Merge branch 'master' of git://dev.medozas.de/linux
[deliverable/linux.git] / drivers / net / wireless / rt2x00 / rt2x00dev.c
1 /*
2 Copyright (C) 2004 - 2009 rt2x00 SourceForge Project
3 <http://rt2x00.serialmonkey.com>
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the
17 Free Software Foundation, Inc.,
18 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 */
20
21 /*
22 Module: rt2x00lib
23 Abstract: rt2x00 generic device routines.
24 */
25
26 #include <linux/kernel.h>
27 #include <linux/module.h>
28
29 #include "rt2x00.h"
30 #include "rt2x00lib.h"
31
32 /*
33 * Radio control handlers.
34 */
35 int rt2x00lib_enable_radio(struct rt2x00_dev *rt2x00dev)
36 {
37 int status;
38
39 /*
40 * Don't enable the radio twice.
41 * And check if the hardware button has been disabled.
42 */
43 if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags) ||
44 test_bit(DEVICE_STATE_DISABLED_RADIO_HW, &rt2x00dev->flags))
45 return 0;
46
47 /*
48 * Initialize all data queues.
49 */
50 rt2x00queue_init_queues(rt2x00dev);
51
52 /*
53 * Enable radio.
54 */
55 status =
56 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_ON);
57 if (status)
58 return status;
59
60 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_ON);
61
62 rt2x00leds_led_radio(rt2x00dev, true);
63 rt2x00led_led_activity(rt2x00dev, true);
64
65 set_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags);
66
67 /*
68 * Enable RX.
69 */
70 rt2x00lib_toggle_rx(rt2x00dev, STATE_RADIO_RX_ON);
71
72 /*
73 * Start the TX queues.
74 */
75 ieee80211_wake_queues(rt2x00dev->hw);
76
77 return 0;
78 }
79
80 void rt2x00lib_disable_radio(struct rt2x00_dev *rt2x00dev)
81 {
82 if (!test_and_clear_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
83 return;
84
85 /*
86 * Stop the TX queues in mac80211.
87 */
88 ieee80211_stop_queues(rt2x00dev->hw);
89 rt2x00queue_stop_queues(rt2x00dev);
90
91 /*
92 * Disable RX.
93 */
94 rt2x00lib_toggle_rx(rt2x00dev, STATE_RADIO_RX_OFF);
95
96 /*
97 * Disable radio.
98 */
99 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_OFF);
100 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_OFF);
101 rt2x00led_led_activity(rt2x00dev, false);
102 rt2x00leds_led_radio(rt2x00dev, false);
103 }
104
105 void rt2x00lib_toggle_rx(struct rt2x00_dev *rt2x00dev, enum dev_state state)
106 {
107 /*
108 * When we are disabling the RX, we should also stop the link tuner.
109 */
110 if (state == STATE_RADIO_RX_OFF)
111 rt2x00link_stop_tuner(rt2x00dev);
112
113 rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
114
115 /*
116 * When we are enabling the RX, we should also start the link tuner.
117 */
118 if (state == STATE_RADIO_RX_ON)
119 rt2x00link_start_tuner(rt2x00dev);
120 }
121
122 static void rt2x00lib_packetfilter_scheduled(struct work_struct *work)
123 {
124 struct rt2x00_dev *rt2x00dev =
125 container_of(work, struct rt2x00_dev, filter_work);
126
127 rt2x00dev->ops->lib->config_filter(rt2x00dev, rt2x00dev->packet_filter);
128 }
129
130 static void rt2x00lib_intf_scheduled_iter(void *data, u8 *mac,
131 struct ieee80211_vif *vif)
132 {
133 struct rt2x00_dev *rt2x00dev = data;
134 struct rt2x00_intf *intf = vif_to_intf(vif);
135 struct ieee80211_bss_conf conf;
136 int delayed_flags;
137
138 /*
139 * Copy all data we need during this action under the protection
140 * of a spinlock. Otherwise race conditions might occur which results
141 * into an invalid configuration.
