rt2x00: trivial: add \n to WARNING message
[deliverable/linux.git] / drivers / net / wireless / rt2x00 / rt2x00queue.c
1 /*
2 Copyright (C) 2010 Willow Garage <http://www.willowgarage.com>
3 Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
4 Copyright (C) 2004 - 2009 Gertjan van Wingerde <gwingerde@gmail.com>
5 <http://rt2x00.serialmonkey.com>
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the
19 Free Software Foundation, Inc.,
20 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21 */
22
23 /*
24 Module: rt2x00lib
25 Abstract: rt2x00 queue specific routines.
26 */
27
28 #include <linux/slab.h>
29 #include <linux/kernel.h>
30 #include <linux/module.h>
31 #include <linux/dma-mapping.h>
32
33 #include "rt2x00.h"
34 #include "rt2x00lib.h"
35
36 struct sk_buff *rt2x00queue_alloc_rxskb(struct queue_entry *entry)
37 {
38 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
39 struct sk_buff *skb;
40 struct skb_frame_desc *skbdesc;
41 unsigned int frame_size;
42 unsigned int head_size = 0;
43 unsigned int tail_size = 0;
44
45 /*
46 * The frame size includes descriptor size, because the
47 * hardware directly receive the frame into the skbuffer.
48 */
49 frame_size = entry->queue->data_size + entry->queue->desc_size;
50
51 /*
52 * The payload should be aligned to a 4-byte boundary,
53 * this means we need at least 3 bytes for moving the frame
54 * into the correct offset.
55 */
56 head_size = 4;
57
58 /*
59 * For IV/EIV/ICV assembly we must make sure there is
60 * at least 8 bytes bytes available in headroom for IV/EIV
61 * and 8 bytes for ICV data as tailroon.
62 */
63 if (test_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags)) {
64 head_size += 8;
65 tail_size += 8;
66 }
67
68 /*
69 * Allocate skbuffer.
70 */
71 skb = dev_alloc_skb(frame_size + head_size + tail_size);
72 if (!skb)
73 return NULL;
74
75 /*
76 * Make sure we not have a frame with the requested bytes
77 * available in the head and tail.
78 */
79 skb_reserve(skb, head_size);
80 skb_put(skb, frame_size);
81
82 /*
83 * Populate skbdesc.
84 */
85 skbdesc = get_skb_frame_desc(skb);
86 memset(skbdesc, 0, sizeof(*skbdesc));
87 skbdesc->entry = entry;
88
89 if (test_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags)) {
90 skbdesc->skb_dma = dma_map_single(rt2x00dev->dev,
91 skb->data,
92 skb->len,
93 DMA_FROM_DEVICE);
94 skbdesc->flags |= SKBDESC_DMA_MAPPED_RX;
95 }
96
97 return skb;
98 }
99
100 void rt2x00queue_map_txskb(struct queue_entry *entry)
101 {
102 struct device *dev = entry->queue->rt2x00dev->dev;
103 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
104
105 skbdesc->skb_dma =
106 dma_map_single(dev, entry->skb->data, entry->skb->len, DMA_TO_DEVICE);
107 skbdesc->flags |= SKBDESC_DMA_MAPPED_TX;
108 }
109 EXPORT_SYMBOL_GPL(rt2x00queue_map_txskb);
110
111 void rt2x00queue_unmap_skb(struct queue_entry *entry)
112 {
113 struct device *dev = entry->queue->rt2x00dev->dev;
114 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
115
116 if (skbdesc->flags & SKBDESC_DMA_MAPPED_RX) {
117 dma_unmap_single(dev, skbdesc->skb_dma, entry->skb->len,
118 DMA_FROM_DEVICE);
119 skbdesc->flags &= ~SKBDESC_DMA_MAPPED_RX;
120 } else if (skbdesc->flags & SKBDESC_DMA_MAPPED_TX) {
121 dma_unmap_single(dev, skbdesc->skb_dma, entry->skb->len,
122 DMA_TO_DEVICE);
123 skbdesc->flags &= ~SKBDESC_DMA_MAPPED_TX;
124 }
125 }
126 EXPORT_SYMBOL_GPL(rt2x00queue_unmap_skb);
127
128 void rt2x00queue_free_skb(struct queue_entry *entry)
129 {
130 if (!entry->skb)
131 return;
132
133 rt2x00queue_unmap_skb(entry);
134 dev_kfree_skb_any(entry->skb);
135 entry->skb = NULL;
136 }
137
138 void rt2x00queue_align_frame(struct sk_buff *skb)
139 {
140 unsigned int frame_length = skb->len;
141 unsigned int align = ALIGN_SIZE(skb, 0);
142
143 if (!align)
144 return;
145
146 skb_push(skb, align);
147 memmove(skb->data, skb->data + align, frame_length);
148 skb_trim(skb, frame_length);
149 }
150
151 void rt2x00queue_align_payload(struct sk_buff *skb, unsigned int header_length)
152 {
153 unsigned int frame_length = skb->len;
154 unsigned int align = ALIGN_SIZE(skb, header_length);
155
156 if (!align)
157 return;
158
159 skb_push(skb, align);
160 memmove(skb->data, skb->data + align, frame_length);
161 skb_trim(skb, frame_length);
162 }
163
164 void rt2x00queue_insert_l2pad(struct sk_buff *skb, unsigned int header_length)
165 {
166 unsigned int payload_length = skb->len - header_length;
167 unsigned int header_align = ALIGN_SIZE(skb, 0);
168 unsigned int payload_align = ALIGN_SIZE(skb, header_length);
169 unsigned int l2pad = payload_length ? L2PAD_SIZE(header_length) : 0;
170
171 /*
172 * Adjust the header alignment if the payload needs to be moved more
173 * than the header.
