Merge branch 'upstream-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jlbec...
[deliverable/linux.git] / drivers / net / wireless / rt2x00 / rt2x00dev.c
1 /*
2 Copyright (C) 2004 - 2009 rt2x00 SourceForge Project
3 <http://rt2x00.serialmonkey.com>
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the
17 Free Software Foundation, Inc.,
18 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 */
20
21 /*
22 Module: rt2x00lib
23 Abstract: rt2x00 generic device routines.
24 */
25
26 #include <linux/kernel.h>
27 #include <linux/module.h>
28
29 #include "rt2x00.h"
30 #include "rt2x00lib.h"
31
32 /*
33 * Radio control handlers.
34 */
35 int rt2x00lib_enable_radio(struct rt2x00_dev *rt2x00dev)
36 {
37 int status;
38
39 /*
40 * Don't enable the radio twice.
41 * And check if the hardware button has been disabled.
42 */
43 if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags) ||
44 test_bit(DEVICE_STATE_DISABLED_RADIO_HW, &rt2x00dev->flags))
45 return 0;
46
47 /*
48 * Initialize all data queues.
49 */
50 rt2x00queue_init_queues(rt2x00dev);
51
52 /*
53 * Enable radio.
54 */
55 status =
56 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_ON);
57 if (status)
58 return status;
59
60 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_ON);
61
62 rt2x00leds_led_radio(rt2x00dev, true);
63 rt2x00led_led_activity(rt2x00dev, true);
64
65 set_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags);
66
67 /*
68 * Enable RX.
69 */
70 rt2x00lib_toggle_rx(rt2x00dev, STATE_RADIO_RX_ON);
71
72 /*
73 * Start the TX queues.
74 */
75 ieee80211_wake_queues(rt2x00dev->hw);
76
77 return 0;
78 }
79
80 void rt2x00lib_disable_radio(struct rt2x00_dev *rt2x00dev)
81 {
82 if (!test_and_clear_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
83 return;
84
85 /*
86 * Stop the TX queues in mac80211.
87 */
88 ieee80211_stop_queues(rt2x00dev->hw);
89 rt2x00queue_stop_queues(rt2x00dev);
90
91 /*
92 * Disable RX.
93 */
94 rt2x00lib_toggle_rx(rt2x00dev, STATE_RADIO_RX_OFF);
95
96 /*
97 * Disable radio.
98 */
99 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_OFF);
100 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_OFF);
101 rt2x00led_led_activity(rt2x00dev, false);
102 rt2x00leds_led_radio(rt2x00dev, false);
103 }
104
105 void rt2x00lib_toggle_rx(struct rt2x00_dev *rt2x00dev, enum dev_state state)
106 {
107 /*
108 * When we are disabling the RX, we should also stop the link tuner.
109 */
110 if (state == STATE_RADIO_RX_OFF)
111 rt2x00link_stop_tuner(rt2x00dev);
112
113 rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
114
115 /*
116 * When we are enabling the RX, we should also start the link tuner.
117 */
118 if (state == STATE_RADIO_RX_ON)
119 rt2x00link_start_tuner(rt2x00dev);
120 }
121
122 static void rt2x00lib_packetfilter_scheduled(struct work_struct *work)
123 {
124 struct rt2x00_dev *rt2x00dev =
125 container_of(work, struct rt2x00_dev, filter_work);
126
127 rt2x00dev->ops->lib->config_filter(rt2x00dev, rt2x00dev->packet_filter);
128 }
129
130 static void rt2x00lib_intf_scheduled_iter(void *data, u8 *mac,
131 struct ieee80211_vif *vif)
132 {
133 struct rt2x00_dev *rt2x00dev = data;
134 struct rt2x00_intf *intf = vif_to_intf(vif);
135 struct ieee80211_bss_conf conf;
136 int delayed_flags;
137
138 /*
139 * Copy all data we need during this action under the protection
140 * of a spinlock. Otherwise race conditions might occur which results
141 * into an invalid configuration.
142 */
143 spin_lock(&intf->lock);
144
145 memcpy(&conf, &vif->bss_conf, sizeof(conf));
146 delayed_flags = intf->delayed_flags;
147 intf->delayed_flags = 0;
148
149 spin_unlock(&intf->lock);
150
151 /*
152 * It is possible the radio was disabled while the work had been
153 * scheduled. If that happens we should return here immediately,
154 * note that in the spinlock protected area above the delayed_flags
155 * have been cleared correctly.