142 */
143 spin_lock(&intf->lock);
144
145 memcpy(&conf, &vif->bss_conf, sizeof(conf));
146 delayed_flags = intf->delayed_flags;
147 intf->delayed_flags = 0;
148
149 spin_unlock(&intf->lock);
150
151 /*
152 * It is possible the radio was disabled while the work had been
153 * scheduled. If that happens we should return here immediately,
154 * note that in the spinlock protected area above the delayed_flags
155 * have been cleared correctly.
156 */
157 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
158 return;
159
160 if (delayed_flags & DELAYED_UPDATE_BEACON)
161 rt2x00queue_update_beacon(rt2x00dev, vif, true);
162
163 if (delayed_flags & DELAYED_CONFIG_ERP)
164 rt2x00lib_config_erp(rt2x00dev, intf, &conf);
165
166 if (delayed_flags & DELAYED_LED_ASSOC)
167 rt2x00leds_led_assoc(rt2x00dev, !!rt2x00dev->intf_associated);
168 }
169
170 static void rt2x00lib_intf_scheduled(struct work_struct *work)
171 {
172 struct rt2x00_dev *rt2x00dev =
173 container_of(work, struct rt2x00_dev, intf_work);
174
175 /*
176 * Iterate over each interface and perform the
177 * requested configurations.
178 */
179 ieee80211_iterate_active_interfaces(rt2x00dev->hw,
180 rt2x00lib_intf_scheduled_iter,
181 rt2x00dev);
182 }
183
184 /*
185 * Interrupt context handlers.
186 */
187 static void rt2x00lib_beacondone_iter(void *data, u8 *mac,
188 struct ieee80211_vif *vif)
189 {
190 struct rt2x00_dev *rt2x00dev = data;
191 struct rt2x00_intf *intf = vif_to_intf(vif);
192
193 if (vif->type != NL80211_IFTYPE_AP &&
194 vif->type != NL80211_IFTYPE_ADHOC &&
195 vif->type != NL80211_IFTYPE_MESH_POINT &&
196 vif->type != NL80211_IFTYPE_WDS)
197 return;
198
199 /*
200 * Clean up the beacon skb.
201 */
202 rt2x00queue_free_skb(rt2x00dev, intf->beacon->skb);
203 intf->beacon->skb = NULL;
204
205 spin_lock(&intf->lock);
206 intf->delayed_flags |= DELAYED_UPDATE_BEACON;
207 spin_unlock(&intf->lock);
208 }
209
210 void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev)
211 {
212 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
213 return;
214
215 ieee80211_iterate_active_interfaces_atomic(rt2x00dev->hw,
216 rt2x00lib_beacondone_iter,
217 rt2x00dev);
218
219 queue_work(rt2x00dev->hw->workqueue, &rt2x00dev->intf_work);
220 }
221 EXPORT_SYMBOL_GPL(rt2x00lib_beacondone);
222
223 void rt2x00lib_txdone(struct queue_entry *entry,
224 struct txdone_entry_desc *txdesc)
225 {
226 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
227 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
228 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
229 enum data_queue_qid qid = skb_get_queue_mapping(entry->skb);
230 unsigned int header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
231 u8 rate_idx, rate_flags;
232
233 /*
234 * Unmap the skb.
235 */
236 rt2x00queue_unmap_skb(rt2x00dev, entry->skb);
237
238 /*
239 * Remove L2 padding which was added during
240 */
241 if (test_bit(DRIVER_REQUIRE_L2PAD, &rt2x00dev->flags))
242 rt2x00queue_payload_align(entry->skb, true, header_length);
243
244 /*
245 * If the IV/EIV data was stripped from the frame before it was
246 * passed to the hardware, we should now reinsert it again because
247 * mac80211 will expect the the same data to be present it the
248 * frame as it was passed to us.
249 */
250 if (test_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags))
251 rt2x00crypto_tx_insert_iv(entry->skb, header_length);
252
253 /*
254 * Send frame to debugfs immediately, after this call is completed
255 * we are going to overwrite the skb->cb array.
256 */
257 rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_TXDONE, entry->skb);
258
259 /*
260 * Update TX statistics.