174 */
175 if (payload_align > header_align)
176 header_align += 4;
177
178 /* There is nothing to do if no alignment is needed */
179 if (!header_align)
180 return;
181
182 /* Reserve the amount of space needed in front of the frame */
183 skb_push(skb, header_align);
184
185 /*
186 * Move the header.
187 */
188 memmove(skb->data, skb->data + header_align, header_length);
189
190 /* Move the payload, if present and if required */
191 if (payload_length && payload_align)
192 memmove(skb->data + header_length + l2pad,
193 skb->data + header_length + l2pad + payload_align,
194 payload_length);
195
196 /* Trim the skb to the correct size */
197 skb_trim(skb, header_length + l2pad + payload_length);
198 }
199
200 void rt2x00queue_remove_l2pad(struct sk_buff *skb, unsigned int header_length)
201 {
202 /*
203 * L2 padding is only present if the skb contains more than just the
204 * IEEE 802.11 header.
205 */
206 unsigned int l2pad = (skb->len > header_length) ?
207 L2PAD_SIZE(header_length) : 0;
208
209 if (!l2pad)
210 return;
211
212 memmove(skb->data + l2pad, skb->data, header_length);
213 skb_pull(skb, l2pad);
214 }
215
216 static void rt2x00queue_create_tx_descriptor_seq(struct queue_entry *entry,
217 struct txentry_desc *txdesc)
218 {
219 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
220 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)entry->skb->data;
221 struct rt2x00_intf *intf = vif_to_intf(tx_info->control.vif);
222 unsigned long irqflags;
223
224 if (!(tx_info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) ||
225 unlikely(!tx_info->control.vif))
226 return;
227
228 /*
229 * Hardware should insert sequence counter.
230 * FIXME: We insert a software sequence counter first for
231 * hardware that doesn't support hardware sequence counting.
232 *
233 * This is wrong because beacons are not getting sequence
234 * numbers assigned properly.
235 *
236 * A secondary problem exists for drivers that cannot toggle
237 * sequence counting per-frame, since those will override the
238 * sequence counter given by mac80211.
239 */
240 spin_lock_irqsave(&intf->seqlock, irqflags);
241
242 if (test_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags))
243 intf->seqno += 0x10;
244 hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
245 hdr->seq_ctrl |= cpu_to_le16(intf->seqno);
246
247 spin_unlock_irqrestore(&intf->seqlock, irqflags);
248
249 __set_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags);
250 }
251
252 static void rt2x00queue_create_tx_descriptor_plcp(struct queue_entry *entry,
253 struct txentry_desc *txdesc,
254 const struct rt2x00_rate *hwrate)
255 {
256 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
257 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
258 struct ieee80211_tx_rate *txrate = &tx_info->control.rates[0];
259 unsigned int data_length;
260 unsigned int duration;
261 unsigned int residual;
262
263 /* Data length + CRC + Crypto overhead (IV/EIV/ICV/MIC) */
264 data_length = entry->skb->len + 4;
265 data_length += rt2x00crypto_tx_overhead(rt2x00dev, entry->skb);
266
267 /*
268 * PLCP setup
269 * Length calculation depends on OFDM/CCK rate.
270 */
271 txdesc->signal = hwrate->plcp;
272 txdesc->service = 0x04;
273
274 if (hwrate->flags & DEV_RATE_OFDM) {
275 txdesc->length_high = (data_length >> 6) & 0x3f;
276 txdesc->length_low = data_length & 0x3f;
277 } else {
278 /*
279 * Convert length to microseconds.
280 */
281 residual = GET_DURATION_RES(data_length, hwrate->bitrate);
282 duration = GET_DURATION(data_length, hwrate->bitrate);
283
284 if (residual != 0) {
285 duration++;
286
287 /*
288 * Check if we need to set the Length Extension
289 */
290 if (hwrate->bitrate == 110 && residual <= 30)
291 txdesc->service |= 0x80;
292 }
293
294 txdesc->length_high = (duration >> 8) & 0xff;
295 txdesc->length_low = duration & 0xff;
296
297 /*
298 * When preamble is enabled we should set the
299 * preamble bit for the signal.
300 */
301 if (txrate->flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
302 txdesc->signal |= 0x08;
303 }
304 }
305
306 static void rt2x00queue_create_tx_descriptor(struct queue_entry *entry,
307 struct txentry_desc *txdesc)
308 {
309 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
310 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
311 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)entry->skb->data;
312 struct ieee80211_rate *rate =
313 ieee80211_get_tx_rate(rt2x00dev->hw, tx_info);
314 const struct rt2x00_rate *hwrate;
315
316 memset(txdesc, 0, sizeof(*txdesc));
317
318 /*
319 * Header and frame information.
320 */
321 txdesc->length = entry->skb->len;
322 txdesc->header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
323
324 /*
325 * Check whether this frame is to be acked.