156 */
157 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
158 return;
159
160 if (delayed_flags & DELAYED_UPDATE_BEACON)
161 rt2x00queue_update_beacon(rt2x00dev, vif, true);
162
163 if (delayed_flags & DELAYED_CONFIG_ERP)
164 rt2x00lib_config_erp(rt2x00dev, intf, &conf);
165
166 if (delayed_flags & DELAYED_LED_ASSOC)
167 rt2x00leds_led_assoc(rt2x00dev, !!rt2x00dev->intf_associated);
168 }
169
170 static void rt2x00lib_intf_scheduled(struct work_struct *work)
171 {
172 struct rt2x00_dev *rt2x00dev =
173 container_of(work, struct rt2x00_dev, intf_work);
174
175 /*
176 * Iterate over each interface and perform the
177 * requested configurations.
178 */
179 ieee80211_iterate_active_interfaces(rt2x00dev->hw,
180 rt2x00lib_intf_scheduled_iter,
181 rt2x00dev);
182 }
183
184 /*
185 * Interrupt context handlers.
186 */
187 static void rt2x00lib_beacondone_iter(void *data, u8 *mac,
188 struct ieee80211_vif *vif)
189 {
190 struct rt2x00_dev *rt2x00dev = data;
191 struct rt2x00_intf *intf = vif_to_intf(vif);
192
193 if (vif->type != NL80211_IFTYPE_AP &&
194 vif->type != NL80211_IFTYPE_ADHOC &&
195 vif->type != NL80211_IFTYPE_MESH_POINT &&
196 vif->type != NL80211_IFTYPE_WDS)
197 return;
198
199 /*
200 * Clean up the beacon skb.
201 */
202 rt2x00queue_free_skb(rt2x00dev, intf->beacon->skb);
203 intf->beacon->skb = NULL;
204
205 spin_lock(&intf->lock);
206 intf->delayed_flags |= DELAYED_UPDATE_BEACON;
207 spin_unlock(&intf->lock);
208 }
209
210 void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev)
211 {
212 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
213 return;
214
215 ieee80211_iterate_active_interfaces_atomic(rt2x00dev->hw,
216 rt2x00lib_beacondone_iter,
217 rt2x00dev);
218
219 queue_work(rt2x00dev->hw->workqueue, &rt2x00dev->intf_work);
220 }
221 EXPORT_SYMBOL_GPL(rt2x00lib_beacondone);
222
223 void rt2x00lib_txdone(struct queue_entry *entry,
224 struct txdone_entry_desc *txdesc)
225 {
226 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
227 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
228 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
229 enum data_queue_qid qid = skb_get_queue_mapping(entry->skb);
230 u8 rate_idx, rate_flags;
231
232 /*
233 * Unmap the skb.
234 */
235 rt2x00queue_unmap_skb(rt2x00dev, entry->skb);
236
237 /*
238 * If the IV/EIV data was stripped from the frame before it was
239 * passed to the hardware, we should now reinsert it again because
240 * mac80211 will expect the the same data to be present it the
241 * frame as it was passed to us.
242 */
243 if (test_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags))
244 rt2x00crypto_tx_insert_iv(entry->skb);
245
246 /*
247 * Send frame to debugfs immediately, after this call is completed
248 * we are going to overwrite the skb->cb array.
249 */
250 rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_TXDONE, entry->skb);
251
252 /*
253 * Update TX statistics.
