rt2x00: checkpatch.pl error fixes for rt73usb.c
[deliverable/linux.git] / drivers / net / wireless / rt2x00 / rt2x00queue.c
1 /*
2 Copyright (C) 2010 Willow Garage <http://www.willowgarage.com>
3 Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
4 Copyright (C) 2004 - 2009 Gertjan van Wingerde <gwingerde@gmail.com>
5 <http://rt2x00.serialmonkey.com>
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the
19 Free Software Foundation, Inc.,
20 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21 */
22
23 /*
24 Module: rt2x00lib
25 Abstract: rt2x00 queue specific routines.
26 */
27
28 #include <linux/slab.h>
29 #include <linux/kernel.h>
30 #include <linux/module.h>
31 #include <linux/dma-mapping.h>
32
33 #include "rt2x00.h"
34 #include "rt2x00lib.h"
35
36 struct sk_buff *rt2x00queue_alloc_rxskb(struct queue_entry *entry)
37 {
38 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
39 struct sk_buff *skb;
40 struct skb_frame_desc *skbdesc;
41 unsigned int frame_size;
42 unsigned int head_size = 0;
43 unsigned int tail_size = 0;
44
45 /*
46 * The frame size includes descriptor size, because the
47 * hardware directly receive the frame into the skbuffer.
48 */
49 frame_size = entry->queue->data_size + entry->queue->desc_size;
50
51 /*
52 * The payload should be aligned to a 4-byte boundary,
53 * this means we need at least 3 bytes for moving the frame
54 * into the correct offset.
55 */
56 head_size = 4;
57
58 /*
59 * For IV/EIV/ICV assembly we must make sure there is
60 * at least 8 bytes bytes available in headroom for IV/EIV
61 * and 8 bytes for ICV data as tailroon.
62 */
63 if (test_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags)) {
64 head_size += 8;
65 tail_size += 8;
66 }
67
68 /*
69 * Allocate skbuffer.
70 */
71 skb = dev_alloc_skb(frame_size + head_size + tail_size);
72 if (!skb)
73 return NULL;
74
75 /*
76 * Make sure we not have a frame with the requested bytes
77 * available in the head and tail.
78 */
79 skb_reserve(skb, head_size);
80 skb_put(skb, frame_size);
81
82 /*
83 * Populate skbdesc.
84 */
85 skbdesc = get_skb_frame_desc(skb);
86 memset(skbdesc, 0, sizeof(*skbdesc));
87 skbdesc->entry = entry;
88
89 if (test_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags)) {
90 skbdesc->skb_dma = dma_map_single(rt2x00dev->dev,
91 skb->data,
92 skb->len,
93 DMA_FROM_DEVICE);
94 skbdesc->flags |= SKBDESC_DMA_MAPPED_RX;
95 }
96
97 return skb;
98 }
99
100 void rt2x00queue_map_txskb(struct queue_entry *entry)
101 {
102 struct device *dev = entry->queue->rt2x00dev->dev;
103 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
104
105 skbdesc->skb_dma =
106 dma_map_single(dev, entry->skb->data, entry->skb->len, DMA_TO_DEVICE);
107 skbdesc->flags |= SKBDESC_DMA_MAPPED_TX;
108 }
109 EXPORT_SYMBOL_GPL(rt2x00queue_map_txskb);
110
111 void rt2x00queue_unmap_skb(struct queue_entry *entry)
112 {
113 struct device *dev = entry->queue->rt2x00dev->dev;
114 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
115
116 if (skbdesc->flags & SKBDESC_DMA_MAPPED_RX) {
117 dma_unmap_single(dev, skbdesc->skb_dma, entry->skb->len,
118 DMA_FROM_DEVICE);
119 skbdesc->flags &= ~SKBDESC_DMA_MAPPED_RX;
120 } else if (skbdesc->flags & SKBDESC_DMA_MAPPED_TX) {
121 dma_unmap_single(dev, skbdesc->skb_dma, entry->skb->len,
122 DMA_TO_DEVICE);
123 skbdesc->flags &= ~SKBDESC_DMA_MAPPED_TX;
124 }
125 }
126 EXPORT_SYMBOL_GPL(rt2x00queue_unmap_skb);
127
128 void rt2x00queue_free_skb(struct queue_entry *entry)
129 {
130 if (!entry->skb)
131 return;
132
133 rt2x00queue_unmap_skb(entry);
134 dev_kfree_skb_any(entry->skb);
135 entry->skb = NULL;
136 }
137
138 void rt2x00queue_align_frame(struct sk_buff *skb)
139 {
140 unsigned int frame_length = skb->len;
141 unsigned int align = ALIGN_SIZE(skb, 0);
142
143 if (!align)
144 return;
145
146 skb_push(skb, align);
147 memmove(skb->data, skb->data + align, frame_length);
