Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/linville/wirel...
[deliverable/linux.git] / drivers / net / wireless / rt2x00 / rt2x00dev.c
1 /*
2 Copyright (C) 2004 - 2009 rt2x00 SourceForge Project
3 <http://rt2x00.serialmonkey.com>
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the
17 Free Software Foundation, Inc.,
18 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 */
20
21 /*
22 Module: rt2x00lib
23 Abstract: rt2x00 generic device routines.
24 */
25
26 #include <linux/kernel.h>
27 #include <linux/module.h>
28
29 #include "rt2x00.h"
30 #include "rt2x00lib.h"
31
32 /*
33 * Radio control handlers.
34 */
35 int rt2x00lib_enable_radio(struct rt2x00_dev *rt2x00dev)
36 {
37 int status;
38
39 /*
40 * Don't enable the radio twice.
41 * And check if the hardware button has been disabled.
42 */
43 if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags) ||
44 test_bit(DEVICE_STATE_DISABLED_RADIO_HW, &rt2x00dev->flags))
45 return 0;
46
47 /*
48 * Initialize all data queues.
49 */
50 rt2x00queue_init_queues(rt2x00dev);
51
52 /*
53 * Enable radio.
54 */
55 status =
56 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_ON);
57 if (status)
58 return status;
59
60 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_ON);
61
62 rt2x00leds_led_radio(rt2x00dev, true);
63 rt2x00led_led_activity(rt2x00dev, true);
64
65 set_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags);
66
67 /*
68 * Enable RX.
69 */
70 rt2x00lib_toggle_rx(rt2x00dev, STATE_RADIO_RX_ON);
71
72 /*
73 * Start the TX queues.
74 */
75 ieee80211_wake_queues(rt2x00dev->hw);
76
77 return 0;
78 }
79
80 void rt2x00lib_disable_radio(struct rt2x00_dev *rt2x00dev)
81 {
82 if (!test_and_clear_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
83 return;
84
85 /*
86 * Stop the TX queues in mac80211.
87 */
88 ieee80211_stop_queues(rt2x00dev->hw);
89 rt2x00queue_stop_queues(rt2x00dev);
90
91 /*
92 * Disable RX.
93 */
94 rt2x00lib_toggle_rx(rt2x00dev, STATE_RADIO_RX_OFF);
95
96 /*
97 * Disable radio.
98 */
99 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_OFF);
100 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_OFF);
101 rt2x00led_led_activity(rt2x00dev, false);
102 rt2x00leds_led_radio(rt2x00dev, false);
103 }
104
105 void rt2x00lib_toggle_rx(struct rt2x00_dev *rt2x00dev, enum dev_state state)
106 {
107 /*
108 * When we are disabling the RX, we should also stop the link tuner.
109 */
110 if (state == STATE_RADIO_RX_OFF)
111 rt2x00link_stop_tuner(rt2x00dev);
112
113 rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
114
115 /*
116 * When we are enabling the RX, we should also start the link tuner.
117 */
118 if (state == STATE_RADIO_RX_ON)
119 rt2x00link_start_tuner(rt2x00dev);
120 }
121
122 static void rt2x00lib_packetfilter_scheduled(struct work_struct *work)
123 {
124 struct rt2x00_dev *rt2x00dev =
125 container_of(work, struct rt2x00_dev, filter_work);
126
127 rt2x00dev->ops->lib->config_filter(rt2x00dev, rt2x00dev->packet_filter);
128 }
129
130 static void rt2x00lib_intf_scheduled_iter(void *data, u8 *mac,
131 struct ieee80211_vif *vif)
132 {
133 struct rt2x00_dev *rt2x00dev = data;
134 struct rt2x00_intf *intf = vif_to_intf(vif);
135 struct ieee80211_bss_conf conf;
136 int delayed_flags;
137
138 /*
139 * Copy all data we need during this action under the protection
140 * of a spinlock. Otherwise race conditions might occur which results
141 * into an invalid configuration.
