Merge tag 'v3.5-rc6' into irqdomain/next
[deliverable/linux.git] / drivers / net / wireless / rt2x00 / rt2x00queue.c
1 /*
2 Copyright (C) 2010 Willow Garage <http://www.willowgarage.com>
3 Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
4 Copyright (C) 2004 - 2009 Gertjan van Wingerde <gwingerde@gmail.com>
5 <http://rt2x00.serialmonkey.com>
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the
19 Free Software Foundation, Inc.,
20 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21 */
22
23 /*
24 Module: rt2x00lib
25 Abstract: rt2x00 queue specific routines.
26 */
27
28 #include <linux/slab.h>
29 #include <linux/kernel.h>
30 #include <linux/module.h>
31 #include <linux/dma-mapping.h>
32
33 #include "rt2x00.h"
34 #include "rt2x00lib.h"
35
36 struct sk_buff *rt2x00queue_alloc_rxskb(struct queue_entry *entry, gfp_t gfp)
37 {
38 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
39 struct sk_buff *skb;
40 struct skb_frame_desc *skbdesc;
41 unsigned int frame_size;
42 unsigned int head_size = 0;
43 unsigned int tail_size = 0;
44
45 /*
46 * The frame size includes descriptor size, because the
47 * hardware directly receive the frame into the skbuffer.
48 */
49 frame_size = entry->queue->data_size + entry->queue->desc_size;
50
51 /*
52 * The payload should be aligned to a 4-byte boundary,
53 * this means we need at least 3 bytes for moving the frame
54 * into the correct offset.
55 */
56 head_size = 4;
57
58 /*
59 * For IV/EIV/ICV assembly we must make sure there is
60 * at least 8 bytes bytes available in headroom for IV/EIV
61 * and 8 bytes for ICV data as tailroon.
62 */
63 if (test_bit(CAPABILITY_HW_CRYPTO, &rt2x00dev->cap_flags)) {
64 head_size += 8;
65 tail_size += 8;
66 }
67
68 /*
69 * Allocate skbuffer.
70 */
71 skb = __dev_alloc_skb(frame_size + head_size + tail_size, gfp);
72 if (!skb)
73 return NULL;
74
75 /*
76 * Make sure we not have a frame with the requested bytes
77 * available in the head and tail.
78 */
79 skb_reserve(skb, head_size);
80 skb_put(skb, frame_size);
81
82 /*
83 * Populate skbdesc.
84 */
85 skbdesc = get_skb_frame_desc(skb);
86 memset(skbdesc, 0, sizeof(*skbdesc));
87 skbdesc->entry = entry;
88
89 if (test_bit(REQUIRE_DMA, &rt2x00dev->cap_flags)) {
90 skbdesc->skb_dma = dma_map_single(rt2x00dev->dev,
91 skb->data,
92 skb->len,
93 DMA_FROM_DEVICE);
94 skbdesc->flags |= SKBDESC_DMA_MAPPED_RX;
95 }
96
97 return skb;
98 }
99
100 void rt2x00queue_map_txskb(struct queue_entry *entry)
101 {
102 struct device *dev = entry->queue->rt2x00dev->dev;
103 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
104
105 skbdesc->skb_dma =
106 dma_map_single(dev, entry->skb->data, entry->skb->len, DMA_TO_DEVICE);
107 skbdesc->flags |= SKBDESC_DMA_MAPPED_TX;
108 }
109 EXPORT_SYMBOL_GPL(rt2x00queue_map_txskb);
110
111 void rt2x00queue_unmap_skb(struct queue_entry *entry)
112 {
113 struct device *dev = entry->queue->rt2x00dev->dev;
114 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
115
116 if (skbdesc->flags & SKBDESC_DMA_MAPPED_RX) {
117 dma_unmap_single(dev, skbdesc->skb_dma, entry->skb->len,
118 DMA_FROM_DEVICE);
119 skbdesc->flags &= ~SKBDESC_DMA_MAPPED_RX;
120 } else if (skbdesc->flags & SKBDESC_DMA_MAPPED_TX) {
121 dma_unmap_single(dev, skbdesc->skb_dma, entry->skb->len,
122 DMA_TO_DEVICE);
123 skbdesc->flags &= ~SKBDESC_DMA_MAPPED_TX;
124 }
125 }
126 EXPORT_SYMBOL_GPL(rt2x00queue_unmap_skb);
127
128 void rt2x00queue_free_skb(struct queue_entry *entry)
129 {
130 if (!entry->skb)
131 return;
132
133 rt2x00queue_unmap_skb(entry);
134 dev_kfree_skb_any(entry->skb);
135 entry->skb = NULL;
136 }
137
138 void rt2x00queue_align_frame(struct sk_buff *skb)
139 {
140 unsigned int frame_length = skb->len;
141 unsigned int align = ALIGN_SIZE(skb, 0);
142
143 if (!align)
144 return;
145
146 skb_push(skb, align);
147 memmove(skb->data, skb->data + align, frame_length);
148 skb_trim(skb, frame_length);
149 }
150
151 void rt2x00queue_insert_l2pad(struct sk_buff *skb, unsigned int header_length)
152 {
153 unsigned int payload_length = skb->len - header_length;
154 unsigned int header_align = ALIGN_SIZE(skb, 0);
155 unsigned int payload_align = ALIGN_SIZE(skb, header_length);
156 unsigned int l2pad = payload_length ? L2PAD_SIZE(header_length) : 0;
157
158 /*
159 * Adjust the header alignment if the payload needs to be moved more
160 * than the header.
161 */
162 if (payload_align > header_align)
163 header_align += 4;
164
165 /* There is nothing to do if no alignment is needed */
166 if (!header_align)
167 return;
168
169 /* Reserve the amount of space needed in front of the frame */
170 skb_push(skb, header_align);
171
172 /*
173 * Move the header.