326 */
327 if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK))
328 __set_bit(ENTRY_TXD_ACK, &txdesc->flags);
329
330 /*
331 * Check if this is a RTS/CTS frame
332 */
333 if (ieee80211_is_rts(hdr->frame_control) ||
334 ieee80211_is_cts(hdr->frame_control)) {
335 __set_bit(ENTRY_TXD_BURST, &txdesc->flags);
336 if (ieee80211_is_rts(hdr->frame_control))
337 __set_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags);
338 else
339 __set_bit(ENTRY_TXD_CTS_FRAME, &txdesc->flags);
340 if (tx_info->control.rts_cts_rate_idx >= 0)
341 rate =
342 ieee80211_get_rts_cts_rate(rt2x00dev->hw, tx_info);
343 }
344
345 /*
346 * Determine retry information.
347 */
348 txdesc->retry_limit = tx_info->control.rates[0].count - 1;
349 if (txdesc->retry_limit >= rt2x00dev->long_retry)
350 __set_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags);
351
352 /*
353 * Check if more fragments are pending
354 */
355 if (ieee80211_has_morefrags(hdr->frame_control)) {
356 __set_bit(ENTRY_TXD_BURST, &txdesc->flags);
357 __set_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags);
358 }
359
360 /*
361 * Check if more frames (!= fragments) are pending
362 */
363 if (tx_info->flags & IEEE80211_TX_CTL_MORE_FRAMES)
364 __set_bit(ENTRY_TXD_BURST, &txdesc->flags);
365
366 /*
367 * Beacons and probe responses require the tsf timestamp
368 * to be inserted into the frame, except for a frame that has been injected
369 * through a monitor interface. This latter is needed for testing a
370 * monitor interface.
371 */
372 if ((ieee80211_is_beacon(hdr->frame_control) ||
373 ieee80211_is_probe_resp(hdr->frame_control)) &&
374 (!(tx_info->flags & IEEE80211_TX_CTL_INJECTED)))
375 __set_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags);
376
377 /*
378 * Determine with what IFS priority this frame should be send.
379 * Set ifs to IFS_SIFS when the this is not the first fragment,
380 * or this fragment came after RTS/CTS.
381 */
382 if ((tx_info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT) &&
383 !test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags)) {
384 __set_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags);
385 txdesc->ifs = IFS_BACKOFF;
386 } else
387 txdesc->ifs = IFS_SIFS;
388
389 /*
390 * Determine rate modulation.
391 */
392 hwrate = rt2x00_get_rate(rate->hw_value);
393 txdesc->rate_mode = RATE_MODE_CCK;
394 if (hwrate->flags & DEV_RATE_OFDM)
395 txdesc->rate_mode = RATE_MODE_OFDM;
396
397 /*
398 * Apply TX descriptor handling by components
399 */
400 rt2x00crypto_create_tx_descriptor(entry, txdesc);
401 rt2x00ht_create_tx_descriptor(entry, txdesc, hwrate);
402 rt2x00queue_create_tx_descriptor_seq(entry, txdesc);
403 rt2x00queue_create_tx_descriptor_plcp(entry, txdesc, hwrate);
404 }
405
406 static int rt2x00queue_write_tx_data(struct queue_entry *entry,
407 struct txentry_desc *txdesc)
408 {
409 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
410
411 /*
412 * This should not happen, we already checked the entry
413 * was ours. When the hardware disagrees there has been
414 * a queue corruption!
415 */
416 if (unlikely(rt2x00dev->ops->lib->get_entry_state &&
417 rt2x00dev->ops->lib->get_entry_state(entry))) {
418 ERROR(rt2x00dev,
419 "Corrupt queue %d, accessing entry which is not ours.\n"
420 "Please file bug report to %s.\n",
421 entry->queue->qid, DRV_PROJECT);
422 return -EINVAL;
423 }
424
425 /*
426 * Add the requested extra tx headroom in front of the skb.
427 */
428 skb_push(entry->skb, rt2x00dev->ops->extra_tx_headroom);
429 memset(entry->skb->data, 0, rt2x00dev->ops->extra_tx_headroom);
430
431 /*
432 * Call the driver's write_tx_data function, if it exists.
433 */
434 if (rt2x00dev->ops->lib->write_tx_data)
435 rt2x00dev->ops->lib->write_tx_data(entry, txdesc);
436
437 /*
438 * Map the skb to DMA.
439 */
440 if (test_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags))
441 rt2x00queue_map_txskb(entry);
442
443 return 0;
444 }
445
446 static void rt2x00queue_write_tx_descriptor(struct queue_entry *entry,
447 struct txentry_desc *txdesc)
448 {
449 struct data_queue *queue = entry->queue;
450
451 queue->rt2x00dev->ops->lib->write_tx_desc(entry, txdesc);
452
453 /*
454 * All processing on the frame has been completed, this means
455 * it is now ready to be dumped to userspace through debugfs.
456 */
457 rt2x00debug_dump_frame(queue->rt2x00dev, DUMP_FRAME_TX, entry->skb);
458 }
459
460 static void rt2x00queue_kick_tx_queue(struct data_queue *queue,
461 struct txentry_desc *txdesc)
462 {
463 /*
464 * Check if we need to kick the queue, there are however a few rules
465 * 1) Don't kick unless this is the last in frame in a burst.
