rt2x00: Implement support for 802.11n
[deliverable/linux.git] / drivers / net / wireless / rt2x00 / rt2x00queue.c
1 /*
2 Copyright (C) 2004 - 2009 rt2x00 SourceForge Project
3 <http://rt2x00.serialmonkey.com>
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the
17 Free Software Foundation, Inc.,
18 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 */
20
21 /*
22 Module: rt2x00lib
23 Abstract: rt2x00 queue specific routines.
24 */
25
26 #include <linux/kernel.h>
27 #include <linux/module.h>
28 #include <linux/dma-mapping.h>
29
30 #include "rt2x00.h"
31 #include "rt2x00lib.h"
32
33 struct sk_buff *rt2x00queue_alloc_rxskb(struct rt2x00_dev *rt2x00dev,
34 struct queue_entry *entry)
35 {
36 struct sk_buff *skb;
37 struct skb_frame_desc *skbdesc;
38 unsigned int frame_size;
39 unsigned int head_size = 0;
40 unsigned int tail_size = 0;
41
42 /*
43 * The frame size includes descriptor size, because the
44 * hardware directly receive the frame into the skbuffer.
45 */
46 frame_size = entry->queue->data_size + entry->queue->desc_size;
47
48 /*
49 * The payload should be aligned to a 4-byte boundary,
50 * this means we need at least 3 bytes for moving the frame
51 * into the correct offset.
52 */
53 head_size = 4;
54
55 /*
56 * For IV/EIV/ICV assembly we must make sure there is
57 * at least 8 bytes bytes available in headroom for IV/EIV
58 * and 8 bytes for ICV data as tailroon.
59 */
60 if (test_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags)) {
61 head_size += 8;
62 tail_size += 8;
63 }
64
65 /*
66 * Allocate skbuffer.
67 */
68 skb = dev_alloc_skb(frame_size + head_size + tail_size);
69 if (!skb)
70 return NULL;
71
72 /*
73 * Make sure we not have a frame with the requested bytes
74 * available in the head and tail.
75 */
76 skb_reserve(skb, head_size);
77 skb_put(skb, frame_size);
78
79 /*
80 * Populate skbdesc.
81 */
82 skbdesc = get_skb_frame_desc(skb);
83 memset(skbdesc, 0, sizeof(*skbdesc));
84 skbdesc->entry = entry;
85
86 if (test_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags)) {
87 skbdesc->skb_dma = dma_map_single(rt2x00dev->dev,
88 skb->data,
89 skb->len,
90 DMA_FROM_DEVICE);
91 skbdesc->flags |= SKBDESC_DMA_MAPPED_RX;
92 }
93
94 return skb;
95 }
96
97 void rt2x00queue_map_txskb(struct rt2x00_dev *rt2x00dev, struct sk_buff *skb)
98 {
99 struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
100
101 /*
102 * If device has requested headroom, we should make sure that
103 * is also mapped to the DMA so it can be used for transfering
104 * additional descriptor information to the hardware.
105 */
106 skb_push(skb, rt2x00dev->hw->extra_tx_headroom);
107
108 skbdesc->skb_dma =
109 dma_map_single(rt2x00dev->dev, skb->data, skb->len, DMA_TO_DEVICE);
110
111 /*
112 * Restore data pointer to original location again.
113 */
114 skb_pull(skb, rt2x00dev->hw->extra_tx_headroom);
115
116 skbdesc->flags |= SKBDESC_DMA_MAPPED_TX;
117 }
118 EXPORT_SYMBOL_GPL(rt2x00queue_map_txskb);
119
120 void rt2x00queue_unmap_skb(struct rt2x00_dev *rt2x00dev, struct sk_buff *skb)
121 {
122 struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
123
124 if (skbdesc->flags & SKBDESC_DMA_MAPPED_RX) {
125 dma_unmap_single(rt2x00dev->dev, skbdesc->skb_dma, skb->len,
126 DMA_FROM_DEVICE);
127 skbdesc->flags &= ~SKBDESC_DMA_MAPPED_RX;
128 }
129
130 if (skbdesc->flags & SKBDESC_DMA_MAPPED_TX) {
131 /*
132 * Add headroom to the skb length, it has been removed
133 * by the driver, but it was actually mapped to DMA.