174 */
175 memmove(skb->data, skb->data + header_align, header_length);
176
177 /* Move the payload, if present and if required */
178 if (payload_length && payload_align)
179 memmove(skb->data + header_length + l2pad,
180 skb->data + header_length + l2pad + payload_align,
181 payload_length);
182
183 /* Trim the skb to the correct size */
184 skb_trim(skb, header_length + l2pad + payload_length);
185 }
186
187 void rt2x00queue_remove_l2pad(struct sk_buff *skb, unsigned int header_length)
188 {
189 /*
190 * L2 padding is only present if the skb contains more than just the
191 * IEEE 802.11 header.
192 */
193 unsigned int l2pad = (skb->len > header_length) ?
194 L2PAD_SIZE(header_length) : 0;
195
196 if (!l2pad)
197 return;
198
199 memmove(skb->data + l2pad, skb->data, header_length);
200 skb_pull(skb, l2pad);
201 }
202
203 static void rt2x00queue_create_tx_descriptor_seq(struct rt2x00_dev *rt2x00dev,
204 struct sk_buff *skb,
205 struct txentry_desc *txdesc)
206 {
207 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
208 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
209 struct rt2x00_intf *intf = vif_to_intf(tx_info->control.vif);
210 u16 seqno;
211
212 if (!(tx_info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ))
213 return;
214
215 __set_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags);
216
217 if (!test_bit(REQUIRE_SW_SEQNO, &rt2x00dev->cap_flags)) {
218 /*
219 * rt2800 has a H/W (or F/W) bug, device incorrectly increase
220 * seqno on retransmited data (non-QOS) frames. To workaround
221 * the problem let's generate seqno in software if QOS is
222 * disabled.
223 */
224 if (test_bit(CONFIG_QOS_DISABLED, &rt2x00dev->flags))
225 __clear_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags);
226 else
227 /* H/W will generate sequence number */
228 return;
229 }
230
231 /*
232 * The hardware is not able to insert a sequence number. Assign a
233 * software generated one here.
234 *
235 * This is wrong because beacons are not getting sequence
236 * numbers assigned properly.
237 *
238 * A secondary problem exists for drivers that cannot toggle
239 * sequence counting per-frame, since those will override the
240 * sequence counter given by mac80211.
241 */
242 if (test_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags))
243 seqno = atomic_add_return(0x10, &intf->seqno);
244 else
245 seqno = atomic_read(&intf->seqno);
246
247 hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
248 hdr->seq_ctrl |= cpu_to_le16(seqno);
249 }
250
251 static void rt2x00queue_create_tx_descriptor_plcp(struct rt2x00_dev *rt2x00dev,
252 struct sk_buff *skb,
253 struct txentry_desc *txdesc,
254 const struct rt2x00_rate *hwrate)
255 {
256 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
257 struct ieee80211_tx_rate *txrate = &tx_info->control.rates[0];
258 unsigned int data_length;
259 unsigned int duration;
260 unsigned int residual;
261
262 /*
263 * Determine with what IFS priority this frame should be send.
264 * Set ifs to IFS_SIFS when the this is not the first fragment,
265 * or this fragment came after RTS/CTS.
266 */
267 if (test_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags))
268 txdesc->u.plcp.ifs = IFS_BACKOFF;
269 else
270 txdesc->u.plcp.ifs = IFS_SIFS;
271
272 /* Data length + CRC + Crypto overhead (IV/EIV/ICV/MIC) */
273 data_length = skb->len + 4;
274 data_length += rt2x00crypto_tx_overhead(rt2x00dev, skb);
275
276 /*
277 * PLCP setup
278 * Length calculation depends on OFDM/CCK rate.
279 */
280 txdesc->u.plcp.signal = hwrate->plcp;
281 txdesc->u.plcp.service = 0x04;
282
283 if (hwrate->flags & DEV_RATE_OFDM) {
284 txdesc->u.plcp.length_high = (data_length >> 6) & 0x3f;
285 txdesc->u.plcp.length_low = data_length & 0x3f;
286 } else {
287 /*
288 * Convert length to microseconds.
289 */
290 residual = GET_DURATION_RES(data_length, hwrate->bitrate);
291 duration = GET_DURATION(data_length, hwrate->bitrate);
292
293 if (residual != 0) {
294 duration++;
295
296 /*
297 * Check if we need to set the Length Extension
298 */
299 if (hwrate->bitrate == 110 && residual <= 30)
300 txdesc->u.plcp.service |= 0x80;
301 }
302
303 txdesc->u.plcp.length_high = (duration >> 8) & 0xff;
304 txdesc->u.plcp.length_low = duration & 0xff;
305
306 /*
307 * When preamble is enabled we should set the
308 * preamble bit for the signal.
309 */
310 if (txrate->flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
311 txdesc->u.plcp.signal |= 0x08;
312 }
313 }
314
315 static void rt2x00queue_create_tx_descriptor_ht(struct rt2x00_dev *rt2x00dev,
316 struct sk_buff *skb,
317 struct txentry_desc *txdesc,
318 const struct rt2x00_rate *hwrate)
319 {
320 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
321 struct ieee80211_tx_rate *txrate = &tx_info->control.rates[0];
322 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
323 struct rt2x00_sta *sta_priv = NULL;
324
325 if (tx_info->control.sta) {
326 txdesc->u.ht.mpdu_density =
327 tx_info->control.sta->ht_cap.ampdu_density;
328
329 sta_priv = sta_to_rt2x00_sta(tx_info->control.sta);
330 txdesc->u.ht.wcid = sta_priv->wcid;
331 }
332
333 /*
334 * If IEEE80211_TX_RC_MCS is set txrate->idx just contains the
335 * mcs rate to be used
336 */
337 if (txrate->flags & IEEE80211_TX_RC_MCS) {
338 txdesc->u.ht.mcs = txrate->idx;
339
340 /*
341 * MIMO PS should be set to 1 for STA's using dynamic SM PS
342 * when using more then one tx stream (>MCS7).