148 skb_trim(skb, frame_length);
149 }
150
151 void rt2x00queue_align_payload(struct sk_buff *skb, unsigned int header_length)
152 {
153 unsigned int frame_length = skb->len;
154 unsigned int align = ALIGN_SIZE(skb, header_length);
155
156 if (!align)
157 return;
158
159 skb_push(skb, align);
160 memmove(skb->data, skb->data + align, frame_length);
161 skb_trim(skb, frame_length);
162 }
163
164 void rt2x00queue_insert_l2pad(struct sk_buff *skb, unsigned int header_length)
165 {
166 unsigned int payload_length = skb->len - header_length;
167 unsigned int header_align = ALIGN_SIZE(skb, 0);
168 unsigned int payload_align = ALIGN_SIZE(skb, header_length);
169 unsigned int l2pad = payload_length ? L2PAD_SIZE(header_length) : 0;
170
171 /*
172 * Adjust the header alignment if the payload needs to be moved more
173 * than the header.
174 */
175 if (payload_align > header_align)
176 header_align += 4;
177
178 /* There is nothing to do if no alignment is needed */
179 if (!header_align)
180 return;
181
182 /* Reserve the amount of space needed in front of the frame */
183 skb_push(skb, header_align);
184
185 /*
186 * Move the header.
187 */
188 memmove(skb->data, skb->data + header_align, header_length);
189
190 /* Move the payload, if present and if required */
191 if (payload_length && payload_align)
192 memmove(skb->data + header_length + l2pad,
193 skb->data + header_length + l2pad + payload_align,
194 payload_length);
195
196 /* Trim the skb to the correct size */
197 skb_trim(skb, header_length + l2pad + payload_length);
198 }
199
200 void rt2x00queue_remove_l2pad(struct sk_buff *skb, unsigned int header_length)
201 {
202 unsigned int l2pad = L2PAD_SIZE(header_length);
203
204 if (!l2pad)
205 return;
206
207 memmove(skb->data + l2pad, skb->data, header_length);
208 skb_pull(skb, l2pad);
209 }
210
211 static void rt2x00queue_create_tx_descriptor_seq(struct queue_entry *entry,
212 struct txentry_desc *txdesc)
213 {
214 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
215 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)entry->skb->data;
216 struct rt2x00_intf *intf = vif_to_intf(tx_info->control.vif);
217 unsigned long irqflags;
218
219 if (!(tx_info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) ||
220 unlikely(!tx_info->control.vif))
221 return;
222
223 /*
224 * Hardware should insert sequence counter.
225 * FIXME: We insert a software sequence counter first for
226 * hardware that doesn't support hardware sequence counting.
227 *
228 * This is wrong because beacons are not getting sequence
229 * numbers assigned properly.
230 *
231 * A secondary problem exists for drivers that cannot toggle
232 * sequence counting per-frame, since those will override the
233 * sequence counter given by mac80211.
234 */
235 spin_lock_irqsave(&intf->seqlock, irqflags);
236
237 if (test_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags))
238 intf->seqno += 0x10;
239 hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
240 hdr->seq_ctrl |= cpu_to_le16(intf->seqno);
241
242 spin_unlock_irqrestore(&intf->seqlock, irqflags);
243
244 __set_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags);
245 }
246
247 static void rt2x00queue_create_tx_descriptor_plcp(struct queue_entry *entry,
248 struct txentry_desc *txdesc,
249 const struct rt2x00_rate *hwrate)
250 {
251 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
252 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
253 struct ieee80211_tx_rate *txrate = &tx_info->control.rates[0];
254 unsigned int data_length;
255 unsigned int duration;
256 unsigned int residual;
257
258 /* Data length + CRC + Crypto overhead (IV/EIV/ICV/MIC) */
259 data_length = entry->skb->len + 4;
260 data_length += rt2x00crypto_tx_overhead(rt2x00dev, entry->skb);
261
262 /*
263 * PLCP setup
264 * Length calculation depends on OFDM/CCK rate.