134 */
135 dma_unmap_single(rt2x00dev->dev, skbdesc->skb_dma,
136 skb->len + rt2x00dev->hw->extra_tx_headroom,
137 DMA_TO_DEVICE);
138 skbdesc->flags &= ~SKBDESC_DMA_MAPPED_TX;
139 }
140 }
141
142 void rt2x00queue_free_skb(struct rt2x00_dev *rt2x00dev, struct sk_buff *skb)
143 {
144 if (!skb)
145 return;
146
147 rt2x00queue_unmap_skb(rt2x00dev, skb);
148 dev_kfree_skb_any(skb);
149 }
150
151 void rt2x00queue_payload_align(struct sk_buff *skb,
152 bool l2pad, unsigned int header_length)
153 {
154 struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
155 unsigned int frame_length = skb->len;
156 unsigned int align = ALIGN_SIZE(skb, header_length);
157
158 if (!align)
159 return;
160
161 if (l2pad) {
162 if (skbdesc->flags & SKBDESC_L2_PADDED) {
163 /* Remove L2 padding */
164 memmove(skb->data + align, skb->data, header_length);
165 skb_pull(skb, align);
166 skbdesc->flags &= ~SKBDESC_L2_PADDED;
167 } else {
168 /* Add L2 padding */
169 skb_push(skb, align);
170 memmove(skb->data, skb->data + align, header_length);
171 skbdesc->flags |= SKBDESC_L2_PADDED;
172 }
173 } else {
174 /* Generic payload alignment to 4-byte boundary */
175 skb_push(skb, align);
176 memmove(skb->data, skb->data + align, frame_length);
177 }
178 }
179
180 static void rt2x00queue_create_tx_descriptor_seq(struct queue_entry *entry,
181 struct txentry_desc *txdesc)
182 {
183 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
184 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)entry->skb->data;
185 struct rt2x00_intf *intf = vif_to_intf(tx_info->control.vif);
186 unsigned long irqflags;
187
188 if (!(tx_info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) ||
189 unlikely(!tx_info->control.vif))
190 return;
191
192 /*
193 * Hardware should insert sequence counter.
194 * FIXME: We insert a software sequence counter first for
195 * hardware that doesn't support hardware sequence counting.
196 *
197 * This is wrong because beacons are not getting sequence
198 * numbers assigned properly.
199 *
200 * A secondary problem exists for drivers that cannot toggle
201 * sequence counting per-frame, since those will override the
202 * sequence counter given by mac80211.
203 */
204 spin_lock_irqsave(&intf->seqlock, irqflags);
205
206 if (test_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags))
207 intf->seqno += 0x10;
208 hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
209 hdr->seq_ctrl |= cpu_to_le16(intf->seqno);
210
211 spin_unlock_irqrestore(&intf->seqlock, irqflags);
212
213 __set_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags);
214 }
215
216 static void rt2x00queue_create_tx_descriptor_plcp(struct queue_entry *entry,
217 struct txentry_desc *txdesc,
218 const struct rt2x00_rate *hwrate)
219 {
220 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
221 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
222 struct ieee80211_tx_rate *txrate = &tx_info->control.rates[0];
223 unsigned int data_length;
224 unsigned int duration;
225 unsigned int residual;
226
227 /* Data length + CRC + Crypto overhead (IV/EIV/ICV/MIC) */
228 data_length = entry->skb->len + 4;
229 data_length += rt2x00crypto_tx_overhead(rt2x00dev, entry->skb);
230
231 /*
232 * PLCP setup
233 * Length calculation depends on OFDM/CCK rate.
234 */
235 txdesc->signal = hwrate->plcp;
236 txdesc->service = 0x04;
237
238 if (hwrate->flags & DEV_RATE_OFDM) {
239 txdesc->length_high = (data_length >> 6) & 0x3f;
240 txdesc->length_low = data_length & 0x3f;
241 } else {
242 /*
243 * Convert length to microseconds.