466 * When the burst flag is set, this frame is always followed
467 * by another frame which in some way are related to eachother.
468 * This is true for fragments, RTS or CTS-to-self frames.
469 * 2) Rule 1 can be broken when the available entries
470 * in the queue are less then a certain threshold.
471 */
472 if (rt2x00queue_threshold(queue) ||
473 !test_bit(ENTRY_TXD_BURST, &txdesc->flags))
474 queue->rt2x00dev->ops->lib->kick_queue(queue);
475 }
476
477 int rt2x00queue_write_tx_frame(struct data_queue *queue, struct sk_buff *skb,
478 bool local)
479 {
480 struct ieee80211_tx_info *tx_info;
481 struct queue_entry *entry = rt2x00queue_get_entry(queue, Q_INDEX);
482 struct txentry_desc txdesc;
483 struct skb_frame_desc *skbdesc;
484 u8 rate_idx, rate_flags;
485
486 if (unlikely(rt2x00queue_full(queue)))
487 return -ENOBUFS;
488
489 if (unlikely(test_and_set_bit(ENTRY_OWNER_DEVICE_DATA,
490 &entry->flags))) {
491 ERROR(queue->rt2x00dev,
492 "Arrived at non-free entry in the non-full queue %d.\n"
493 "Please file bug report to %s.\n",
494 queue->qid, DRV_PROJECT);
495 return -EINVAL;
496 }
497
498 /*
499 * Copy all TX descriptor information into txdesc,
500 * after that we are free to use the skb->cb array
501 * for our information.
502 */
503 entry->skb = skb;
504 rt2x00queue_create_tx_descriptor(entry, &txdesc);
505
506 /*
507 * All information is retrieved from the skb->cb array,
508 * now we should claim ownership of the driver part of that
509 * array, preserving the bitrate index and flags.
510 */
511 tx_info = IEEE80211_SKB_CB(skb);
512 rate_idx = tx_info->control.rates[0].idx;
513 rate_flags = tx_info->control.rates[0].flags;
514 skbdesc = get_skb_frame_desc(skb);
515 memset(skbdesc, 0, sizeof(*skbdesc));
516 skbdesc->entry = entry;
517 skbdesc->tx_rate_idx = rate_idx;
518 skbdesc->tx_rate_flags = rate_flags;
519
520 if (local)
521 skbdesc->flags |= SKBDESC_NOT_MAC80211;
522
523 /*
524 * When hardware encryption is supported, and this frame
525 * is to be encrypted, we should strip the IV/EIV data from
526 * the frame so we can provide it to the driver separately.
527 */
528 if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc.flags) &&
529 !test_bit(ENTRY_TXD_ENCRYPT_IV, &txdesc.flags)) {
530 if (test_bit(DRIVER_REQUIRE_COPY_IV, &queue->rt2x00dev->flags))
531 rt2x00crypto_tx_copy_iv(skb, &txdesc);
532 else
533 rt2x00crypto_tx_remove_iv(skb, &txdesc);
534 }
535
536 /*
537 * When DMA allocation is required we should guarentee to the
538 * driver that the DMA is aligned to a 4-byte boundary.
539 * However some drivers require L2 padding to pad the payload
540 * rather then the header. This could be a requirement for
541 * PCI and USB devices, while header alignment only is valid
542 * for PCI devices.
543 */
544 if (test_bit(DRIVER_REQUIRE_L2PAD, &queue->rt2x00dev->flags))
545 rt2x00queue_insert_l2pad(entry->skb, txdesc.header_length);
546 else if (test_bit(DRIVER_REQUIRE_DMA, &queue->rt2x00dev->flags))
547 rt2x00queue_align_frame(entry->skb);
548
549 /*
550 * It could be possible that the queue was corrupted and this
551 * call failed. Since we always return NETDEV_TX_OK to mac80211,
552 * this frame will simply be dropped.
553 */
554 if (unlikely(rt2x00queue_write_tx_data(entry, &txdesc))) {
555 clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
556 entry->skb = NULL;
557 return -EIO;
558 }
559
560 set_bit(ENTRY_DATA_PENDING, &entry->flags);
561
562 rt2x00queue_index_inc(queue, Q_INDEX);
563 rt2x00queue_write_tx_descriptor(entry, &txdesc);
564 rt2x00queue_kick_tx_queue(queue, &txdesc);
565
566 return 0;
567 }
568
569 int rt2x00queue_clear_beacon(struct rt2x00_dev *rt2x00dev,
570 struct ieee80211_vif *vif)
571 {
572 struct rt2x00_intf *intf = vif_to_intf(vif);
573
574 if (unlikely(!intf->beacon))
575 return -ENOBUFS;
576
577 mutex_lock(&intf->beacon_skb_mutex);
578
579 /*
580 * Clean up the beacon skb.
581 */
582 rt2x00queue_free_skb(intf->beacon);
583
584 /*
585 * Clear beacon (single bssid devices don't need to clear the beacon
586 * since the beacon queue will get stopped anyway).