261 */
262 rt2x00dev->link.qual.tx_success +=
263 test_bit(TXDONE_SUCCESS, &txdesc->flags) ||
264 test_bit(TXDONE_UNKNOWN, &txdesc->flags);
265 rt2x00dev->link.qual.tx_failed +=
266 test_bit(TXDONE_FAILURE, &txdesc->flags);
267
268 rate_idx = skbdesc->tx_rate_idx;
269 rate_flags = skbdesc->tx_rate_flags;
270
271 /*
272 * Initialize TX status
273 */
274 memset(&tx_info->status, 0, sizeof(tx_info->status));
275 tx_info->status.ack_signal = 0;
276 tx_info->status.rates[0].idx = rate_idx;
277 tx_info->status.rates[0].flags = rate_flags;
278 tx_info->status.rates[0].count = txdesc->retry + 1;
279 tx_info->status.rates[1].idx = -1; /* terminate */
280
281 if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK)) {
282 if (test_bit(TXDONE_SUCCESS, &txdesc->flags) ||
283 test_bit(TXDONE_UNKNOWN, &txdesc->flags))
284 tx_info->flags |= IEEE80211_TX_STAT_ACK;
285 else if (test_bit(TXDONE_FAILURE, &txdesc->flags))
286 rt2x00dev->low_level_stats.dot11ACKFailureCount++;
287 }
288
289 if (rate_flags & IEEE80211_TX_RC_USE_RTS_CTS) {
290 if (test_bit(TXDONE_SUCCESS, &txdesc->flags) ||
291 test_bit(TXDONE_UNKNOWN, &txdesc->flags))
292 rt2x00dev->low_level_stats.dot11RTSSuccessCount++;
293 else if (test_bit(TXDONE_FAILURE, &txdesc->flags))
294 rt2x00dev->low_level_stats.dot11RTSFailureCount++;
295 }
296
297 /*
298 * Only send the status report to mac80211 when TX status was
299 * requested by it. If this was a extra frame coming through
300 * a mac80211 library call (RTS/CTS) then we should not send the
301 * status report back.
302 */
303 if (tx_info->flags & IEEE80211_TX_CTL_REQ_TX_STATUS)
304 ieee80211_tx_status_irqsafe(rt2x00dev->hw, entry->skb);
305 else
306 dev_kfree_skb_irq(entry->skb);
307
308 /*
309 * Make this entry available for reuse.
310 */
311 entry->skb = NULL;
312 entry->flags = 0;
313
314 rt2x00dev->ops->lib->clear_entry(entry);
315
316 clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
317 rt2x00queue_index_inc(entry->queue, Q_INDEX_DONE);
318
319 /*
320 * If the data queue was below the threshold before the txdone
321 * handler we must make sure the packet queue in the mac80211 stack
322 * is reenabled when the txdone handler has finished.
323 */
324 if (!rt2x00queue_threshold(entry->queue))
325 ieee80211_wake_queue(rt2x00dev->hw, qid);
326 }
327 EXPORT_SYMBOL_GPL(rt2x00lib_txdone);
328
329 static int rt2x00lib_rxdone_read_signal(struct rt2x00_dev *rt2x00dev,
330 struct rxdone_entry_desc *rxdesc)
331 {
332 struct ieee80211_supported_band *sband;
333 const struct rt2x00_rate *rate;
334 unsigned int i;
335 int signal;
336 int type;
337
338 /*
339 * For non-HT rates the MCS value needs to contain the
340 * actually used rate modulation (CCK or OFDM).
341 */
342 if (rxdesc->dev_flags & RXDONE_SIGNAL_MCS)
343 signal = RATE_MCS(rxdesc->rate_mode, rxdesc->signal);
344 else
345 signal = rxdesc->signal;
346
347 type = (rxdesc->dev_flags & RXDONE_SIGNAL_MASK);
348
349 sband = &rt2x00dev->bands[rt2x00dev->curr_band];
350 for (i = 0; i < sband->n_bitrates; i++) {
351 rate = rt2x00_get_rate(sband->bitrates[i].hw_value);
352
353 if (((type == RXDONE_SIGNAL_PLCP) &&
354 (rate->plcp == signal)) ||
355 ((type == RXDONE_SIGNAL_BITRATE) &&
356 (rate->bitrate == signal)) ||
357 ((type == RXDONE_SIGNAL_MCS) &&
358 (rate->mcs == signal))) {
359 return i;
360 }
361 }
362
363 WARNING(rt2x00dev, "Frame received with unrecognized signal, "
364 "signal=0x%.4x, type=%d.\n", signal, type);
365 return 0;
366 }
367
368 void rt2x00lib_rxdone(struct rt2x00_dev *rt2x00dev,
369 struct queue_entry *entry)
370 {
371 struct rxdone_entry_desc rxdesc;
372 struct sk_buff *skb;
373 struct ieee80211_rx_status *rx_status = &rt2x00dev->rx_status;
374 unsigned int header_length;
375 bool l2pad;
376 int rate_idx;
377 /*
378 * Allocate a new sk_buffer. If no new buffer available, drop the
379 * received frame and reuse the existing buffer.