343 */
344 if (tx_info->control.sta && txdesc->u.ht.mcs > 7 &&
345 ((tx_info->control.sta->ht_cap.cap &
346 IEEE80211_HT_CAP_SM_PS) >>
347 IEEE80211_HT_CAP_SM_PS_SHIFT) ==
348 WLAN_HT_CAP_SM_PS_DYNAMIC)
349 __set_bit(ENTRY_TXD_HT_MIMO_PS, &txdesc->flags);
350 } else {
351 txdesc->u.ht.mcs = rt2x00_get_rate_mcs(hwrate->mcs);
352 if (txrate->flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
353 txdesc->u.ht.mcs |= 0x08;
354 }
355
356 if (test_bit(CONFIG_HT_DISABLED, &rt2x00dev->flags)) {
357 if (!(tx_info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT))
358 txdesc->u.ht.txop = TXOP_SIFS;
359 else
360 txdesc->u.ht.txop = TXOP_BACKOFF;
361
362 /* Left zero on all other settings. */
363 return;
364 }
365
366 txdesc->u.ht.ba_size = 7; /* FIXME: What value is needed? */
367
368 /*
369 * Only one STBC stream is supported for now.
370 */
371 if (tx_info->flags & IEEE80211_TX_CTL_STBC)
372 txdesc->u.ht.stbc = 1;
373
374 /*
375 * This frame is eligible for an AMPDU, however, don't aggregate
376 * frames that are intended to probe a specific tx rate.
377 */
378 if (tx_info->flags & IEEE80211_TX_CTL_AMPDU &&
379 !(tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE))
380 __set_bit(ENTRY_TXD_HT_AMPDU, &txdesc->flags);
381
382 /*
383 * Set 40Mhz mode if necessary (for legacy rates this will
384 * duplicate the frame to both channels).
385 */
386 if (txrate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH ||
387 txrate->flags & IEEE80211_TX_RC_DUP_DATA)
388 __set_bit(ENTRY_TXD_HT_BW_40, &txdesc->flags);
389 if (txrate->flags & IEEE80211_TX_RC_SHORT_GI)
390 __set_bit(ENTRY_TXD_HT_SHORT_GI, &txdesc->flags);
391
392 /*
393 * Determine IFS values
394 * - Use TXOP_BACKOFF for management frames except beacons
395 * - Use TXOP_SIFS for fragment bursts
396 * - Use TXOP_HTTXOP for everything else
397 *
398 * Note: rt2800 devices won't use CTS protection (if used)
399 * for frames not transmitted with TXOP_HTTXOP
400 */
401 if (ieee80211_is_mgmt(hdr->frame_control) &&
402 !ieee80211_is_beacon(hdr->frame_control))
403 txdesc->u.ht.txop = TXOP_BACKOFF;
404 else if (!(tx_info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT))
405 txdesc->u.ht.txop = TXOP_SIFS;
406 else
407 txdesc->u.ht.txop = TXOP_HTTXOP;
408 }
409
410 static void rt2x00queue_create_tx_descriptor(struct rt2x00_dev *rt2x00dev,
411 struct sk_buff *skb,
412 struct txentry_desc *txdesc)
413 {
414 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
415 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
416 struct ieee80211_tx_rate *txrate = &tx_info->control.rates[0];
417 struct ieee80211_rate *rate;
418 const struct rt2x00_rate *hwrate = NULL;
419
420 memset(txdesc, 0, sizeof(*txdesc));
421
422 /*
423 * Header and frame information.
424 */
425 txdesc->length = skb->len;
426 txdesc->header_length = ieee80211_get_hdrlen_from_skb(skb);
427
428 /*
429 * Check whether this frame is to be acked.
430 */
431 if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK))
432 __set_bit(ENTRY_TXD_ACK, &txdesc->flags);
433
434 /*
435 * Check if this is a RTS/CTS frame
436 */
437 if (ieee80211_is_rts(hdr->frame_control) ||
438 ieee80211_is_cts(hdr->frame_control)) {
439 __set_bit(ENTRY_TXD_BURST, &txdesc->flags);
440 if (ieee80211_is_rts(hdr->frame_control))
441 __set_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags);
442 else
443 __set_bit(ENTRY_TXD_CTS_FRAME, &txdesc->flags);
444 if (tx_info->control.rts_cts_rate_idx >= 0)
445 rate =
446 ieee80211_get_rts_cts_rate(rt2x00dev->hw, tx_info);
447 }
448
449 /*
450 * Determine retry information.
451 */
452 txdesc->retry_limit = tx_info->control.rates[0].count - 1;
453 if (txdesc->retry_limit >= rt2x00dev->long_retry)
454 __set_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags);
455
456 /*
457 * Check if more fragments are pending
458 */
459 if (ieee80211_has_morefrags(hdr->frame_control)) {
460 __set_bit(ENTRY_TXD_BURST, &txdesc->flags);
461 __set_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags);
462 }
463
464 /*
465 * Check if more frames (!= fragments) are pending
466 */
467 if (tx_info->flags & IEEE80211_TX_CTL_MORE_FRAMES)
468 __set_bit(ENTRY_TXD_BURST, &txdesc->flags);
469
470 /*
471 * Beacons and probe responses require the tsf timestamp
472 * to be inserted into the frame.
473 */
474 if (ieee80211_is_beacon(hdr->frame_control) ||
475 ieee80211_is_probe_resp(hdr->frame_control))
476 __set_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags);
477
478 if ((tx_info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT) &&
479 !test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags))
480 __set_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags);
481
482 /*
483 * Determine rate modulation.