142 */
143 spin_lock(&intf->lock);
144
145 memcpy(&conf, &vif->bss_conf, sizeof(conf));
146 delayed_flags = intf->delayed_flags;
147 intf->delayed_flags = 0;
148
149 spin_unlock(&intf->lock);
150
151 /*
152 * It is possible the radio was disabled while the work had been
153 * scheduled. If that happens we should return here immediately,
154 * note that in the spinlock protected area above the delayed_flags
155 * have been cleared correctly.
156 */
157 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
158 return;
159
160 if (delayed_flags & DELAYED_UPDATE_BEACON)
161 rt2x00queue_update_beacon(rt2x00dev, vif, true);
162
163 if (delayed_flags & DELAYED_CONFIG_ERP)
164 rt2x00lib_config_erp(rt2x00dev, intf, &conf);
165
166 if (delayed_flags & DELAYED_LED_ASSOC)
167 rt2x00leds_led_assoc(rt2x00dev, !!rt2x00dev->intf_associated);
168 }
169
170 static void rt2x00lib_intf_scheduled(struct work_struct *work)
171 {
172 struct rt2x00_dev *rt2x00dev =
173 container_of(work, struct rt2x00_dev, intf_work);
174
175 /*
176 * Iterate over each interface and perform the
177 * requested configurations.
178 */
179 ieee80211_iterate_active_interfaces(rt2x00dev->hw,
180 rt2x00lib_intf_scheduled_iter,
181 rt2x00dev);
182 }
183
184 /*
185 * Interrupt context handlers.
186 */
187 static void rt2x00lib_beacondone_iter(void *data, u8 *mac,
188 struct ieee80211_vif *vif)
189 {
190 struct rt2x00_dev *rt2x00dev = data;
191 struct rt2x00_intf *intf = vif_to_intf(vif);
192
193 if (vif->type != NL80211_IFTYPE_AP &&
194 vif->type != NL80211_IFTYPE_ADHOC &&
195 vif->type != NL80211_IFTYPE_MESH_POINT &&
196 vif->type != NL80211_IFTYPE_WDS)
197 return;
198
199 /*
200 * Clean up the beacon skb.
201 */
202 rt2x00queue_free_skb(rt2x00dev, intf->beacon->skb);
203 intf->beacon->skb = NULL;
204
205 spin_lock(&intf->lock);
206 intf->delayed_flags |= DELAYED_UPDATE_BEACON;
207 spin_unlock(&intf->lock);
208 }
209
210 void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev)
211 {
212 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
213 return;
214
215 ieee80211_iterate_active_interfaces_atomic(rt2x00dev->hw,
216 rt2x00lib_beacondone_iter,
217 rt2x00dev);
218
219 queue_work(rt2x00dev->hw->workqueue, &rt2x00dev->intf_work);
220 }
221 EXPORT_SYMBOL_GPL(rt2x00lib_beacondone);
222
223 void rt2x00lib_txdone(struct queue_entry *entry,
224 struct txdone_entry_desc *txdesc)
225 {
226 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
227 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
228 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
229 enum data_queue_qid qid = skb_get_queue_mapping(entry->skb);
230 unsigned int header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
231 u8 rate_idx, rate_flags;
232
233 /*
234 * Unmap the skb.
235 */
236 rt2x00queue_unmap_skb(rt2x00dev, entry->skb);
237
238 /*
239 * Remove L2 padding which was added during
240 */
241 if (test_bit(DRIVER_REQUIRE_L2PAD, &rt2x00dev->flags))
242 rt2x00queue_payload_align(entry->skb, true, header_length);
243
244 /*
245 * If the IV/EIV data was stripped from the frame before it was
246 * passed to the hardware, we should now reinsert it again because
247 * mac80211 will expect the the same data to be present it the
248 * frame as it was passed to us.
249 */
250 if (test_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags))
251 rt2x00crypto_tx_insert_iv(entry->skb, header_length);
252
253 /*
254 * Send frame to debugfs immediately, after this call is completed
255 * we are going to overwrite the skb->cb array.
256 */
257 rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_TXDONE, entry->skb);
258
259 /*
260 * Update TX statistics.