380 */
381 skb = rt2x00queue_alloc_rxskb(rt2x00dev, entry);
382 if (!skb)
383 return;
384
385 /*
386 * Unmap the skb.
387 */
388 rt2x00queue_unmap_skb(rt2x00dev, entry->skb);
389
390 /*
391 * Extract the RXD details.
392 */
393 memset(&rxdesc, 0, sizeof(rxdesc));
394 rt2x00dev->ops->lib->fill_rxdone(entry, &rxdesc);
395
396 /* Trim buffer to correct size */
397 skb_trim(entry->skb, rxdesc.size);
398
399 /*
400 * The data behind the ieee80211 header must be
401 * aligned on a 4 byte boundary.
402 */
403 header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
404 l2pad = !!(rxdesc.dev_flags & RXDONE_L2PAD);
405
406 /*
407 * Hardware might have stripped the IV/EIV/ICV data,
408 * in that case it is possible that the data was
409 * provided seperately (through hardware descriptor)
410 * in which case we should reinsert the data into the frame.
411 */
412 if ((rxdesc.dev_flags & RXDONE_CRYPTO_IV) &&
413 (rxdesc.flags & RX_FLAG_IV_STRIPPED))
414 rt2x00crypto_rx_insert_iv(entry->skb, l2pad, header_length,
415 &rxdesc);
416 else
417 rt2x00queue_payload_align(entry->skb, l2pad, header_length);
418
419 /*
420 * Check if the frame was received using HT. In that case,
421 * the rate is the MCS index and should be passed to mac80211
422 * directly. Otherwise we need to translate the signal to
423 * the correct bitrate index.
424 */
425 if (rxdesc.rate_mode == RATE_MODE_CCK ||
426 rxdesc.rate_mode == RATE_MODE_OFDM) {
427 rate_idx = rt2x00lib_rxdone_read_signal(rt2x00dev, &rxdesc);
428 } else {
429 rxdesc.flags |= RX_FLAG_HT;
430 rate_idx = rxdesc.signal;
431 }
432
433 /*
434 * Update extra components
435 */
436 rt2x00link_update_stats(rt2x00dev, entry->skb, &rxdesc);
437 rt2x00debug_update_crypto(rt2x00dev, &rxdesc);
438
439 rx_status->mactime = rxdesc.timestamp;
440 rx_status->rate_idx = rate_idx;
441 rx_status->qual = rt2x00link_calculate_signal(rt2x00dev, rxdesc.rssi);
442 rx_status->signal = rxdesc.rssi;
443 rx_status->noise = rxdesc.noise;
444 rx_status->flag = rxdesc.flags;
445 rx_status->antenna = rt2x00dev->link.ant.active.rx;
446
447 /*
448 * Send frame to mac80211 & debugfs.
449 * mac80211 will clean up the skb structure.
450 */
451 rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_RXDONE, entry->skb);
452 ieee80211_rx_irqsafe(rt2x00dev->hw, entry->skb, rx_status);
453
454 /*
455 * Replace the skb with the freshly allocated one.
456 */
457 entry->skb = skb;
458 entry->flags = 0;
459
460 rt2x00dev->ops->lib->clear_entry(entry);
461
462 rt2x00queue_index_inc(entry->queue, Q_INDEX);
463 }
464 EXPORT_SYMBOL_GPL(rt2x00lib_rxdone);
465
466 /*
467 * Driver initialization handlers.
