hwmon: (max6650) Add support for alarms
[deliverable/linux.git] / drivers / net / wireless / rt2x00 / rt61pci.c
1 /*
2 Copyright (C) 2004 - 2009 rt2x00 SourceForge Project
3 <http://rt2x00.serialmonkey.com>
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the
17 Free Software Foundation, Inc.,
18 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 */
20
21 /*
22 Module: rt61pci
23 Abstract: rt61pci device specific routines.
24 Supported chipsets: RT2561, RT2561s, RT2661.
25 */
26
27 #include <linux/crc-itu-t.h>
28 #include <linux/delay.h>
29 #include <linux/etherdevice.h>
30 #include <linux/init.h>
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/pci.h>
34 #include <linux/eeprom_93cx6.h>
35
36 #include "rt2x00.h"
37 #include "rt2x00pci.h"
38 #include "rt61pci.h"
39
40 /*
41 * Allow hardware encryption to be disabled.
42 */
43 static int modparam_nohwcrypt = 0;
44 module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
45 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
46
47 /*
48 * Register access.
49 * BBP and RF register require indirect register access,
50 * and use the CSR registers PHY_CSR3 and PHY_CSR4 to achieve this.
51 * These indirect registers work with busy bits,
52 * and we will try maximal REGISTER_BUSY_COUNT times to access
53 * the register while taking a REGISTER_BUSY_DELAY us delay
54 * between each attampt. When the busy bit is still set at that time,
55 * the access attempt is considered to have failed,
56 * and we will print an error.
57 */
58 #define WAIT_FOR_BBP(__dev, __reg) \
59 rt2x00pci_regbusy_read((__dev), PHY_CSR3, PHY_CSR3_BUSY, (__reg))
60 #define WAIT_FOR_RF(__dev, __reg) \
61 rt2x00pci_regbusy_read((__dev), PHY_CSR4, PHY_CSR4_BUSY, (__reg))
62 #define WAIT_FOR_MCU(__dev, __reg) \
63 rt2x00pci_regbusy_read((__dev), H2M_MAILBOX_CSR, \
64 H2M_MAILBOX_CSR_OWNER, (__reg))
65
66 static void rt61pci_bbp_write(struct rt2x00_dev *rt2x00dev,
67 const unsigned int word, const u8 value)
68 {
69 u32 reg;
70
71 mutex_lock(&rt2x00dev->csr_mutex);
72
73 /*
74 * Wait until the BBP becomes available, afterwards we
75 * can safely write the new data into the register.
76 */
77 if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
78 reg = 0;
79 rt2x00_set_field32(&reg, PHY_CSR3_VALUE, value);
80 rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
81 rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
82 rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 0);
83
84 rt2x00pci_register_write(rt2x00dev, PHY_CSR3, reg);
85 }
86
87 mutex_unlock(&rt2x00dev->csr_mutex);
88 }
89
90 static void rt61pci_bbp_read(struct rt2x00_dev *rt2x00dev,
91 const unsigned int word, u8 *value)
92 {
93 u32 reg;
94
95 mutex_lock(&rt2x00dev->csr_mutex);
96
97 /*
98 * Wait until the BBP becomes available, afterwards we
99 * can safely write the read request into the register.
100 * After the data has been written, we wait until hardware
101 * returns the correct value, if at any time the register
102 * doesn't become available in time, reg will be 0xffffffff
103 * which means we return 0xff to the caller.
104 */
105 if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
106 reg = 0;
107 rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
108 rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
109 rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 1);
110
111 rt2x00pci_register_write(rt2x00dev, PHY_CSR3, reg);
112
113 WAIT_FOR_BBP(rt2x00dev, &reg);
114 }
115
116 *value = rt2x00_get_field32(reg, PHY_CSR3_VALUE);
117
118 mutex_unlock(&rt2x00dev->csr_mutex);
119 }
120
121 static void rt61pci_rf_write(struct rt2x00_dev *rt2x00dev,
122 const unsigned int word, const u32 value)
123 {
124 u32 reg;
125
126 mutex_lock(&rt2x00dev->csr_mutex);
127
128 /*
129 * Wait until the RF becomes available, afterwards we
130 * can safely write the new data into the register.
131 */
132 if (WAIT_FOR_RF(rt2x00dev, &reg)) {
133 reg = 0;
134 rt2x00_set_field32(&reg, PHY_CSR4_VALUE, value);
135 rt2x00_set_field32(&reg, PHY_CSR4_NUMBER_OF_BITS, 21);
136 rt2x00_set_field32(&reg, PHY_CSR4_IF_SELECT, 0);
137 rt2x00_set_field32(&reg, PHY_CSR4_BUSY, 1);
138
139 rt2x00pci_register_write(rt2x00dev, PHY_CSR4, reg);
140 rt2x00_rf_write(rt2x00dev, word, value);
141 }
142
143 mutex_unlock(&rt2x00dev->csr_mutex);
144 }
145
146 static void rt61pci_mcu_request(struct rt2x00_dev *rt2x00dev,
147 const u8 command, const u8 token,
148 const u8 arg0, const u8 arg1)
149 {
150 u32 reg;
151
152 mutex_lock(&rt2x00dev->csr_mutex);
153
154 /*
155 * Wait until the MCU becomes available, afterwards we
156 * can safely write the new data into the register.