254 */
255 rt2x00dev->link.qual.tx_success +=
256 test_bit(TXDONE_SUCCESS, &txdesc->flags);
257 rt2x00dev->link.qual.tx_failed +=
258 test_bit(TXDONE_FAILURE, &txdesc->flags);
259
260 rate_idx = skbdesc->tx_rate_idx;
261 rate_flags = skbdesc->tx_rate_flags;
262
263 /*
264 * Initialize TX status
265 */
266 memset(&tx_info->status, 0, sizeof(tx_info->status));
267 tx_info->status.ack_signal = 0;
268 tx_info->status.rates[0].idx = rate_idx;
269 tx_info->status.rates[0].flags = rate_flags;
270 tx_info->status.rates[0].count = txdesc->retry + 1;
271 tx_info->status.rates[1].idx = -1; /* terminate */
272
273 if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK)) {
274 if (test_bit(TXDONE_SUCCESS, &txdesc->flags))
275 tx_info->flags |= IEEE80211_TX_STAT_ACK;
276 else if (test_bit(TXDONE_FAILURE, &txdesc->flags))
277 rt2x00dev->low_level_stats.dot11ACKFailureCount++;
278 }
279
280 if (rate_flags & IEEE80211_TX_RC_USE_RTS_CTS) {
281 if (test_bit(TXDONE_SUCCESS, &txdesc->flags))
282 rt2x00dev->low_level_stats.dot11RTSSuccessCount++;
283 else if (test_bit(TXDONE_FAILURE, &txdesc->flags))
284 rt2x00dev->low_level_stats.dot11RTSFailureCount++;
285 }
286
287 /*
288 * Only send the status report to mac80211 when TX status was
289 * requested by it. If this was a extra frame coming through
290 * a mac80211 library call (RTS/CTS) then we should not send the
291 * status report back.
292 */
293 if (tx_info->flags & IEEE80211_TX_CTL_REQ_TX_STATUS)
294 ieee80211_tx_status_irqsafe(rt2x00dev->hw, entry->skb);
295 else
296 dev_kfree_skb_irq(entry->skb);
297
298 /*
299 * Make this entry available for reuse.
300 */
301 entry->skb = NULL;
302 entry->flags = 0;
303
304 rt2x00dev->ops->lib->clear_entry(entry);
305
306 clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
307 rt2x00queue_index_inc(entry->queue, Q_INDEX_DONE);
308
309 /*
310 * If the data queue was below the threshold before the txdone
311 * handler we must make sure the packet queue in the mac80211 stack
312 * is reenabled when the txdone handler has finished.
313 */
314 if (!rt2x00queue_threshold(entry->queue))
315 ieee80211_wake_queue(rt2x00dev->hw, qid);
316 }
317 EXPORT_SYMBOL_GPL(rt2x00lib_txdone);
318
319 void rt2x00lib_rxdone(struct rt2x00_dev *rt2x00dev,
320 struct queue_entry *entry)
321 {
322 struct rxdone_entry_desc rxdesc;
323 struct sk_buff *skb;
324 struct ieee80211_rx_status *rx_status = &rt2x00dev->rx_status;
325 struct ieee80211_supported_band *sband;
326 const struct rt2x00_rate *rate;
327 unsigned int header_length;
328 unsigned int align;
329 unsigned int i;
330 int idx = -1;
331
332 /*
333 * Allocate a new sk_buffer. If no new buffer available, drop the
334 * received frame and reuse the existing buffer.
335 */
336 skb = rt2x00queue_alloc_rxskb(rt2x00dev, entry);
337 if (!skb)
338 return;
339
340 /*
341 * Unmap the skb.
342 */
343 rt2x00queue_unmap_skb(rt2x00dev, entry->skb);
344
345 /*
346 * Extract the RXD details.
347 */
348 memset(&rxdesc, 0, sizeof(rxdesc));
349 rt2x00dev->ops->lib->fill_rxdone(entry, &rxdesc);
350
351 /*
352 * The data behind the ieee80211 header must be
353 * aligned on a 4 byte boundary.
354 */
355 header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
356 align = ((unsigned long)(entry->skb->data + header_length)) & 3;
357
358 /*
359 * Hardware might have stripped the IV/EIV/ICV data,
360 * in that case it is possible that the data was
361 * provided seperately (through hardware descriptor)
362 * in which case we should reinsert the data into the frame.
363 */
364 if ((rxdesc.dev_flags & RXDONE_CRYPTO_IV) &&
365 (rxdesc.flags & RX_FLAG_IV_STRIPPED)) {
366 rt2x00crypto_rx_insert_iv(entry->skb, align,
367 header_length, &rxdesc);
368 } else if (align) {
369 skb_push(entry->skb, align);
370 /* Move entire frame in 1 command */
371 memmove(entry->skb->data, entry->skb->data + align,
372 rxdesc.size);
373 }
374
375 /* Update data pointers, trim buffer to correct size */
376 skb_trim(entry->skb, rxdesc.size);
377
378 /*
379 * Update RX statistics.