468 */
469 const struct rt2x00_rate rt2x00_supported_rates[12] = {
470 {
471 .flags = DEV_RATE_CCK,
472 .bitrate = 10,
473 .ratemask = BIT(0),
474 .plcp = 0x00,
475 .mcs = RATE_MCS(RATE_MODE_CCK, 0),
476 },
477 {
478 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
479 .bitrate = 20,
480 .ratemask = BIT(1),
481 .plcp = 0x01,
482 .mcs = RATE_MCS(RATE_MODE_CCK, 1),
483 },
484 {
485 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
486 .bitrate = 55,
487 .ratemask = BIT(2),
488 .plcp = 0x02,
489 .mcs = RATE_MCS(RATE_MODE_CCK, 2),
490 },
491 {
492 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
493 .bitrate = 110,
494 .ratemask = BIT(3),
495 .plcp = 0x03,
496 .mcs = RATE_MCS(RATE_MODE_CCK, 3),
497 },
498 {
499 .flags = DEV_RATE_OFDM,
500 .bitrate = 60,
501 .ratemask = BIT(4),
502 .plcp = 0x0b,
503 .mcs = RATE_MCS(RATE_MODE_OFDM, 0),
504 },
505 {
506 .flags = DEV_RATE_OFDM,
507 .bitrate = 90,
508 .ratemask = BIT(5),
509 .plcp = 0x0f,
510 .mcs = RATE_MCS(RATE_MODE_OFDM, 1),
511 },
512 {
513 .flags = DEV_RATE_OFDM,
514 .bitrate = 120,
515 .ratemask = BIT(6),
516 .plcp = 0x0a,
517 .mcs = RATE_MCS(RATE_MODE_OFDM, 2),
518 },
519 {
520 .flags = DEV_RATE_OFDM,
521 .bitrate = 180,
522 .ratemask = BIT(7),
523 .plcp = 0x0e,
524 .mcs = RATE_MCS(RATE_MODE_OFDM, 3),
525 },
526 {
527 .flags = DEV_RATE_OFDM,
528 .bitrate = 240,
529 .ratemask = BIT(8),
530 .plcp = 0x09,
531 .mcs = RATE_MCS(RATE_MODE_OFDM, 4),
532 },
533 {
534 .flags = DEV_RATE_OFDM,
535 .bitrate = 360,
536 .ratemask = BIT(9),
537 .plcp = 0x0d,
538 .mcs = RATE_MCS(RATE_MODE_OFDM, 5),
539 },
540 {
541 .flags = DEV_RATE_OFDM,
542 .bitrate = 480,
543 .ratemask = BIT(10),
544 .plcp = 0x08,
545 .mcs = RATE_MCS(RATE_MODE_OFDM, 6),
546 },
547 {
548 .flags = DEV_RATE_OFDM,
549 .bitrate = 540,
550 .ratemask = BIT(11),
551 .plcp = 0x0c,
552 .mcs = RATE_MCS(RATE_MODE_OFDM, 7),
553 },
554 };
555
556 static void rt2x00lib_channel(struct ieee80211_channel *entry,
557 const int channel, const int tx_power,
558 const int value)
559 {
560 entry->center_freq = ieee80211_channel_to_frequency(channel);
561 entry->hw_value = value;
562 entry->max_power = tx_power;
563 entry->max_antenna_gain = 0xff;
564 }
565
566 static void rt2x00lib_rate(struct ieee80211_rate *entry,
567 const u16 index, const struct rt2x00_rate *rate)
568 {
569 entry->flags = 0;
570 entry->bitrate = rate->bitrate;
571 entry->hw_value =index;
572 entry->hw_value_short = index;
573
574 if (rate->flags & DEV_RATE_SHORT_PREAMBLE)
575 entry->flags |= IEEE80211_RATE_SHORT_PREAMBLE;
576 }
577
578 static int rt2x00lib_probe_hw_modes(struct rt2x00_dev *rt2x00dev,
579 struct hw_mode_spec *spec)
580 {
581 struct ieee80211_hw *hw = rt2x00dev->hw;
582 struct ieee80211_channel *channels;
583 struct ieee80211_rate *rates;
584 unsigned int num_rates;
585 unsigned int i;
586
587 num_rates = 0;
588 if (spec->supported_rates & SUPPORT_RATE_CCK)
589 num_rates += 4;
590 if (spec->supported_rates & SUPPORT_RATE_OFDM)
591 num_rates += 8;
592
593 channels = kzalloc(sizeof(*channels) * spec->num_channels, GFP_KERNEL);
594 if (!channels)
595 return -ENOMEM;
596
597 rates = kzalloc(sizeof(*rates) * num_rates, GFP_KERNEL);
598 if (!rates)
599 goto exit_free_channels;
600
601 /*
602 * Initialize Rate list.