265 */
266 txdesc->signal = hwrate->plcp;
267 txdesc->service = 0x04;
268
269 if (hwrate->flags & DEV_RATE_OFDM) {
270 txdesc->length_high = (data_length >> 6) & 0x3f;
271 txdesc->length_low = data_length & 0x3f;
272 } else {
273 /*
274 * Convert length to microseconds.
275 */
276 residual = GET_DURATION_RES(data_length, hwrate->bitrate);
277 duration = GET_DURATION(data_length, hwrate->bitrate);
278
279 if (residual != 0) {
280 duration++;
281
282 /*
283 * Check if we need to set the Length Extension
284 */
285 if (hwrate->bitrate == 110 && residual <= 30)
286 txdesc->service |= 0x80;
287 }
288
289 txdesc->length_high = (duration >> 8) & 0xff;
290 txdesc->length_low = duration & 0xff;
291
292 /*
293 * When preamble is enabled we should set the
294 * preamble bit for the signal.
295 */
296 if (txrate->flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
297 txdesc->signal |= 0x08;
298 }
299 }
300
301 static void rt2x00queue_create_tx_descriptor(struct queue_entry *entry,
302 struct txentry_desc *txdesc)
303 {
304 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
305 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
306 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)entry->skb->data;
307 struct ieee80211_rate *rate =
308 ieee80211_get_tx_rate(rt2x00dev->hw, tx_info);
309 const struct rt2x00_rate *hwrate;
310
311 memset(txdesc, 0, sizeof(*txdesc));
312
313 /*
314 * Header and frame information.
315 */
316 txdesc->length = entry->skb->len;
317 txdesc->header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
318
319 /*
320 * Check whether this frame is to be acked.
321 */
322 if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK))
323 __set_bit(ENTRY_TXD_ACK, &txdesc->flags);
324
325 /*
326 * Check if this is a RTS/CTS frame
327 */
328 if (ieee80211_is_rts(hdr->frame_control) ||
329 ieee80211_is_cts(hdr->frame_control)) {
330 __set_bit(ENTRY_TXD_BURST, &txdesc->flags);
331 if (ieee80211_is_rts(hdr->frame_control))
332 __set_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags);
333 else
334 __set_bit(ENTRY_TXD_CTS_FRAME, &txdesc->flags);
335 if (tx_info->control.rts_cts_rate_idx >= 0)
336 rate =
337 ieee80211_get_rts_cts_rate(rt2x00dev->hw, tx_info);
338 }
339
340 /*
341 * Determine retry information.
342 */
343 txdesc->retry_limit = tx_info->control.rates[0].count - 1;
344 if (txdesc->retry_limit >= rt2x00dev->long_retry)
345 __set_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags);
346
347 /*
348 * Check if more fragments are pending
349 */
350 if (ieee80211_has_morefrags(hdr->frame_control)) {
351 __set_bit(ENTRY_TXD_BURST, &txdesc->flags);
352 __set_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags);
353 }
354
355 /*
356 * Check if more frames (!= fragments) are pending
357 */
358 if (tx_info->flags & IEEE80211_TX_CTL_MORE_FRAMES)
359 __set_bit(ENTRY_TXD_BURST, &txdesc->flags);
360
361 /*
362 * Beacons and probe responses require the tsf timestamp
363 * to be inserted into the frame, except for a frame that has been injected
364 * through a monitor interface. This latter is needed for testing a
365 * monitor interface.
366 */
367 if ((ieee80211_is_beacon(hdr->frame_control) ||
368 ieee80211_is_probe_resp(hdr->frame_control)) &&
369 (!(tx_info->flags & IEEE80211_TX_CTL_INJECTED)))
370 __set_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags);
371
372 /*
373 * Determine with what IFS priority this frame should be send.
374 * Set ifs to IFS_SIFS when the this is not the first fragment,
375 * or this fragment came after RTS/CTS.