484 */
485 if (txrate->flags & IEEE80211_TX_RC_GREEN_FIELD)
486 txdesc->rate_mode = RATE_MODE_HT_GREENFIELD;
487 else if (txrate->flags & IEEE80211_TX_RC_MCS)
488 txdesc->rate_mode = RATE_MODE_HT_MIX;
489 else {
490 rate = ieee80211_get_tx_rate(rt2x00dev->hw, tx_info);
491 hwrate = rt2x00_get_rate(rate->hw_value);
492 if (hwrate->flags & DEV_RATE_OFDM)
493 txdesc->rate_mode = RATE_MODE_OFDM;
494 else
495 txdesc->rate_mode = RATE_MODE_CCK;
496 }
497
498 /*
499 * Apply TX descriptor handling by components
500 */
501 rt2x00crypto_create_tx_descriptor(rt2x00dev, skb, txdesc);
502 rt2x00queue_create_tx_descriptor_seq(rt2x00dev, skb, txdesc);
503
504 if (test_bit(REQUIRE_HT_TX_DESC, &rt2x00dev->cap_flags))
505 rt2x00queue_create_tx_descriptor_ht(rt2x00dev, skb, txdesc,
506 hwrate);
507 else
508 rt2x00queue_create_tx_descriptor_plcp(rt2x00dev, skb, txdesc,
509 hwrate);
510 }
511
512 static int rt2x00queue_write_tx_data(struct queue_entry *entry,
513 struct txentry_desc *txdesc)
514 {
515 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
516
517 /*
518 * This should not happen, we already checked the entry
519 * was ours. When the hardware disagrees there has been
520 * a queue corruption!
521 */
522 if (unlikely(rt2x00dev->ops->lib->get_entry_state &&
523 rt2x00dev->ops->lib->get_entry_state(entry))) {
524 ERROR(rt2x00dev,
525 "Corrupt queue %d, accessing entry which is not ours.\n"
526 "Please file bug report to %s.\n",
527 entry->queue->qid, DRV_PROJECT);
528 return -EINVAL;
529 }
530
531 /*
532 * Add the requested extra tx headroom in front of the skb.
533 */
534 skb_push(entry->skb, rt2x00dev->ops->extra_tx_headroom);
535 memset(entry->skb->data, 0, rt2x00dev->ops->extra_tx_headroom);
536
537 /*
538 * Call the driver's write_tx_data function, if it exists.
539 */
540 if (rt2x00dev->ops->lib->write_tx_data)
541 rt2x00dev->ops->lib->write_tx_data(entry, txdesc);
542
543 /*
544 * Map the skb to DMA.
545 */
546 if (test_bit(REQUIRE_DMA, &rt2x00dev->cap_flags))
547 rt2x00queue_map_txskb(entry);
548
549 return 0;
550 }
551
552 static void rt2x00queue_write_tx_descriptor(struct queue_entry *entry,
553 struct txentry_desc *txdesc)
554 {
555 struct data_queue *queue = entry->queue;
556
557 queue->rt2x00dev->ops->lib->write_tx_desc(entry, txdesc);
558
559 /*
560 * All processing on the frame has been completed, this means
561 * it is now ready to be dumped to userspace through debugfs.
562 */
563 rt2x00debug_dump_frame(queue->rt2x00dev, DUMP_FRAME_TX, entry->skb);
564 }
565
566 static void rt2x00queue_kick_tx_queue(struct data_queue *queue,
567 struct txentry_desc *txdesc)
568 {
569 /*
570 * Check if we need to kick the queue, there are however a few rules
571 * 1) Don't kick unless this is the last in frame in a burst.
572 * When the burst flag is set, this frame is always followed
573 * by another frame which in some way are related to eachother.
574 * This is true for fragments, RTS or CTS-to-self frames.
575 * 2) Rule 1 can be broken when the available entries
576 * in the queue are less then a certain threshold.
577 */
578 if (rt2x00queue_threshold(queue) ||
579 !test_bit(ENTRY_TXD_BURST, &txdesc->flags))
580 queue->rt2x00dev->ops->lib->kick_queue(queue);
581 }
582
583 int rt2x00queue_write_tx_frame(struct data_queue *queue, struct sk_buff *skb,
584 bool local)
585 {
586 struct ieee80211_tx_info *tx_info;
587 struct queue_entry *entry;
588 struct txentry_desc txdesc;
589 struct skb_frame_desc *skbdesc;
590 u8 rate_idx, rate_flags;
591 int ret = 0;
592
593 /*
594 * Copy all TX descriptor information into txdesc,
595 * after that we are free to use the skb->cb array
596 * for our information.
597 */
598 rt2x00queue_create_tx_descriptor(queue->rt2x00dev, skb, &txdesc);
599
600 /*
601 * All information is retrieved from the skb->cb array,
602 * now we should claim ownership of the driver part of that
603 * array, preserving the bitrate index and flags.
604 */
605 tx_info = IEEE80211_SKB_CB(skb);
606 rate_idx = tx_info->control.rates[0].idx;
607 rate_flags = tx_info->control.rates[0].flags;
608 skbdesc = get_skb_frame_desc(skb);
609 memset(skbdesc, 0, sizeof(*skbdesc));
610 skbdesc->tx_rate_idx = rate_idx;
611 skbdesc->tx_rate_flags = rate_flags;
612
613 if (local)
614 skbdesc->flags |= SKBDESC_NOT_MAC80211;
615
616 /*
617 * When hardware encryption is supported, and this frame
618 * is to be encrypted, we should strip the IV/EIV data from
619 * the frame so we can provide it to the driver separately.
620 */
621 if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc.flags) &&
622 !test_bit(ENTRY_TXD_ENCRYPT_IV, &txdesc.flags)) {
623 if (test_bit(REQUIRE_COPY_IV, &queue->rt2x00dev->cap_flags))
624 rt2x00crypto_tx_copy_iv(skb, &txdesc);
625 else
626 rt2x00crypto_tx_remove_iv(skb, &txdesc);
627 }
628
629 /*
630 * When DMA allocation is required we should guarantee to the
631 * driver that the DMA is aligned to a 4-byte boundary.
632 * However some drivers require L2 padding to pad the payload
633 * rather then the header. This could be a requirement for
634 * PCI and USB devices, while header alignment only is valid
635 * for PCI devices.