244 */
245 residual = GET_DURATION_RES(data_length, hwrate->bitrate);
246 duration = GET_DURATION(data_length, hwrate->bitrate);
247
248 if (residual != 0) {
249 duration++;
250
251 /*
252 * Check if we need to set the Length Extension
253 */
254 if (hwrate->bitrate == 110 && residual <= 30)
255 txdesc->service |= 0x80;
256 }
257
258 txdesc->length_high = (duration >> 8) & 0xff;
259 txdesc->length_low = duration & 0xff;
260
261 /*
262 * When preamble is enabled we should set the
263 * preamble bit for the signal.
264 */
265 if (txrate->flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
266 txdesc->signal |= 0x08;
267 }
268 }
269
270 static void rt2x00queue_create_tx_descriptor(struct queue_entry *entry,
271 struct txentry_desc *txdesc)
272 {
273 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
274 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
275 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)entry->skb->data;
276 struct ieee80211_rate *rate =
277 ieee80211_get_tx_rate(rt2x00dev->hw, tx_info);
278 const struct rt2x00_rate *hwrate;
279
280 memset(txdesc, 0, sizeof(*txdesc));
281
282 /*
283 * Initialize information from queue
284 */
285 txdesc->queue = entry->queue->qid;
286 txdesc->cw_min = entry->queue->cw_min;
287 txdesc->cw_max = entry->queue->cw_max;
288 txdesc->aifs = entry->queue->aifs;
289
290 /*
291 * Header and alignment information.
292 */
293 txdesc->header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
294 txdesc->l2pad = ALIGN_SIZE(entry->skb, txdesc->header_length);
295
296 /*
297 * Check whether this frame is to be acked.
298 */
299 if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK))
300 __set_bit(ENTRY_TXD_ACK, &txdesc->flags);
301
302 /*
303 * Check if this is a RTS/CTS frame
304 */
305 if (ieee80211_is_rts(hdr->frame_control) ||
306 ieee80211_is_cts(hdr->frame_control)) {
307 __set_bit(ENTRY_TXD_BURST, &txdesc->flags);
308 if (ieee80211_is_rts(hdr->frame_control))
309 __set_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags);
310 else
311 __set_bit(ENTRY_TXD_CTS_FRAME, &txdesc->flags);
312 if (tx_info->control.rts_cts_rate_idx >= 0)
313 rate =
314 ieee80211_get_rts_cts_rate(rt2x00dev->hw, tx_info);
315 }
316
317 /*
318 * Determine retry information.
319 */
320 txdesc->retry_limit = tx_info->control.rates[0].count - 1;
321 if (txdesc->retry_limit >= rt2x00dev->long_retry)
322 __set_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags);
323
324 /*
325 * Check if more fragments are pending
326 */
327 if (ieee80211_has_morefrags(hdr->frame_control)) {
328 __set_bit(ENTRY_TXD_BURST, &txdesc->flags);
329 __set_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags);
330 }
331
332 /*
333 * Beacons and probe responses require the tsf timestamp
334 * to be inserted into the frame.
335 */
336 if (ieee80211_is_beacon(hdr->frame_control) ||
337 ieee80211_is_probe_resp(hdr->frame_control))
338 __set_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags);
339
340 /*
341 * Determine with what IFS priority this frame should be send.
342 * Set ifs to IFS_SIFS when the this is not the first fragment,
343 * or this fragment came after RTS/CTS.
344 */
345 if ((tx_info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT) &&
346 !test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags)) {
347 __set_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags);
348 txdesc->ifs = IFS_BACKOFF;
349 } else
350 txdesc->ifs = IFS_SIFS;
351
352 /*
353 * Determine rate modulation.
354 */
355 hwrate = rt2x00_get_rate(rate->hw_value);
356 txdesc->rate_mode = RATE_MODE_CCK;
357 if (hwrate->flags & DEV_RATE_OFDM)
358 txdesc->rate_mode = RATE_MODE_OFDM;
359
360 /*
361 * Apply TX descriptor handling by components
362 */
363 rt2x00crypto_create_tx_descriptor(entry, txdesc);
364 rt2x00ht_create_tx_descriptor(entry, txdesc, hwrate);
365 rt2x00queue_create_tx_descriptor_seq(entry, txdesc);
366 rt2x00queue_create_tx_descriptor_plcp(entry, txdesc, hwrate);
367 }
368
369 static void rt2x00queue_write_tx_descriptor(struct queue_entry *entry,
370 struct txentry_desc *txdesc)
371 {
372 struct data_queue *queue = entry->queue;
373 struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
374
375 rt2x00dev->ops->lib->write_tx_desc(rt2x00dev, entry->skb, txdesc);
376
377 /*
378 * All processing on the frame has been completed, this means
379 * it is now ready to be dumped to userspace through debugfs.