380 */
381 sband = &rt2x00dev->bands[rt2x00dev->curr_band];
382 for (i = 0; i < sband->n_bitrates; i++) {
383 rate = rt2x00_get_rate(sband->bitrates[i].hw_value);
384
385 if (((rxdesc.dev_flags & RXDONE_SIGNAL_PLCP) &&
386 (rate->plcp == rxdesc.signal)) ||
387 ((rxdesc.dev_flags & RXDONE_SIGNAL_BITRATE) &&
388 (rate->bitrate == rxdesc.signal))) {
389 idx = i;
390 break;
391 }
392 }
393
394 if (idx < 0) {
395 WARNING(rt2x00dev, "Frame received with unrecognized signal,"
396 "signal=0x%.2x, type=%d.\n", rxdesc.signal,
397 (rxdesc.dev_flags & RXDONE_SIGNAL_MASK));
398 idx = 0;
399 }
400
401 /*
402 * Update extra components
403 */
404 rt2x00link_update_stats(rt2x00dev, entry->skb, &rxdesc);
405 rt2x00debug_update_crypto(rt2x00dev, &rxdesc);
406
407 rx_status->mactime = rxdesc.timestamp;
408 rx_status->rate_idx = idx;
409 rx_status->qual = rt2x00link_calculate_signal(rt2x00dev, rxdesc.rssi);
410 rx_status->signal = rxdesc.rssi;
411 rx_status->noise = rxdesc.noise;
412 rx_status->flag = rxdesc.flags;
413 rx_status->antenna = rt2x00dev->link.ant.active.rx;
414
415 /*
416 * Send frame to mac80211 & debugfs.
417 * mac80211 will clean up the skb structure.
418 */
419 rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_RXDONE, entry->skb);
420 ieee80211_rx_irqsafe(rt2x00dev->hw, entry->skb, rx_status);
421
422 /*
423 * Replace the skb with the freshly allocated one.
424 */
425 entry->skb = skb;
426 entry->flags = 0;
427
428 rt2x00dev->ops->lib->clear_entry(entry);
429
430 rt2x00queue_index_inc(entry->queue, Q_INDEX);
431 }
432 EXPORT_SYMBOL_GPL(rt2x00lib_rxdone);
433
434 /*
435 * Driver initialization handlers.
436 */
437 const struct rt2x00_rate rt2x00_supported_rates[12] = {
438 {
439 .flags = DEV_RATE_CCK,
440 .bitrate = 10,
441 .ratemask = BIT(0),
442 .plcp = 0x00,
443 },
444 {
445 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
446 .bitrate = 20,
447 .ratemask = BIT(1),
448 .plcp = 0x01,
449 },
450 {
451 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
452 .bitrate = 55,
453 .ratemask = BIT(2),
454 .plcp = 0x02,
455 },
456 {
457 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
458 .bitrate = 110,
459 .ratemask = BIT(3),
460 .plcp = 0x03,
461 },
462 {
463 .flags = DEV_RATE_OFDM,
464 .bitrate = 60,
465 .ratemask = BIT(4),
466 .plcp = 0x0b,
467 },
468 {
469 .flags = DEV_RATE_OFDM,
470 .bitrate = 90,
471 .ratemask = BIT(5),
472 .plcp = 0x0f,
473 },
474 {
475 .flags = DEV_RATE_OFDM,
476 .bitrate = 120,
477 .ratemask = BIT(6),
478 .plcp = 0x0a,
479 },
480 {
481 .flags = DEV_RATE_OFDM,
482 .bitrate = 180,
483 .ratemask = BIT(7),
484 .plcp = 0x0e,
485 },
486 {
487 .flags = DEV_RATE_OFDM,
488 .bitrate = 240,
489 .ratemask = BIT(8),
490 .plcp = 0x09,
491 },
492 {
493 .flags = DEV_RATE_OFDM,
494 .bitrate = 360,
495 .ratemask = BIT(9),
496 .plcp = 0x0d,
497 },
498 {
499 .flags = DEV_RATE_OFDM,
500 .bitrate = 480,
501 .ratemask = BIT(10),
502 .plcp = 0x08,
503 },
504 {
505 .flags = DEV_RATE_OFDM,
506 .bitrate = 540,
507 .ratemask = BIT(11),
508 .plcp = 0x0c,
509 },
510 };
511
512 static void rt2x00lib_channel(struct ieee80211_channel *entry,
513 const int channel, const int tx_power,
514 const int value)
515 {
516 entry->center_freq = ieee80211_channel_to_frequency(channel);
517 entry->hw_value = value;
518 entry->max_power = tx_power;
519 entry->max_antenna_gain = 0xff;
520 }
521
522 static void rt2x00lib_rate(struct ieee80211_rate *entry,
