n",
633 rxdesc.size, entry->queue->data_size);
634 dev_kfree_skb(entry->skb);
635 goto renew_skb;
636 }
637
638 /*
639 * The data behind the ieee80211 header must be
640 * aligned on a 4 byte boundary.
641 */
642 header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
643
644 /*
645 * Hardware might have stripped the IV/EIV/ICV data,
646 * in that case it is possible that the data was
647 * provided separately (through hardware descriptor)
648 * in which case we should reinsert the data into the frame.
649 */
650 if ((rxdesc.dev_flags & RXDONE_CRYPTO_IV) &&
651 (rxdesc.flags & RX_FLAG_IV_STRIPPED))
652 rt2x00crypto_rx_insert_iv(entry->skb, header_length,
653 &rxdesc);
654 else if (header_length &&
655 (rxdesc.size > header_length) &&
656 (rxdesc.dev_flags & RXDONE_L2PAD))
657 rt2x00queue_remove_l2pad(entry->skb, header_length);
658
659 /* Trim buffer to correct size */
660 skb_trim(entry->skb, rxdesc.size);
661
662 /*
663 * Translate the signal to the correct bitrate index.
664 */
665 rate_idx = rt2x00lib_rxdone_read_signal(rt2x00dev, &rxdesc);
666 if (rxdesc.rate_mode == RATE_MODE_HT_MIX ||
667 rxdesc.rate_mode == RATE_MODE_HT_GREENFIELD)
668 rxdesc.flags |= RX_FLAG_HT;
669
670 /*
671 * Check if this is a beacon, and more frames have been
672 * buffered while we were in powersaving mode.
673 */
674 rt2x00lib_rxdone_check_ps(rt2x00dev, entry->skb, &rxdesc);
675
676 /*
677 * Update extra components
678 */
679 rt2x00link_update_stats(rt2x00dev, entry->skb, &rxdesc);
680 rt2x00debug_update_crypto(rt2x00dev, &rxdesc);
681 rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_RXDONE, entry->skb);
682
683 /*
684 * Initialize RX status information, and send frame
685 * to mac80211.
686 */
687 rx_status = IEEE80211_SKB_RXCB(entry->skb);
688 rx_status->mactime = rxdesc.timestamp;
689 rx_status->band = rt2x00dev->curr_band;
690 rx_status->freq = rt2x00dev->curr_freq;
691 rx_status->rate_idx = rate_idx;
692 rx_status->signal = rxdesc.rssi;
693 rx_status->flag = rxdesc.flags;
694 rx_status->antenna = rt2x00dev->link.ant.active.rx;
695
696 ieee80211_rx_ni(rt2x00dev->hw, entry->skb);
697
698 renew_skb:
699 /*
700 * Replace the skb with the freshly allocated one.
701 */
702 entry->skb = skb;
703
704 submit_entry:
705 entry->flags = 0;
706 rt2x00queue_index_inc(entry, Q_INDEX_DONE);
707 if (test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags) &&
708 test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
709 rt2x00dev->ops->lib->clear_entry(entry);
710 }
711 EXPORT_SYMBOL_GPL(rt2x00lib_rxdone);
712
713 /*
714 * Driver initialization handlers.
