mwifiex: add custom IE framework
[deliverable/linux.git] / drivers / net / wireless / rt2x00 / rt2x00queue.c
1 /*
2 Copyright (C) 2010 Willow Garage <http://www.willowgarage.com>
3 Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
4 Copyright (C) 2004 - 2009 Gertjan van Wingerde <gwingerde@gmail.com>
5 <http://rt2x00.serialmonkey.com>
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the
19 Free Software Foundation, Inc.,
20 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21 */
22
23 /*
24 Module: rt2x00lib
25 Abstract: rt2x00 queue specific routines.
26 */
27
28 #include <linux/slab.h>
29 #include <linux/kernel.h>
30 #include <linux/module.h>
31 #include <linux/dma-mapping.h>
32
33 #include "rt2x00.h"
34 #include "rt2x00lib.h"
35
36 struct sk_buff *rt2x00queue_alloc_rxskb(struct queue_entry *entry, gfp_t gfp)
37 {
38 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
39 struct sk_buff *skb;
40 struct skb_frame_desc *skbdesc;
41 unsigned int frame_size;
42 unsigned int head_size = 0;
43 unsigned int tail_size = 0;
44
45 /*
46 * The frame size includes descriptor size, because the
47 * hardware directly receive the frame into the skbuffer.
48 */
49 frame_size = entry->queue->data_size + entry->queue->desc_size;
50
51 /*
52 * The payload should be aligned to a 4-byte boundary,
53 * this means we need at least 3 bytes for moving the frame
54 * into the correct offset.
55 */
56 head_size = 4;
57
58 /*
59 * For IV/EIV/ICV assembly we must make sure there is
60 * at least 8 bytes bytes available in headroom for IV/EIV
61 * and 8 bytes for ICV data as tailroon.
62 */
63 if (test_bit(CAPABILITY_HW_CRYPTO, &rt2x00dev->cap_flags)) {
64 head_size += 8;
65 tail_size += 8;
66 }
67
68 /*
69 * Allocate skbuffer.
70 */
71 skb = __dev_alloc_skb(frame_size + head_size + tail_size, gfp);
72 if (!skb)
73 return NULL;
74
75 /*
76 * Make sure we not have a frame with the requested bytes
77 * available in the head and tail.
78 */
79 skb_reserve(skb, head_size);
80 skb_put(skb, frame_size);
81
82 /*
83 * Populate skbdesc.
84 */
85 skbdesc = get_skb_frame_desc(skb);
86 memset(skbdesc, 0, sizeof(*skbdesc));
87 skbdesc->entry = entry;
88
89 if (test_bit(REQUIRE_DMA, &rt2x00dev->cap_flags)) {
90 skbdesc->skb_dma = dma_map_single(rt2x00dev->dev,
91 skb->data,
92 skb->len,
93 DMA_FROM_DEVICE);
94 skbdesc->flags |= SKBDESC_DMA_MAPPED_RX;
95 }
96
97 return skb;
98 }
99
100 void rt2x00queue_map_txskb(struct queue_entry *entry)
101 {
102 struct device *dev = entry->queue->rt2x00dev->dev;
103 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
104
105 skbdesc->skb_dma =
106 dma_map_single(dev, entry->skb->data, entry->skb->len, DMA_TO_DEVICE);
107 skbdesc->flags |= SKBDESC_DMA_MAPPED_TX;
108 }
109 EXPORT_SYMBOL_GPL(rt2x00queue_map_txskb);
110
111 void rt2x00queue_unmap_skb(struct queue_entry *entry)
112 {
113 struct device *dev = entry->queue->rt2x00dev->dev;
114 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
115
116 if (skbdesc->flags & SKBDESC_DMA_MAPPED_RX) {
117 dma_unmap_single(dev, skbdesc->skb_dma, entry->skb->len,
118 DMA_FROM_DEVICE);
119 skbdesc->flags &= ~SKBDESC_DMA_MAPPED_RX;
120 } else if (skbdesc->flags & SKBDESC_DMA_MAPPED_TX) {
121 dma_unmap_single(dev, skbdesc->skb_dma, entry->skb->len,
122 DMA_TO_DEVICE);
123 skbdesc->flags &= ~SKBDESC_DMA_MAPPED_TX;
124 }
125 }
126 EXPORT_SYMBOL_GPL(rt2x00queue_unmap_skb);
127
128 void rt2x00queue_free_skb(struct queue_entry *entry)
129 {
130 if (!entry->skb)
131 return;
132
133 rt2x00queue_unmap_skb(entry);
134 dev_kfree_skb_any(entry->skb);
135 entry->skb = NULL;
136 }
137
138 void rt2x00queue_align_frame(struct sk_buff *skb)
139 {
140 unsigned int frame_length = skb->len;
141 unsigned int align = ALIGN_SIZE(skb, 0);
142
143 if (!align)
144 return;
145
146 skb_push(skb, align);
147 memmove(skb->data, skb->data + align, frame_length);
148 skb_trim(skb, frame_length);
149 }
150
151 void rt2x00queue_insert_l2pad(struct sk_buff *skb, unsigned int header_length)
152 {
153 unsigned int payload_length = skb->len - header_length;
154 unsigned int header_align = ALIGN_SIZE(skb, 0);
155 unsigned int payload_align = ALIGN_SIZE(skb, header_length);
156 unsigned int l2pad = payload_length ? L2PAD_SIZE(header_length) : 0;
157
158 /*
159 * Adjust the header alignment if the payload needs to be moved more
160 * than the header.
161 */
162 if (payload_align > header_align)
163 header_align += 4;
164
165 /* There is nothing to do if no alignment is needed */
166 if (!header_align)
167 return;
168
169 /* Reserve the amount of space needed in front of the frame */
170 skb_push(skb, header_align);
171
172 /*
173 * Move the header.