376 */
377 if ((tx_info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT) &&
378 !test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags)) {
379 __set_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags);
380 txdesc->ifs = IFS_BACKOFF;
381 } else
382 txdesc->ifs = IFS_SIFS;
383
384 /*
385 * Determine rate modulation.
386 */
387 hwrate = rt2x00_get_rate(rate->hw_value);
388 txdesc->rate_mode = RATE_MODE_CCK;
389 if (hwrate->flags & DEV_RATE_OFDM)
390 txdesc->rate_mode = RATE_MODE_OFDM;
391
392 /*
393 * Apply TX descriptor handling by components
394 */
395 rt2x00crypto_create_tx_descriptor(entry, txdesc);
396 rt2x00ht_create_tx_descriptor(entry, txdesc, hwrate);
397 rt2x00queue_create_tx_descriptor_seq(entry, txdesc);
398 rt2x00queue_create_tx_descriptor_plcp(entry, txdesc, hwrate);
399 }
400
401 static int rt2x00queue_write_tx_data(struct queue_entry *entry,
402 struct txentry_desc *txdesc)
403 {
404 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
405
406 /*
407 * This should not happen, we already checked the entry
408 * was ours. When the hardware disagrees there has been
409 * a queue corruption!
410 */
411 if (unlikely(rt2x00dev->ops->lib->get_entry_state &&
412 rt2x00dev->ops->lib->get_entry_state(entry))) {
413 ERROR(rt2x00dev,
414 "Corrupt queue %d, accessing entry which is not ours.\n"
415 "Please file bug report to %s.\n",
416 entry->queue->qid, DRV_PROJECT);
417 return -EINVAL;
418 }
419
420 /*
421 * Add the requested extra tx headroom in front of the skb.
422 */
423 skb_push(entry->skb, rt2x00dev->ops->extra_tx_headroom);
424 memset(entry->skb->data, 0, rt2x00dev->ops->extra_tx_headroom);
425
426 /*
427 * Call the driver's write_tx_data function, if it exists.
428 */
429 if (rt2x00dev->ops->lib->write_tx_data)
430 rt2x00dev->ops->lib->write_tx_data(entry, txdesc);
431
432 /*
433 * Map the skb to DMA.
434 */
435 if (test_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags))
436 rt2x00queue_map_txskb(entry);
437
438 return 0;
439 }
440
441 static void rt2x00queue_write_tx_descriptor(struct queue_entry *entry,
442 struct txentry_desc *txdesc)
443 {
444 struct data_queue *queue = entry->queue;
445
446 queue->rt2x00dev->ops->lib->write_tx_desc(entry, txdesc);
447
448 /*
449 * All processing on the frame has been completed, this means
450 * it is now ready to be dumped to userspace through debugfs.
451 */
452 rt2x00debug_dump_frame(queue->rt2x00dev, DUMP_FRAME_TX, entry->skb);
453 }
454
455 static void rt2x00queue_kick_tx_queue(struct queue_entry *entry,
456 struct txentry_desc *txdesc)
457 {
458 struct data_queue *queue = entry->queue;
459 struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
460
461 /*
462 * Check if we need to kick the queue, there are however a few rules
463 * 1) Don't kick unless this is the last in frame in a burst.
464 * When the burst flag is set, this frame is always followed
465 * by another frame which in some way are related to eachother.
466 * This is true for fragments, RTS or CTS-to-self frames.
467 * 2) Rule 1 can be broken when the available entries
468 * in the queue are less then a certain threshold.
469 */
470 if (rt2x00queue_threshold(queue) ||
471 !test_bit(ENTRY_TXD_BURST, &txdesc->flags))
472 rt2x00dev->ops->lib->kick_tx_queue(queue);
473 }
474
475 int rt2x00queue_write_tx_frame(struct data_queue *queue, struct sk_buff *skb,
476 bool local)
477 {
478 struct ieee80211_tx_info *tx_info;
479 struct queue_entry *entry = rt2x00queue_get_entry(queue, Q_INDEX);
480 struct txentry_desc txdesc;
481 struct skb_frame_desc *skbdesc;
482 u8 rate_idx, rate_flags;
483
484 if (unlikely(rt2x00queue_full(queue)))
485 return -ENOBUFS;
486
487 if (unlikely(test_and_set_bit(ENTRY_OWNER_DEVICE_DATA,
488 &entry->flags))) {
489 ERROR(queue->rt2x00dev,
490 "Arrived at non-free entry in the non-full queue %d.\n"
491 "Please file bug report to %s.\n",
492 queue->qid, DRV_PROJECT);
493 return -EINVAL;
494 }
495
496 /*
497 * Copy all TX descriptor information into txdesc,
498 * after that we are free to use the skb->cb array
499 * for our information.