636 */
637 if (test_bit(REQUIRE_L2PAD, &queue->rt2x00dev->cap_flags))
638 rt2x00queue_insert_l2pad(skb, txdesc.header_length);
639 else if (test_bit(REQUIRE_DMA, &queue->rt2x00dev->cap_flags))
640 rt2x00queue_align_frame(skb);
641
642 /*
643 * That function must be called with bh disabled.
644 */
645 spin_lock(&queue->tx_lock);
646
647 if (unlikely(rt2x00queue_full(queue))) {
648 ERROR(queue->rt2x00dev,
649 "Dropping frame due to full tx queue %d.\n", queue->qid);
650 ret = -ENOBUFS;
651 goto out;
652 }
653
654 entry = rt2x00queue_get_entry(queue, Q_INDEX);
655
656 if (unlikely(test_and_set_bit(ENTRY_OWNER_DEVICE_DATA,
657 &entry->flags))) {
658 ERROR(queue->rt2x00dev,
659 "Arrived at non-free entry in the non-full queue %d.\n"
660 "Please file bug report to %s.\n",
661 queue->qid, DRV_PROJECT);
662 ret = -EINVAL;
663 goto out;
664 }
665
666 skbdesc->entry = entry;
667 entry->skb = skb;
668
669 /*
670 * It could be possible that the queue was corrupted and this
671 * call failed. Since we always return NETDEV_TX_OK to mac80211,
672 * this frame will simply be dropped.
673 */
674 if (unlikely(rt2x00queue_write_tx_data(entry, &txdesc))) {
675 clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
676 entry->skb = NULL;
677 ret = -EIO;
678 goto out;
679 }
680
681 set_bit(ENTRY_DATA_PENDING, &entry->flags);
682
683 rt2x00queue_index_inc(entry, Q_INDEX);
684 rt2x00queue_write_tx_descriptor(entry, &txdesc);
685 rt2x00queue_kick_tx_queue(queue, &txdesc);
686
687 out:
688 spin_unlock(&queue->tx_lock);
689 return ret;
690 }
691
692 int rt2x00queue_clear_beacon(struct rt2x00_dev *rt2x00dev,
693 struct ieee80211_vif *vif)
694 {
695 struct rt2x00_intf *intf = vif_to_intf(vif);
696
697 if (unlikely(!intf->beacon))
698 return -ENOBUFS;
699
700 mutex_lock(&intf->beacon_skb_mutex);
701
702 /*
703 * Clean up the beacon skb.
704 */
705 rt2x00queue_free_skb(intf->beacon);
706
707 /*
708 * Clear beacon (single bssid devices don't need to clear the beacon
709 * since the beacon queue will get stopped anyway).
710 */
711 if (rt2x00dev->ops->lib->clear_beacon)
712 rt2x00dev->ops->lib->clear_beacon(intf->beacon);
713
714 mutex_unlock(&intf->beacon_skb_mutex);
715
716 return 0;
717 }
718
719 int rt2x00queue_update_beacon_locked(struct rt2x00_dev *rt2x00dev,
720 struct ieee80211_vif *vif)
721 {
722 struct rt2x00_intf *intf = vif_to_intf(vif);
723 struct skb_frame_desc *skbdesc;
724 struct txentry_desc txdesc;
725
726 if (unlikely(!intf->beacon))
727 return -ENOBUFS;
728
729 /*
730 * Clean up the beacon skb.
731 */
732 rt2x00queue_free_skb(intf->beacon);
733
734 intf->beacon->skb = ieee80211_beacon_get(rt2x00dev->hw, vif);
735 if (!intf->beacon->skb)
736 return -ENOMEM;
737
738 /*
739 * Copy all TX descriptor information into txdesc,
740 * after that we are free to use the skb->cb array
741 * for our information.
742 */
743 rt2x00queue_create_tx_descriptor(rt2x00dev, intf->beacon->skb, &txdesc);
744
745 /*
746 * Fill in skb descriptor
747 */
748 skbdesc = get_skb_frame_desc(intf->beacon->skb);
749 memset(skbdesc, 0, sizeof(*skbdesc));
750 skbdesc->entry = intf->beacon;
751
752 /*
753 * Send beacon to hardware.
754 */
755 rt2x00dev->ops->lib->write_beacon(intf->beacon, &txdesc);
756
757 return 0;
758
759 }
760
761 int rt2x00queue_update_beacon(struct rt2x00_dev *rt2x00dev,
762 struct ieee80211_vif *vif)
763 {
764 struct rt2x00_intf *intf = vif_to_intf(vif);
765 int ret;
766
767 mutex_lock(&intf->beacon_skb_mutex);
768 ret = rt2x00queue_update_beacon_locked(rt2x00dev, vif);
769 mutex_unlock(&intf->beacon_skb_mutex);
770
771 return ret;
772 }
773
774 bool rt2x00queue_for_each_entry(struct data_queue *queue,
775 enum queue_index start,
776 enum queue_index end,
777 void *data,
778 bool (*fn)(struct queue_entry *entry,
779 void *data))
780 {
781 unsigned long irqflags;
782 unsigned int index_start;
783 unsigned int index_end;
784 unsigned int i;
785
786 if (unlikely(start >= Q_INDEX_MAX || end >= Q_INDEX_MAX)) {
787 ERROR(queue->rt2x00dev,
788 "Entry requested from invalid index range (%d - %d)\n",
789 start, end);
790 return true;
791 }
792
793 /*
794 * Only protect the range we are going to loop over,
795 * if during our loop a extra entry is set to pending
796 * it should not be kicked during this run, since it
797 * is part of another TX operation.
798 */
799 spin_lock_irqsave(&queue->index_lock, irqflags);
800 index_start = queue->index[start];
801 index_end = queue->index[end];
802 spin_unlock_irqrestore(&queue->index_lock, irqflags);
803
804 /*
805 * Start from the TX done pointer, this guarantees that we will
806 * send out all frames in the correct order.