603 */
604 for (i = 0; i < num_rates; i++)
605 rt2x00lib_rate(&rates[i], i, rt2x00_get_rate(i));
606
607 /*
608 * Initialize Channel list.
609 */
610 for (i = 0; i < spec->num_channels; i++) {
611 rt2x00lib_channel(&channels[i],
612 spec->channels[i].channel,
613 spec->channels_info[i].tx_power1, i);
614 }
615
616 /*
617 * Intitialize 802.11b, 802.11g
618 * Rates: CCK, OFDM.
619 * Channels: 2.4 GHz
620 */
621 if (spec->supported_bands & SUPPORT_BAND_2GHZ) {
622 rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_channels = 14;
623 rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_bitrates = num_rates;
624 rt2x00dev->bands[IEEE80211_BAND_2GHZ].channels = channels;
625 rt2x00dev->bands[IEEE80211_BAND_2GHZ].bitrates = rates;
626 hw->wiphy->bands[IEEE80211_BAND_2GHZ] =
627 &rt2x00dev->bands[IEEE80211_BAND_2GHZ];
628 memcpy(&rt2x00dev->bands[IEEE80211_BAND_2GHZ].ht_cap,
629 &spec->ht, sizeof(spec->ht));
630 }
631
632 /*
633 * Intitialize 802.11a
634 * Rates: OFDM.
635 * Channels: OFDM, UNII, HiperLAN2.
636 */
637 if (spec->supported_bands & SUPPORT_BAND_5GHZ) {
638 rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_channels =
639 spec->num_channels - 14;
640 rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_bitrates =
641 num_rates - 4;
642 rt2x00dev->bands[IEEE80211_BAND_5GHZ].channels = &channels[14];
643 rt2x00dev->bands[IEEE80211_BAND_5GHZ].bitrates = &rates[4];
644 hw->wiphy->bands[IEEE80211_BAND_5GHZ] =
645 &rt2x00dev->bands[IEEE80211_BAND_5GHZ];
646 memcpy(&rt2x00dev->bands[IEEE80211_BAND_5GHZ].ht_cap,
647 &spec->ht, sizeof(spec->ht));
648 }
649
650 return 0;
651
652 exit_free_channels:
653 kfree(channels);
654 ERROR(rt2x00dev, "Allocation ieee80211 modes failed.\n");
655 return -ENOMEM;
656 }
657
658 static void rt2x00lib_remove_hw(struct rt2x00_dev *rt2x00dev)
659 {
660 if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
661 ieee80211_unregister_hw(rt2x00dev->hw);
662
663 if (likely(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ])) {
664 kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->channels);
665 kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->bitrates);
666 rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ] = NULL;
667 rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_5GHZ] = NULL;
668 }
669
670 kfree(rt2x00dev->spec.channels_info);
671 }
672
673 static int rt2x00lib_probe_hw(struct rt2x00_dev *rt2x00dev)
674 {
675 struct hw_mode_spec *spec = &rt2x00dev->spec;
676 int status;
677
678 if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
679 return 0;
680
681 /*
682 * Initialize HW modes.
683 */
684 status = rt2x00lib_probe_hw_modes(rt2x00dev, spec);
685 if (status)
686 return status;
687
688 /*
689 * Initialize HW fields.
690 */
691 rt2x00dev->hw->queues = rt2x00dev->ops->tx_queues;
692
693 /*
694 * Register HW.