500 */
501 entry->skb = skb;
502 rt2x00queue_create_tx_descriptor(entry, &txdesc);
503
504 /*
505 * All information is retrieved from the skb->cb array,
506 * now we should claim ownership of the driver part of that
507 * array, preserving the bitrate index and flags.
508 */
509 tx_info = IEEE80211_SKB_CB(skb);
510 rate_idx = tx_info->control.rates[0].idx;
511 rate_flags = tx_info->control.rates[0].flags;
512 skbdesc = get_skb_frame_desc(skb);
513 memset(skbdesc, 0, sizeof(*skbdesc));
514 skbdesc->entry = entry;
515 skbdesc->tx_rate_idx = rate_idx;
516 skbdesc->tx_rate_flags = rate_flags;
517
518 if (local)
519 skbdesc->flags |= SKBDESC_NOT_MAC80211;
520
521 /*
522 * When hardware encryption is supported, and this frame
523 * is to be encrypted, we should strip the IV/EIV data from
524 * the frame so we can provide it to the driver separately.
525 */
526 if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc.flags) &&
527 !test_bit(ENTRY_TXD_ENCRYPT_IV, &txdesc.flags)) {
528 if (test_bit(DRIVER_REQUIRE_COPY_IV, &queue->rt2x00dev->flags))
529 rt2x00crypto_tx_copy_iv(skb, &txdesc);
530 else
531 rt2x00crypto_tx_remove_iv(skb, &txdesc);
532 }
533
534 /*
535 * When DMA allocation is required we should guarentee to the
536 * driver that the DMA is aligned to a 4-byte boundary.
537 * However some drivers require L2 padding to pad the payload
538 * rather then the header. This could be a requirement for
539 * PCI and USB devices, while header alignment only is valid
540 * for PCI devices.
541 */
542 if (test_bit(DRIVER_REQUIRE_L2PAD, &queue->rt2x00dev->flags))
543 rt2x00queue_insert_l2pad(entry->skb, txdesc.header_length);
544 else if (test_bit(DRIVER_REQUIRE_DMA, &queue->rt2x00dev->flags))
545 rt2x00queue_align_frame(entry->skb);
546
547 /*
548 * It could be possible that the queue was corrupted and this
549 * call failed. Since we always return NETDEV_TX_OK to mac80211,
550 * this frame will simply be dropped.
551 */
552 if (unlikely(rt2x00queue_write_tx_data(entry, &txdesc))) {
553 clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
554 entry->skb = NULL;
555 return -EIO;
556 }
557
558 set_bit(ENTRY_DATA_PENDING, &entry->flags);
559
560 rt2x00queue_index_inc(queue, Q_INDEX);
561 rt2x00queue_write_tx_descriptor(entry, &txdesc);
562 rt2x00queue_kick_tx_queue(entry, &txdesc);
563
564 return 0;
565 }
566
567 int rt2x00queue_update_beacon(struct rt2x00_dev *rt2x00dev,
568 struct ieee80211_vif *vif,
569 const bool enable_beacon)
570 {
571 struct rt2x00_intf *intf = vif_to_intf(vif);
572 struct skb_frame_desc *skbdesc;
573 struct txentry_desc txdesc;
574
575 if (unlikely(!intf->beacon))
576 return -ENOBUFS;
577
578 mutex_lock(&intf->beacon_skb_mutex);
579
580 /*
581 * Clean up the beacon skb.
582 */
583 rt2x00queue_free_skb(intf->beacon);
584
585 if (!enable_beacon) {
586 rt2x00dev->ops->lib->kill_tx_queue(intf->beacon->queue);
587 mutex_unlock(&intf->beacon_skb_mutex);
588 return 0;
589 }
590
591 intf->beacon->skb = ieee80211_beacon_get(rt2x00dev->hw, vif);
592 if (!intf->beacon->skb) {
593 mutex_unlock(&intf->beacon_skb_mutex);
594 return -ENOMEM;
595 }
596
597 /*
598 * Copy all TX descriptor information into txdesc,
599 * after that we are free to use the skb->cb array
600 * for our information.