807 */
808 if (index_start < index_end) {
809 for (i = index_start; i < index_end; i++) {
810 if (fn(&queue->entries[i], data))
811 return true;
812 }
813 } else {
814 for (i = index_start; i < queue->limit; i++) {
815 if (fn(&queue->entries[i], data))
816 return true;
817 }
818
819 for (i = 0; i < index_end; i++) {
820 if (fn(&queue->entries[i], data))
821 return true;
822 }
823 }
824
825 return false;
826 }
827 EXPORT_SYMBOL_GPL(rt2x00queue_for_each_entry);
828
829 struct queue_entry *rt2x00queue_get_entry(struct data_queue *queue,
830 enum queue_index index)
831 {
832 struct queue_entry *entry;
833 unsigned long irqflags;
834
835 if (unlikely(index >= Q_INDEX_MAX)) {
836 ERROR(queue->rt2x00dev,
837 "Entry requested from invalid index type (%d)\n", index);
838 return NULL;
839 }
840
841 spin_lock_irqsave(&queue->index_lock, irqflags);
842
843 entry = &queue->entries[queue->index[index]];
844
845 spin_unlock_irqrestore(&queue->index_lock, irqflags);
846
847 return entry;
848 }
849 EXPORT_SYMBOL_GPL(rt2x00queue_get_entry);
850
851 void rt2x00queue_index_inc(struct queue_entry *entry, enum queue_index index)
852 {
853 struct data_queue *queue = entry->queue;
854 unsigned long irqflags;
855
856 if (unlikely(index >= Q_INDEX_MAX)) {
857 ERROR(queue->rt2x00dev,
858 "Index change on invalid index type (%d)\n", index);
859 return;
860 }
861
862 spin_lock_irqsave(&queue->index_lock, irqflags);
863
864 queue->index[index]++;
865 if (queue->index[index] >= queue->limit)
866 queue->index[index] = 0;
867
868 entry->last_action = jiffies;
869
870 if (index == Q_INDEX) {
871 queue->length++;
872 } else if (index == Q_INDEX_DONE) {
873 queue->length--;
874 queue->count++;
875 }
876
877 spin_unlock_irqrestore(&queue->index_lock, irqflags);
878 }
879
880 void rt2x00queue_pause_queue(struct data_queue *queue)
881 {
882 if (!test_bit(DEVICE_STATE_PRESENT, &queue->rt2x00dev->flags) ||
883 !test_bit(QUEUE_STARTED, &queue->flags) ||
884 test_and_set_bit(QUEUE_PAUSED, &queue->flags))
885 return;
886
887 switch (queue->qid) {
888 case QID_AC_VO:
889 case QID_AC_VI:
890 case QID_AC_BE:
891 case QID_AC_BK:
892 /*
893 * For TX queues, we have to disable the queue
894 * inside mac80211.
895 */
896 ieee80211_stop_queue(queue->rt2x00dev->hw, queue->qid);
897 break;
898 default:
899 break;
900 }
901 }
902 EXPORT_SYMBOL_GPL(rt2x00queue_pause_queue);
903
904 void rt2x00queue_unpause_queue(struct data_queue *queue)
905 {
906 if (!test_bit(DEVICE_STATE_PRESENT, &queue->rt2x00dev->flags) ||
907 !test_bit(QUEUE_STARTED, &queue->flags) ||
908 !test_and_clear_bit(QUEUE_PAUSED, &queue->flags))
909 return;
910
911 switch (queue->qid) {
912 case QID_AC_VO:
913 case QID_AC_VI:
914 case QID_AC_BE:
915 case QID_AC_BK:
916 /*
917 * For TX queues, we have to enable the queue
918 * inside mac80211.
919 */
920 ieee80211_wake_queue(queue->rt2x00dev->hw, queue->qid);
921 break;
922 case QID_RX:
923 /*
924 * For RX we need to kick the queue now in order to
925 * receive frames.
926 */
927 queue->rt2x00dev->ops->lib->kick_queue(queue);
928 default:
929 break;
930 }
931 }
932 EXPORT_SYMBOL_GPL(rt2x00queue_unpause_queue);
933
934 void rt2x00queue_start_queue(struct data_queue *queue)
935 {
936 mutex_lock(&queue->status_lock);
937
938 if (!test_bit(DEVICE_STATE_PRESENT, &queue->rt2x00dev->flags) ||
939 test_and_set_bit(QUEUE_STARTED, &queue->flags)) {
940 mutex_unlock(&queue->status_lock);
941 return;
942 }
943
944 set_bit(QUEUE_PAUSED, &queue->flags);
945
946 queue->rt2x00dev->ops->lib->start_queue(queue);
947
948 rt2x00queue_unpause_queue(queue);
949
950 mutex_unlock(&queue->status_lock);
951 }
952 EXPORT_SYMBOL_GPL(rt2x00queue_start_queue);
953
954 void rt2x00queue_stop_queue(struct data_queue *queue)
955 {
956 mutex_lock(&queue->status_lock);
957
958 if (!test_and_clear_bit(QUEUE_STARTED, &queue->flags)) {
959 mutex_unlock(&queue->status_lock);
960 return;
961 }
962
963 rt2x00queue_pause_queue(queue);
964
965 queue->rt2x00dev->ops->lib->stop_queue(queue);
966
967 mutex_unlock(&queue->status_lock);
968 }
969 EXPORT_SYMBOL_GPL(rt2x00queue_stop_queue);
970
971 void rt2x00queue_flush_queue(struct data_queue *queue, bool drop)
972 {
973 bool started;
974 bool tx_queue =
975 (queue->qid == QID_AC_VO) ||
976 (queue->qid == QID_AC_VI) ||
977 (queue->qid == QID_AC_BE) ||
978 (queue->qid == QID_AC_BK);
979
980 mutex_lock(&queue->status_lock);
981
982 /*
983 * If the queue has been started, we must stop it temporarily
984 * to prevent any new frames to be queued on the device. If
985 * we are not dropping the pending frames, the queue must
986 * only be stopped in the software and not the hardware,
987 * otherwise the queue will never become empty on its own.