523 const u16 index, const struct rt2x00_rate *rate)
524 {
525 entry->flags = 0;
526 entry->bitrate = rate->bitrate;
527 entry->hw_value =index;
528 entry->hw_value_short = index;
529
530 if (rate->flags & DEV_RATE_SHORT_PREAMBLE)
531 entry->flags |= IEEE80211_RATE_SHORT_PREAMBLE;
532 }
533
534 static int rt2x00lib_probe_hw_modes(struct rt2x00_dev *rt2x00dev,
535 struct hw_mode_spec *spec)
536 {
537 struct ieee80211_hw *hw = rt2x00dev->hw;
538 struct ieee80211_channel *channels;
539 struct ieee80211_rate *rates;
540 unsigned int num_rates;
541 unsigned int i;
542
543 num_rates = 0;
544 if (spec->supported_rates & SUPPORT_RATE_CCK)
545 num_rates += 4;
546 if (spec->supported_rates & SUPPORT_RATE_OFDM)
547 num_rates += 8;
548
549 channels = kzalloc(sizeof(*channels) * spec->num_channels, GFP_KERNEL);
550 if (!channels)
551 return -ENOMEM;
552
553 rates = kzalloc(sizeof(*rates) * num_rates, GFP_KERNEL);
554 if (!rates)
555 goto exit_free_channels;
556
557 /*
558 * Initialize Rate list.
559 */
560 for (i = 0; i < num_rates; i++)
561 rt2x00lib_rate(&rates[i], i, rt2x00_get_rate(i));
562
563 /*
564 * Initialize Channel list.
565 */
566 for (i = 0; i < spec->num_channels; i++) {
567 rt2x00lib_channel(&channels[i],
568 spec->channels[i].channel,
569 spec->channels_info[i].tx_power1, i);
570 }
571
572 /*
573 * Intitialize 802.11b, 802.11g
574 * Rates: CCK, OFDM.
575 * Channels: 2.4 GHz
576 */
577 if (spec->supported_bands & SUPPORT_BAND_2GHZ) {
578 rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_channels = 14;
579 rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_bitrates = num_rates;
580 rt2x00dev->bands[IEEE80211_BAND_2GHZ].channels = channels;
581 rt2x00dev->bands[IEEE80211_BAND_2GHZ].bitrates = rates;
582 hw->wiphy->bands[IEEE80211_BAND_2GHZ] =
583 &rt2x00dev->bands[IEEE80211_BAND_2GHZ];
584 }
585
586 /*
587 * Intitialize 802.11a
588 * Rates: OFDM.
589 * Channels: OFDM, UNII, HiperLAN2.
590 */
591 if (spec->supported_bands & SUPPORT_BAND_5GHZ) {
592 rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_channels =
593 spec->num_channels - 14;
594 rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_bitrates =
595 num_rates - 4;
596 rt2x00dev->bands[IEEE80211_BAND_5GHZ].channels = &channels[14];
597 rt2x00dev->bands[IEEE80211_BAND_5GHZ].bitrates = &rates[4];
598 hw->wiphy->bands[IEEE80211_BAND_5GHZ] =
599 &rt2x00dev->bands[IEEE80211_BAND_5GHZ];
600 }
601
602 return 0;
603
604 exit_free_channels:
605 kfree(channels);
606 ERROR(rt2x00dev, "Allocation ieee80211 modes failed.\n");
607 return -ENOMEM;
608 }
609
610 static void rt2x00lib_remove_hw(struct rt2x00_dev *rt2x00dev)
611 {
612 if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
613 ieee80211_unregister_hw(rt2x00dev->hw);
614
615 if (likely(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ])) {
616 kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->channels);
617 kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->bitrates);
618 rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ] = NULL;
619 rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_5GHZ] = NULL;
620 }
621
622 kfree(rt2x00dev->spec.channels_info);
623 }
624
625 static int rt2x00lib_probe_hw(struct rt2x00_dev *rt2x00dev)
626 {
627 struct hw_mode_spec *spec = &rt2x00dev->spec;
628 int status;
629
630 if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
631 return 0;
632
633 /*
634 * Initialize HW modes.