601 */
602 rt2x00queue_create_tx_descriptor(intf->beacon, &txdesc);
603
604 /*
605 * Fill in skb descriptor
606 */
607 skbdesc = get_skb_frame_desc(intf->beacon->skb);
608 memset(skbdesc, 0, sizeof(*skbdesc));
609 skbdesc->entry = intf->beacon;
610
611 /*
612 * Send beacon to hardware and enable beacon genaration..
613 */
614 rt2x00dev->ops->lib->write_beacon(intf->beacon, &txdesc);
615
616 mutex_unlock(&intf->beacon_skb_mutex);
617
618 return 0;
619 }
620
621 void rt2x00queue_for_each_entry(struct data_queue *queue,
622 enum queue_index start,
623 enum queue_index end,
624 void (*fn)(struct queue_entry *entry))
625 {
626 unsigned long irqflags;
627 unsigned int index_start;
628 unsigned int index_end;
629 unsigned int i;
630
631 if (unlikely(start >= Q_INDEX_MAX || end >= Q_INDEX_MAX)) {
632 ERROR(queue->rt2x00dev,
633 "Entry requested from invalid index range (%d - %d)\n",
634 start, end);
635 return;
636 }
637
638 /*
639 * Only protect the range we are going to loop over,
640 * if during our loop a extra entry is set to pending
641 * it should not be kicked during this run, since it
642 * is part of another TX operation.
643 */
644 spin_lock_irqsave(&queue->lock, irqflags);
645 index_start = queue->index[start];
646 index_end = queue->index[end];
647 spin_unlock_irqrestore(&queue->lock, irqflags);
648
649 /*
650 * Start from the TX done pointer, this guarentees that we will
651 * send out all frames in the correct order.
652 */
653 if (index_start < index_end) {
654 for (i = index_start; i < index_end; i++)
655 fn(&queue->entries[i]);
656 } else {
657 for (i = index_start; i < queue->limit; i++)
658 fn(&queue->entries[i]);
659
660 for (i = 0; i < index_end; i++)
661 fn(&queue->entries[i]);
662 }
663 }
664 EXPORT_SYMBOL_GPL(rt2x00queue_for_each_entry);
665
666 struct data_queue *rt2x00queue_get_queue(struct rt2x00_dev *rt2x00dev,
667 const enum data_queue_qid queue)
668 {
669 int atim = test_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags);
670
671 if (queue == QID_RX)
672 return rt2x00dev->rx;
673
674 if (queue < rt2x00dev->ops->tx_queues && rt2x00dev->tx)
675 return &rt2x00dev->tx[queue];
676
677 if (!rt2x00dev->bcn)
678 return NULL;
679
680 if (queue == QID_BEACON)
681 return &rt2x00dev->bcn[0];
682 else if (queue == QID_ATIM && atim)
683 return &rt2x00dev->bcn[1];
684
685 return NULL;
686 }
687 EXPORT_SYMBOL_GPL(rt2x00queue_get_queue);
688
689 struct queue_entry *rt2x00queue_get_entry(struct data_queue *queue,
690 enum queue_index index)
691 {
692 struct queue_entry *entry;
693 unsigned long irqflags;
694
695 if (unlikely(index >= Q_INDEX_MAX)) {
696 ERROR(queue->rt2x00dev,
697 "Entry requested from invalid index type (%d)\n", index);
698 return NULL;
699 }
700
701 spin_lock_irqsave(&queue->lock, irqflags);
702
703 entry = &queue->entries[queue->index[index]];
704
705 spin_unlock_irqrestore(&queue->lock, irqflags);
706
707 return entry;
708 }
709 EXPORT_SYMBOL_GPL(rt2x00queue_get_entry);
710
711 void rt2x00queue_index_inc(struct data_queue *queue, enum queue_index index)
712 {
713 unsigned long irqflags;
714
715 if (unlikely(index >= Q_INDEX_MAX)) {
716 ERROR(queue->rt2x00dev,