988 */
989 started = test_bit(QUEUE_STARTED, &queue->flags);
990 if (started) {
991 /*
992 * Pause the queue
993 */
994 rt2x00queue_pause_queue(queue);
995
996 /*
997 * If we are not supposed to drop any pending
998 * frames, this means we must force a start (=kick)
999 * to the queue to make sure the hardware will
1000 * start transmitting.
1001 */
1002 if (!drop && tx_queue)
1003 queue->rt2x00dev->ops->lib->kick_queue(queue);
1004 }
1005
1006 /*
1007 * Check if driver supports flushing, if that is the case we can
1008 * defer the flushing to the driver. Otherwise we must use the
1009 * alternative which just waits for the queue to become empty.
1010 */
1011 if (likely(queue->rt2x00dev->ops->lib->flush_queue))
1012 queue->rt2x00dev->ops->lib->flush_queue(queue, drop);
1013
1014 /*
1015 * The queue flush has failed...
1016 */
1017 if (unlikely(!rt2x00queue_empty(queue)))
1018 WARNING(queue->rt2x00dev, "Queue %d failed to flush\n", queue->qid);
1019
1020 /*
1021 * Restore the queue to the previous status
1022 */
1023 if (started)
1024 rt2x00queue_unpause_queue(queue);
1025
1026 mutex_unlock(&queue->status_lock);
1027 }
1028 EXPORT_SYMBOL_GPL(rt2x00queue_flush_queue);
1029
1030 void rt2x00queue_start_queues(struct rt2x00_dev *rt2x00dev)
1031 {
1032 struct data_queue *queue;
1033
1034 /*
1035 * rt2x00queue_start_queue will call ieee80211_wake_queue
1036 * for each queue after is has been properly initialized.
1037 */
1038 tx_queue_for_each(rt2x00dev, queue)
1039 rt2x00queue_start_queue(queue);
1040
1041 rt2x00queue_start_queue(rt2x00dev->rx);
1042 }
1043 EXPORT_SYMBOL_GPL(rt2x00queue_start_queues);
1044
1045 void rt2x00queue_stop_queues(struct rt2x00_dev *rt2x00dev)
1046 {
1047 struct data_queue *queue;
1048
1049 /*
1050 * rt2x00queue_stop_queue will call ieee80211_stop_queue
1051 * as well, but we are completely shutting doing everything
1052 * now, so it is much safer to stop all TX queues at once,
1053 * and use rt2x00queue_stop_queue for cleaning up.
1054 */
1055 ieee80211_stop_queues(rt2x00dev->hw);
1056
1057 tx_queue_for_each(rt2x00dev, queue)
1058 rt2x00queue_stop_queue(queue);
1059
1060 rt2x00queue_stop_queue(rt2x00dev->rx);
1061 }
1062 EXPORT_SYMBOL_GPL(rt2x00queue_stop_queues);
1063
1064 void rt2x00queue_flush_queues(struct rt2x00_dev *rt2x00dev, bool drop)
1065 {
1066 struct data_queue *queue;
1067
1068 tx_queue_for_each(rt2x00dev, queue)
1069 rt2x00queue_flush_queue(queue, drop);
1070
1071 rt2x00queue_flush_queue(rt2x00dev->rx, drop);
1072 }
1073 EXPORT_SYMBOL_GPL(rt2x00queue_flush_queues);
1074
1075 static void rt2x00queue_reset(struct data_queue *queue)
1076 {
1077 unsigned long irqflags;
1078 unsigned int i;
1079
1080 spin_lock_irqsave(&queue->index_lock, irqflags);
1081
1082 queue->count = 0;
1083 queue->length = 0;
1084
1085 for (i = 0; i < Q_INDEX_MAX; i++)
1086 queue->index[i] = 0;
1087
1088 spin_unlock_irqrestore(&queue->index_lock, irqflags);
1089 }
1090
1091 void rt2x00queue_init_queues(struct rt2x00_dev *rt2x00dev)
1092 {
1093 struct data_queue *queue;
1094 unsigned int i;
1095
1096 queue_for_each(rt2x00dev, queue) {
1097 rt2x00queue_reset(queue);
1098
1099 for (i = 0; i < queue->limit; i++)
1100 rt2x00dev->ops->lib->clear_entry(&queue->entries[i]);
1101 }
1102 }
1103
1104 static int rt2x00queue_alloc_entries(struct data_queue *queue,
1105 const struct data_queue_desc *qdesc)
1106 {
1107 struct queue_entry *entries;
1108 unsigned int entry_size;
1109 unsigned int i;
1110
1111 rt2x00queue_reset(queue);
1112
1113 queue->limit = qdesc->entry_num;
1114 queue->threshold = DIV_ROUND_UP(qdesc->entry_num, 10);
1115 queue->data_size = qdesc->data_size;
1116 queue->desc_size = qdesc->desc_size;
1117
1118 /*
1119 * Allocate all queue entries.