380 */
381 rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_TX, entry->skb);
382
383 /*
384 * Check if we need to kick the queue, there are however a few rules
385 * 1) Don't kick beacon queue
386 * 2) Don't kick unless this is the last in frame in a burst.
387 * When the burst flag is set, this frame is always followed
388 * by another frame which in some way are related to eachother.
389 * This is true for fragments, RTS or CTS-to-self frames.
390 * 3) Rule 2 can be broken when the available entries
391 * in the queue are less then a certain threshold.
392 */
393 if (entry->queue->qid == QID_BEACON)
394 return;
395
396 if (rt2x00queue_threshold(queue) ||
397 !test_bit(ENTRY_TXD_BURST, &txdesc->flags))
398 rt2x00dev->ops->lib->kick_tx_queue(rt2x00dev, queue->qid);
399 }
400
401 int rt2x00queue_write_tx_frame(struct data_queue *queue, struct sk_buff *skb)
402 {
403 struct ieee80211_tx_info *tx_info;
404 struct queue_entry *entry = rt2x00queue_get_entry(queue, Q_INDEX);
405 struct txentry_desc txdesc;
406 struct skb_frame_desc *skbdesc;
407 u8 rate_idx, rate_flags;
408
409 if (unlikely(rt2x00queue_full(queue)))
410 return -ENOBUFS;
411
412 if (test_and_set_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags)) {
413 ERROR(queue->rt2x00dev,
414 "Arrived at non-free entry in the non-full queue %d.\n"
415 "Please file bug report to %s.\n",
416 queue->qid, DRV_PROJECT);
417 return -EINVAL;
418 }
419
420 /*
421 * Copy all TX descriptor information into txdesc,
422 * after that we are free to use the skb->cb array
423 * for our information.
424 */
425 entry->skb = skb;
426 rt2x00queue_create_tx_descriptor(entry, &txdesc);
427
428 /*
429 * All information is retrieved from the skb->cb array,
430 * now we should claim ownership of the driver part of that
431 * array, preserving the bitrate index and flags.
432 */
433 tx_info = IEEE80211_SKB_CB(skb);
434 rate_idx = tx_info->control.rates[0].idx;
435 rate_flags = tx_info->control.rates[0].flags;
436 skbdesc = get_skb_frame_desc(skb);
437 memset(skbdesc, 0, sizeof(*skbdesc));
438 skbdesc->entry = entry;
439 skbdesc->tx_rate_idx = rate_idx;
440 skbdesc->tx_rate_flags = rate_flags;
441
442 /*
443 * When hardware encryption is supported, and this frame
444 * is to be encrypted, we should strip the IV/EIV data from
445 * the frame so we can provide it to the driver seperately.
446 */
447 if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc.flags) &&
448 !test_bit(ENTRY_TXD_ENCRYPT_IV, &txdesc.flags)) {
449 if (test_bit(DRIVER_REQUIRE_COPY_IV, &queue->rt2x00dev->flags))
450 rt2x00crypto_tx_copy_iv(skb, &txdesc);
451 else
452 rt2x00crypto_tx_remove_iv(skb, &txdesc);
453 }
454
455 if (test_bit(DRIVER_REQUIRE_L2PAD, &queue->rt2x00dev->flags))
456 rt2x00queue_payload_align(entry->skb, true,
457 txdesc.header_length);
458
459 /*
460 * It could be possible that the queue was corrupted and this
461 * call failed. Since we always return NETDEV_TX_OK to mac80211,
462 * this frame will simply be dropped.