174 */
175 memmove(skb->data, skb->data + header_align, header_length);
176
177 /* Move the payload, if present and if required */
178 if (payload_length && payload_align)
179 memmove(skb->data + header_length + l2pad,
180 skb->data + header_length + l2pad + payload_align,
181 payload_length);
182
183 /* Trim the skb to the correct size */
184 skb_trim(skb, header_length + l2pad + payload_length);
185 }
186
187 void rt2x00queue_remove_l2pad(struct sk_buff *skb, unsigned int header_length)
188 {
189 /*
190 * L2 padding is only present if the skb contains more than just the
191 * IEEE 802.11 header.
192 */
193 unsigned int l2pad = (skb->len > header_length) ?
194 L2PAD_SIZE(header_length) : 0;
195
196 if (!l2pad)
197 return;
198
199 memmove(skb->data + l2pad, skb->data, header_length);
200 skb_pull(skb, l2pad);
201 }
202
203 static void rt2x00queue_create_tx_descriptor_seq(struct rt2x00_dev *rt2x00dev,
204 struct sk_buff *skb,
205 struct txentry_desc *txdesc)
206 {
207 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
208 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
209 struct rt2x00_intf *intf = vif_to_intf(tx_info->control.vif);
210
211 if (!(tx_info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ))
212 return;
213
214 __set_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags);
215
216 if (!test_bit(REQUIRE_SW_SEQNO, &rt2x00dev->cap_flags)) {
217 /*
218 * rt2800 has a H/W (or F/W) bug, device incorrectly increase
219 * seqno on retransmited data (non-QOS) frames. To workaround
220 * the problem let's generate seqno in software if QOS is
221 * disabled.
222 */
223 if (test_bit(CONFIG_QOS_DISABLED, &rt2x00dev->flags))
224 __clear_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags);
225 else
226 /* H/W will generate sequence number */
227 return;
228 }
229
230 /*
231 * The hardware is not able to insert a sequence number. Assign a
232 * software generated one here.
233 *
234 * This is wrong because beacons are not getting sequence
235 * numbers assigned properly.
236 *
237 * A secondary problem exists for drivers that cannot toggle
238 * sequence counting per-frame, since those will override the
239 * sequence counter given by mac80211.
240 */
241 spin_lock(&intf->seqlock);
242
243 if (test_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags))
244 intf->seqno += 0x10;
245 hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
246 hdr->seq_ctrl |= cpu_to_le16(intf->seqno);
247
248 spin_unlock(&intf->seqlock);
249
250 }
251
252 static void rt2x00queue_create_tx_descriptor_plcp(struct rt2x00_dev *rt2x00dev,
253 struct sk_buff *skb,
254 struct txentry_desc *txdesc,
255 const struct rt2x00_rate *hwrate)
256 {
257 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
258 struct ieee80211_tx_rate *txrate = &tx_info->control.rates[0];
259 unsigned int data_length;
260 unsigned int duration;
261 unsigned int residual;
262
263 /*
264 * Determine with what IFS priority this frame should be send.
265 * Set ifs to IFS_SIFS when the this is not the first fragment,
266 * or this fragment came after RTS/CTS.
267 */
268 if (test_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags))
269 txdesc->u.plcp.ifs = IFS_BACKOFF;
270 else
271 txdesc->u.plcp.ifs = IFS_SIFS;
272
273 /* Data length + CRC + Crypto overhead (IV/EIV/ICV/MIC) */
274 data_length = skb->len + 4;
275 data_length += rt2x00crypto_tx_overhead(rt2x00dev, skb);
276
277 /*
278 * PLCP setup
279 * Length calculation depends on OFDM/CCK rate.
280 */
281 txdesc->u.plcp.signal = hwrate->plcp;
282 txdesc->u.plcp.service = 0x04;
283
284 if (hwrate->flags & DEV_RATE_OFDM) {
285 txdesc->u.plcp.length_high = (data_length >> 6) & 0x3f;
286 txdesc->u.plcp.length_low = data_length & 0x3f;
287 } else {
288 /*
289 * Convert length to microseconds.
290 */
291 residual = GET_DURATION_RES(data_length, hwrate->bitrate);
292 duration = GET_DURATION(data_length, hwrate->bitrate);
293
294 if (residual != 0) {
295 duration++;
296
297 /*
298 * Check if we need to set the Length Extension
299 */
300 if (hwrate->bitrate == 110 && residual <= 30)
301 txdesc->u.plcp.service |= 0x80;
302 }
303
304 txdesc->u.plcp.length_high = (duration >> 8) & 0xff;
305 txdesc->u.plcp.length_low = duration & 0xff;
306
307 /*
308 * When preamble is enabled we should set the
309 * preamble bit for the signal.
310 */
311 if (txrate->flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
312 txdesc->u.plcp.signal |= 0x08;
313 }
314 }
315
316 static void rt2x00queue_create_tx_descriptor_ht(struct rt2x00_dev *rt2x00dev,
317 struct sk_buff *skb,
318 struct txentry_desc *txdesc,
319 const struct rt2x00_rate *hwrate)
320 {
321 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
322 struct ieee80211_tx_rate *txrate = &tx_info->control.rates[0];
323 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
324 struct rt2x00_sta *sta_priv = NULL;
325
326 if (tx_info->control.sta) {
327 txdesc->u.ht.mpdu_density =
328 tx_info->control.sta->ht_cap.ampdu_density;
329
330 sta_priv = sta_to_rt2x00_sta(tx_info->control.sta);
331 txdesc->u.ht.wcid = sta_priv->wcid;
332 }
333
334 /*
335 * If IEEE80211_TX_RC_MCS is set txrate->idx just contains the
336 * mcs rate to be used
337 */
338 if (txrate->flags & IEEE80211_TX_RC_MCS) {
339 txdesc->u.ht.mcs = txrate->idx;
340
341 /*
342 * MIMO PS should be set to 1 for STA's using dynamic SM PS
343 * when using more then one tx stream (>MCS7).