695 */
696 status = ieee80211_register_hw(rt2x00dev->hw);
697 if (status)
698 return status;
699
700 set_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags);
701
702 return 0;
703 }
704
705 /*
706 * Initialization/uninitialization handlers.
707 */
708 static void rt2x00lib_uninitialize(struct rt2x00_dev *rt2x00dev)
709 {
710 if (!test_and_clear_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
711 return;
712
713 /*
714 * Unregister extra components.
715 */
716 rt2x00rfkill_unregister(rt2x00dev);
717
718 /*
719 * Allow the HW to uninitialize.
720 */
721 rt2x00dev->ops->lib->uninitialize(rt2x00dev);
722
723 /*
724 * Free allocated queue entries.
725 */
726 rt2x00queue_uninitialize(rt2x00dev);
727 }
728
729 static int rt2x00lib_initialize(struct rt2x00_dev *rt2x00dev)
730 {
731 int status;
732
733 if (test_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
734 return 0;
735
736 /*
737 * Allocate all queue entries.
738 */
739 status = rt2x00queue_initialize(rt2x00dev);
740 if (status)
741 return status;
742
743 /*
744 * Initialize the device.
745 */
746 status = rt2x00dev->ops->lib->initialize(rt2x00dev);
747 if (status) {
748 rt2x00queue_uninitialize(rt2x00dev);
749 return status;
750 }
751
752 set_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags);
753
754 /*
755 * Register the extra components.
756 */
757 rt2x00rfkill_register(rt2x00dev);
758
759 return 0;
760 }
761
762 int rt2x00lib_start(struct rt2x00_dev *rt2x00dev)
763 {
764 int retval;
765
766 if (test_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
767 return 0;
768
769 /*
770 * If this is the first interface which is added,
771 * we should load the firmware now.
772 */
773 retval = rt2x00lib_load_firmware(rt2x00dev);
774 if (retval)
775 return retval;
776
777 /*
778 * Initialize the device.
779 */
780 retval = rt2x00lib_initialize(rt2x00dev);
781 if (retval)
782 return retval;
783
784 rt2x00dev->intf_ap_count = 0;
785 rt2x00dev->intf_sta_count = 0;
786 rt2x00dev->intf_associated = 0;
787
788 set_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags);
789
790 return 0;
791 }
792
793 void rt2x00lib_stop(struct rt2x00_dev *rt2x00dev)
794 {
795 if (!test_and_clear_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
796 return;
797
798 /*
799 * Perhaps we can add something smarter here,
800 * but for now just disabling the radio should do.
801 */
802 rt2x00lib_disable_radio(rt2x00dev);
803
804 rt2x00dev->intf_ap_count = 0;
805 rt2x00dev->intf_sta_count = 0;
806 rt2x00dev->intf_associated = 0;
807 }
808
809 /*
810 * driver allocation handlers.
811 */
812 int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev)
813 {
814 int retval = -ENOMEM;
815
816 mutex_init(&rt2x00dev->csr_mutex);
817
818 /*
819 * Make room for rt2x00_intf inside the per-interface
820 * structure ieee80211_vif.
821 */
822 rt2x00dev->hw->vif_data_size = sizeof(struct rt2x00_intf);
823
824 /*
825 * Determine which operating modes are supported, all modes
826 * which require beaconing, depend on the availability of
827 * beacon entries.
828 */
829 rt2x00dev->hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION);
830 if (rt2x00dev->ops->bcn->entry_num > 0)
831 rt2x00dev->hw->wiphy->interface_modes |=
832 BIT(NL80211_IFTYPE_ADHOC) |
833 BIT(NL80211_IFTYPE_AP) |
834 BIT(NL80211_IFTYPE_MESH_POINT) |
835 BIT(NL80211_IFTYPE_WDS);
836
837 /*
838 * Let the driver probe the device to detect the capabilities.
839 */
840 retval = rt2x00dev->ops->lib->probe_hw(rt2x00dev);
841 if (retval) {
842 ERROR(rt2x00dev, "Failed to allocate device.\n");
843 goto exit;
844 }
845
846 /*
847 * Initialize configuration work.
848 */
849 INIT_WORK(&rt2x00dev->intf_work, rt2x00lib_intf_scheduled);
850 INIT_WORK(&rt2x00dev->filter_work, rt2x00lib_packetfilter_scheduled);
851
852 /*
853 * Allocate queue array.