635 */
636 status = rt2x00lib_probe_hw_modes(rt2x00dev, spec);
637 if (status)
638 return status;
639
640 /*
641 * Initialize HW fields.
642 */
643 rt2x00dev->hw->queues = rt2x00dev->ops->tx_queues;
644
645 /*
646 * Register HW.
647 */
648 status = ieee80211_register_hw(rt2x00dev->hw);
649 if (status)
650 return status;
651
652 set_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags);
653
654 return 0;
655 }
656
657 /*
658 * Initialization/uninitialization handlers.
659 */
660 static void rt2x00lib_uninitialize(struct rt2x00_dev *rt2x00dev)
661 {
662 if (!test_and_clear_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
663 return;
664
665 /*
666 * Unregister extra components.
667 */
668 rt2x00rfkill_unregister(rt2x00dev);
669
670 /*
671 * Allow the HW to uninitialize.
672 */
673 rt2x00dev->ops->lib->uninitialize(rt2x00dev);
674
675 /*
676 * Free allocated queue entries.
677 */
678 rt2x00queue_uninitialize(rt2x00dev);
679 }
680
681 static int rt2x00lib_initialize(struct rt2x00_dev *rt2x00dev)
682 {
683 int status;
684
685 if (test_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
686 return 0;
687
688 /*
689 * Allocate all queue entries.
690 */
691 status = rt2x00queue_initialize(rt2x00dev);
692 if (status)
693 return status;
694
695 /*
696 * Initialize the device.
697 */
698 status = rt2x00dev->ops->lib->initialize(rt2x00dev);
699 if (status) {
700 rt2x00queue_uninitialize(rt2x00dev);
701 return status;
702 }
703
704 set_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags);
705
706 /*
707 * Register the extra components.
708 */
709 rt2x00rfkill_register(rt2x00dev);
710
711 return 0;
712 }
713
714 int rt2x00lib_start(struct rt2x00_dev *rt2x00dev)
715 {
716 int retval;
717
718 if (test_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
719 return 0;
720
721 /*
722 * If this is the first interface which is added,
723 * we should load the firmware now.
724 */
725 retval = rt2x00lib_load_firmware(rt2x00dev);
726 if (retval)
727 return retval;
728
729 /*
730 * Initialize the device.
731 */
732 retval = rt2x00lib_initialize(rt2x00dev);
733 if (retval)
734 return retval;
735
736 rt2x00dev->intf_ap_count = 0;
737 rt2x00dev->intf_sta_count = 0;
738 rt2x00dev->intf_associated = 0;
739
740 set_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags);
741
742 return 0;
743 }
744
745 void rt2x00lib_stop(struct rt2x00_dev *rt2x00dev)
746 {
747 if (!test_and_clear_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
748 return;
749
750 /*
751 * Perhaps we can add something smarter here,
752 * but for now just disabling the radio should do.
753 */
754 rt2x00lib_disable_radio(rt2x00dev);
755
756 rt2x00dev->intf_ap_count = 0;
757 rt2x00dev->intf_sta_count = 0;
758 rt2x00dev->intf_associated = 0;
759 }
760
761 /*
762 * driver allocation handlers.
763 */
764 int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev)
765 {
766 int retval = -ENOMEM;
767
768 mutex_init(&rt2x00dev->csr_mutex);
769
770 /*
771 * Make room for rt2x00_intf inside the per-interface
772 * structure ieee80211_vif.
773 */
774 rt2x00dev->hw->vif_data_size = sizeof(struct rt2x00_intf);
775
776 /*
777 * Determine which operating modes are supported, all modes
778 * which require beaconing, depend on the availability of
779 * beacon entries.
780 */
781 rt2x00dev->hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION);
782 if (rt2x00dev->ops->bcn->entry_num > 0)
783 rt2x00dev->hw->wiphy->interface_modes |=
784 BIT(NL80211_IFTYPE_ADHOC) |
785 BIT(NL80211_IFTYPE_AP) |
786 BIT(NL80211_IFTYPE_MESH_POINT) |
787 BIT(NL80211_IFTYPE_WDS);
788
789 /*
790 * Let the driver probe the device to detect the capabilities.
791 */
792 retval = rt2x00dev->ops->lib->probe_hw(rt2x00dev);
793 if (retval) {
794 ERROR(rt2x00dev, "Failed to allocate device.\n");
795 goto exit;
796 }
797
798 /*
799 * Initialize configuration work.