261 */
262 rt2x00dev->link.qual.tx_success +=
263 test_bit(TXDONE_SUCCESS, &txdesc->flags);
264 rt2x00dev->link.qual.tx_failed +=
265 test_bit(TXDONE_FAILURE, &txdesc->flags);
266
267 rate_idx = skbdesc->tx_rate_idx;
268 rate_flags = skbdesc->tx_rate_flags;
269
270 /*
271 * Initialize TX status
272 */
273 memset(&tx_info->status, 0, sizeof(tx_info->status));
274 tx_info->status.ack_signal = 0;
275 tx_info->status.rates[0].idx = rate_idx;
276 tx_info->status.rates[0].flags = rate_flags;
277 tx_info->status.rates[0].count = txdesc->retry + 1;
278 tx_info->status.rates[1].idx = -1; /* terminate */
279
280 if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK)) {
281 if (test_bit(TXDONE_SUCCESS, &txdesc->flags))
282 tx_info->flags |= IEEE80211_TX_STAT_ACK;
283 else if (test_bit(TXDONE_FAILURE, &txdesc->flags))
284 rt2x00dev->low_level_stats.dot11ACKFailureCount++;
285 }
286
287 if (rate_flags & IEEE80211_TX_RC_USE_RTS_CTS) {
288 if (test_bit(TXDONE_SUCCESS, &txdesc->flags))
289 rt2x00dev->low_level_stats.dot11RTSSuccessCount++;
290 else if (test_bit(TXDONE_FAILURE, &txdesc->flags))
291 rt2x00dev->low_level_stats.dot11RTSFailureCount++;
292 }
293
294 /*
295 * Only send the status report to mac80211 when TX status was
296 * requested by it. If this was a extra frame coming through
297 * a mac80211 library call (RTS/CTS) then we should not send the
298 * status report back.
299 */
300 if (tx_info->flags & IEEE80211_TX_CTL_REQ_TX_STATUS)
301 ieee80211_tx_status_irqsafe(rt2x00dev->hw, entry->skb);
302 else
303 dev_kfree_skb_irq(entry->skb);
304
305 /*
306 * Make this entry available for reuse.
307 */
308 entry->skb = NULL;
309 entry->flags = 0;
310
311 rt2x00dev->ops->lib->clear_entry(entry);
312
313 clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
314 rt2x00queue_index_inc(entry->queue, Q_INDEX_DONE);
315
316 /*
317 * If the data queue was below the threshold before the txdone
318 * handler we must make sure the packet queue in the mac80211 stack
319 * is reenabled when the txdone handler has finished.
320 */
321 if (!rt2x00queue_threshold(entry->queue))
322 ieee80211_wake_queue(rt2x00dev->hw, qid);
323 }
324 EXPORT_SYMBOL_GPL(rt2x00lib_txdone);
325
326 static int rt2x00lib_rxdone_read_signal(struct rt2x00_dev *rt2x00dev,
327 struct rxdone_entry_desc *rxdesc)
328 {
329 struct ieee80211_supported_band *sband;
330 const struct rt2x00_rate *rate;
331 unsigned int i;
332 int signal;
333 int type;
334
335 /*
336 * For non-HT rates the MCS value needs to contain the
337 * actually used rate modulation (CCK or OFDM).
338 */
339 if (rxdesc->dev_flags & RXDONE_SIGNAL_MCS)
340 signal = RATE_MCS(rxdesc->rate_mode, rxdesc->signal);
341 else
342 signal = rxdesc->signal;
343
344 type = (rxdesc->dev_flags & RXDONE_SIGNAL_MASK);
345
346 sband = &rt2x00dev->bands[rt2x00dev->curr_band];
347 for (i = 0; i < sband->n_bitrates; i++) {
348 rate = rt2x00_get_rate(sband->bitrates[i].hw_value);
349
350 if (((type == RXDONE_SIGNAL_PLCP) &&
351 (rate->plcp == signal)) ||
352 ((type == RXDONE_SIGNAL_BITRATE) &&
353 (rate->bitrate == signal)) ||
354 ((type == RXDONE_SIGNAL_MCS) &&
355 (rate->mcs == signal))) {
356 return i;
357 }
358 }
359
360 WARNING(rt2x00dev, "Frame received with unrecognized signal, "
361 "signal=0x%.4x, type=%d.\n", signal, type);
362 return 0;
363 }
364
365 void rt2x00lib_rxdone(struct rt2x00_dev *rt2x00dev,
366 struct queue_entry *entry)
367 {
368 struct rxdone_entry_desc rxdesc;
369 struct sk_buff *skb;
370 struct ieee80211_rx_status *rx_status = &rt2x00dev->rx_status;
371 unsigned int header_length;
372 bool l2pad;
373 int rate_idx;
374 /*
375 * Allocate a new sk_buffer. If no new buffer available, drop the
376 * received frame and reuse the existing buffer.