157 */
158 if (WAIT_FOR_MCU(rt2x00dev, &reg)) {
159 rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_OWNER, 1);
160 rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_CMD_TOKEN, token);
161 rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_ARG0, arg0);
162 rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_ARG1, arg1);
163 rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CSR, reg);
164
165 rt2x00pci_register_read(rt2x00dev, HOST_CMD_CSR, &reg);
166 rt2x00_set_field32(&reg, HOST_CMD_CSR_HOST_COMMAND, command);
167 rt2x00_set_field32(&reg, HOST_CMD_CSR_INTERRUPT_MCU, 1);
168 rt2x00pci_register_write(rt2x00dev, HOST_CMD_CSR, reg);
169 }
170
171 mutex_unlock(&rt2x00dev->csr_mutex);
172
173 }
174
175 static void rt61pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
176 {
177 struct rt2x00_dev *rt2x00dev = eeprom->data;
178 u32 reg;
179
180 rt2x00pci_register_read(rt2x00dev, E2PROM_CSR, &reg);
181
182 eeprom->reg_data_in = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_IN);
183 eeprom->reg_data_out = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_OUT);
184 eeprom->reg_data_clock =
185 !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_CLOCK);
186 eeprom->reg_chip_select =
187 !!rt2x00_get_field32(reg, E2PROM_CSR_CHIP_SELECT);
188 }
189
190 static void rt61pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
191 {
192 struct rt2x00_dev *rt2x00dev = eeprom->data;
193 u32 reg = 0;
194
195 rt2x00_set_field32(&reg, E2PROM_CSR_DATA_IN, !!eeprom->reg_data_in);
196 rt2x00_set_field32(&reg, E2PROM_CSR_DATA_OUT, !!eeprom->reg_data_out);
197 rt2x00_set_field32(&reg, E2PROM_CSR_DATA_CLOCK,
198 !!eeprom->reg_data_clock);
199 rt2x00_set_field32(&reg, E2PROM_CSR_CHIP_SELECT,
200 !!eeprom->reg_chip_select);
201
202 rt2x00pci_register_write(rt2x00dev, E2PROM_CSR, reg);
203 }
204
205 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
206 static const struct rt2x00debug rt61pci_rt2x00debug = {
207 .owner = THIS_MODULE,
208 .csr = {
209 .read = rt2x00pci_register_read,
210 .write = rt2x00pci_register_write,
211 .flags = RT2X00DEBUGFS_OFFSET,
212 .word_base = CSR_REG_BASE,
213 .word_size = sizeof(u32),
214 .word_count = CSR_REG_SIZE / sizeof(u32),
215 },
216 .eeprom = {
217 .read = rt2x00_eeprom_read,
218 .write = rt2x00_eeprom_write,
219 .word_base = EEPROM_BASE,
220 .word_size = sizeof(u16),
221 .word_count = EEPROM_SIZE / sizeof(u16),
222 },
223 .bbp = {
224 .read = rt61pci_bbp_read,
225 .write = rt61pci_bbp_write,
226 .word_base = BBP_BASE,
227 .word_size = sizeof(u8),
228 .word_count = BBP_SIZE / sizeof(u8),
229 },
230 .rf = {
231 .read = rt2x00_rf_read,
232 .write = rt61pci_rf_write,
233 .word_base = RF_BASE,
234 .word_size = sizeof(u32),
235 .word_count = RF_SIZE / sizeof(u32),
236 },
237 };
238 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
239
240 #ifdef CONFIG_RT2X00_LIB_RFKILL
241 static int rt61pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
242 {
243 u32 reg;
244
245 rt2x00pci_register_read(rt2x00dev, MAC_CSR13, &reg);
246 return rt2x00_get_field32(reg, MAC_CSR13_BIT5);
247 }
248 #else
249 #define rt61pci_rfkill_poll NULL
250 #endif /* CONFIG_RT2X00_LIB_RFKILL */
251
252 #ifdef CONFIG_RT2X00_LIB_LEDS
253 static void rt61pci_brightness_set(struct led_classdev *led_cdev,
254 enum led_brightness brightness)
255 {
256 struct rt2x00_led *led =
257 container_of(led_cdev, struct rt2x00_led, led_dev);
258 unsigned int enabled = brightness != LED_OFF;
259 unsigned int a_mode =
260 (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_5GHZ);
261 unsigned int bg_mode =
262 (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_2GHZ);
263
264 if (led->type == LED_TYPE_RADIO) {
265 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
266 MCU_LEDCS_RADIO_STATUS, enabled);
267
268 rt61pci_mcu_request(led->rt2x00dev, MCU_LED, 0xff,
269 (led->rt2x00dev->led_mcu_reg & 0xff),
270 ((led->rt2x00dev->led_mcu_reg >> 8)));
271 } else if (led->type == LED_TYPE_ASSOC) {
272 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
273 MCU_LEDCS_LINK_BG_STATUS, bg_mode);
274 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
275 MCU_LEDCS_LINK_A_STATUS, a_mode);
276
277 rt61pci_mcu_request(led->rt2x00dev, MCU_LED, 0xff,
278 (led->rt2x00dev->led_mcu_reg & 0xff),
279 ((led->rt2x00dev->led_mcu_reg >> 8)));
280 } else if (led->type == LED_TYPE_QUALITY) {
281 /*
282 * The brightness is divided into 6 levels (0 - 5),
283 * this means we need to convert the brightness
284 * argument into the matching level within that range.
285 */
286 rt61pci_mcu_request(led->rt2x00dev, MCU_LED_STRENGTH, 0xff,
287 brightness / (LED_FULL / 6), 0);
288 }
289 }
290
291 static int rt61pci_blink_set(struct led_classdev *led_cdev,
292 unsigned long *delay_on,
293 unsigned long *delay_off)
294 {
295 struct rt2x00_led *led =
296 container_of(led_cdev, struct rt2x00_led, led_dev);
297 u32 reg;
298
299 rt2x00pci_register_read(led->rt2x00dev, MAC_CSR14, &reg);
300 rt2x00_set_field32(&reg, MAC_CSR14_ON_PERIOD, *delay_on);
301 rt2x00_set_field32(&reg, MAC_CSR14_OFF_PERIOD, *delay_off);
302 rt2x00pci_register_write(led->rt2x00dev, MAC_CSR14, reg);
303
304 return 0;
305 }
306
307 static void rt61pci_init_led(struct rt2x00_dev *rt2x00dev,
308 struct rt2x00_led *led,
309 enum led_type type)
310 {
311 led->rt2x00dev = rt2x00dev;
312 led->type = type;
313 led->led_dev.brightness_set = rt61pci_brightness_set;
314 led->led_dev.blink_set = rt61pci_blink_set;
315 led->flags = LED_INITIALIZED;
316 }
317 #endif /* CONFIG_RT2X00_LIB_LEDS */
318
319 /*
320 * Configuration handlers.