344 */
345 if (tx_info->control.sta && txdesc->u.ht.mcs > 7 &&
346 ((tx_info->control.sta->ht_cap.cap &
347 IEEE80211_HT_CAP_SM_PS) >>
348 IEEE80211_HT_CAP_SM_PS_SHIFT) ==
349 WLAN_HT_CAP_SM_PS_DYNAMIC)
350 __set_bit(ENTRY_TXD_HT_MIMO_PS, &txdesc->flags);
351 } else {
352 txdesc->u.ht.mcs = rt2x00_get_rate_mcs(hwrate->mcs);
353 if (txrate->flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
354 txdesc->u.ht.mcs |= 0x08;
355 }
356
357 if (test_bit(CONFIG_HT_DISABLED, &rt2x00dev->flags)) {
358 if (!(tx_info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT))
359 txdesc->u.ht.txop = TXOP_SIFS;
360 else
361 txdesc->u.ht.txop = TXOP_BACKOFF;
362
363 /* Left zero on all other settings. */
364 return;
365 }
366
367 txdesc->u.ht.ba_size = 7; /* FIXME: What value is needed? */
368
369 /*
370 * Only one STBC stream is supported for now.
371 */
372 if (tx_info->flags & IEEE80211_TX_CTL_STBC)
373 txdesc->u.ht.stbc = 1;
374
375 /*
376 * This frame is eligible for an AMPDU, however, don't aggregate
377 * frames that are intended to probe a specific tx rate.
378 */
379 if (tx_info->flags & IEEE80211_TX_CTL_AMPDU &&
380 !(tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE))
381 __set_bit(ENTRY_TXD_HT_AMPDU, &txdesc->flags);
382
383 /*
384 * Set 40Mhz mode if necessary (for legacy rates this will
385 * duplicate the frame to both channels).
386 */
387 if (txrate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH ||
388 txrate->flags & IEEE80211_TX_RC_DUP_DATA)
389 __set_bit(ENTRY_TXD_HT_BW_40, &txdesc->flags);
390 if (txrate->flags & IEEE80211_TX_RC_SHORT_GI)
391 __set_bit(ENTRY_TXD_HT_SHORT_GI, &txdesc->flags);
392
393 /*
394 * Determine IFS values
395 * - Use TXOP_BACKOFF for management frames except beacons
396 * - Use TXOP_SIFS for fragment bursts
397 * - Use TXOP_HTTXOP for everything else
398 *
399 * Note: rt2800 devices won't use CTS protection (if used)
400 * for frames not transmitted with TXOP_HTTXOP
401 */
402 if (ieee80211_is_mgmt(hdr->frame_control) &&
403 !ieee80211_is_beacon(hdr->frame_control))
404 txdesc->u.ht.txop = TXOP_BACKOFF;
405 else if (!(tx_info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT))
406 txdesc->u.ht.txop = TXOP_SIFS;
407 else
408 txdesc->u.ht.txop = TXOP_HTTXOP;
409 }
410
411 static void rt2x00queue_create_tx_descriptor(struct rt2x00_dev *rt2x00dev,
412 struct sk_buff *skb,
413 struct txentry_desc *txdesc)
414 {
415 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
416 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
417 struct ieee80211_tx_rate *txrate = &tx_info->control.rates[0];
418 struct ieee80211_rate *rate;
419 const struct rt2x00_rate *hwrate = NULL;
420
421 memset(txdesc, 0, sizeof(*txdesc));
422
423 /*
424 * Header and frame information.
425 */
426 txdesc->length = skb->len;
427 txdesc->header_length = ieee80211_get_hdrlen_from_skb(skb);
428
429 /*
430 * Check whether this frame is to be acked.
431 */
432 if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK))
433 __set_bit(ENTRY_TXD_ACK, &txdesc->flags);
434
435 /*
436 * Check if this is a RTS/CTS frame
437 */
438 if (ieee80211_is_rts(hdr->frame_control) ||
439 ieee80211_is_cts(hdr->frame_control)) {
440 __set_bit(ENTRY_TXD_BURST, &txdesc->flags);
441 if (ieee80211_is_rts(hdr->frame_control))
442 __set_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags);
443 else
444 __set_bit(ENTRY_TXD_CTS_FRAME, &txdesc->flags);
445 if (tx_info->control.rts_cts_rate_idx >= 0)
446 rate =
447 ieee80211_get_rts_cts_rate(rt2x00dev->hw, tx_info);
448 }
449
450 /*
451 * Determine retry information.
452 */
453 txdesc->retry_limit = tx_info->control.rates[0].count - 1;
454 if (txdesc->retry_limit >= rt2x00dev->long_retry)
455 __set_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags);
456
457 /*
458 * Check if more fragments are pending
459 */
460 if (ieee80211_has_morefrags(hdr->frame_control)) {
461 __set_bit(ENTRY_TXD_BURST, &txdesc->flags);
462 __set_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags);
463 }
464
465 /*
466 * Check if more frames (!= fragments) are pending
467 */
468 if (tx_info->flags & IEEE80211_TX_CTL_MORE_FRAMES)
469 __set_bit(ENTRY_TXD_BURST, &txdesc->flags);
470
471 /*
472 * Beacons and probe responses require the tsf timestamp
473 * to be inserted into the frame.
474 */
475 if (ieee80211_is_beacon(hdr->frame_control) ||
476 ieee80211_is_probe_resp(hdr->frame_control))
477 __set_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags);
478
479 if ((tx_info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT) &&
480 !test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags))
481 __set_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags);
482
483 /*
484 * Determine rate modulation.