377 */
378 skb = rt2x00queue_alloc_rxskb(rt2x00dev, entry);
379 if (!skb)
380 return;
381
382 /*
383 * Unmap the skb.
384 */
385 rt2x00queue_unmap_skb(rt2x00dev, entry->skb);
386
387 /*
388 * Extract the RXD details.
389 */
390 memset(&rxdesc, 0, sizeof(rxdesc));
391 rt2x00dev->ops->lib->fill_rxdone(entry, &rxdesc);
392
393 /* Trim buffer to correct size */
394 skb_trim(entry->skb, rxdesc.size);
395
396 /*
397 * The data behind the ieee80211 header must be
398 * aligned on a 4 byte boundary.
399 */
400 header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
401 l2pad = !!(rxdesc.dev_flags & RXDONE_L2PAD);
402
403 /*
404 * Hardware might have stripped the IV/EIV/ICV data,
405 * in that case it is possible that the data was
406 * provided seperately (through hardware descriptor)
407 * in which case we should reinsert the data into the frame.
408 */
409 if ((rxdesc.dev_flags & RXDONE_CRYPTO_IV) &&
410 (rxdesc.flags & RX_FLAG_IV_STRIPPED))
411 rt2x00crypto_rx_insert_iv(entry->skb, l2pad, header_length,
412 &rxdesc);
413 else
414 rt2x00queue_payload_align(entry->skb, l2pad, header_length);
415
416 /*
417 * Check if the frame was received using HT. In that case,
418 * the rate is the MCS index and should be passed to mac80211
419 * directly. Otherwise we need to translate the signal to
420 * the correct bitrate index.
421 */
422 if (rxdesc.rate_mode == RATE_MODE_CCK ||
423 rxdesc.rate_mode == RATE_MODE_OFDM) {
424 rate_idx = rt2x00lib_rxdone_read_signal(rt2x00dev, &rxdesc);
425 } else {
426 rxdesc.flags |= RX_FLAG_HT;
427 rate_idx = rxdesc.signal;
428 }
429
430 /*
431 * Update extra components
432 */
433 rt2x00link_update_stats(rt2x00dev, entry->skb, &rxdesc);
434 rt2x00debug_update_crypto(rt2x00dev, &rxdesc);
435
436 rx_status->mactime = rxdesc.timestamp;
437 rx_status->rate_idx = rate_idx;
438 rx_status->qual = rt2x00link_calculate_signal(rt2x00dev, rxdesc.rssi);
439 rx_status->signal = rxdesc.rssi;
440 rx_status->noise = rxdesc.noise;
441 rx_status->flag = rxdesc.flags;
442 rx_status->antenna = rt2x00dev->link.ant.active.rx;
443
444 /*
445 * Send frame to mac80211 & debugfs.
446 * mac80211 will clean up the skb structure.
447 */
448 rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_RXDONE, entry->skb);
449 ieee80211_rx_irqsafe(rt2x00dev->hw, entry->skb, rx_status);
450
451 /*
452 * Replace the skb with the freshly allocated one.
453 */
454 entry->skb = skb;
455 entry->flags = 0;
456
457 rt2x00dev->ops->lib->clear_entry(entry);
458
459 rt2x00queue_index_inc(entry->queue, Q_INDEX);
460 }
461 EXPORT_SYMBOL_GPL(rt2x00lib_rxdone);
462
463 /*
464 * Driver initialization handlers.