321 */
322 static int rt61pci_config_shared_key(struct rt2x00_dev *rt2x00dev,
323 struct rt2x00lib_crypto *crypto,
324 struct ieee80211_key_conf *key)
325 {
326 struct hw_key_entry key_entry;
327 struct rt2x00_field32 field;
328 u32 mask;
329 u32 reg;
330
331 if (crypto->cmd == SET_KEY) {
332 /*
333 * rt2x00lib can't determine the correct free
334 * key_idx for shared keys. We have 1 register
335 * with key valid bits. The goal is simple, read
336 * the register, if that is full we have no slots
337 * left.
338 * Note that each BSS is allowed to have up to 4
339 * shared keys, so put a mask over the allowed
340 * entries.
341 */
342 mask = (0xf << crypto->bssidx);
343
344 rt2x00pci_register_read(rt2x00dev, SEC_CSR0, &reg);
345 reg &= mask;
346
347 if (reg && reg == mask)
348 return -ENOSPC;
349
350 key->hw_key_idx += reg ? ffz(reg) : 0;
351
352 /*
353 * Upload key to hardware
354 */
355 memcpy(key_entry.key, crypto->key,
356 sizeof(key_entry.key));
357 memcpy(key_entry.tx_mic, crypto->tx_mic,
358 sizeof(key_entry.tx_mic));
359 memcpy(key_entry.rx_mic, crypto->rx_mic,
360 sizeof(key_entry.rx_mic));
361
362 reg = SHARED_KEY_ENTRY(key->hw_key_idx);
363 rt2x00pci_register_multiwrite(rt2x00dev, reg,
364 &key_entry, sizeof(key_entry));
365
366 /*
367 * The cipher types are stored over 2 registers.
368 * bssidx 0 and 1 keys are stored in SEC_CSR1 and
369 * bssidx 1 and 2 keys are stored in SEC_CSR5.
370 * Using the correct defines correctly will cause overhead,
371 * so just calculate the correct offset.
372 */
373 if (key->hw_key_idx < 8) {
374 field.bit_offset = (3 * key->hw_key_idx);
375 field.bit_mask = 0x7 << field.bit_offset;
376
377 rt2x00pci_register_read(rt2x00dev, SEC_CSR1, &reg);
378 rt2x00_set_field32(&reg, field, crypto->cipher);
379 rt2x00pci_register_write(rt2x00dev, SEC_CSR1, reg);
380 } else {
381 field.bit_offset = (3 * (key->hw_key_idx - 8));
382 field.bit_mask = 0x7 << field.bit_offset;
383
384 rt2x00pci_register_read(rt2x00dev, SEC_CSR5, &reg);
385 rt2x00_set_field32(&reg, field, crypto->cipher);
386 rt2x00pci_register_write(rt2x00dev, SEC_CSR5, reg);
387 }
388
389 /*
390 * The driver does not support the IV/EIV generation
391 * in hardware. However it doesn't support the IV/EIV
392 * inside the ieee80211 frame either, but requires it
393 * to be provided seperately for the descriptor.
394 * rt2x00lib will cut the IV/EIV data out of all frames
395 * given to us by mac80211, but we must tell mac80211
396 * to generate the IV/EIV data.
397 */
398 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
399 }
400
401 /*
402 * SEC_CSR0 contains only single-bit fields to indicate
403 * a particular key is valid. Because using the FIELD32()
404 * defines directly will cause a lot of overhead we use
405 * a calculation to determine the correct bit directly.
406 */
407 mask = 1 << key->hw_key_idx;
408
409 rt2x00pci_register_read(rt2x00dev, SEC_CSR0, &reg);
410 if (crypto->cmd == SET_KEY)
411 reg |= mask;
412 else if (crypto->cmd == DISABLE_KEY)
413 reg &= ~mask;
414 rt2x00pci_register_write(rt2x00dev, SEC_CSR0, reg);
415
416 return 0;
417 }
418
419 static int rt61pci_config_pairwise_key(struct rt2x00_dev *rt2x00dev,
420 struct rt2x00lib_crypto *crypto,
421 struct ieee80211_key_conf *key)
422 {
423 struct hw_pairwise_ta_entry addr_entry;
424 struct hw_key_entry key_entry;
425 u32 mask;
426 u32 reg;
427
428 if (crypto->cmd == SET_KEY) {
429 /*
430 * rt2x00lib can't determine the correct free
431 * key_idx for pairwise keys. We have 2 registers
432 * with key valid bits. The goal is simple, read
433 * the first register, if that is full move to
434 * the next register.
435 * When both registers are full, we drop the key,
436 * otherwise we use the first invalid entry.
437 */
438 rt2x00pci_register_read(rt2x00dev, SEC_CSR2, &reg);
439 if (reg && reg == ~0) {
440 key->hw_key_idx = 32;
441 rt2x00pci_register_read(rt2x00dev, SEC_CSR3, &reg);
442 if (reg && reg == ~0)
443 return -ENOSPC;
444 }
445
446 key->hw_key_idx += reg ? ffz(reg) : 0;
447
448 /*
449 * Upload key to hardware
450 */
451 memcpy(key_entry.key, crypto->key,
452 sizeof(key_entry.key));
453 memcpy(key_entry.tx_mic, crypto->tx_mic,
454 sizeof(key_entry.tx_mic));
455 memcpy(key_entry.rx_mic, crypto->rx_mic,
456 sizeof(key_entry.rx_mic));
457
458 memset(&addr_entry, 0, sizeof(addr_entry));
459 memcpy(&addr_entry, crypto->address, ETH_ALEN);
460 addr_entry.cipher = crypto->cipher;
461
462 reg = PAIRWISE_KEY_ENTRY(key->hw_key_idx);
463 rt2x00pci_register_multiwrite(rt2x00dev, reg,
464 &key_entry, sizeof(key_entry));
465
466 reg = PAIRWISE_TA_ENTRY(key->hw_key_idx);
467 rt2x00pci_register_multiwrite(rt2x00dev, reg,
468 &addr_entry, sizeof(addr_entry));
469
470 /*
471 * Enable pairwise lookup table for given BSS idx,
472 * without this received frames will not be decrypted
473 * by the hardware.