587 */
588 if (rt2x00dev->ops->lib->clear_beacon)
589 rt2x00dev->ops->lib->clear_beacon(intf->beacon);
590
591 mutex_unlock(&intf->beacon_skb_mutex);
592
593 return 0;
594 }
595
596 int rt2x00queue_update_beacon_locked(struct rt2x00_dev *rt2x00dev,
597 struct ieee80211_vif *vif)
598 {
599 struct rt2x00_intf *intf = vif_to_intf(vif);
600 struct skb_frame_desc *skbdesc;
601 struct txentry_desc txdesc;
602
603 if (unlikely(!intf->beacon))
604 return -ENOBUFS;
605
606 /*
607 * Clean up the beacon skb.
608 */
609 rt2x00queue_free_skb(intf->beacon);
610
611 intf->beacon->skb = ieee80211_beacon_get(rt2x00dev->hw, vif);
612 if (!intf->beacon->skb)
613 return -ENOMEM;
614
615 /*
616 * Copy all TX descriptor information into txdesc,
617 * after that we are free to use the skb->cb array
618 * for our information.
619 */
620 rt2x00queue_create_tx_descriptor(intf->beacon, &txdesc);
621
622 /*
623 * Fill in skb descriptor
624 */
625 skbdesc = get_skb_frame_desc(intf->beacon->skb);
626 memset(skbdesc, 0, sizeof(*skbdesc));
627 skbdesc->entry = intf->beacon;
628
629 /*
630 * Send beacon to hardware.
631 */
632 rt2x00dev->ops->lib->write_beacon(intf->beacon, &txdesc);
633
634 return 0;
635
636 }
637
638 int rt2x00queue_update_beacon(struct rt2x00_dev *rt2x00dev,
639 struct ieee80211_vif *vif)
640 {
641 struct rt2x00_intf *intf = vif_to_intf(vif);
642 int ret;
643
644 mutex_lock(&intf->beacon_skb_mutex);
645 ret = rt2x00queue_update_beacon_locked(rt2x00dev, vif);
646 mutex_unlock(&intf->beacon_skb_mutex);
647
648 return ret;
649 }
650
651 void rt2x00queue_for_each_entry(struct data_queue *queue,
652 enum queue_index start,
653 enum queue_index end,
654 void (*fn)(struct queue_entry *entry))
655 {
656 unsigned long irqflags;
657 unsigned int index_start;
658 unsigned int index_end;
659 unsigned int i;
660
661 if (unlikely(start >= Q_INDEX_MAX || end >= Q_INDEX_MAX)) {
662 ERROR(queue->rt2x00dev,
663 "Entry requested from invalid index range (%d - %d)\n",
664 start, end);
665 return;
666 }
667
668 /*
669 * Only protect the range we are going to loop over,
670 * if during our loop a extra entry is set to pending
671 * it should not be kicked during this run, since it
672 * is part of another TX operation.
673 */
674 spin_lock_irqsave(&queue->index_lock, irqflags);
675 index_start = queue->index[start];
676 index_end = queue->index[end];
677 spin_unlock_irqrestore(&queue->index_lock, irqflags);
678
679 /*
680 * Start from the TX done pointer, this guarentees that we will
681 * send out all frames in the correct order.
682 */
683 if (index_start < index_end) {
684 for (i = index_start; i < index_end; i++)
685 fn(&queue->entries[i]);
686 } else {
687 for (i = index_start; i < queue->limit; i++)
688 fn(&queue->entries[i]);
689
690 for (i = 0; i < index_end; i++)
691 fn(&queue->entries[i]);
692 }
693 }
694 EXPORT_SYMBOL_GPL(rt2x00queue_for_each_entry);
695
696 struct data_queue *rt2x00queue_get_queue(struct rt2x00_dev *rt2x00dev,
697 const enum data_queue_qid queue)
698 {
699 int atim = test_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags);
700
701 if (queue == QID_RX)
702 return rt2x00dev->rx;
703
704 if (queue < rt2x00dev->ops->tx_queues && rt2x00dev->tx)
705 return &rt2x00dev->tx[queue];
706
707 if (!rt2x00dev->bcn)
708 return NULL;
709
710 if (queue == QID_BEACON)
711 return &rt2x00dev->bcn[0];
712 else if (queue == QID_ATIM && atim)
713 return &rt2x00dev->bcn[1];
714
715 return NULL;
716 }
717 EXPORT_SYMBOL_GPL(rt2x00queue_get_queue);
718
719 struct queue_entry *rt2x00queue_get_entry(struct data_queue *queue,
720 enum queue_index index)
721 {
722 struct queue_entry *entry;
723 unsigned long irqflags;
724
725 if (unlikely(index >= Q_INDEX_MAX)) {
726 ERROR(queue->rt2x00dev,
727 "Entry requested from invalid index type (%d)\n", index);
728 return NULL;
729 }
730
731 spin_lock_irqsave(&queue->index_lock, irqflags);
732
733 entry = &queue->entries[queue->index[index]];
734
735 spin_unlock_irqrestore(&queue->index_lock, irqflags);
736
737 return entry;
738 }
739 EXPORT_SYMBOL_GPL(rt2x00queue_get_entry);
740
741 void rt2x00queue_index_inc(struct data_queue *queue, enum queue_index index)
742 {
743 unsigned long irqflags;
744
745 if (unlikely(index >= Q_INDEX_MAX)) {
746 ERROR(queue->rt2x00dev,
747 "Index change on invalid index type (%d)\n", index);
748 return;
749 }
750
751 spin_lock_irqsave(&queue->index_lock, irqflags);
752
753 queue->index[index]++;
754 if (queue->index[index] >= queue->limit)
755 queue->index[index] = 0;
756
757 queue->last_action[index] = jiffies;
758
759 if (index == Q_INDEX) {
760 queue->length++;
761 } else if (index == Q_INDEX_DONE) {
762 queue->length--;
763 queue->count++;
764 }
765
766 spin_unlock_irqrestore(&queue->index_lock, irqflags);
767 }
768
769 void rt2x00queue_pause_queue(struct data_queue *queue)
770 {
771 if (!test_bit(DEVICE_STATE_PRESENT, &queue->rt2x00dev->flags) ||
772 !test_bit(QUEUE_STARTED, &queue->flags) ||
773 test_and_set_bit(QUEUE_PAUSED, &queue->flags))
774 return;
775
776 switch (queue->qid) {
777 case QID_AC_VO:
778 case QID_AC_VI:
779 case QID_AC_BE:
780 case QID_AC_BK:
781 /*
782 * For TX queues, we have to disable the queue
783 * inside mac80211.