465 */
466 const struct rt2x00_rate rt2x00_supported_rates[12] = {
467 {
468 .flags = DEV_RATE_CCK,
469 .bitrate = 10,
470 .ratemask = BIT(0),
471 .plcp = 0x00,
472 .mcs = RATE_MCS(RATE_MODE_CCK, 0),
473 },
474 {
475 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
476 .bitrate = 20,
477 .ratemask = BIT(1),
478 .plcp = 0x01,
479 .mcs = RATE_MCS(RATE_MODE_CCK, 1),
480 },
481 {
482 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
483 .bitrate = 55,
484 .ratemask = BIT(2),
485 .plcp = 0x02,
486 .mcs = RATE_MCS(RATE_MODE_CCK, 2),
487 },
488 {
489 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
490 .bitrate = 110,
491 .ratemask = BIT(3),
492 .plcp = 0x03,
493 .mcs = RATE_MCS(RATE_MODE_CCK, 3),
494 },
495 {
496 .flags = DEV_RATE_OFDM,
497 .bitrate = 60,
498 .ratemask = BIT(4),
499 .plcp = 0x0b,
500 .mcs = RATE_MCS(RATE_MODE_OFDM, 0),
501 },
502 {
503 .flags = DEV_RATE_OFDM,
504 .bitrate = 90,
505 .ratemask = BIT(5),
506 .plcp = 0x0f,
507 .mcs = RATE_MCS(RATE_MODE_OFDM, 1),
508 },
509 {
510 .flags = DEV_RATE_OFDM,
511 .bitrate = 120,
512 .ratemask = BIT(6),
513 .plcp = 0x0a,
514 .mcs = RATE_MCS(RATE_MODE_OFDM, 2),
515 },
516 {
517 .flags = DEV_RATE_OFDM,
518 .bitrate = 180,
519 .ratemask = BIT(7),
520 .plcp = 0x0e,
521 .mcs = RATE_MCS(RATE_MODE_OFDM, 3),
522 },
523 {
524 .flags = DEV_RATE_OFDM,
525 .bitrate = 240,
526 .ratemask = BIT(8),
527 .plcp = 0x09,
528 .mcs = RATE_MCS(RATE_MODE_OFDM, 4),
529 },
530 {
531 .flags = DEV_RATE_OFDM,
532 .bitrate = 360,
533 .ratemask = BIT(9),
534 .plcp = 0x0d,
535 .mcs = RATE_MCS(RATE_MODE_OFDM, 5),
536 },
537 {
538 .flags = DEV_RATE_OFDM,
539 .bitrate = 480,
540 .ratemask = BIT(10),
541 .plcp = 0x08,
542 .mcs = RATE_MCS(RATE_MODE_OFDM, 6),
543 },
544 {
545 .flags = DEV_RATE_OFDM,
546 .bitrate = 540,
547 .ratemask = BIT(11),
548 .plcp = 0x0c,
549 .mcs = RATE_MCS(RATE_MODE_OFDM, 7),
550 },
551 };
552
553 static void rt2x00lib_channel(struct ieee80211_channel *entry,
554 const int channel, const int tx_power,
555 const int value)
556 {
557 entry->center_freq = ieee80211_channel_to_frequency(channel);
558 entry->hw_value = value;
559 entry->max_power = tx_power;
560 entry->max_antenna_gain = 0xff;
561 }
562
563 static void rt2x00lib_rate(struct ieee80211_rate *entry,
564 const u16 index, const struct rt2x00_rate *rate)
565 {
566 entry->flags = 0;
567 entry->bitrate = rate->bitrate;
568 entry->hw_value =index;
569 entry->hw_value_short = index;
570
571 if (rate->flags & DEV_RATE_SHORT_PREAMBLE)
572 entry->flags |= IEEE80211_RATE_SHORT_PREAMBLE;
573 }
574
575 static int rt2x00lib_probe_hw_modes(struct rt2x00_dev *rt2x00dev,
576 struct hw_mode_spec *spec)
577 {
578 struct ieee80211_hw *hw = rt2x00dev->hw;
579 struct ieee80211_channel *channels;
580 struct ieee80211_rate *rates;
581 unsigned int num_rates;
582 unsigned int i;
583
584 num_rates = 0;
585 if (spec->supported_rates & SUPPORT_RATE_CCK)
586 num_rates += 4;
587 if (spec->supported_rates & SUPPORT_RATE_OFDM)
588 num_rates += 8;
589
590 channels = kzalloc(sizeof(*channels) * spec->num_channels, GFP_KERNEL);
591 if (!channels)
592 return -ENOMEM;
593
594 rates = kzalloc(sizeof(*rates) * num_rates, GFP_KERNEL);
595 if (!rates)
596 goto exit_free_channels;
597
598 /*
599 * Initialize Rate list.