715 */
716 const struct rt2x00_rate rt2x00_supported_rates[12] = {
717 {
718 .flags = DEV_RATE_CCK,
719 .bitrate = 10,
720 .ratemask = BIT(0),
721 .plcp = 0x00,
722 .mcs = RATE_MCS(RATE_MODE_CCK, 0),
723 },
724 {
725 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
726 .bitrate = 20,
727 .ratemask = BIT(1),
728 .plcp = 0x01,
729 .mcs = RATE_MCS(RATE_MODE_CCK, 1),
730 },
731 {
732 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
733 .bitrate = 55,
734 .ratemask = BIT(2),
735 .plcp = 0x02,
736 .mcs = RATE_MCS(RATE_MODE_CCK, 2),
737 },
738 {
739 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
740 .bitrate = 110,
741 .ratemask = BIT(3),
742 .plcp = 0x03,
743 .mcs = RATE_MCS(RATE_MODE_CCK, 3),
744 },
745 {
746 .flags = DEV_RATE_OFDM,
747 .bitrate = 60,
748 .ratemask = BIT(4),
749 .plcp = 0x0b,
750 .mcs = RATE_MCS(RATE_MODE_OFDM, 0),
751 },
752 {
753 .flags = DEV_RATE_OFDM,
754 .bitrate = 90,
755 .ratemask = BIT(5),
756 .plcp = 0x0f,
757 .mcs = RATE_MCS(RATE_MODE_OFDM, 1),
758 },
759 {
760 .flags = DEV_RATE_OFDM,
761 .bitrate = 120,
762 .ratemask = BIT(6),
763 .plcp = 0x0a,
764 .mcs = RATE_MCS(RATE_MODE_OFDM, 2),
765 },
766 {
767 .flags = DEV_RATE_OFDM,
768 .bitrate = 180,
769 .ratemask = BIT(7),
770 .plcp = 0x0e,
771 .mcs = RATE_MCS(RATE_MODE_OFDM, 3),
772 },
773 {
774 .flags = DEV_RATE_OFDM,
775 .bitrate = 240,
776 .ratemask = BIT(8),
777 .plcp = 0x09,
778 .mcs = RATE_MCS(RATE_MODE_OFDM, 4),
779 },
780 {
781 .flags = DEV_RATE_OFDM,
782 .bitrate = 360,
783 .ratemask = BIT(9),
784 .plcp = 0x0d,
785 .mcs = RATE_MCS(RATE_MODE_OFDM, 5),
786 },
787 {
788 .flags = DEV_RATE_OFDM,
789 .bitrate = 480,
790 .ratemask = BIT(10),
791 .plcp = 0x08,
792 .mcs = RATE_MCS(RATE_MODE_OFDM, 6),
793 },
794 {
795 .flags = DEV_RATE_OFDM,
796 .bitrate = 540,
797 .ratemask = BIT(11),
798 .plcp = 0x0c,
799 .mcs = RATE_MCS(RATE_MODE_OFDM, 7),
800 },
801 };
802
803 static void rt2x00lib_channel(struct ieee80211_channel *entry,
804 const int channel, const int tx_power,
805 const int value)
806 {
807 /* XXX: this assumption about the band is wrong for 802.11j */
808 entry->band = channel <= 14 ? IEEE80211_BAND_2GHZ : IEEE80211_BAND_5GHZ;
809 entry->center_freq = ieee80211_channel_to_frequency(channel,
810 entry->band);
811 entry->hw_value = value;
812 entry->max_power = tx_power;
813 entry->max_antenna_gain = 0xff;
814 }
815
816 static void rt2x00lib_rate(struct ieee80211_rate *entry,
817 const u16 index, const struct rt2x00_rate *rate)
818 {
819 entry->flags = 0;
820 entry->bitrate = rate->bitrate;
821 entry->hw_value = index;
822 entry->hw_value_short = index;
823
824 if (rate->flags & DEV_RATE_SHORT_PREAMBLE)
825 entry->flags |= IEEE80211_RATE_SHORT_PREAMBLE;
826 }
827
828 static int rt2x00lib_probe_hw_modes(struct rt2x00_dev *rt2x00dev,
829 struct hw_mode_spec *spec)
830 {
831 struct ieee80211_hw *hw = rt2x00dev->hw;
832 struct ieee80211_channel *channels;
833 struct ieee80211_rate *rates;
834 unsigned int num_rates;
835 unsigned int i;
836
837 num_rates = 0;
838 if (spec->supported_rates & SUPPORT_RATE_CCK)
839 num_rates += 4;
840 if (spec->supported_rates & SUPPORT_RATE_OFDM)
841 num_rates += 8;
842
843 channels = kcalloc(spec->num_channels, sizeof(*channels), GFP_KERNEL);
844 if (!channels)
845 return -ENOMEM;
846
847 rates = kcalloc(num_rates, sizeof(*rates), GFP_KERNEL);
848 if (!rates)
849 goto exit_free_channels;
850
851 /*
852 * Initialize Rate list.
853 */
854 for (i = 0; i < num_rates; i++)
855 rt2x00lib_rate(&rates[i], i, rt2x00_get_rate(i));
856
857 /*
858 * Initialize Channel list.
859 */
860 for (i = 0; i < spec->num_channels; i++) {
861 rt2x00lib_channel(&channels[i],
862 spec->channels[i].channel,
863 spec->channels_info[i].max_power, i);
864 }
865
866 /*
867 * Intitialize 802.11b, 802.11g
868 * Rates: CCK, OFDM.