854 */
855 retval = rt2x00queue_allocate(rt2x00dev);
856 if (retval)
857 goto exit;
858
859 /*
860 * Initialize ieee80211 structure.
861 */
862 retval = rt2x00lib_probe_hw(rt2x00dev);
863 if (retval) {
864 ERROR(rt2x00dev, "Failed to initialize hw.\n");
865 goto exit;
866 }
867
868 /*
869 * Register extra components.
870 */
871 rt2x00link_register(rt2x00dev);
872 rt2x00leds_register(rt2x00dev);
873 rt2x00rfkill_allocate(rt2x00dev);
874 rt2x00debug_register(rt2x00dev);
875
876 set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
877
878 return 0;
879
880 exit:
881 rt2x00lib_remove_dev(rt2x00dev);
882
883 return retval;
884 }
885 EXPORT_SYMBOL_GPL(rt2x00lib_probe_dev);
886
887 void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev)
888 {
889 clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
890
891 /*
892 * Disable radio.
893 */
894 rt2x00lib_disable_radio(rt2x00dev);
895
896 /*
897 * Uninitialize device.
898 */
899 rt2x00lib_uninitialize(rt2x00dev);
900
901 /*
902 * Free extra components
903 */
904 rt2x00debug_deregister(rt2x00dev);
905 rt2x00rfkill_free(rt2x00dev);
906 rt2x00leds_unregister(rt2x00dev);
907
908 /*
909 * Free ieee80211_hw memory.
910 */
911 rt2x00lib_remove_hw(rt2x00dev);
912
913 /*
914 * Free firmware image.
915 */
916 rt2x00lib_free_firmware(rt2x00dev);
917
918 /*
919 * Free queue structures.
920 */
921 rt2x00queue_free(rt2x00dev);
922 }
923 EXPORT_SYMBOL_GPL(rt2x00lib_remove_dev);
924
925 /*
926 * Device state handlers
927 */
928 #ifdef CONFIG_PM
929 int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state)
930 {
931 NOTICE(rt2x00dev, "Going to sleep.\n");
932
933 /*
934 * Prevent mac80211 from accessing driver while suspended.
935 */
936 if (!test_and_clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
937 return 0;
938
939 /*
940 * Cleanup as much as possible.
941 */
942 rt2x00lib_uninitialize(rt2x00dev);
943
944 /*
945 * Suspend/disable extra components.
946 */
947 rt2x00leds_suspend(rt2x00dev);
948 rt2x00debug_deregister(rt2x00dev);
949
950 /*
951 * Set device mode to sleep for power management,
952 * on some hardware this call seems to consistently fail.
953 * From the specifications it is hard to tell why it fails,
954 * and if this is a "bad thing".
955 * Overall it is safe to just ignore the failure and
956 * continue suspending. The only downside is that the
957 * device will not be in optimal power save mode, but with
958 * the radio and the other components already disabled the
959 * device is as good as disabled.
960 */
961 if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_SLEEP))
962 WARNING(rt2x00dev, "Device failed to enter sleep state, "
963 "continue suspending.\n");
964
965 return 0;
966 }
967 EXPORT_SYMBOL_GPL(rt2x00lib_suspend);
968
969 int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev)
970 {
971 NOTICE(rt2x00dev, "Waking up.\n");
972
973 /*
974 * Restore/enable extra components.
975 */
976 rt2x00debug_register(rt2x00dev);
977 rt2x00leds_resume(rt2x00dev);
978
979 /*
980 * We are ready again to receive requests from mac80211.
981 */
982 set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
983
984 return 0;
985 }
986 EXPORT_SYMBOL_GPL(rt2x00lib_resume);
987 #endif /* CONFIG_PM */
988
989 /*
990 * rt2x00lib module information.
991 */
992 MODULE_AUTHOR(DRV_PROJECT);
993 MODULE_VERSION(DRV_VERSION);
994 MODULE_DESCRIPTION("rt2x00 library");
995 MODULE_LICENSE("GPL");
This page took 0.053481 seconds and 6 git commands to generate.