600 */
601 for (i = 0; i < num_rates; i++)
602 rt2x00lib_rate(&rates[i], i, rt2x00_get_rate(i));
603
604 /*
605 * Initialize Channel list.
606 */
607 for (i = 0; i < spec->num_channels; i++) {
608 rt2x00lib_channel(&channels[i],
609 spec->channels[i].channel,
610 spec->channels_info[i].tx_power1, i);
611 }
612
613 /*
614 * Intitialize 802.11b, 802.11g
615 * Rates: CCK, OFDM.
616 * Channels: 2.4 GHz
617 */
618 if (spec->supported_bands & SUPPORT_BAND_2GHZ) {
619 rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_channels = 14;
620 rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_bitrates = num_rates;
621 rt2x00dev->bands[IEEE80211_BAND_2GHZ].channels = channels;
622 rt2x00dev->bands[IEEE80211_BAND_2GHZ].bitrates = rates;
623 hw->wiphy->bands[IEEE80211_BAND_2GHZ] =
624 &rt2x00dev->bands[IEEE80211_BAND_2GHZ];
625 memcpy(&rt2x00dev->bands[IEEE80211_BAND_2GHZ].ht_cap,
626 &spec->ht, sizeof(spec->ht));
627 }
628
629 /*
630 * Intitialize 802.11a
631 * Rates: OFDM.
632 * Channels: OFDM, UNII, HiperLAN2.
633 */
634 if (spec->supported_bands & SUPPORT_BAND_5GHZ) {
635 rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_channels =
636 spec->num_channels - 14;
637 rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_bitrates =
638 num_rates - 4;
639 rt2x00dev->bands[IEEE80211_BAND_5GHZ].channels = &channels[14];
640 rt2x00dev->bands[IEEE80211_BAND_5GHZ].bitrates = &rates[4];
641 hw->wiphy->bands[IEEE80211_BAND_5GHZ] =
642 &rt2x00dev->bands[IEEE80211_BAND_5GHZ];
643 memcpy(&rt2x00dev->bands[IEEE80211_BAND_5GHZ].ht_cap,
644 &spec->ht, sizeof(spec->ht));
645 }
646
647 return 0;
648
649 exit_free_channels:
650 kfree(channels);
651 ERROR(rt2x00dev, "Allocation ieee80211 modes failed.\n");
652 return -ENOMEM;
653 }
654
655 static void rt2x00lib_remove_hw(struct rt2x00_dev *rt2x00dev)
656 {
657 if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
658 ieee80211_unregister_hw(rt2x00dev->hw);
659
660 if (likely(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ])) {
661 kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->channels);
662 kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->bitrates);
663 rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ] = NULL;
664 rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_5GHZ] = NULL;
665 }
666
667 kfree(rt2x00dev->spec.channels_info);
668 }
669
670 static int rt2x00lib_probe_hw(struct rt2x00_dev *rt2x00dev)
671 {
672 struct hw_mode_spec *spec = &rt2x00dev->spec;
673 int status;
674
675 if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
676 return 0;
677
678 /*
679 * Initialize HW modes.
680 */
681 status = rt2x00lib_probe_hw_modes(rt2x00dev, spec);
682 if (status)
683 return status;
684
685 /*
686 * Initialize HW fields.
687 */
688 rt2x00dev->hw->queues = rt2x00dev->ops->tx_queues;
689
690 /*
691 * Register HW.
692 */
693 status = ieee80211_register_hw(rt2x00dev->hw);
694 if (status)
695 return status;
696
697 set_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags);
698
699 return 0;
700 }
701
702 /*
703 * Initialization/uninitialization handlers.