869 * Channels: 2.4 GHz
870 */
871 if (spec->supported_bands & SUPPORT_BAND_2GHZ) {
872 rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_channels = 14;
873 rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_bitrates = num_rates;
874 rt2x00dev->bands[IEEE80211_BAND_2GHZ].channels = channels;
875 rt2x00dev->bands[IEEE80211_BAND_2GHZ].bitrates = rates;
876 hw->wiphy->bands[IEEE80211_BAND_2GHZ] =
877 &rt2x00dev->bands[IEEE80211_BAND_2GHZ];
878 memcpy(&rt2x00dev->bands[IEEE80211_BAND_2GHZ].ht_cap,
879 &spec->ht, sizeof(spec->ht));
880 }
881
882 /*
883 * Intitialize 802.11a
884 * Rates: OFDM.
885 * Channels: OFDM, UNII, HiperLAN2.
886 */
887 if (spec->supported_bands & SUPPORT_BAND_5GHZ) {
888 rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_channels =
889 spec->num_channels - 14;
890 rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_bitrates =
891 num_rates - 4;
892 rt2x00dev->bands[IEEE80211_BAND_5GHZ].channels = &channels[14];
893 rt2x00dev->bands[IEEE80211_BAND_5GHZ].bitrates = &rates[4];
894 hw->wiphy->bands[IEEE80211_BAND_5GHZ] =
895 &rt2x00dev->bands[IEEE80211_BAND_5GHZ];
896 memcpy(&rt2x00dev->bands[IEEE80211_BAND_5GHZ].ht_cap,
897 &spec->ht, sizeof(spec->ht));
898 }
899
900 return 0;
901
902 exit_free_channels:
903 kfree(channels);
904 ERROR(rt2x00dev, "Allocation ieee80211 modes failed.\n");
905 return -ENOMEM;
906 }
907
908 static void rt2x00lib_remove_hw(struct rt2x00_dev *rt2x00dev)
909 {
910 if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
911 ieee80211_unregister_hw(rt2x00dev->hw);
912
913 if (likely(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ])) {
914 kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->channels);
915 kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->bitrates);
916 rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ] = NULL;
917 rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_5GHZ] = NULL;
918 }
919
920 kfree(rt2x00dev->spec.channels_info);
921 }
922
923 static int rt2x00lib_probe_hw(struct rt2x00_dev *rt2x00dev)
924 {
925 struct hw_mode_spec *spec = &rt2x00dev->spec;
926 int status;
927
928 if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
929 return 0;
930
931 /*
932 * Initialize HW modes.
933 */
934 status = rt2x00lib_probe_hw_modes(rt2x00dev, spec);
935 if (status)
936 return status;
937
938 /*
939 * Initialize HW fields.
940 */
941 rt2x00dev->hw->queues = rt2x00dev->ops->tx_queues;
942
943 /*
944 * Initialize extra TX headroom required.
945 */
946 rt2x00dev->hw->extra_tx_headroom =
947 max_t(unsigned int, IEEE80211_TX_STATUS_HEADROOM,
948 rt2x00dev->ops->extra_tx_headroom);
949
950 /*
951 * Take TX headroom required for alignment into account.
952 */
953 if (test_bit(REQUIRE_L2PAD, &rt2x00dev->cap_flags))
954 rt2x00dev->hw->extra_tx_headroom += RT2X00_L2PAD_SIZE;
955 else if (test_bit(REQUIRE_DMA, &rt2x00dev->cap_flags))
956 rt2x00dev->hw->extra_tx_headroom += RT2X00_ALIGN_SIZE;
957
958 /*
959 * Tell mac80211 about the size of our private STA structure.
960 */
961 rt2x00dev->hw->sta_data_size = sizeof(struct rt2x00_sta);
962
963 /*
964 * Allocate tx status FIFO for driver use.
965 */
966 if (test_bit(REQUIRE_TXSTATUS_FIFO, &rt2x00dev->cap_flags)) {
967 /*
968 * Allocate the txstatus fifo. In the worst case the tx
969 * status fifo has to hold the tx status of all entries
970 * in all tx queues. Hence, calculate the kfifo size as
971 * tx_queues * entry_num and round up to the nearest
972 * power of 2.