474 */
475 rt2x00pci_register_read(rt2x00dev, SEC_CSR4, &reg);
476 reg |= (1 << crypto->bssidx);
477 rt2x00pci_register_write(rt2x00dev, SEC_CSR4, reg);
478
479 /*
480 * The driver does not support the IV/EIV generation
481 * in hardware. However it doesn't support the IV/EIV
482 * inside the ieee80211 frame either, but requires it
483 * to be provided seperately for the descriptor.
484 * rt2x00lib will cut the IV/EIV data out of all frames
485 * given to us by mac80211, but we must tell mac80211
486 * to generate the IV/EIV data.
487 */
488 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
489 }
490
491 /*
492 * SEC_CSR2 and SEC_CSR3 contain only single-bit fields to indicate
493 * a particular key is valid. Because using the FIELD32()
494 * defines directly will cause a lot of overhead we use
495 * a calculation to determine the correct bit directly.
496 */
497 if (key->hw_key_idx < 32) {
498 mask = 1 << key->hw_key_idx;
499
500 rt2x00pci_register_read(rt2x00dev, SEC_CSR2, &reg);
501 if (crypto->cmd == SET_KEY)
502 reg |= mask;
503 else if (crypto->cmd == DISABLE_KEY)
504 reg &= ~mask;
505 rt2x00pci_register_write(rt2x00dev, SEC_CSR2, reg);
506 } else {
507 mask = 1 << (key->hw_key_idx - 32);
508
509 rt2x00pci_register_read(rt2x00dev, SEC_CSR3, &reg);
510 if (crypto->cmd == SET_KEY)
511 reg |= mask;
512 else if (crypto->cmd == DISABLE_KEY)
513 reg &= ~mask;
514 rt2x00pci_register_write(rt2x00dev, SEC_CSR3, reg);
515 }
516
517 return 0;
518 }
519
520 static void rt61pci_config_filter(struct rt2x00_dev *rt2x00dev,
521 const unsigned int filter_flags)
522 {
523 u32 reg;
524
525 /*
526 * Start configuration steps.
527 * Note that the version error will always be dropped
528 * and broadcast frames will always be accepted since
529 * there is no filter for it at this time.
530 */
531 rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
532 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CRC,
533 !(filter_flags & FIF_FCSFAIL));
534 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_PHYSICAL,
535 !(filter_flags & FIF_PLCPFAIL));
536 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CONTROL,
537 !(filter_flags & FIF_CONTROL));
538 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_NOT_TO_ME,
539 !(filter_flags & FIF_PROMISC_IN_BSS));
540 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_TO_DS,
541 !(filter_flags & FIF_PROMISC_IN_BSS) &&
542 !rt2x00dev->intf_ap_count);
543 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_VERSION_ERROR, 1);
544 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_MULTICAST,
545 !(filter_flags & FIF_ALLMULTI));
546 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_BROADCAST, 0);
547 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_ACK_CTS,
548 !(filter_flags & FIF_CONTROL));
549 rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
550 }
551
552 static void rt61pci_config_intf(struct rt2x00_dev *rt2x00dev,
553 struct rt2x00_intf *intf,
554 struct rt2x00intf_conf *conf,
555 const unsigned int flags)
556 {
557 unsigned int beacon_base;
558 u32 reg;
559
560 if (flags & CONFIG_UPDATE_TYPE) {
561 /*
562 * Clear current synchronisation setup.
563 * For the Beacon base registers we only need to clear
564 * the first byte since that byte contains the VALID and OWNER
565 * bits which (when set to 0) will invalidate the entire beacon.
566 */
567 beacon_base = HW_BEACON_OFFSET(intf->beacon->entry_idx);
568 rt2x00pci_register_write(rt2x00dev, beacon_base, 0);
569
570 /*
571 * Enable synchronisation.
572 */
573 rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
574 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 1);
575 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_SYNC, conf->sync);
576 rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 1);
577 rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
578 }
579
580 if (flags & CONFIG_UPDATE_MAC) {
581 reg = le32_to_cpu(conf->mac[1]);
582 rt2x00_set_field32(&reg, MAC_CSR3_UNICAST_TO_ME_MASK, 0xff);
583 conf->mac[1] = cpu_to_le32(reg);
584
585 rt2x00pci_register_multiwrite(rt2x00dev, MAC_CSR2,
586 conf->mac, sizeof(conf->mac));
587 }
588
589 if (flags & CONFIG_UPDATE_BSSID) {
590 reg = le32_to_cpu(conf->bssid[1]);
591 rt2x00_set_field32(&reg, MAC_CSR5_BSS_ID_MASK, 3);
592 conf->bssid[1] = cpu_to_le32(reg);
593
594 rt2x00pci_register_multiwrite(rt2x00dev, MAC_CSR4,
595 conf->bssid, sizeof(conf->bssid));
596 }
597 }
598
599 static void rt61pci_config_erp(struct rt2x00_dev *rt2x00dev,
600 struct rt2x00lib_erp *erp)
601 {
602 u32 reg;
603
604 rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
605 rt2x00_set_field32(&reg, TXRX_CSR0_RX_ACK_TIMEOUT, erp->ack_timeout);
606 rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
607
608 rt2x00pci_register_read(rt2x00dev, TXRX_CSR4, &reg);
609 rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_PREAMBLE,
610 !!erp->short_preamble);
611 rt2x00pci_register_write(rt2x00dev, TXRX_CSR4, reg);
612
613 rt2x00pci_register_write(rt2x00dev, TXRX_CSR5, erp->basic_rates);
614
615 rt2x00pci_register_read(rt2x00dev, MAC_CSR9, &reg);
616 rt2x00_set_field32(&reg, MAC_CSR9_SLOT_TIME, erp->slot_time);
617 rt2x00pci_register_write(rt2x00dev, MAC_CSR9, reg);
618
619 rt2x00pci_register_read(rt2x00dev, MAC_CSR8, &reg);
620 rt2x00_set_field32(&reg, MAC_CSR8_SIFS, erp->sifs);
621 rt2x00_set_field32(&reg, MAC_CSR8_SIFS_AFTER_RX_OFDM, 3);
622 rt2x00_set_field32(&reg, MAC_CSR8_EIFS, erp->eifs);
623 rt2x00pci_register_write(rt2x00dev, MAC_CSR8, reg);
624 }
625
626 static void rt61pci_config_antenna_5x(struct rt2x00_dev *rt2x00dev,
627 struct antenna_setup *ant)
628 {
629 u8 r3;
630 u8 r4;
631 u8 r77;
632
633 rt61pci_bbp_read(rt2x00dev, 3, &r3);
634 rt61pci_bbp_read(rt2x00dev, 4, &r4);
635 rt61pci_bbp_read(rt2x00dev, 77, &r77);
636
637 rt2x00_set_field8(&r3, BBP_R3_SMART_MODE,
638 rt2x00_rf(&rt2x00dev->chip, RF5325));
639
640 /*
641 * Configure the RX antenna.