704 */
705 static void rt2x00lib_uninitialize(struct rt2x00_dev *rt2x00dev)
706 {
707 if (!test_and_clear_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
708 return;
709
710 /*
711 * Unregister extra components.
712 */
713 rt2x00rfkill_unregister(rt2x00dev);
714
715 /*
716 * Allow the HW to uninitialize.
717 */
718 rt2x00dev->ops->lib->uninitialize(rt2x00dev);
719
720 /*
721 * Free allocated queue entries.
722 */
723 rt2x00queue_uninitialize(rt2x00dev);
724 }
725
726 static int rt2x00lib_initialize(struct rt2x00_dev *rt2x00dev)
727 {
728 int status;
729
730 if (test_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
731 return 0;
732
733 /*
734 * Allocate all queue entries.
735 */
736 status = rt2x00queue_initialize(rt2x00dev);
737 if (status)
738 return status;
739
740 /*
741 * Initialize the device.
742 */
743 status = rt2x00dev->ops->lib->initialize(rt2x00dev);
744 if (status) {
745 rt2x00queue_uninitialize(rt2x00dev);
746 return status;
747 }
748
749 set_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags);
750
751 /*
752 * Register the extra components.
753 */
754 rt2x00rfkill_register(rt2x00dev);
755
756 return 0;
757 }
758
759 int rt2x00lib_start(struct rt2x00_dev *rt2x00dev)
760 {
761 int retval;
762
763 if (test_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
764 return 0;
765
766 /*
767 * If this is the first interface which is added,
768 * we should load the firmware now.
769 */
770 retval = rt2x00lib_load_firmware(rt2x00dev);
771 if (retval)
772 return retval;
773
774 /*
775 * Initialize the device.
776 */
777 retval = rt2x00lib_initialize(rt2x00dev);
778 if (retval)
779 return retval;
780
781 rt2x00dev->intf_ap_count = 0;
782 rt2x00dev->intf_sta_count = 0;
783 rt2x00dev->intf_associated = 0;
784
785 set_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags);
786
787 return 0;
788 }
789
790 void rt2x00lib_stop(struct rt2x00_dev *rt2x00dev)
791 {
792 if (!test_and_clear_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
793 return;
794
795 /*
796 * Perhaps we can add something smarter here,
797 * but for now just disabling the radio should do.
798 */
799 rt2x00lib_disable_radio(rt2x00dev);
800
801 rt2x00dev->intf_ap_count = 0;
802 rt2x00dev->intf_sta_count = 0;
803 rt2x00dev->intf_associated = 0;
804 }
805
806 /*
807 * driver allocation handlers.
808 */
809 int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev)
810 {
811 int retval = -ENOMEM;
812
813 mutex_init(&rt2x00dev->csr_mutex);
814
815 /*
816 * Make room for rt2x00_intf inside the per-interface
817 * structure ieee80211_vif.
818 */
819 rt2x00dev->hw->vif_data_size = sizeof(struct rt2x00_intf);
820
821 /*
822 * Determine which operating modes are supported, all modes
823 * which require beaconing, depend on the availability of
824 * beacon entries.
825 */
826 rt2x00dev->hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION);
827 if (rt2x00dev->ops->bcn->entry_num > 0)
828 rt2x00dev->hw->wiphy->interface_modes |=
829 BIT(NL80211_IFTYPE_ADHOC) |
830 BIT(NL80211_IFTYPE_AP) |
831 BIT(NL80211_IFTYPE_MESH_POINT) |
832 BIT(NL80211_IFTYPE_WDS);
833
834 /*
835 * Let the driver probe the device to detect the capabilities.
836 */
837 retval = rt2x00dev->ops->lib->probe_hw(rt2x00dev);
838 if (retval) {
839 ERROR(rt2x00dev, "Failed to allocate device.\n");
840 goto exit;
841 }
842
843 /*
844 * Initialize configuration work.
845 */
846 INIT_WORK(&rt2x00dev->intf_work, rt2x00lib_intf_scheduled);
847 INIT_WORK(&rt2x00dev->filter_work, rt2x00lib_packetfilter_scheduled);
848
849 /*
850 * Allocate queue array.