485 */
486 if (txrate->flags & IEEE80211_TX_RC_GREEN_FIELD)
487 txdesc->rate_mode = RATE_MODE_HT_GREENFIELD;
488 else if (txrate->flags & IEEE80211_TX_RC_MCS)
489 txdesc->rate_mode = RATE_MODE_HT_MIX;
490 else {
491 rate = ieee80211_get_tx_rate(rt2x00dev->hw, tx_info);
492 hwrate = rt2x00_get_rate(rate->hw_value);
493 if (hwrate->flags & DEV_RATE_OFDM)
494 txdesc->rate_mode = RATE_MODE_OFDM;
495 else
496 txdesc->rate_mode = RATE_MODE_CCK;
497 }
498
499 /*
500 * Apply TX descriptor handling by components
501 */
502 rt2x00crypto_create_tx_descriptor(rt2x00dev, skb, txdesc);
503 rt2x00queue_create_tx_descriptor_seq(rt2x00dev, skb, txdesc);
504
505 if (test_bit(REQUIRE_HT_TX_DESC, &rt2x00dev->cap_flags))
506 rt2x00queue_create_tx_descriptor_ht(rt2x00dev, skb, txdesc,
507 hwrate);
508 else
509 rt2x00queue_create_tx_descriptor_plcp(rt2x00dev, skb, txdesc,
510 hwrate);
511 }
512
513 static int rt2x00queue_write_tx_data(struct queue_entry *entry,
514 struct txentry_desc *txdesc)
515 {
516 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
517
518 /*
519 * This should not happen, we already checked the entry
520 * was ours. When the hardware disagrees there has been
521 * a queue corruption!
522 */
523 if (unlikely(rt2x00dev->ops->lib->get_entry_state &&
524 rt2x00dev->ops->lib->get_entry_state(entry))) {
525 ERROR(rt2x00dev,
526 "Corrupt queue %d, accessing entry which is not ours.\n"
527 "Please file bug report to %s.\n",
528 entry->queue->qid, DRV_PROJECT);
529 return -EINVAL;
530 }
531
532 /*
533 * Add the requested extra tx headroom in front of the skb.
534 */
535 skb_push(entry->skb, rt2x00dev->ops->extra_tx_headroom);
536 memset(entry->skb->data, 0, rt2x00dev->ops->extra_tx_headroom);
537
538 /*
539 * Call the driver's write_tx_data function, if it exists.
540 */
541 if (rt2x00dev->ops->lib->write_tx_data)
542 rt2x00dev->ops->lib->write_tx_data(entry, txdesc);
543
544 /*
545 * Map the skb to DMA.
546 */
547 if (test_bit(REQUIRE_DMA, &rt2x00dev->cap_flags))
548 rt2x00queue_map_txskb(entry);
549
550 return 0;
551 }
552
553 static void rt2x00queue_write_tx_descriptor(struct queue_entry *entry,
554 struct txentry_desc *txdesc)
555 {
556 struct data_queue *queue = entry->queue;
557
558 queue->rt2x00dev->ops->lib->write_tx_desc(entry, txdesc);
559
560 /*
561 * All processing on the frame has been completed, this means
562 * it is now ready to be dumped to userspace through debugfs.
563 */
564 rt2x00debug_dump_frame(queue->rt2x00dev, DUMP_FRAME_TX, entry->skb);
565 }
566
567 static void rt2x00queue_kick_tx_queue(struct data_queue *queue,
568 struct txentry_desc *txdesc)
569 {
570 /*
571 * Check if we need to kick the queue, there are however a few rules
572 * 1) Don't kick unless this is the last in frame in a burst.
573 * When the burst flag is set, this frame is always followed
574 * by another frame which in some way are related to eachother.
575 * This is true for fragments, RTS or CTS-to-self frames.
576 * 2) Rule 1 can be broken when the available entries
577 * in the queue are less then a certain threshold.
578 */
579 if (rt2x00queue_threshold(queue) ||
580 !test_bit(ENTRY_TXD_BURST, &txdesc->flags))
581 queue->rt2x00dev->ops->lib->kick_queue(queue);
582 }
583
584 int rt2x00queue_write_tx_frame(struct data_queue *queue, struct sk_buff *skb,
585 bool local)
586 {
587 struct ieee80211_tx_info *tx_info;
588 struct queue_entry *entry;
589 struct txentry_desc txdesc;
590 struct skb_frame_desc *skbdesc;
591 u8 rate_idx, rate_flags;
592 int ret = 0;
593
594 /*
595 * Copy all TX descriptor information into txdesc,
596 * after that we are free to use the skb->cb array
597 * for our information.
598 */
599 rt2x00queue_create_tx_descriptor(queue->rt2x00dev, skb, &txdesc);
600
601 /*
602 * All information is retrieved from the skb->cb array,
603 * now we should claim ownership of the driver part of that
604 * array, preserving the bitrate index and flags.
605 */
606 tx_info = IEEE80211_SKB_CB(skb);
607 rate_idx = tx_info->control.rates[0].idx;
608 rate_flags = tx_info->control.rates[0].flags;
609 skbdesc = get_skb_frame_desc(skb);
610 memset(skbdesc, 0, sizeof(*skbdesc));
611 skbdesc->tx_rate_idx = rate_idx;
612 skbdesc->tx_rate_flags = rate_flags;
613
614 if (local)
615 skbdesc->flags |= SKBDESC_NOT_MAC80211;
616
617 /*
618 * When hardware encryption is supported, and this frame
619 * is to be encrypted, we should strip the IV/EIV data from
620 * the frame so we can provide it to the driver separately.
621 */
622 if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc.flags) &&
623 !test_bit(ENTRY_TXD_ENCRYPT_IV, &txdesc.flags)) {
624 if (test_bit(REQUIRE_COPY_IV, &queue->rt2x00dev->cap_flags))
625 rt2x00crypto_tx_copy_iv(skb, &txdesc);
626 else
627 rt2x00crypto_tx_remove_iv(skb, &txdesc);
628 }
629
630 /*
631 * When DMA allocation is required we should guarantee to the
632 * driver that the DMA is aligned to a 4-byte boundary.
633 * However some drivers require L2 padding to pad the payload
634 * rather then the header. This could be a requirement for
635 * PCI and USB devices, while header alignment only is valid
636 * for PCI devices.