784 */
785 ieee80211_stop_queue(queue->rt2x00dev->hw, queue->qid);
786 break;
787 default:
788 break;
789 }
790 }
791 EXPORT_SYMBOL_GPL(rt2x00queue_pause_queue);
792
793 void rt2x00queue_unpause_queue(struct data_queue *queue)
794 {
795 if (!test_bit(DEVICE_STATE_PRESENT, &queue->rt2x00dev->flags) ||
796 !test_bit(QUEUE_STARTED, &queue->flags) ||
797 !test_and_clear_bit(QUEUE_PAUSED, &queue->flags))
798 return;
799
800 switch (queue->qid) {
801 case QID_AC_VO:
802 case QID_AC_VI:
803 case QID_AC_BE:
804 case QID_AC_BK:
805 /*
806 * For TX queues, we have to enable the queue
807 * inside mac80211.
808 */
809 ieee80211_wake_queue(queue->rt2x00dev->hw, queue->qid);
810 break;
811 case QID_RX:
812 /*
813 * For RX we need to kick the queue now in order to
814 * receive frames.
815 */
816 queue->rt2x00dev->ops->lib->kick_queue(queue);
817 default:
818 break;
819 }
820 }
821 EXPORT_SYMBOL_GPL(rt2x00queue_unpause_queue);
822
823 void rt2x00queue_start_queue(struct data_queue *queue)
824 {
825 mutex_lock(&queue->status_lock);
826
827 if (!test_bit(DEVICE_STATE_PRESENT, &queue->rt2x00dev->flags) ||
828 test_and_set_bit(QUEUE_STARTED, &queue->flags)) {
829 mutex_unlock(&queue->status_lock);
830 return;
831 }
832
833 set_bit(QUEUE_PAUSED, &queue->flags);
834
835 queue->rt2x00dev->ops->lib->start_queue(queue);
836
837 rt2x00queue_unpause_queue(queue);
838
839 mutex_unlock(&queue->status_lock);
840 }
841 EXPORT_SYMBOL_GPL(rt2x00queue_start_queue);
842
843 void rt2x00queue_stop_queue(struct data_queue *queue)
844 {
845 mutex_lock(&queue->status_lock);
846
847 if (!test_and_clear_bit(QUEUE_STARTED, &queue->flags)) {
848 mutex_unlock(&queue->status_lock);
849 return;
850 }
851
852 rt2x00queue_pause_queue(queue);
853
854 queue->rt2x00dev->ops->lib->stop_queue(queue);
855
856 mutex_unlock(&queue->status_lock);
857 }
858 EXPORT_SYMBOL_GPL(rt2x00queue_stop_queue);
859
860 void rt2x00queue_flush_queue(struct data_queue *queue, bool drop)
861 {
862 unsigned int i;
863 bool started;
864 bool tx_queue =
865 (queue->qid == QID_AC_VO) ||
866 (queue->qid == QID_AC_VI) ||
867 (queue->qid == QID_AC_BE) ||
868 (queue->qid == QID_AC_BK);
869
870 mutex_lock(&queue->status_lock);
871
872 /*
873 * If the queue has been started, we must stop it temporarily
874 * to prevent any new frames to be queued on the device. If
875 * we are not dropping the pending frames, the queue must
876 * only be stopped in the software and not the hardware,
877 * otherwise the queue will never become empty on its own.
878 */
879 started = test_bit(QUEUE_STARTED, &queue->flags);
880 if (started) {
881 /*
882 * Pause the queue
883 */
884 rt2x00queue_pause_queue(queue);
885
886 /*
887 * If we are not supposed to drop any pending
888 * frames, this means we must force a start (=kick)
889 * to the queue to make sure the hardware will
890 * start transmitting.
891 */
892 if (!drop && tx_queue)
893 queue->rt2x00dev->ops->lib->kick_queue(queue);
894 }
895
896 /*
897 * Check if driver supports flushing, we can only guarentee
898 * full support for flushing if the driver is able
899 * to cancel all pending frames (drop = true).
900 */
901 if (drop && queue->rt2x00dev->ops->lib->flush_queue)
902 queue->rt2x00dev->ops->lib->flush_queue(queue);
903
904 /*
905 * When we don't want to drop any frames, or when
906 * the driver doesn't fully flush the queue correcly,
907 * we must wait for the queue to become empty.