642 */
643 switch (ant->rx) {
644 case ANTENNA_HW_DIVERSITY:
645 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
646 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END,
647 (rt2x00dev->curr_band != IEEE80211_BAND_5GHZ));
648 break;
649 case ANTENNA_A:
650 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
651 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
652 if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ)
653 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
654 else
655 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
656 break;
657 case ANTENNA_B:
658 default:
659 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
660 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
661 if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ)
662 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
663 else
664 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
665 break;
666 }
667
668 rt61pci_bbp_write(rt2x00dev, 77, r77);
669 rt61pci_bbp_write(rt2x00dev, 3, r3);
670 rt61pci_bbp_write(rt2x00dev, 4, r4);
671 }
672
673 static void rt61pci_config_antenna_2x(struct rt2x00_dev *rt2x00dev,
674 struct antenna_setup *ant)
675 {
676 u8 r3;
677 u8 r4;
678 u8 r77;
679
680 rt61pci_bbp_read(rt2x00dev, 3, &r3);
681 rt61pci_bbp_read(rt2x00dev, 4, &r4);
682 rt61pci_bbp_read(rt2x00dev, 77, &r77);
683
684 rt2x00_set_field8(&r3, BBP_R3_SMART_MODE,
685 rt2x00_rf(&rt2x00dev->chip, RF2529));
686 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END,
687 !test_bit(CONFIG_FRAME_TYPE, &rt2x00dev->flags));
688
689 /*
690 * Configure the RX antenna.
691 */
692 switch (ant->rx) {
693 case ANTENNA_HW_DIVERSITY:
694 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
695 break;
696 case ANTENNA_A:
697 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
698 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
699 break;
700 case ANTENNA_B:
701 default:
702 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
703 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
704 break;
705 }
706
707 rt61pci_bbp_write(rt2x00dev, 77, r77);
708 rt61pci_bbp_write(rt2x00dev, 3, r3);
709 rt61pci_bbp_write(rt2x00dev, 4, r4);
710 }
711
712 static void rt61pci_config_antenna_2529_rx(struct rt2x00_dev *rt2x00dev,
713 const int p1, const int p2)
714 {
715 u32 reg;
716
717 rt2x00pci_register_read(rt2x00dev, MAC_CSR13, &reg);
718
719 rt2x00_set_field32(&reg, MAC_CSR13_BIT4, p1);
720 rt2x00_set_field32(&reg, MAC_CSR13_BIT12, 0);
721
722 rt2x00_set_field32(&reg, MAC_CSR13_BIT3, !p2);
723 rt2x00_set_field32(&reg, MAC_CSR13_BIT11, 0);
724
725 rt2x00pci_register_write(rt2x00dev, MAC_CSR13, reg);
726 }
727
728 static void rt61pci_config_antenna_2529(struct rt2x00_dev *rt2x00dev,
729 struct antenna_setup *ant)
730 {
731 u8 r3;
732 u8 r4;
733 u8 r77;
734
735 rt61pci_bbp_read(rt2x00dev, 3, &r3);
736 rt61pci_bbp_read(rt2x00dev, 4, &r4);
737 rt61pci_bbp_read(rt2x00dev, 77, &r77);
738
739 /*
740 * Configure the RX antenna.
741 */
742 switch (ant->rx) {
743 case ANTENNA_A:
744 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
745 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
746 rt61pci_config_antenna_2529_rx(rt2x00dev, 0, 0);
747 break;
748 case ANTENNA_HW_DIVERSITY:
749 /*
750 * FIXME: Antenna selection for the rf 2529 is very confusing
751 * in the legacy driver. Just default to antenna B until the
752 * legacy code can be properly translated into rt2x00 code.
753 */
754 case ANTENNA_B:
755 default:
756 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
757 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
758 rt61pci_config_antenna_2529_rx(rt2x00dev, 1, 1);
759 break;
760 }
761
762 rt61pci_bbp_write(rt2x00dev, 77, r77);
763 rt61pci_bbp_write(rt2x00dev, 3, r3);
764 rt61pci_bbp_write(rt2x00dev, 4, r4);
765 }
766
767 struct antenna_sel {
768 u8 word;
769 /*
770 * value[0] -> non-LNA
771 * value[1] -> LNA
772 */
773 u8 value[2];
774 };
775
776 static const struct antenna_sel antenna_sel_a[] = {
777 { 96, { 0x58, 0x78 } },
778 { 104, { 0x38, 0x48 } },
779 { 75, { 0xfe, 0x80 } },
780 { 86, { 0xfe, 0x80 } },
781 { 88, { 0xfe, 0x80 } },
782 { 35, { 0x60, 0x60 } },
783 { 97, { 0x58, 0x58 } },
784 { 98, { 0x58, 0x58 } },
785 };
786
787 static const struct antenna_sel antenna_sel_bg[] = {
788 { 96, { 0x48, 0x68 } },
789 { 104, { 0x2c, 0x3c } },
790 { 75, { 0xfe, 0x80 } },
791 { 86, { 0xfe, 0x80 } },
792 { 88, { 0xfe, 0x80 } },
793 { 35, { 0x50, 0x50 } },
794 { 97, { 0x48, 0x48 } },
795 { 98, { 0x48, 0x48 } },
796 };
797
798 static void rt61pci_config_ant(struct rt2x00_dev *rt2x00dev,
799 struct antenna_setup *ant)
800 {
801 const struct antenna_sel *sel;
802 unsigned int lna;
803 unsigned int i;
804 u32 reg;
805
806 /*
807 * We should never come here because rt2x00lib is supposed
808 * to catch this and send us the correct antenna explicitely.