637 */
638 if (test_bit(REQUIRE_L2PAD, &queue->rt2x00dev->cap_flags))
639 rt2x00queue_insert_l2pad(skb, txdesc.header_length);
640 else if (test_bit(REQUIRE_DMA, &queue->rt2x00dev->cap_flags))
641 rt2x00queue_align_frame(skb);
642
643 /*
644 * That function must be called with bh disabled.
645 */
646 spin_lock(&queue->tx_lock);
647
648 if (unlikely(rt2x00queue_full(queue))) {
649 ERROR(queue->rt2x00dev,
650 "Dropping frame due to full tx queue %d.\n", queue->qid);
651 ret = -ENOBUFS;
652 goto out;
653 }
654
655 entry = rt2x00queue_get_entry(queue, Q_INDEX);
656
657 if (unlikely(test_and_set_bit(ENTRY_OWNER_DEVICE_DATA,
658 &entry->flags))) {
659 ERROR(queue->rt2x00dev,
660 "Arrived at non-free entry in the non-full queue %d.\n"
661 "Please file bug report to %s.\n",
662 queue->qid, DRV_PROJECT);
663 ret = -EINVAL;
664 goto out;
665 }
666
667 skbdesc->entry = entry;
668 entry->skb = skb;
669
670 /*
671 * It could be possible that the queue was corrupted and this
672 * call failed. Since we always return NETDEV_TX_OK to mac80211,
673 * this frame will simply be dropped.
674 */
675 if (unlikely(rt2x00queue_write_tx_data(entry, &txdesc))) {
676 clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
677 entry->skb = NULL;
678 ret = -EIO;
679 goto out;
680 }
681
682 set_bit(ENTRY_DATA_PENDING, &entry->flags);
683
684 rt2x00queue_index_inc(entry, Q_INDEX);
685 rt2x00queue_write_tx_descriptor(entry, &txdesc);
686 rt2x00queue_kick_tx_queue(queue, &txdesc);
687
688 out:
689 spin_unlock(&queue->tx_lock);
690 return ret;
691 }
692
693 int rt2x00queue_clear_beacon(struct rt2x00_dev *rt2x00dev,
694 struct ieee80211_vif *vif)
695 {
696 struct rt2x00_intf *intf = vif_to_intf(vif);
697
698 if (unlikely(!intf->beacon))
699 return -ENOBUFS;
700
701 mutex_lock(&intf->beacon_skb_mutex);
702
703 /*
704 * Clean up the beacon skb.
705 */
706 rt2x00queue_free_skb(intf->beacon);
707
708 /*
709 * Clear beacon (single bssid devices don't need to clear the beacon
710 * since the beacon queue will get stopped anyway).
711 */
712 if (rt2x00dev->ops->lib->clear_beacon)
713 rt2x00dev->ops->lib->clear_beacon(intf->beacon);
714
715 mutex_unlock(&intf->beacon_skb_mutex);
716
717 return 0;
718 }
719
720 int rt2x00queue_update_beacon_locked(struct rt2x00_dev *rt2x00dev,
721 struct ieee80211_vif *vif)
722 {
723 struct rt2x00_intf *intf = vif_to_intf(vif);
724 struct skb_frame_desc *skbdesc;
725 struct txentry_desc txdesc;
726
727 if (unlikely(!intf->beacon))
728 return -ENOBUFS;
729
730 /*
731 * Clean up the beacon skb.
732 */
733 rt2x00queue_free_skb(intf->beacon);
734
735 intf->beacon->skb = ieee80211_beacon_get(rt2x00dev->hw, vif);
736 if (!intf->beacon->skb)
737 return -ENOMEM;
738
739 /*
740 * Copy all TX descriptor information into txdesc,
741 * after that we are free to use the skb->cb array
742 * for our information.
743 */
744 rt2x00queue_create_tx_descriptor(rt2x00dev, intf->beacon->skb, &txdesc);
745
746 /*
747 * Fill in skb descriptor
748 */
749 skbdesc = get_skb_frame_desc(intf->beacon->skb);
750 memset(skbdesc, 0, sizeof(*skbdesc));
751 skbdesc->entry = intf->beacon;
752
753 /*
754 * Send beacon to hardware.
755 */
756 rt2x00dev->ops->lib->write_beacon(intf->beacon, &txdesc);
757
758 return 0;
759
760 }
761
762 int rt2x00queue_update_beacon(struct rt2x00_dev *rt2x00dev,
763 struct ieee80211_vif *vif)
764 {
765 struct rt2x00_intf *intf = vif_to_intf(vif);
766 int ret;
767
768 mutex_lock(&intf->beacon_skb_mutex);
769 ret = rt2x00queue_update_beacon_locked(rt2x00dev, vif);
770 mutex_unlock(&intf->beacon_skb_mutex);
771
772 return ret;
773 }
774
775 bool rt2x00queue_for_each_entry(struct data_queue *queue,
776 enum queue_index start,
777 enum queue_index end,
778 void *data,
779 bool (*fn)(struct queue_entry *entry,
780 void *data))
781 {
782 unsigned long irqflags;
783 unsigned int index_start;
784 unsigned int index_end;
785 unsigned int i;
786
787 if (unlikely(start >= Q_INDEX_MAX || end >= Q_INDEX_MAX)) {
788 ERROR(queue->rt2x00dev,
789 "Entry requested from invalid index range (%d - %d)\n",
790 start, end);
791 return true;
792 }
793
794 /*
795 * Only protect the range we are going to loop over,
796 * if during our loop a extra entry is set to pending
797 * it should not be kicked during this run, since it
798 * is part of another TX operation.
799 */
800 spin_lock_irqsave(&queue->index_lock, irqflags);
801 index_start = queue->index[start];
802 index_end = queue->index[end];
803 spin_unlock_irqrestore(&queue->index_lock, irqflags);
804
805 /*
806 * Start from the TX done pointer, this guarantees that we will
807 * send out all frames in the correct order.