908 */
909 for (i = 0; !rt2x00queue_empty(queue) && i < 100; i++)
910 msleep(10);
911
912 /*
913 * The queue flush has failed...
914 */
915 if (unlikely(!rt2x00queue_empty(queue)))
916 WARNING(queue->rt2x00dev, "Queue %d failed to flush\n", queue->qid);
917
918 /*
919 * Restore the queue to the previous status
920 */
921 if (started)
922 rt2x00queue_unpause_queue(queue);
923
924 mutex_unlock(&queue->status_lock);
925 }
926 EXPORT_SYMBOL_GPL(rt2x00queue_flush_queue);
927
928 void rt2x00queue_start_queues(struct rt2x00_dev *rt2x00dev)
929 {
930 struct data_queue *queue;
931
932 /*
933 * rt2x00queue_start_queue will call ieee80211_wake_queue
934 * for each queue after is has been properly initialized.
935 */
936 tx_queue_for_each(rt2x00dev, queue)
937 rt2x00queue_start_queue(queue);
938
939 rt2x00queue_start_queue(rt2x00dev->rx);
940 }
941 EXPORT_SYMBOL_GPL(rt2x00queue_start_queues);
942
943 void rt2x00queue_stop_queues(struct rt2x00_dev *rt2x00dev)
944 {
945 struct data_queue *queue;
946
947 /*
948 * rt2x00queue_stop_queue will call ieee80211_stop_queue
949 * as well, but we are completely shutting doing everything
950 * now, so it is much safer to stop all TX queues at once,
951 * and use rt2x00queue_stop_queue for cleaning up.
952 */
953 ieee80211_stop_queues(rt2x00dev->hw);
954
955 tx_queue_for_each(rt2x00dev, queue)
956 rt2x00queue_stop_queue(queue);
957
958 rt2x00queue_stop_queue(rt2x00dev->rx);
959 }
960 EXPORT_SYMBOL_GPL(rt2x00queue_stop_queues);
961
962 void rt2x00queue_flush_queues(struct rt2x00_dev *rt2x00dev, bool drop)
963 {
964 struct data_queue *queue;
965
966 tx_queue_for_each(rt2x00dev, queue)
967 rt2x00queue_flush_queue(queue, drop);
968
969 rt2x00queue_flush_queue(rt2x00dev->rx, drop);
970 }
971 EXPORT_SYMBOL_GPL(rt2x00queue_flush_queues);
972
973 static void rt2x00queue_reset(struct data_queue *queue)
974 {
975 unsigned long irqflags;
976 unsigned int i;
977
978 spin_lock_irqsave(&queue->index_lock, irqflags);
979
980 queue->count = 0;
981 queue->length = 0;
982
983 for (i = 0; i < Q_INDEX_MAX; i++) {
984 queue->index[i] = 0;
985 queue->last_action[i] = jiffies;
986 }
987
988 spin_unlock_irqrestore(&queue->index_lock, irqflags);
989 }
990
991 void rt2x00queue_init_queues(struct rt2x00_dev *rt2x00dev)
992 {
993 struct data_queue *queue;
994 unsigned int i;
995
996 queue_for_each(rt2x00dev, queue) {
997 rt2x00queue_reset(queue);
998
999 for (i = 0; i < queue->limit; i++)
1000 rt2x00dev->ops->lib->clear_entry(&queue->entries[i]);
1001 }
1002 }
1003
1004 static int rt2x00queue_alloc_entries(struct data_queue *queue,
1005 const struct data_queue_desc *qdesc)
1006 {
1007 struct queue_entry *entries;
1008 unsigned int entry_size;
1009 unsigned int i;
1010
1011 rt2x00queue_reset(queue);
1012
1013 queue->limit = qdesc->entry_num;
1014 queue->threshold = DIV_ROUND_UP(qdesc->entry_num, 10);
1015 queue->data_size = qdesc->data_size;
1016 queue->desc_size = qdesc->desc_size;
1017
1018 /*
1019 * Allocate all queue entries.