973 */
974 int kfifo_size =
975 roundup_pow_of_two(rt2x00dev->ops->tx_queues *
976 rt2x00dev->ops->tx->entry_num *
977 sizeof(u32));
978
979 status = kfifo_alloc(&rt2x00dev->txstatus_fifo, kfifo_size,
980 GFP_KERNEL);
981 if (status)
982 return status;
983 }
984
985 /*
986 * Initialize tasklets if used by the driver. Tasklets are
987 * disabled until the interrupts are turned on. The driver
988 * has to handle that.
989 */
990 #define RT2X00_TASKLET_INIT(taskletname) \
991 if (rt2x00dev->ops->lib->taskletname) { \
992 tasklet_init(&rt2x00dev->taskletname, \
993 rt2x00dev->ops->lib->taskletname, \
994 (unsigned long)rt2x00dev); \
995 }
996
997 RT2X00_TASKLET_INIT(txstatus_tasklet);
998 RT2X00_TASKLET_INIT(pretbtt_tasklet);
999 RT2X00_TASKLET_INIT(tbtt_tasklet);
1000 RT2X00_TASKLET_INIT(rxdone_tasklet);
1001 RT2X00_TASKLET_INIT(autowake_tasklet);
1002
1003 #undef RT2X00_TASKLET_INIT
1004
1005 /*
1006 * Register HW.
1007 */
1008 status = ieee80211_register_hw(rt2x00dev->hw);
1009 if (status)
1010 return status;
1011
1012 set_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags);
1013
1014 return 0;
1015 }
1016
1017 /*
1018 * Initialization/uninitialization handlers.
1019 */
1020 static void rt2x00lib_uninitialize(struct rt2x00_dev *rt2x00dev)
1021 {
1022 if (!test_and_clear_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
1023 return;
1024
1025 /*
1026 * Unregister extra components.
1027 */
1028 rt2x00rfkill_unregister(rt2x00dev);
1029
1030 /*
1031 * Allow the HW to uninitialize.
1032 */
1033 rt2x00dev->ops->lib->uninitialize(rt2x00dev);
1034
1035 /*
1036 * Free allocated queue entries.
1037 */
1038 rt2x00queue_uninitialize(rt2x00dev);
1039 }
1040
1041 static int rt2x00lib_initialize(struct rt2x00_dev *rt2x00dev)
1042 {
1043 int status;
1044
1045 if (test_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
1046 return 0;
1047
1048 /*
1049 * Allocate all queue entries.
1050 */
1051 status = rt2x00queue_initialize(rt2x00dev);
1052 if (status)
1053 return status;
1054
1055 /*
1056 * Initialize the device.
1057 */
1058 status = rt2x00dev->ops->lib->initialize(rt2x00dev);
1059 if (status) {
1060 rt2x00queue_uninitialize(rt2x00dev);
1061 return status;
1062 }
1063
1064 set_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags);
1065
1066 return 0;
1067 }
1068
1069 int rt2x00lib_start(struct rt2x00_dev *rt2x00dev)
1070 {
1071 int retval;
1072
1073 if (test_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
1074 return 0;
1075
1076 /*
1077 * If this is the first interface which is added,
1078 * we should load the firmware now.
1079 */
1080 retval = rt2x00lib_load_firmware(rt2x00dev);
1081 if (retval)
1082 return retval;
1083
1084 /*
1085 * Initialize the device.
1086 */
1087 retval = rt2x00lib_initialize(rt2x00dev);
1088 if (retval)
1089 return retval;
1090
1091 rt2x00dev->intf_ap_count = 0;
1092 rt2x00dev->intf_sta_count = 0;
1093 rt2x00dev->intf_associated = 0;
1094
1095 /* Enable the radio */
1096 retval = rt2x00lib_enable_radio(rt2x00dev);
1097 if (retval)
1098 return retval;
1099
1100 set_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags);
1101
1102 return 0;
1103 }
1104
1105 void rt2x00lib_stop(struct rt2x00_dev *rt2x00dev)
1106 {
1107 if (!test_and_clear_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
1108 return;
1109
1110 /*
1111 * Perhaps we can add something smarter here,
1112 * but for now just disabling the radio should do.
1113 */
1114 rt2x00lib_disable_radio(rt2x00dev);
1115
1116 rt2x00dev->intf_ap_count = 0;
1117 rt2x00dev->intf_sta_count = 0;
1118 rt2x00dev->intf_associated = 0;
1119 }
1120
1121 /*
1122 * driver allocation handlers.