800 */
801 INIT_WORK(&rt2x00dev->intf_work, rt2x00lib_intf_scheduled);
802 INIT_WORK(&rt2x00dev->filter_work, rt2x00lib_packetfilter_scheduled);
803
804 /*
805 * Allocate queue array.
806 */
807 retval = rt2x00queue_allocate(rt2x00dev);
808 if (retval)
809 goto exit;
810
811 /*
812 * Initialize ieee80211 structure.
813 */
814 retval = rt2x00lib_probe_hw(rt2x00dev);
815 if (retval) {
816 ERROR(rt2x00dev, "Failed to initialize hw.\n");
817 goto exit;
818 }
819
820 /*
821 * Register extra components.
822 */
823 rt2x00link_register(rt2x00dev);
824 rt2x00leds_register(rt2x00dev);
825 rt2x00rfkill_allocate(rt2x00dev);
826 rt2x00debug_register(rt2x00dev);
827
828 set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
829
830 return 0;
831
832 exit:
833 rt2x00lib_remove_dev(rt2x00dev);
834
835 return retval;
836 }
837 EXPORT_SYMBOL_GPL(rt2x00lib_probe_dev);
838
839 void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev)
840 {
841 clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
842
843 /*
844 * Disable radio.
845 */
846 rt2x00lib_disable_radio(rt2x00dev);
847
848 /*
849 * Uninitialize device.
850 */
851 rt2x00lib_uninitialize(rt2x00dev);
852
853 /*
854 * Free extra components
855 */
856 rt2x00debug_deregister(rt2x00dev);
857 rt2x00rfkill_free(rt2x00dev);
858 rt2x00leds_unregister(rt2x00dev);
859
860 /*
861 * Free ieee80211_hw memory.
862 */
863 rt2x00lib_remove_hw(rt2x00dev);
864
865 /*
866 * Free firmware image.
867 */
868 rt2x00lib_free_firmware(rt2x00dev);
869
870 /*
871 * Free queue structures.
872 */
873 rt2x00queue_free(rt2x00dev);
874 }
875 EXPORT_SYMBOL_GPL(rt2x00lib_remove_dev);
876
877 /*
878 * Device state handlers
879 */
880 #ifdef CONFIG_PM
881 int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state)
882 {
883 NOTICE(rt2x00dev, "Going to sleep.\n");
884
885 /*
886 * Prevent mac80211 from accessing driver while suspended.
887 */
888 if (!test_and_clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
889 return 0;
890
891 /*
892 * Cleanup as much as possible.
893 */
894 rt2x00lib_uninitialize(rt2x00dev);
895
896 /*
897 * Suspend/disable extra components.
898 */
899 rt2x00leds_suspend(rt2x00dev);
900 rt2x00debug_deregister(rt2x00dev);
901
902 /*
903 * Set device mode to sleep for power management,
904 * on some hardware this call seems to consistently fail.
905 * From the specifications it is hard to tell why it fails,
906 * and if this is a "bad thing".
907 * Overall it is safe to just ignore the failure and
908 * continue suspending. The only downside is that the
909 * device will not be in optimal power save mode, but with
910 * the radio and the other components already disabled the
911 * device is as good as disabled.
912 */
913 if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_SLEEP))
914 WARNING(rt2x00dev, "Device failed to enter sleep state, "
915 "continue suspending.\n");
916
917 return 0;
918 }
919 EXPORT_SYMBOL_GPL(rt2x00lib_suspend);
920
921 int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev)
922 {
923 NOTICE(rt2x00dev, "Waking up.\n");
924
925 /*
926 * Restore/enable extra components.
927 */
928 rt2x00debug_register(rt2x00dev);
929 rt2x00leds_resume(rt2x00dev);
930
931 /*
932 * We are ready again to receive requests from mac80211.
933 */
934 set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
935
936 return 0;
937 }
938 EXPORT_SYMBOL_GPL(rt2x00lib_resume);
939 #endif /* CONFIG_PM */
940
941 /*
942 * rt2x00lib module information.
943 */
944 MODULE_AUTHOR(DRV_PROJECT);
945 MODULE_VERSION(DRV_VERSION);
946 MODULE_DESCRIPTION("rt2x00 library");
947 MODULE_LICENSE("GPL");
This page took 0.106917 seconds and 6 git commands to generate.