717 "Index change on invalid index type (%d)\n", index);
718 return;
719 }
720
721 spin_lock_irqsave(&queue->lock, irqflags);
722
723 queue->index[index]++;
724 if (queue->index[index] >= queue->limit)
725 queue->index[index] = 0;
726
727 queue->last_action[index] = jiffies;
728
729 if (index == Q_INDEX) {
730 queue->length++;
731 } else if (index == Q_INDEX_DONE) {
732 queue->length--;
733 queue->count++;
734 }
735
736 spin_unlock_irqrestore(&queue->lock, irqflags);
737 }
738
739 static void rt2x00queue_reset(struct data_queue *queue)
740 {
741 unsigned long irqflags;
742 unsigned int i;
743
744 spin_lock_irqsave(&queue->lock, irqflags);
745
746 queue->count = 0;
747 queue->length = 0;
748
749 for (i = 0; i < Q_INDEX_MAX; i++) {
750 queue->index[i] = 0;
751 queue->last_action[i] = jiffies;
752 }
753
754 spin_unlock_irqrestore(&queue->lock, irqflags);
755 }
756
757 void rt2x00queue_stop_queues(struct rt2x00_dev *rt2x00dev)
758 {
759 struct data_queue *queue;
760
761 txall_queue_for_each(rt2x00dev, queue)
762 rt2x00dev->ops->lib->kill_tx_queue(queue);
763 }
764
765 void rt2x00queue_init_queues(struct rt2x00_dev *rt2x00dev)
766 {
767 struct data_queue *queue;
768 unsigned int i;
769
770 queue_for_each(rt2x00dev, queue) {
771 rt2x00queue_reset(queue);
772
773 for (i = 0; i < queue->limit; i++) {
774 rt2x00dev->ops->lib->clear_entry(&queue->entries[i]);
775 if (queue->qid == QID_RX)
776 rt2x00queue_index_inc(queue, Q_INDEX);
777 }
778 }
779 }
780
781 static int rt2x00queue_alloc_entries(struct data_queue *queue,
782 const struct data_queue_desc *qdesc)
783 {
784 struct queue_entry *entries;
785 unsigned int entry_size;
786 unsigned int i;
787
788 rt2x00queue_reset(queue);
789
790 queue->limit = qdesc->entry_num;
791 queue->threshold = DIV_ROUND_UP(qdesc->entry_num, 10);
792 queue->data_size = qdesc->data_size;
793 queue->desc_size = qdesc->desc_size;
794
795 /*
796 * Allocate all queue entries.
797 */
798 entry_size = sizeof(*entries) + qdesc->priv_size;
799 entries = kcalloc(queue->limit, entry_size, GFP_KERNEL);
800 if (!entries)
801 return -ENOMEM;
802
803 #define QUEUE_ENTRY_PRIV_OFFSET(__base, __index, __limit, __esize, __psize) \
804 (((char *)(__base)) + ((__limit) * (__esize)) + \
805 ((__index) * (__psize)))
806
807 for (i = 0; i < queue->limit; i++) {
808 entries[i].flags = 0;
809 entries[i].queue = queue;
810 entries[i].skb = NULL;
811 entries[i].entry_idx = i;
812 entries[i].priv_data =
813 QUEUE_ENTRY_PRIV_OFFSET(entries, i, queue->limit,
814 sizeof(*entries), qdesc->priv_size);
815 }
816
817 #undef QUEUE_ENTRY_PRIV_OFFSET
818
819 queue->entries = entries;
820
821 return 0;
822 }
823
824 static void rt2x00queue_free_skbs(struct data_queue *queue)
825 {
826 unsigned int i;
827
828 if (!queue->entries)
829 return;
830
831 for (i = 0; i < queue->limit; i++) {
832 rt2x00queue_free_skb(&queue->entries[i]);
833 }
834 }
835
836 static int rt2x00queue_alloc_rxskbs(struct data_queue *queue)
837 {
838 unsigned int i;
839 struct sk_buff *skb;
840
841 for (i = 0; i < queue->limit; i++) {
842 skb = rt2x00queue_alloc_rxskb(&queue->entries[i]);
843 if (!skb)
844 return -ENOMEM;