808 */
809 if (index_start < index_end) {
810 for (i = index_start; i < index_end; i++) {
811 if (fn(&queue->entries[i], data))
812 return true;
813 }
814 } else {
815 for (i = index_start; i < queue->limit; i++) {
816 if (fn(&queue->entries[i], data))
817 return true;
818 }
819
820 for (i = 0; i < index_end; i++) {
821 if (fn(&queue->entries[i], data))
822 return true;
823 }
824 }
825
826 return false;
827 }
828 EXPORT_SYMBOL_GPL(rt2x00queue_for_each_entry);
829
830 struct queue_entry *rt2x00queue_get_entry(struct data_queue *queue,
831 enum queue_index index)
832 {
833 struct queue_entry *entry;
834 unsigned long irqflags;
835
836 if (unlikely(index >= Q_INDEX_MAX)) {
837 ERROR(queue->rt2x00dev,
838 "Entry requested from invalid index type (%d)\n", index);
839 return NULL;
840 }
841
842 spin_lock_irqsave(&queue->index_lock, irqflags);
843
844 entry = &queue->entries[queue->index[index]];
845
846 spin_unlock_irqrestore(&queue->index_lock, irqflags);
847
848 return entry;
849 }
850 EXPORT_SYMBOL_GPL(rt2x00queue_get_entry);
851
852 void rt2x00queue_index_inc(struct queue_entry *entry, enum queue_index index)
853 {
854 struct data_queue *queue = entry->queue;
855 unsigned long irqflags;
856
857 if (unlikely(index >= Q_INDEX_MAX)) {
858 ERROR(queue->rt2x00dev,
859 "Index change on invalid index type (%d)\n", index);
860 return;
861 }
862
863 spin_lock_irqsave(&queue->index_lock, irqflags);
864
865 queue->index[index]++;
866 if (queue->index[index] >= queue->limit)
867 queue->index[index] = 0;
868
869 entry->last_action = jiffies;
870
871 if (index == Q_INDEX) {
872 queue->length++;
873 } else if (index == Q_INDEX_DONE) {
874 queue->length--;
875 queue->count++;
876 }
877
878 spin_unlock_irqrestore(&queue->index_lock, irqflags);
879 }
880
881 void rt2x00queue_pause_queue(struct data_queue *queue)
882 {
883 if (!test_bit(DEVICE_STATE_PRESENT, &queue->rt2x00dev->flags) ||
884 !test_bit(QUEUE_STARTED, &queue->flags) ||
885 test_and_set_bit(QUEUE_PAUSED, &queue->flags))
886 return;
887
888 switch (queue->qid) {
889 case QID_AC_VO:
890 case QID_AC_VI:
891 case QID_AC_BE:
892 case QID_AC_BK:
893 /*
894 * For TX queues, we have to disable the queue
895 * inside mac80211.
896 */
897 ieee80211_stop_queue(queue->rt2x00dev->hw, queue->qid);
898 break;
899 default:
900 break;
901 }
902 }
903 EXPORT_SYMBOL_GPL(rt2x00queue_pause_queue);
904
905 void rt2x00queue_unpause_queue(struct data_queue *queue)
906 {
907 if (!test_bit(DEVICE_STATE_PRESENT, &queue->rt2x00dev->flags) ||
908 !test_bit(QUEUE_STARTED, &queue->flags) ||
909 !test_and_clear_bit(QUEUE_PAUSED, &queue->flags))
910 return;
911
912 switch (queue->qid) {
913 case QID_AC_VO:
914 case QID_AC_VI:
915 case QID_AC_BE:
916 case QID_AC_BK:
917 /*
918 * For TX queues, we have to enable the queue
919 * inside mac80211.
920 */
921 ieee80211_wake_queue(queue->rt2x00dev->hw, queue->qid);
922 break;
923 case QID_RX:
924 /*
925 * For RX we need to kick the queue now in order to
926 * receive frames.
927 */
928 queue->rt2x00dev->ops->lib->kick_queue(queue);
929 default:
930 break;
931 }
932 }
933 EXPORT_SYMBOL_GPL(rt2x00queue_unpause_queue);
934
935 void rt2x00queue_start_queue(struct data_queue *queue)
936 {
937 mutex_lock(&queue->status_lock);
938
939 if (!test_bit(DEVICE_STATE_PRESENT, &queue->rt2x00dev->flags) ||
940 test_and_set_bit(QUEUE_STARTED, &queue->flags)) {
941 mutex_unlock(&queue->status_lock);
942 return;
943 }
944
945 set_bit(QUEUE_PAUSED, &queue->flags);
946
947 queue->rt2x00dev->ops->lib->start_queue(queue);
948
949 rt2x00queue_unpause_queue(queue);
950
951 mutex_unlock(&queue->status_lock);
952 }
953 EXPORT_SYMBOL_GPL(rt2x00queue_start_queue);
954
955 void rt2x00queue_stop_queue(struct data_queue *queue)
956 {
957 mutex_lock(&queue->status_lock);
958
959 if (!test_and_clear_bit(QUEUE_STARTED, &queue->flags)) {
960 mutex_unlock(&queue->status_lock);
961 return;
962 }
963
964 rt2x00queue_pause_queue(queue);
965
966 queue->rt2x00dev->ops->lib->stop_queue(queue);
967
968 mutex_unlock(&queue->status_lock);
969 }
970 EXPORT_SYMBOL_GPL(rt2x00queue_stop_queue);
971
972 void rt2x00queue_flush_queue(struct data_queue *queue, bool drop)
973 {
974 bool started;
975 bool tx_queue =
976 (queue->qid == QID_AC_VO) ||
977 (queue->qid == QID_AC_VI) ||
978 (queue->qid == QID_AC_BE) ||
979 (queue->qid == QID_AC_BK);
980
981 mutex_lock(&queue->status_lock);
982
983 /*
984 * If the queue has been started, we must stop it temporarily
985 * to prevent any new frames to be queued on the device. If
986 * we are not dropping the pending frames, the queue must
987 * only be stopped in the software and not the hardware,
988 * otherwise the queue will never become empty on its own.