809 */
810 BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
811 ant->tx == ANTENNA_SW_DIVERSITY);
812
813 if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) {
814 sel = antenna_sel_a;
815 lna = test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags);
816 } else {
817 sel = antenna_sel_bg;
818 lna = test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags);
819 }
820
821 for (i = 0; i < ARRAY_SIZE(antenna_sel_a); i++)
822 rt61pci_bbp_write(rt2x00dev, sel[i].word, sel[i].value[lna]);
823
824 rt2x00pci_register_read(rt2x00dev, PHY_CSR0, &reg);
825
826 rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_BG,
827 rt2x00dev->curr_band == IEEE80211_BAND_2GHZ);
828 rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_A,
829 rt2x00dev->curr_band == IEEE80211_BAND_5GHZ);
830
831 rt2x00pci_register_write(rt2x00dev, PHY_CSR0, reg);
832
833 if (rt2x00_rf(&rt2x00dev->chip, RF5225) ||
834 rt2x00_rf(&rt2x00dev->chip, RF5325))
835 rt61pci_config_antenna_5x(rt2x00dev, ant);
836 else if (rt2x00_rf(&rt2x00dev->chip, RF2527))
837 rt61pci_config_antenna_2x(rt2x00dev, ant);
838 else if (rt2x00_rf(&rt2x00dev->chip, RF2529)) {
839 if (test_bit(CONFIG_DOUBLE_ANTENNA, &rt2x00dev->flags))
840 rt61pci_config_antenna_2x(rt2x00dev, ant);
841 else
842 rt61pci_config_antenna_2529(rt2x00dev, ant);
843 }
844 }
845
846 static void rt61pci_config_lna_gain(struct rt2x00_dev *rt2x00dev,
847 struct rt2x00lib_conf *libconf)
848 {
849 u16 eeprom;
850 short lna_gain = 0;
851
852 if (libconf->conf->channel->band == IEEE80211_BAND_2GHZ) {
853 if (test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags))
854 lna_gain += 14;
855
856 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &eeprom);
857 lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_BG_1);
858 } else {
859 if (test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags))
860 lna_gain += 14;
861
862 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &eeprom);
863 lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_A_1);
864 }
865
866 rt2x00dev->lna_gain = lna_gain;
867 }
868
869 static void rt61pci_config_channel(struct rt2x00_dev *rt2x00dev,
870 struct rf_channel *rf, const int txpower)
871 {
872 u8 r3;
873 u8 r94;
874 u8 smart;
875
876 rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
877 rt2x00_set_field32(&rf->rf4, RF4_FREQ_OFFSET, rt2x00dev->freq_offset);
878
879 smart = !(rt2x00_rf(&rt2x00dev->chip, RF5225) ||
880 rt2x00_rf(&rt2x00dev->chip, RF2527));
881
882 rt61pci_bbp_read(rt2x00dev, 3, &r3);
883 rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, smart);
884 rt61pci_bbp_write(rt2x00dev, 3, r3);
885
886 r94 = 6;
887 if (txpower > MAX_TXPOWER && txpower <= (MAX_TXPOWER + r94))
888 r94 += txpower - MAX_TXPOWER;
889 else if (txpower < MIN_TXPOWER && txpower >= (MIN_TXPOWER - r94))
890 r94 += txpower;
891 rt61pci_bbp_write(rt2x00dev, 94, r94);
892
893 rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
894 rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
895 rt61pci_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
896 rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
897
898 udelay(200);
899
900 rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
901 rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
902 rt61pci_rf_write(rt2x00dev, 3, rf->rf3 | 0x00000004);
903 rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
904
905 udelay(200);
906
907 rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
908 rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
909 rt61pci_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
910 rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
911
912 msleep(1);
913 }
914
915 static void rt61pci_config_txpower(struct rt2x00_dev *rt2x00dev,
916 const int txpower)
917 {
918 struct rf_channel rf;
919
920 rt2x00_rf_read(rt2x00dev, 1, &rf.rf1);
921 rt2x00_rf_read(rt2x00dev, 2, &rf.rf2);
922 rt2x00_rf_read(rt2x00dev, 3, &rf.rf3);
923 rt2x00_rf_read(rt2x00dev, 4, &rf.rf4);
924
925 rt61pci_config_channel(rt2x00dev, &rf, txpower);
926 }
927
928 static void rt61pci_config_retry_limit(struct rt2x00_dev *rt2x00dev,
929 struct rt2x00lib_conf *libconf)
930 {
931 u32 reg;
932
933 rt2x00pci_register_read(rt2x00dev, TXRX_CSR4, &reg);
934 rt2x00_set_field32(&reg, TXRX_CSR4_LONG_RETRY_LIMIT,
935 libconf->conf->long_frame_max_tx_count);
936 rt2x00_set_field32(&reg, TXRX_CSR4_SHORT_RETRY_LIMIT,
937 libconf->conf->short_frame_max_tx_count);
938 rt2x00pci_register_write(rt2x00dev, TXRX_CSR4, reg);
939 }
940
941 static void rt61pci_config_duration(struct rt2x00_dev *rt2x00dev,
942 struct rt2x00lib_conf *libconf)
943 {
944 u32 reg;
945
946 rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
947 rt2x00_set_field32(&reg, TXRX_CSR0_TSF_OFFSET, IEEE80211_HEADER);
948 rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
949
950 rt2x00pci_register_read(rt2x00dev, TXRX_CSR4, &reg);
951 rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_ENABLE, 1);
952 rt2x00pci_register_write(rt2x00dev, TXRX_CSR4, reg);
953
954 rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
955 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_INTERVAL,
956 libconf->conf->beacon_int * 16);
957 rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
958 }
959
960 static void rt61pci_config_ps(struct rt2x00_dev *rt2x00dev,
961 struct rt2x00lib_conf *libconf)
962 {
963 enum dev_state state =
964 (libconf->conf->flags & IEEE80211_CONF_PS) ?