463 */
464 if (unlikely(queue->rt2x00dev->ops->lib->write_tx_data(entry))) {
465 clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
466 entry->skb = NULL;
467 return -EIO;
468 }
469
470 if (test_bit(DRIVER_REQUIRE_DMA, &queue->rt2x00dev->flags))
471 rt2x00queue_map_txskb(queue->rt2x00dev, skb);
472
473 set_bit(ENTRY_DATA_PENDING, &entry->flags);
474
475 rt2x00queue_index_inc(queue, Q_INDEX);
476 rt2x00queue_write_tx_descriptor(entry, &txdesc);
477
478 return 0;
479 }
480
481 int rt2x00queue_update_beacon(struct rt2x00_dev *rt2x00dev,
482 struct ieee80211_vif *vif,
483 const bool enable_beacon)
484 {
485 struct rt2x00_intf *intf = vif_to_intf(vif);
486 struct skb_frame_desc *skbdesc;
487 struct txentry_desc txdesc;
488 __le32 desc[16];
489
490 if (unlikely(!intf->beacon))
491 return -ENOBUFS;
492
493 if (!enable_beacon) {
494 rt2x00dev->ops->lib->kill_tx_queue(rt2x00dev, QID_BEACON);
495 return 0;
496 }
497
498 intf->beacon->skb = ieee80211_beacon_get(rt2x00dev->hw, vif);
499 if (!intf->beacon->skb)
500 return -ENOMEM;
501
502 /*
503 * Copy all TX descriptor information into txdesc,
504 * after that we are free to use the skb->cb array
505 * for our information.
506 */
507 rt2x00queue_create_tx_descriptor(intf->beacon, &txdesc);
508
509 /*
510 * For the descriptor we use a local array from where the
511 * driver can move it to the correct location required for
512 * the hardware.
513 */
514 memset(desc, 0, sizeof(desc));
515
516 /*
517 * Fill in skb descriptor
518 */
519 skbdesc = get_skb_frame_desc(intf->beacon->skb);
520 memset(skbdesc, 0, sizeof(*skbdesc));
521 skbdesc->desc = desc;
522 skbdesc->desc_len = intf->beacon->queue->desc_size;
523 skbdesc->entry = intf->beacon;
524
525 /*
526 * Write TX descriptor into reserved room in front of the beacon.
527 */
528 rt2x00queue_write_tx_descriptor(intf->beacon, &txdesc);
529
530 /*
531 * Send beacon to hardware.
532 * Also enable beacon generation, which might have been disabled
533 * by the driver during the config_beacon() callback function.
534 */
535 rt2x00dev->ops->lib->write_beacon(intf->beacon);
536 rt2x00dev->ops->lib->kick_tx_queue(rt2x00dev, QID_BEACON);
537
538 return 0;
539 }
540
541 struct data_queue *rt2x00queue_get_queue(struct rt2x00_dev *rt2x00dev,
542 const enum data_queue_qid queue)
543 {
544 int atim = test_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags);
545
546 if (queue == QID_RX)
547 return rt2x00dev->rx;
548
549 if (queue < rt2x00dev->ops->tx_queues && rt2x00dev->tx)
550 return &rt2x00dev->tx[queue];
551
552 if (!rt2x00dev->bcn)
553 return NULL;
554
555 if (queue == QID_BEACON)
556 return &rt2x00dev->bcn[0];
557 else if (queue == QID_ATIM && atim)
558 return &rt2x00dev->bcn[1];
559
560 return NULL;
561 }
562 EXPORT_SYMBOL_GPL(rt2x00queue_get_queue);
563
564 struct queue_entry *rt2x00queue_get_entry(struct data_queue *queue,
565 enum queue_index index)
566 {
567 struct queue_entry *entry;
568 unsigned long irqflags;
569
570 if (unlikely(index >= Q_INDEX_MAX)) {
571 ERROR(queue->rt2x00dev,
572 "Entry requested from invalid index type (%d)\n", index);
573 return NULL;
574 }
575
576 spin_lock_irqsave(&queue->lock, irqflags);
577
578 entry = &queue->entries[queue->index[index]];
579
580 spin_unlock_irqrestore(&queue->lock, irqflags);
581