989 */
990 started = test_bit(QUEUE_STARTED, &queue->flags);
991 if (started) {
992 /*
993 * Pause the queue
994 */
995 rt2x00queue_pause_queue(queue);
996
997 /*
998 * If we are not supposed to drop any pending
999 * frames, this means we must force a start (=kick)
1000 * to the queue to make sure the hardware will
1001 * start transmitting.
1002 */
1003 if (!drop && tx_queue)
1004 queue->rt2x00dev->ops->lib->kick_queue(queue);
1005 }
1006
1007 /*
1008 * Check if driver supports flushing, if that is the case we can
1009 * defer the flushing to the driver. Otherwise we must use the
1010 * alternative which just waits for the queue to become empty.
1011 */
1012 if (likely(queue->rt2x00dev->ops->lib->flush_queue))
1013 queue->rt2x00dev->ops->lib->flush_queue(queue, drop);
1014
1015 /*
1016 * The queue flush has failed...
1017 */
1018 if (unlikely(!rt2x00queue_empty(queue)))
1019 WARNING(queue->rt2x00dev, "Queue %d failed to flush\n", queue->qid);
1020
1021 /*
1022 * Restore the queue to the previous status
1023 */
1024 if (started)
1025 rt2x00queue_unpause_queue(queue);
1026
1027 mutex_unlock(&queue->status_lock);
1028 }
1029 EXPORT_SYMBOL_GPL(rt2x00queue_flush_queue);
1030
1031 void rt2x00queue_start_queues(struct rt2x00_dev *rt2x00dev)
1032 {
1033 struct data_queue *queue;
1034
1035 /*
1036 * rt2x00queue_start_queue will call ieee80211_wake_queue
1037 * for each queue after is has been properly initialized.
1038 */
1039 tx_queue_for_each(rt2x00dev, queue)
1040 rt2x00queue_start_queue(queue);
1041
1042 rt2x00queue_start_queue(rt2x00dev->rx);
1043 }
1044 EXPORT_SYMBOL_GPL(rt2x00queue_start_queues);
1045
1046 void rt2x00queue_stop_queues(struct rt2x00_dev *rt2x00dev)
1047 {
1048 struct data_queue *queue;
1049
1050 /*
1051 * rt2x00queue_stop_queue will call ieee80211_stop_queue
1052 * as well, but we are completely shutting doing everything
1053 * now, so it is much safer to stop all TX queues at once,
1054 * and use rt2x00queue_stop_queue for cleaning up.
1055 */
1056 ieee80211_stop_queues(rt2x00dev->hw);
1057
1058 tx_queue_for_each(rt2x00dev, queue)
1059 rt2x00queue_stop_queue(queue);
1060
1061 rt2x00queue_stop_queue(rt2x00dev->rx);
1062 }
1063 EXPORT_SYMBOL_GPL(rt2x00queue_stop_queues);
1064
1065 void rt2x00queue_flush_queues(struct rt2x00_dev *rt2x00dev, bool drop)
1066 {
1067 struct data_queue *queue;
1068
1069 tx_queue_for_each(rt2x00dev, queue)
1070 rt2x00queue_flush_queue(queue, drop);
1071
1072 rt2x00queue_flush_queue(rt2x00dev->rx, drop);
1073 }
1074 EXPORT_SYMBOL_GPL(rt2x00queue_flush_queues);
1075
1076 static void rt2x00queue_reset(struct data_queue *queue)
1077 {
1078 unsigned long irqflags;
1079 unsigned int i;
1080
1081 spin_lock_irqsave(&queue->index_lock, irqflags);
1082
1083 queue->count = 0;
1084 queue->length = 0;
1085
1086 for (i = 0; i < Q_INDEX_MAX; i++)
1087 queue->index[i] = 0;
1088
1089 spin_unlock_irqrestore(&queue->index_lock, irqflags);
1090 }
1091
1092 void rt2x00queue_init_queues(struct rt2x00_dev *rt2x00dev)
1093 {
1094 struct data_queue *queue;
1095 unsigned int i;
1096
1097 queue_for_each(rt2x00dev, queue) {
1098 rt2x00queue_reset(queue);
1099
1100 for (i = 0; i < queue->limit; i++)
1101 rt2x00dev->ops->lib->clear_entry(&queue->entries[i]);
1102 }
1103 }
1104
1105 static int rt2x00queue_alloc_entries(struct data_queue *queue,
1106 const struct data_queue_desc *qdesc)
1107 {
1108 struct queue_entry *entries;
1109 unsigned int entry_size;
1110 unsigned int i;
1111
1112 rt2x00queue_reset(queue);
1113
1114 queue->limit = qdesc->entry_num;
1115 queue->threshold = DIV_ROUND_UP(qdesc->entry_num, 10);
1116 queue->data_size = qdesc->data_size;
1117 queue->desc_size = qdesc->desc_size;
1118
1119 /*
1120 * Allocate all queue entries.