965 STATE_SLEEP : STATE_AWAKE;
966 u32 reg;
967
968 if (state == STATE_SLEEP) {
969 rt2x00pci_register_read(rt2x00dev, MAC_CSR11, &reg);
970 rt2x00_set_field32(&reg, MAC_CSR11_DELAY_AFTER_TBCN,
971 libconf->conf->beacon_int - 10);
972 rt2x00_set_field32(&reg, MAC_CSR11_TBCN_BEFORE_WAKEUP,
973 libconf->conf->listen_interval - 1);
974 rt2x00_set_field32(&reg, MAC_CSR11_WAKEUP_LATENCY, 5);
975
976 /* We must first disable autowake before it can be enabled */
977 rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 0);
978 rt2x00pci_register_write(rt2x00dev, MAC_CSR11, reg);
979
980 rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 1);
981 rt2x00pci_register_write(rt2x00dev, MAC_CSR11, reg);
982
983 rt2x00pci_register_write(rt2x00dev, SOFT_RESET_CSR, 0x00000005);
984 rt2x00pci_register_write(rt2x00dev, IO_CNTL_CSR, 0x0000001c);
985 rt2x00pci_register_write(rt2x00dev, PCI_USEC_CSR, 0x00000060);
986
987 rt61pci_mcu_request(rt2x00dev, MCU_SLEEP, 0xff, 0, 0);
988 } else {
989 rt2x00pci_register_read(rt2x00dev, MAC_CSR11, &reg);
990 rt2x00_set_field32(&reg, MAC_CSR11_DELAY_AFTER_TBCN, 0);
991 rt2x00_set_field32(&reg, MAC_CSR11_TBCN_BEFORE_WAKEUP, 0);
992 rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 0);
993 rt2x00_set_field32(&reg, MAC_CSR11_WAKEUP_LATENCY, 0);
994 rt2x00pci_register_write(rt2x00dev, MAC_CSR11, reg);
995
996 rt2x00pci_register_write(rt2x00dev, SOFT_RESET_CSR, 0x00000007);
997 rt2x00pci_register_write(rt2x00dev, IO_CNTL_CSR, 0x00000018);
998 rt2x00pci_register_write(rt2x00dev, PCI_USEC_CSR, 0x00000020);
999
1000 rt61pci_mcu_request(rt2x00dev, MCU_WAKEUP, 0xff, 0, 0);
1001 }
1002 }
1003
1004 static void rt61pci_config(struct rt2x00_dev *rt2x00dev,
1005 struct rt2x00lib_conf *libconf,
1006 const unsigned int flags)
1007 {
1008 /* Always recalculate LNA gain before changing configuration */
1009 rt61pci_config_lna_gain(rt2x00dev, libconf);
1010
1011 if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
1012 rt61pci_config_channel(rt2x00dev, &libconf->rf,
1013 libconf->conf->power_level);
1014 if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
1015 !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
1016 rt61pci_config_txpower(rt2x00dev, libconf->conf->power_level);
1017 if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
1018 rt61pci_config_retry_limit(rt2x00dev, libconf);
1019 if (flags & IEEE80211_CONF_CHANGE_BEACON_INTERVAL)
1020 rt61pci_config_duration(rt2x00dev, libconf);
1021 if (flags & IEEE80211_CONF_CHANGE_PS)
1022 rt61pci_config_ps(rt2x00dev, libconf);
1023 }
1024
1025 /*
1026 * Link tuning
1027 */
1028 static void rt61pci_link_stats(struct rt2x00_dev *rt2x00dev,
1029 struct link_qual *qual)
1030 {
1031 u32 reg;
1032
1033 /*
1034 * Update FCS error count from register.
1035 */
1036 rt2x00pci_register_read(rt2x00dev, STA_CSR0, &reg);
1037 qual->rx_failed = rt2x00_get_field32(reg, STA_CSR0_FCS_ERROR);
1038
1039 /*
1040 * Update False CCA count from register.
1041 */
1042 rt2x00pci_register_read(rt2x00dev, STA_CSR1, &reg);
1043 qual->false_cca = rt2x00_get_field32(reg, STA_CSR1_FALSE_CCA_ERROR);
1044 }
1045
1046 static inline void rt61pci_set_vgc(struct rt2x00_dev *rt2x00dev,
1047 struct link_qual *qual, u8 vgc_level)
1048 {
1049 if (qual->vgc_level != vgc_level) {
1050 rt61pci_bbp_write(rt2x00dev, 17, vgc_level);
1051 qual->vgc_level = vgc_level;
1052 qual->vgc_level_reg = vgc_level;
1053 }
1054 }
1055
1056 static void rt61pci_reset_tuner(struct rt2x00_dev *rt2x00dev,
1057 struct link_qual *qual)
1058 {
1059 rt61pci_set_vgc(rt2x00dev, qual, 0x20);
1060 }
1061
1062 static void rt61pci_link_tuner(struct rt2x00_dev *rt2x00dev,
1063 struct link_qual *qual, const u32 count)
1064 {
1065 u8 up_bound;
1066 u8 low_bound;
1067
1068 /*
1069 * Determine r17 bounds.
1070 */
1071 if (rt2x00dev->rx_status.band == IEEE80211_BAND_5GHZ) {
1072 low_bound = 0x28;
1073 up_bound = 0x48;
1074 if (test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags)) {
1075 low_bound += 0x10;
1076 up_bound += 0x10;
1077 }
1078 } else {
1079 low_bound = 0x20;
1080 up_bound = 0x40;
1081 if (test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags)) {
1082 low_bound += 0x10;
1083 up_bound += 0x10;
1084 }
1085 }
1086
1087 /*
1088 * If we are not associated, we should go straight to the
1089 * dynamic CCA tuning.