582 return entry;
583 }
584 EXPORT_SYMBOL_GPL(rt2x00queue_get_entry);
585
586 void rt2x00queue_index_inc(struct data_queue *queue, enum queue_index index)
587 {
588 unsigned long irqflags;
589
590 if (unlikely(index >= Q_INDEX_MAX)) {
591 ERROR(queue->rt2x00dev,
592 "Index change on invalid index type (%d)\n", index);
593 return;
594 }
595
596 spin_lock_irqsave(&queue->lock, irqflags);
597
598 queue->index[index]++;
599 if (queue->index[index] >= queue->limit)
600 queue->index[index] = 0;
601
602 if (index == Q_INDEX) {
603 queue->length++;
604 } else if (index == Q_INDEX_DONE) {
605 queue->length--;
606 queue->count++;
607 }
608
609 spin_unlock_irqrestore(&queue->lock, irqflags);
610 }
611
612 static void rt2x00queue_reset(struct data_queue *queue)
613 {
614 unsigned long irqflags;
615
616 spin_lock_irqsave(&queue->lock, irqflags);
617
618 queue->count = 0;
619 queue->length = 0;
620 memset(queue->index, 0, sizeof(queue->index));
621
622 spin_unlock_irqrestore(&queue->lock, irqflags);
623 }
624
625 void rt2x00queue_stop_queues(struct rt2x00_dev *rt2x00dev)
626 {
627 struct data_queue *queue;
628
629 txall_queue_for_each(rt2x00dev, queue)
630 rt2x00dev->ops->lib->kill_tx_queue(rt2x00dev, queue->qid);
631 }
632
633 void rt2x00queue_init_queues(struct rt2x00_dev *rt2x00dev)
634 {
635 struct data_queue *queue;
636 unsigned int i;
637
638 queue_for_each(rt2x00dev, queue) {
639 rt2x00queue_reset(queue);
640
641 for (i = 0; i < queue->limit; i++) {
642 queue->entries[i].flags = 0;
643
644 rt2x00dev->ops->lib->clear_entry(&queue->entries[i]);
645 }
646 }
647 }
648
649 static int rt2x00queue_alloc_entries(struct data_queue *queue,
650 const struct data_queue_desc *qdesc)
651 {
652 struct queue_entry *entries;
653 unsigned int entry_size;
654 unsigned int i;
655
656 rt2x00queue_reset(queue);
657
658 queue->limit = qdesc->entry_num;
659 queue->threshold = DIV_ROUND_UP(qdesc->entry_num, 10);
660 queue->data_size = qdesc->data_size;
661 queue->desc_size = qdesc->desc_size;
662
663 /*
664 * Allocate all queue entries.
665 */
666 entry_size = sizeof(*entries) + qdesc->priv_size;
667 entries = kzalloc(queue->limit * entry_size, GFP_KERNEL);
668 if (!entries)
669 return -ENOMEM;
670
671 #define QUEUE_ENTRY_PRIV_OFFSET(__base, __index, __limit, __esize, __psize) \
672 ( ((char *)(__base)) + ((__limit) * (__esize)) + \
673 ((__index) * (__psize)) )
674
675 for (i = 0; i < queue->limit; i++) {
676 entries[i].flags = 0;
677 entries[i].queue = queue;
678 entries[i].skb = NULL;
679 entries[i].entry_idx = i;
680 entries[i].priv_data =
681 QUEUE_ENTRY_PRIV_OFFSET(entries, i, queue->limit,
682 sizeof(*entries), qdesc->priv_size);
683 }
684
685 #undef QUEUE_ENTRY_PRIV_OFFSET
686
687 queue->entries = entries;
688
689 return 0;
690 }
691
692 static void rt2x00queue_free_skbs(struct rt2x00_dev *rt2x00dev,
693 struct data_queue *queue)
694 {
695 unsigned int i;
696
697 if (!queue->entries)
698 return;
699
700 for (i = 0; i < queue->limit; i++) {
701 if (queue->entries[i].skb)
702 rt2x00queue_free_skb(rt2x00dev, queue->entries[i].skb);
703 }
704 }
705
706 static int rt2x00queue_alloc_rxskbs(struct rt2x00_dev *rt2x00dev,
707 struct data_queue *queue)
708 {
709 unsigned int i;
710 struct sk_buff *skb;
711
712 for (i = 0; i < queue->limit; i++) {