1123 */
1124 int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev)
1125 {
1126 int retval = -ENOMEM;
1127
1128 /*
1129 * Allocate the driver data memory, if necessary.
1130 */
1131 if (rt2x00dev->ops->drv_data_size > 0) {
1132 rt2x00dev->drv_data = kzalloc(rt2x00dev->ops->drv_data_size,
1133 GFP_KERNEL);
1134 if (!rt2x00dev->drv_data) {
1135 retval = -ENOMEM;
1136 goto exit;
1137 }
1138 }
1139
1140 spin_lock_init(&rt2x00dev->irqmask_lock);
1141 mutex_init(&rt2x00dev->csr_mutex);
1142
1143 set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1144
1145 /*
1146 * Make room for rt2x00_intf inside the per-interface
1147 * structure ieee80211_vif.
1148 */
1149 rt2x00dev->hw->vif_data_size = sizeof(struct rt2x00_intf);
1150
1151 /*
1152 * Determine which operating modes are supported, all modes
1153 * which require beaconing, depend on the availability of
1154 * beacon entries.
1155 */
1156 rt2x00dev->hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION);
1157 if (rt2x00dev->ops->bcn->entry_num > 0)
1158 rt2x00dev->hw->wiphy->interface_modes |=
1159 BIT(NL80211_IFTYPE_ADHOC) |
1160 BIT(NL80211_IFTYPE_AP) |
1161 BIT(NL80211_IFTYPE_MESH_POINT) |
1162 BIT(NL80211_IFTYPE_WDS);
1163
1164 rt2x00dev->hw->wiphy->flags |= WIPHY_FLAG_IBSS_RSN;
1165
1166 /*
1167 * Initialize work.
1168 */
1169 rt2x00dev->workqueue =
1170 alloc_ordered_workqueue(wiphy_name(rt2x00dev->hw->wiphy), 0);
1171 if (!rt2x00dev->workqueue) {
1172 retval = -ENOMEM;
1173 goto exit;
1174 }
1175
1176 INIT_WORK(&rt2x00dev->intf_work, rt2x00lib_intf_scheduled);
1177 INIT_DELAYED_WORK(&rt2x00dev->autowakeup_work, rt2x00lib_autowakeup);
1178 INIT_WORK(&rt2x00dev->sleep_work, rt2x00lib_sleep);
1179
1180 /*
1181 * Let the driver probe the device to detect the capabilities.
1182 */
1183 retval = rt2x00dev->ops->lib->probe_hw(rt2x00dev);
1184 if (retval) {
1185 ERROR(rt2x00dev, "Failed to allocate device.\n");
1186 goto exit;
1187 }
1188
1189 /*
1190 * Allocate queue array.
1191 */
1192 retval = rt2x00queue_allocate(rt2x00dev);
1193 if (retval)
1194 goto exit;
1195
1196 /*
1197 * Initialize ieee80211 structure.
1198 */
1199 retval = rt2x00lib_probe_hw(rt2x00dev);
1200 if (retval) {
1201 ERROR(rt2x00dev, "Failed to initialize hw.\n");
1202 goto exit;
1203 }
1204
1205 /*
1206 * Register extra components.
1207 */
1208 rt2x00link_register(rt2x00dev);
1209 rt2x00leds_register(rt2x00dev);
1210 rt2x00debug_register(rt2x00dev);
1211 rt2x00rfkill_register(rt2x00dev);
1212
1213 return 0;
1214
1215 exit:
1216 rt2x00lib_remove_dev(rt2x00dev);
1217
1218 return retval;
1219 }
1220 EXPORT_SYMBOL_GPL(rt2x00lib_probe_dev);
1221
1222 void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev)
1223 {
1224 clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1225
1226 /*
1227 * Disable radio.
1228 */
1229 rt2x00lib_disable_radio(rt2x00dev);
1230
1231 /*
1232 * Stop all work.