851 */
852 retval = rt2x00queue_allocate(rt2x00dev);
853 if (retval)
854 goto exit;
855
856 /*
857 * Initialize ieee80211 structure.
858 */
859 retval = rt2x00lib_probe_hw(rt2x00dev);
860 if (retval) {
861 ERROR(rt2x00dev, "Failed to initialize hw.\n");
862 goto exit;
863 }
864
865 /*
866 * Register extra components.
867 */
868 rt2x00link_register(rt2x00dev);
869 rt2x00leds_register(rt2x00dev);
870 rt2x00rfkill_allocate(rt2x00dev);
871 rt2x00debug_register(rt2x00dev);
872
873 set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
874
875 return 0;
876
877 exit:
878 rt2x00lib_remove_dev(rt2x00dev);
879
880 return retval;
881 }
882 EXPORT_SYMBOL_GPL(rt2x00lib_probe_dev);
883
884 void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev)
885 {
886 clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
887
888 /*
889 * Disable radio.
890 */
891 rt2x00lib_disable_radio(rt2x00dev);
892
893 /*
894 * Uninitialize device.
895 */
896 rt2x00lib_uninitialize(rt2x00dev);
897
898 /*
899 * Free extra components
900 */
901 rt2x00debug_deregister(rt2x00dev);
902 rt2x00rfkill_free(rt2x00dev);
903 rt2x00leds_unregister(rt2x00dev);
904
905 /*
906 * Free ieee80211_hw memory.
907 */
908 rt2x00lib_remove_hw(rt2x00dev);
909
910 /*
911 * Free firmware image.
912 */
913 rt2x00lib_free_firmware(rt2x00dev);
914
915 /*
916 * Free queue structures.
917 */
918 rt2x00queue_free(rt2x00dev);
919 }
920 EXPORT_SYMBOL_GPL(rt2x00lib_remove_dev);
921
922 /*
923 * Device state handlers
924 */
925 #ifdef CONFIG_PM
926 int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state)
927 {
928 NOTICE(rt2x00dev, "Going to sleep.\n");
929
930 /*
931 * Prevent mac80211 from accessing driver while suspended.
932 */
933 if (!test_and_clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
934 return 0;
935
936 /*
937 * Cleanup as much as possible.
938 */
939 rt2x00lib_uninitialize(rt2x00dev);
940
941 /*
942 * Suspend/disable extra components.
943 */
944 rt2x00leds_suspend(rt2x00dev);
945 rt2x00debug_deregister(rt2x00dev);
946
947 /*
948 * Set device mode to sleep for power management,
949 * on some hardware this call seems to consistently fail.
950 * From the specifications it is hard to tell why it fails,
951 * and if this is a "bad thing".
952 * Overall it is safe to just ignore the failure and
953 * continue suspending. The only downside is that the
954 * device will not be in optimal power save mode, but with
955 * the radio and the other components already disabled the
956 * device is as good as disabled.
957 */
958 if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_SLEEP))
959 WARNING(rt2x00dev, "Device failed to enter sleep state, "
960 "continue suspending.\n");
961
962 return 0;
963 }
964 EXPORT_SYMBOL_GPL(rt2x00lib_suspend);
965
966 int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev)
967 {
968 NOTICE(rt2x00dev, "Waking up.\n");
969
970 /*
971 * Restore/enable extra components.
972 */
973 rt2x00debug_register(rt2x00dev);
974 rt2x00leds_resume(rt2x00dev);
975
976 /*
977 * We are ready again to receive requests from mac80211.
978 */
979 set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
980
981 return 0;
982 }
983 EXPORT_SYMBOL_GPL(rt2x00lib_resume);
984 #endif /* CONFIG_PM */
985
986 /*
987 * rt2x00lib module information.
988 */
989 MODULE_AUTHOR(DRV_PROJECT);
990 MODULE_VERSION(DRV_VERSION);
991 MODULE_DESCRIPTION("rt2x00 library");
992 MODULE_LICENSE("GPL");
This page took 0.06639 seconds and 6 git commands to generate.