1121 */
1122 entry_size = sizeof(*entries) + qdesc->priv_size;
1123 entries = kcalloc(queue->limit, entry_size, GFP_KERNEL);
1124 if (!entries)
1125 return -ENOMEM;
1126
1127 #define QUEUE_ENTRY_PRIV_OFFSET(__base, __index, __limit, __esize, __psize) \
1128 (((char *)(__base)) + ((__limit) * (__esize)) + \
1129 ((__index) * (__psize)))
1130
1131 for (i = 0; i < queue->limit; i++) {
1132 entries[i].flags = 0;
1133 entries[i].queue = queue;
1134 entries[i].skb = NULL;
1135 entries[i].entry_idx = i;
1136 entries[i].priv_data =
1137 QUEUE_ENTRY_PRIV_OFFSET(entries, i, queue->limit,
1138 sizeof(*entries), qdesc->priv_size);
1139 }
1140
1141 #undef QUEUE_ENTRY_PRIV_OFFSET
1142
1143 queue->entries = entries;
1144
1145 return 0;
1146 }
1147
1148 static void rt2x00queue_free_skbs(struct data_queue *queue)
1149 {
1150 unsigned int i;
1151
1152 if (!queue->entries)
1153 return;
1154
1155 for (i = 0; i < queue->limit; i++) {
1156 rt2x00queue_free_skb(&queue->entries[i]);
1157 }
1158 }
1159
1160 static int rt2x00queue_alloc_rxskbs(struct data_queue *queue)
1161 {
1162 unsigned int i;
1163 struct sk_buff *skb;
1164
1165 for (i = 0; i < queue->limit; i++) {
1166 skb = rt2x00queue_alloc_rxskb(&queue->entries[i], GFP_KERNEL);
1167 if (!skb)
1168 return -ENOMEM;
1169 queue->entries[i].skb = skb;
1170 }
1171
1172 return 0;
1173 }
1174
1175 int rt2x00queue_initialize(struct rt2x00_dev *rt2x00dev)
1176 {
1177 struct data_queue *queue;
1178 int status;
1179
1180 status = rt2x00queue_alloc_entries(rt2x00dev->rx, rt2x00dev->ops->rx);
1181 if (status)
1182 goto exit;
1183
1184 tx_queue_for_each(rt2x00dev, queue) {
1185 status = rt2x00queue_alloc_entries(queue, rt2x00dev->ops->tx);
1186 if (status)
1187 goto exit;
1188 }
1189
1190 status = rt2x00queue_alloc_entries(rt2x00dev->bcn, rt2x00dev->ops->bcn);
1191 if (status)
1192 goto exit;
1193
1194 if (test_bit(REQUIRE_ATIM_QUEUE, &rt2x00dev->cap_flags)) {
1195 status = rt2x00queue_alloc_entries(rt2x00dev->atim,
1196 rt2x00dev->ops->atim);
1197 if (status)
1198 goto exit;
1199 }
1200
1201 status = rt2x00queue_alloc_rxskbs(rt2x00dev->rx);
1202 if (status)
1203 goto exit;
1204
1205 return 0;
1206
1207 exit:
1208 ERROR(rt2x00dev, "Queue entries allocation failed.\n");
1209
1210 rt2x00queue_uninitialize(rt2x00dev);
1211
1212 return status;
1213 }
1214
1215 void rt2x00queue_uninitialize(struct rt2x00_dev *rt2x00dev)
1216 {
1217 struct data_queue *queue;
1218
1219 rt2x00queue_free_skbs(rt2x00dev->rx);
1220
1221 queue_for_each(rt2x00dev, queue) {
1222 kfree(queue->entries);
1223 queue->entries = NULL;
1224 }
1225 }
1226
1227 static void rt2x00queue_init(struct rt2x00_dev *rt2x00dev,
1228 struct data_queue *queue, enum data_queue_qid qid)
1229 {
1230 mutex_init(&queue->status_lock);
1231 spin_lock_init(&queue->tx_lock);
1232 spin_lock_init(&queue->index_lock);
1233
1234 queue->rt2x00dev = rt2x00dev;
1235 queue->qid = qid;
1236 queue->txop = 0;
1237 queue->aifs = 2;
1238 queue->cw_min = 5;
1239 queue->cw_max = 10;
1240 }
1241
1242 int rt2x00queue_allocate(struct rt2x00_dev *rt2x00dev)
1243 {
1244 struct data_queue *queue;
1245 enum data_queue_qid qid;
1246 unsigned int req_atim =
1247 !!test_bit(REQUIRE_ATIM_QUEUE, &rt2x00dev->cap_flags);
1248
1249 /*
1250 * We need the following queues:
1251 * RX: 1
1252 * TX: ops->tx_queues
1253 * Beacon: 1
1254 * Atim: 1 (if required)
1255 */
1256 rt2x00dev->data_queues = 2 + rt2x00dev->ops->tx_queues + req_atim;
1257
1258 queue = kcalloc(rt2x00dev->data_queues, sizeof(*queue), GFP_KERNEL);
1259 if (!queue) {
1260 ERROR(rt2x00dev, "Queue allocation failed.\n");
1261 return -ENOMEM;
1262 }
1263
1264 /*
1265 * Initialize pointers
1266 */
1267 rt2x00dev->rx = queue;
1268 rt2x00dev->tx = &queue[1];
1269 rt2x00dev->bcn = &queue[1 + rt2x00dev->ops->tx_queues];
1270 rt2x00dev->atim = req_atim ? &queue[2 + rt2x00dev->ops->tx_queues] : NULL;
1271
1272 /*
1273 * Initialize queue parameters.
1274 * RX: qid = QID_RX
1275 * TX: qid = QID_AC_VO + index
1276 * TX: cw_min: 2^5 = 32.
1277 * TX: cw_max: 2^10 = 1024.
1278 * BCN: qid = QID_BEACON
1279 * ATIM: qid = QID_ATIM
1280 */
1281 rt2x00queue_init(rt2x00dev, rt2x00dev->rx, QID_RX);
1282
1283 qid = QID_AC_VO;
1284 tx_queue_for_each(rt2x00dev, queue)
1285 rt2x00queue_init(rt2x00dev, queue, qid++);
1286
1287 rt2x00queue_init(rt2x00dev, rt2x00dev->bcn, QID_BEACON);
1288 if (req_atim)
1289 rt2x00queue_init(rt2x00dev, rt2x00dev->atim, QID_ATIM);
1290
1291 return 0;
1292 }
1293
1294 void rt2x00queue_free(struct rt2x00_dev *rt2x00dev)
1295 {
1296 kfree(rt2x00dev->rx);
1297 rt2x00dev->rx = NULL;
1298 rt2x00dev->tx = NULL;
1299 rt2x00dev->bcn = NULL;
1300 }
This page took 0.058463 seconds and 5 git commands to generate.