1233 */
1234 cancel_work_sync(&rt2x00dev->intf_work);
1235 cancel_delayed_work_sync(&rt2x00dev->autowakeup_work);
1236 cancel_work_sync(&rt2x00dev->sleep_work);
1237 if (rt2x00_is_usb(rt2x00dev)) {
1238 hrtimer_cancel(&rt2x00dev->txstatus_timer);
1239 cancel_work_sync(&rt2x00dev->rxdone_work);
1240 cancel_work_sync(&rt2x00dev->txdone_work);
1241 }
1242 if (rt2x00dev->workqueue)
1243 destroy_workqueue(rt2x00dev->workqueue);
1244
1245 /*
1246 * Free the tx status fifo.
1247 */
1248 kfifo_free(&rt2x00dev->txstatus_fifo);
1249
1250 /*
1251 * Kill the tx status tasklet.
1252 */
1253 tasklet_kill(&rt2x00dev->txstatus_tasklet);
1254 tasklet_kill(&rt2x00dev->pretbtt_tasklet);
1255 tasklet_kill(&rt2x00dev->tbtt_tasklet);
1256 tasklet_kill(&rt2x00dev->rxdone_tasklet);
1257 tasklet_kill(&rt2x00dev->autowake_tasklet);
1258
1259 /*
1260 * Uninitialize device.
1261 */
1262 rt2x00lib_uninitialize(rt2x00dev);
1263
1264 /*
1265 * Free extra components
1266 */
1267 rt2x00debug_deregister(rt2x00dev);
1268 rt2x00leds_unregister(rt2x00dev);
1269
1270 /*
1271 * Free ieee80211_hw memory.
1272 */
1273 rt2x00lib_remove_hw(rt2x00dev);
1274
1275 /*
1276 * Free firmware image.
1277 */
1278 rt2x00lib_free_firmware(rt2x00dev);
1279
1280 /*
1281 * Free queue structures.
1282 */
1283 rt2x00queue_free(rt2x00dev);
1284
1285 /*
1286 * Free the driver data.
1287 */
1288 if (rt2x00dev->drv_data)
1289 kfree(rt2x00dev->drv_data);
1290 }
1291 EXPORT_SYMBOL_GPL(rt2x00lib_remove_dev);
1292
1293 /*
1294 * Device state handlers
1295 */
1296 #ifdef CONFIG_PM
1297 int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state)
1298 {
1299 NOTICE(rt2x00dev, "Going to sleep.\n");
1300
1301 /*
1302 * Prevent mac80211 from accessing driver while suspended.
1303 */
1304 if (!test_and_clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
1305 return 0;
1306
1307 /*
1308 * Cleanup as much as possible.
1309 */
1310 rt2x00lib_uninitialize(rt2x00dev);
1311
1312 /*
1313 * Suspend/disable extra components.
1314 */
1315 rt2x00leds_suspend(rt2x00dev);
1316 rt2x00debug_deregister(rt2x00dev);
1317
1318 /*
1319 * Set device mode to sleep for power management,
1320 * on some hardware this call seems to consistently fail.
1321 * From the specifications it is hard to tell why it fails,
1322 * and if this is a "bad thing".
1323 * Overall it is safe to just ignore the failure and
1324 * continue suspending. The only downside is that the
1325 * device will not be in optimal power save mode, but with
1326 * the radio and the other components already disabled the
1327 * device is as good as disabled.
1328 */
1329 if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_SLEEP))
1330 WARNING(rt2x00dev, "Device failed to enter sleep state, "
1331 "continue suspending.\n");
1332
1333 return 0;
1334 }
1335 EXPORT_SYMBOL_GPL(rt2x00lib_suspend);
1336
1337 int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev)
1338 {
1339 NOTICE(rt2x00dev, "Waking up.\n");
1340
1341 /*
1342 * Restore/enable extra components.
1343 */
1344 rt2x00debug_register(rt2x00dev);
1345 rt2x00leds_resume(rt2x00dev);
1346
1347 /*
1348 * We are ready again to receive requests from mac80211.
1349 */
1350 set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1351
1352 return 0;
1353 }
1354 EXPORT_SYMBOL_GPL(rt2x00lib_resume);
1355 #endif /* CONFIG_PM */
1356
1357 /*
1358 * rt2x00lib module information.
1359 */
1360 MODULE_AUTHOR(DRV_PROJECT);
1361 MODULE_VERSION(DRV_VERSION);
1362 MODULE_DESCRIPTION("rt2x00 library");
1363 MODULE_LICENSE("GPL");
This page took 0.059554 seconds and 5 git commands to generate.