1020 */
1021 entry_size = sizeof(*entries) + qdesc->priv_size;
1022 entries = kcalloc(queue->limit, entry_size, GFP_KERNEL);
1023 if (!entries)
1024 return -ENOMEM;
1025
1026 #define QUEUE_ENTRY_PRIV_OFFSET(__base, __index, __limit, __esize, __psize) \
1027 (((char *)(__base)) + ((__limit) * (__esize)) + \
1028 ((__index) * (__psize)))
1029
1030 for (i = 0; i < queue->limit; i++) {
1031 entries[i].flags = 0;
1032 entries[i].queue = queue;
1033 entries[i].skb = NULL;
1034 entries[i].entry_idx = i;
1035 entries[i].priv_data =
1036 QUEUE_ENTRY_PRIV_OFFSET(entries, i, queue->limit,
1037 sizeof(*entries), qdesc->priv_size);
1038 }
1039
1040 #undef QUEUE_ENTRY_PRIV_OFFSET
1041
1042 queue->entries = entries;
1043
1044 return 0;
1045 }
1046
1047 static void rt2x00queue_free_skbs(struct data_queue *queue)
1048 {
1049 unsigned int i;
1050
1051 if (!queue->entries)
1052 return;
1053
1054 for (i = 0; i < queue->limit; i++) {
1055 rt2x00queue_free_skb(&queue->entries[i]);
1056 }
1057 }
1058
1059 static int rt2x00queue_alloc_rxskbs(struct data_queue *queue)
1060 {
1061 unsigned int i;
1062 struct sk_buff *skb;
1063
1064 for (i = 0; i < queue->limit; i++) {
1065 skb = rt2x00queue_alloc_rxskb(&queue->entries[i]);
1066 if (!skb)
1067 return -ENOMEM;
1068 queue->entries[i].skb = skb;
1069 }
1070
1071 return 0;
1072 }
1073
1074 int rt2x00queue_initialize(struct rt2x00_dev *rt2x00dev)
1075 {
1076 struct data_queue *queue;
1077 int status;
1078
1079 status = rt2x00queue_alloc_entries(rt2x00dev->rx, rt2x00dev->ops->rx);
1080 if (status)
1081 goto exit;
1082
1083 tx_queue_for_each(rt2x00dev, queue) {
1084 status = rt2x00queue_alloc_entries(queue, rt2x00dev->ops->tx);
1085 if (status)
1086 goto exit;
1087 }
1088
1089 status = rt2x00queue_alloc_entries(rt2x00dev->bcn, rt2x00dev->ops->bcn);
1090 if (status)
1091 goto exit;
1092
1093 if (test_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags)) {
1094 status = rt2x00queue_alloc_entries(&rt2x00dev->bcn[1],
1095 rt2x00dev->ops->atim);
1096 if (status)
1097 goto exit;
1098 }
1099
1100 status = rt2x00queue_alloc_rxskbs(rt2x00dev->rx);
1101 if (status)
1102 goto exit;
1103
1104 return 0;
1105
1106 exit:
1107 ERROR(rt2x00dev, "Queue entries allocation failed.\n");
1108
1109 rt2x00queue_uninitialize(rt2x00dev);
1110
1111 return status;
1112 }
1113
1114 void rt2x00queue_uninitialize(struct rt2x00_dev *rt2x00dev)
1115 {
1116 struct data_queue *queue;
1117
1118 rt2x00queue_free_skbs(rt2x00dev->rx);
1119
1120 queue_for_each(rt2x00dev, queue) {
1121 kfree(queue->entries);
1122 queue->entries = NULL;
1123 }
1124 }
1125
1126 static void rt2x00queue_init(struct rt2x00_dev *rt2x00dev,
1127 struct data_queue *queue, enum data_queue_qid qid)
1128 {
1129 mutex_init(&queue->status_lock);
1130 spin_lock_init(&queue->index_lock);
1131
1132 queue->rt2x00dev = rt2x00dev;
1133 queue->qid = qid;
1134 queue->txop = 0;
1135 queue->aifs = 2;
1136 queue->cw_min = 5;
1137 queue->cw_max = 10;
1138 }
1139
1140 int rt2x00queue_allocate(struct rt2x00_dev *rt2x00dev)
1141 {
1142 struct data_queue *queue;
1143 enum data_queue_qid qid;
1144 unsigned int req_atim =
1145 !!test_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags);
1146
1147 /*
1148 * We need the following queues:
1149 * RX: 1
1150 * TX: ops->tx_queues
1151 * Beacon: 1
1152 * Atim: 1 (if required)
1153 */
1154 rt2x00dev->data_queues = 2 + rt2x00dev->ops->tx_queues + req_atim;
1155
1156 queue = kcalloc(rt2x00dev->data_queues, sizeof(*queue), GFP_KERNEL);
1157 if (!queue) {
1158 ERROR(rt2x00dev, "Queue allocation failed.\n");
1159 return -ENOMEM;
1160 }
1161
1162 /*
1163 * Initialize pointers
1164 */
1165 rt2x00dev->rx = queue;
1166 rt2x00dev->tx = &queue[1];
1167 rt2x00dev->bcn = &queue[1 + rt2x00dev->ops->tx_queues];
1168
1169 /*
1170 * Initialize queue parameters.
1171 * RX: qid = QID_RX
1172 * TX: qid = QID_AC_VO + index
1173 * TX: cw_min: 2^5 = 32.
1174 * TX: cw_max: 2^10 = 1024.
1175 * BCN: qid = QID_BEACON
1176 * ATIM: qid = QID_ATIM
1177 */
1178 rt2x00queue_init(rt2x00dev, rt2x00dev->rx, QID_RX);
1179
1180 qid = QID_AC_VO;
1181 tx_queue_for_each(rt2x00dev, queue)
1182 rt2x00queue_init(rt2x00dev, queue, qid++);
1183
1184 rt2x00queue_init(rt2x00dev, &rt2x00dev->bcn[0], QID_BEACON);
1185 if (req_atim)
1186 rt2x00queue_init(rt2x00dev, &rt2x00dev->bcn[1], QID_ATIM);
1187
1188 return 0;
1189 }
1190
1191 void rt2x00queue_free(struct rt2x00_dev *rt2x00dev)
1192 {
1193 kfree(rt2x00dev->rx);
1194 rt2x00dev->rx = NULL;
1195 rt2x00dev->tx = NULL;
1196 rt2x00dev->bcn = NULL;
1197 }
This page took 0.07656 seconds and 5 git commands to generate.