1120 */
1121 entry_size = sizeof(*entries) + qdesc->priv_size;
1122 entries = kcalloc(queue->limit, entry_size, GFP_KERNEL);
1123 if (!entries)
1124 return -ENOMEM;
1125
1126 #define QUEUE_ENTRY_PRIV_OFFSET(__base, __index, __limit, __esize, __psize) \
1127 (((char *)(__base)) + ((__limit) * (__esize)) + \
1128 ((__index) * (__psize)))
1129
1130 for (i = 0; i < queue->limit; i++) {
1131 entries[i].flags = 0;
1132 entries[i].queue = queue;
1133 entries[i].skb = NULL;
1134 entries[i].entry_idx = i;
1135 entries[i].priv_data =
1136 QUEUE_ENTRY_PRIV_OFFSET(entries, i, queue->limit,
1137 sizeof(*entries), qdesc->priv_size);
1138 }
1139
1140 #undef QUEUE_ENTRY_PRIV_OFFSET
1141
1142 queue->entries = entries;
1143
1144 return 0;
1145 }
1146
1147 static void rt2x00queue_free_skbs(struct data_queue *queue)
1148 {
1149 unsigned int i;
1150
1151 if (!queue->entries)
1152 return;
1153
1154 for (i = 0; i < queue->limit; i++) {
1155 rt2x00queue_free_skb(&queue->entries[i]);
1156 }
1157 }
1158
1159 static int rt2x00queue_alloc_rxskbs(struct data_queue *queue)
1160 {
1161 unsigned int i;
1162 struct sk_buff *skb;
1163
1164 for (i = 0; i < queue->limit; i++) {
1165 skb = rt2x00queue_alloc_rxskb(&queue->entries[i], GFP_KERNEL);
1166 if (!skb)
1167 return -ENOMEM;
1168 queue->entries[i].skb = skb;
1169 }
1170
1171 return 0;
1172 }
1173
1174 int rt2x00queue_initialize(struct rt2x00_dev *rt2x00dev)
1175 {
1176 struct data_queue *queue;
1177 int status;
1178
1179 status = rt2x00queue_alloc_entries(rt2x00dev->rx, rt2x00dev->ops->rx);
1180 if (status)
1181 goto exit;
1182
1183 tx_queue_for_each(rt2x00dev, queue) {
1184 status = rt2x00queue_alloc_entries(queue, rt2x00dev->ops->tx);
1185 if (status)
1186 goto exit;
1187 }
1188
1189 status = rt2x00queue_alloc_entries(rt2x00dev->bcn, rt2x00dev->ops->bcn);
1190 if (status)
1191 goto exit;
1192
1193 if (test_bit(REQUIRE_ATIM_QUEUE, &rt2x00dev->cap_flags)) {
1194 status = rt2x00queue_alloc_entries(rt2x00dev->atim,
1195 rt2x00dev->ops->atim);
1196 if (status)
1197 goto exit;
1198 }
1199
1200 status = rt2x00queue_alloc_rxskbs(rt2x00dev->rx);
1201 if (status)
1202 goto exit;
1203
1204 return 0;
1205
1206 exit:
1207 ERROR(rt2x00dev, "Queue entries allocation failed.\n");
1208
1209 rt2x00queue_uninitialize(rt2x00dev);
1210
1211 return status;
1212 }
1213
1214 void rt2x00queue_uninitialize(struct rt2x00_dev *rt2x00dev)
1215 {
1216 struct data_queue *queue;
1217
1218 rt2x00queue_free_skbs(rt2x00dev->rx);
1219
1220 queue_for_each(rt2x00dev, queue) {
1221 kfree(queue->entries);
1222 queue->entries = NULL;
1223 }
1224 }
1225
1226 static void rt2x00queue_init(struct rt2x00_dev *rt2x00dev,
1227 struct data_queue *queue, enum data_queue_qid qid)
1228 {
1229 mutex_init(&queue->status_lock);
1230 spin_lock_init(&queue->tx_lock);
1231 spin_lock_init(&queue->index_lock);
1232
1233 queue->rt2x00dev = rt2x00dev;
1234 queue->qid = qid;
1235 queue->txop = 0;
1236 queue->aifs = 2;
1237 queue->cw_min = 5;
1238 queue->cw_max = 10;
1239 }
1240
1241 int rt2x00queue_allocate(struct rt2x00_dev *rt2x00dev)
1242 {
1243 struct data_queue *queue;
1244 enum data_queue_qid qid;
1245 unsigned int req_atim =
1246 !!test_bit(REQUIRE_ATIM_QUEUE, &rt2x00dev->cap_flags);
1247
1248 /*
1249 * We need the following queues:
1250 * RX: 1
1251 * TX: ops->tx_queues
1252 * Beacon: 1
1253 * Atim: 1 (if required)
1254 */
1255 rt2x00dev->data_queues = 2 + rt2x00dev->ops->tx_queues + req_atim;
1256
1257 queue = kcalloc(rt2x00dev->data_queues, sizeof(*queue), GFP_KERNEL);
1258 if (!queue) {
1259 ERROR(rt2x00dev, "Queue allocation failed.\n");
1260 return -ENOMEM;
1261 }
1262
1263 /*
1264 * Initialize pointers
1265 */
1266 rt2x00dev->rx = queue;
1267 rt2x00dev->tx = &queue[1];
1268 rt2x00dev->bcn = &queue[1 + rt2x00dev->ops->tx_queues];
1269 rt2x00dev->atim = req_atim ? &queue[2 + rt2x00dev->ops->tx_queues] : NULL;
1270
1271 /*
1272 * Initialize queue parameters.
1273 * RX: qid = QID_RX
1274 * TX: qid = QID_AC_VO + index
1275 * TX: cw_min: 2^5 = 32.
1276 * TX: cw_max: 2^10 = 1024.
1277 * BCN: qid = QID_BEACON
1278 * ATIM: qid = QID_ATIM
1279 */
1280 rt2x00queue_init(rt2x00dev, rt2x00dev->rx, QID_RX);
1281
1282 qid = QID_AC_VO;
1283 tx_queue_for_each(rt2x00dev, queue)
1284 rt2x00queue_init(rt2x00dev, queue, qid++);
1285
1286 rt2x00queue_init(rt2x00dev, rt2x00dev->bcn, QID_BEACON);
1287 if (req_atim)
1288 rt2x00queue_init(rt2x00dev, rt2x00dev->atim, QID_ATIM);
1289
1290 return 0;
1291 }
1292
1293 void rt2x00queue_free(struct rt2x00_dev *rt2x00dev)
1294 {
1295 kfree(rt2x00dev->rx);
1296 rt2x00dev->rx = NULL;
1297 rt2x00dev->tx = NULL;
1298 rt2x00dev->bcn = NULL;
1299 }
This page took 0.059 seconds and 5 git commands to generate.