713 skb = rt2x00queue_alloc_rxskb(rt2x00dev, &queue->entries[i]);
714 if (!skb)
715 return -ENOMEM;
716 queue->entries[i].skb = skb;
717 }
718
719 return 0;
720 }
721
722 int rt2x00queue_initialize(struct rt2x00_dev *rt2x00dev)
723 {
724 struct data_queue *queue;
725 int status;
726
727 status = rt2x00queue_alloc_entries(rt2x00dev->rx, rt2x00dev->ops->rx);
728 if (status)
729 goto exit;
730
731 tx_queue_for_each(rt2x00dev, queue) {
732 status = rt2x00queue_alloc_entries(queue, rt2x00dev->ops->tx);
733 if (status)
734 goto exit;
735 }
736
737 status = rt2x00queue_alloc_entries(rt2x00dev->bcn, rt2x00dev->ops->bcn);
738 if (status)
739 goto exit;
740
741 if (test_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags)) {
742 status = rt2x00queue_alloc_entries(&rt2x00dev->bcn[1],
743 rt2x00dev->ops->atim);
744 if (status)
745 goto exit;
746 }
747
748 status = rt2x00queue_alloc_rxskbs(rt2x00dev, rt2x00dev->rx);
749 if (status)
750 goto exit;
751
752 return 0;
753
754 exit:
755 ERROR(rt2x00dev, "Queue entries allocation failed.\n");
756
757 rt2x00queue_uninitialize(rt2x00dev);
758
759 return status;
760 }
761
762 void rt2x00queue_uninitialize(struct rt2x00_dev *rt2x00dev)
763 {
764 struct data_queue *queue;
765
766 rt2x00queue_free_skbs(rt2x00dev, rt2x00dev->rx);
767
768 queue_for_each(rt2x00dev, queue) {
769 kfree(queue->entries);
770 queue->entries = NULL;
771 }
772 }
773
774 static void rt2x00queue_init(struct rt2x00_dev *rt2x00dev,
775 struct data_queue *queue, enum data_queue_qid qid)
776 {
777 spin_lock_init(&queue->lock);
778
779 queue->rt2x00dev = rt2x00dev;
780 queue->qid = qid;
781 queue->txop = 0;
782 queue->aifs = 2;
783 queue->cw_min = 5;
784 queue->cw_max = 10;
785 }
786
787 int rt2x00queue_allocate(struct rt2x00_dev *rt2x00dev)
788 {
789 struct data_queue *queue;
790 enum data_queue_qid qid;
791 unsigned int req_atim =
792 !!test_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags);
793
794 /*
795 * We need the following queues:
796 * RX: 1
797 * TX: ops->tx_queues
798 * Beacon: 1
799 * Atim: 1 (if required)
800 */
801 rt2x00dev->data_queues = 2 + rt2x00dev->ops->tx_queues + req_atim;
802
803 queue = kzalloc(rt2x00dev->data_queues * sizeof(*queue), GFP_KERNEL);
804 if (!queue) {
805 ERROR(rt2x00dev, "Queue allocation failed.\n");
806 return -ENOMEM;
807 }
808
809 /*
810 * Initialize pointers
811 */
812 rt2x00dev->rx = queue;
813 rt2x00dev->tx = &queue[1];
814 rt2x00dev->bcn = &queue[1 + rt2x00dev->ops->tx_queues];
815
816 /*
817 * Initialize queue parameters.
818 * RX: qid = QID_RX
819 * TX: qid = QID_AC_BE + index
820 * TX: cw_min: 2^5 = 32.
821 * TX: cw_max: 2^10 = 1024.
822 * BCN: qid = QID_BEACON
823 * ATIM: qid = QID_ATIM
824 */
825 rt2x00queue_init(rt2x00dev, rt2x00dev->rx, QID_RX);
826
827 qid = QID_AC_BE;
828 tx_queue_for_each(rt2x00dev, queue)
829 rt2x00queue_init(rt2x00dev, queue, qid++);
830
831 rt2x00queue_init(rt2x00dev, &rt2x00dev->bcn[0], QID_BEACON);
832 if (req_atim)
833 rt2x00queue_init(rt2x00dev, &rt2x00dev->bcn[1], QID_ATIM);
834
835 return 0;
836 }
837
838 void rt2x00queue_free(struct rt2x00_dev *rt2x00dev)
839 {
840 kfree(rt2x00dev->rx);
841 rt2x00dev->rx = NULL;
842 rt2x00dev->tx = NULL;
843 rt2x00dev->bcn = NULL;
844 }
This page took 0.059308 seconds and 6 git commands to generate.