845 queue->entries[i].skb = skb;
846 }
847
848 return 0;
849 }
850
851 int rt2x00queue_initialize(struct rt2x00_dev *rt2x00dev)
852 {
853 struct data_queue *queue;
854 int status;
855
856 status = rt2x00queue_alloc_entries(rt2x00dev->rx, rt2x00dev->ops->rx);
857 if (status)
858 goto exit;
859
860 tx_queue_for_each(rt2x00dev, queue) {
861 status = rt2x00queue_alloc_entries(queue, rt2x00dev->ops->tx);
862 if (status)
863 goto exit;
864 }
865
866 status = rt2x00queue_alloc_entries(rt2x00dev->bcn, rt2x00dev->ops->bcn);
867 if (status)
868 goto exit;
869
870 if (test_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags)) {
871 status = rt2x00queue_alloc_entries(&rt2x00dev->bcn[1],
872 rt2x00dev->ops->atim);
873 if (status)
874 goto exit;
875 }
876
877 status = rt2x00queue_alloc_rxskbs(rt2x00dev->rx);
878 if (status)
879 goto exit;
880
881 return 0;
882
883 exit:
884 ERROR(rt2x00dev, "Queue entries allocation failed.\n");
885
886 rt2x00queue_uninitialize(rt2x00dev);
887
888 return status;
889 }
890
891 void rt2x00queue_uninitialize(struct rt2x00_dev *rt2x00dev)
892 {
893 struct data_queue *queue;
894
895 rt2x00queue_free_skbs(rt2x00dev->rx);
896
897 queue_for_each(rt2x00dev, queue) {
898 kfree(queue->entries);
899 queue->entries = NULL;
900 }
901 }
902
903 static void rt2x00queue_init(struct rt2x00_dev *rt2x00dev,
904 struct data_queue *queue, enum data_queue_qid qid)
905 {
906 spin_lock_init(&queue->lock);
907
908 queue->rt2x00dev = rt2x00dev;
909 queue->qid = qid;
910 queue->txop = 0;
911 queue->aifs = 2;
912 queue->cw_min = 5;
913 queue->cw_max = 10;
914 }
915
916 int rt2x00queue_allocate(struct rt2x00_dev *rt2x00dev)
917 {
918 struct data_queue *queue;
919 enum data_queue_qid qid;
920 unsigned int req_atim =
921 !!test_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags);
922
923 /*
924 * We need the following queues:
925 * RX: 1
926 * TX: ops->tx_queues
927 * Beacon: 1
928 * Atim: 1 (if required)
929 */
930 rt2x00dev->data_queues = 2 + rt2x00dev->ops->tx_queues + req_atim;
931
932 queue = kcalloc(rt2x00dev->data_queues, sizeof(*queue), GFP_KERNEL);
933 if (!queue) {
934 ERROR(rt2x00dev, "Queue allocation failed.\n");
935 return -ENOMEM;
936 }
937
938 /*
939 * Initialize pointers
940 */
941 rt2x00dev->rx = queue;
942 rt2x00dev->tx = &queue[1];
943 rt2x00dev->bcn = &queue[1 + rt2x00dev->ops->tx_queues];
944
945 /*
946 * Initialize queue parameters.
947 * RX: qid = QID_RX
948 * TX: qid = QID_AC_BE + index
949 * TX: cw_min: 2^5 = 32.
950 * TX: cw_max: 2^10 = 1024.
951 * BCN: qid = QID_BEACON
952 * ATIM: qid = QID_ATIM
953 */
954 rt2x00queue_init(rt2x00dev, rt2x00dev->rx, QID_RX);
955
956 qid = QID_AC_BE;
957 tx_queue_for_each(rt2x00dev, queue)
958 rt2x00queue_init(rt2x00dev, queue, qid++);
959
960 rt2x00queue_init(rt2x00dev, &rt2x00dev->bcn[0], QID_BEACON);
961 if (req_atim)
962 rt2x00queue_init(rt2x00dev, &rt2x00dev->bcn[1], QID_ATIM);
963
964 return 0;
965 }
966
967 void rt2x00queue_free(struct rt2x00_dev *rt2x00dev)
968 {
969 kfree(rt2x00dev->rx);
970 rt2x00dev->rx = NULL;
971 rt2x00dev->tx = NULL;
972 rt2x00dev->bcn = NULL;
973 }
This page took 0.055571 seconds and 6 git commands to generate.