1090 */
1091 if (!rt2x00dev->intf_associated)
1092 goto dynamic_cca_tune;
1093
1094 /*
1095 * Special big-R17 for very short distance
1096 */
1097 if (qual->rssi >= -35) {
1098 rt61pci_set_vgc(rt2x00dev, qual, 0x60);
1099 return;
1100 }
1101
1102 /*
1103 * Special big-R17 for short distance
1104 */
1105 if (qual->rssi >= -58) {
1106 rt61pci_set_vgc(rt2x00dev, qual, up_bound);
1107 return;
1108 }
1109
1110 /*
1111 * Special big-R17 for middle-short distance
1112 */
1113 if (qual->rssi >= -66) {
1114 rt61pci_set_vgc(rt2x00dev, qual, low_bound + 0x10);
1115 return;
1116 }
1117
1118 /*
1119 * Special mid-R17 for middle distance
1120 */
1121 if (qual->rssi >= -74) {
1122 rt61pci_set_vgc(rt2x00dev, qual, low_bound + 0x08);
1123 return;
1124 }
1125
1126 /*
1127 * Special case: Change up_bound based on the rssi.
1128 * Lower up_bound when rssi is weaker then -74 dBm.
1129 */
1130 up_bound -= 2 * (-74 - qual->rssi);
1131 if (low_bound > up_bound)
1132 up_bound = low_bound;
1133
1134 if (qual->vgc_level > up_bound) {
1135 rt61pci_set_vgc(rt2x00dev, qual, up_bound);
1136 return;
1137 }
1138
1139 dynamic_cca_tune:
1140
1141 /*
1142 * r17 does not yet exceed upper limit, continue and base
1143 * the r17 tuning on the false CCA count.
1144 */
1145 if ((qual->false_cca > 512) && (qual->vgc_level < up_bound))
1146 rt61pci_set_vgc(rt2x00dev, qual, ++qual->vgc_level);
1147 else if ((qual->false_cca < 100) && (qual->vgc_level > low_bound))
1148 rt61pci_set_vgc(rt2x00dev, qual, --qual->vgc_level);
1149 }
1150
1151 /*
1152 * Firmware functions
1153 */
1154 static char *rt61pci_get_firmware_name(struct rt2x00_dev *rt2x00dev)
1155 {
1156 char *fw_name;
1157
1158 switch (rt2x00dev->chip.rt) {
1159 case RT2561:
1160 fw_name = FIRMWARE_RT2561;
1161 break;
1162 case RT2561s:
1163 fw_name = FIRMWARE_RT2561s;
1164 break;
1165 case RT2661:
1166 fw_name = FIRMWARE_RT2661;
1167 break;
1168 default:
1169 fw_name = NULL;
1170 break;
1171 }
1172
1173 return fw_name;
1174 }
1175
1176 static int rt61pci_check_firmware(struct rt2x00_dev *rt2x00dev,
1177 const u8 *data, const size_t len)
1178 {
1179 u16 fw_crc;
1180 u16 crc;
1181
1182 /*
1183 * Only support 8kb firmware files.
1184 */
1185 if (len != 8192)
1186 return FW_BAD_LENGTH;
1187
1188 /*
1189 * The last 2 bytes in the firmware array are the crc checksum itself,
1190 * this means that we should never pass those 2 bytes to the crc
1191 * algorithm.
1192 */
1193 fw_crc = (data[len - 2] << 8 | data[len - 1]);
1194
1195 /*
1196 * Use the crc itu-t algorithm.
1197 */
1198 crc = crc_itu_t(0, data, len - 2);
1199 crc = crc_itu_t_byte(crc, 0);
1200 crc = crc_itu_t_byte(crc, 0);
1201
1202 return (fw_crc == crc) ? FW_OK : FW_BAD_CRC;
1203 }
1204
1205 static int rt61pci_load_firmware(struct rt2x00_dev *rt2x00dev,
1206 const u8 *data, const size_t len)
1207 {
1208 int i;
1209 u32 reg;
1210
1211 /*
1212 * Wait for stable hardware.
1213 */
1214 for (i = 0; i < 100; i++) {
1215 rt2x00pci_register_read(rt2x00dev, MAC_CSR0, &reg);
1216 if (reg)
1217 break;
1218 msleep(1);
1219 }
1220
1221 if (!reg) {
1222 ERROR(rt2x00dev, "Unstable hardware.\n");
1223 return -EBUSY;
1224 }
1225
1226 /*
1227 * Prepare MCU and mailbox for firmware loading.
1228 */
1229 reg = 0;
1230 rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 1);
1231 rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1232 rt2x00pci_register_write(rt2x00dev, M2H_CMD_DONE_CSR, 0xffffffff);
1233 rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
1234 rt2x00pci_register_write(rt2x00dev, HOST_CMD_CSR, 0);
1235
1236 /*
1237 * Write firmware to device.
1238 */
1239 reg = 0;
1240 rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 1);
1241 rt2x00_set_field32(&reg, MCU_CNTL_CSR_SELECT_BANK, 1);
1242 rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1243
1244 rt2x00pci_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE,
1245 data, len);
1246
1247 rt2x00_set_field32(&reg, MCU_CNTL_CSR_SELECT_BANK, 0);
1248 rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1249
1250 rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 0);
1251 rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1252
1253 for (i = 0; i < 100; i++) {
1254 rt2x00pci_register_read(rt2x00dev, MCU_CNTL_CSR, &reg);
1255 if (rt2x00_get_field32(reg, MCU_CNTL_CSR_READY))
1256 break;
1257 msleep(1);
1258 }
1259
1260 if (i == 100) {
1261 ERROR(rt2x00dev, "MCU Control register not ready.\n");
1262 return -EBUSY;
1263 }
1264
1265 /*
1266 * Hardware needs another millisecond before it is ready.
1267 */
1268 msleep(1);
1269
1270 /*
1271 * Reset MAC and BBP registers.
1272 */
1273 reg = 0;
1274 rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 1);
1275 rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 1);
1276 rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1277
1278 rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1279 rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 0);
1280 rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 0);
1281 rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1282
1283 rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1284 rt2x00_set_field32(&reg, MAC_CSR1_HOST_READY, 1);
1285 rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1286
1287 return 0;
1288 }
1289
1290 /*
1291 * Initialization functions.
1292 */
1293 static bool rt61pci_get_entry_state(struct queue_entry *entry)
1294 {
1295 struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1296 u32 word;
1297
1298 if (entry->queue->qid == QID_RX) {
1299 rt2x00_desc_read(entry_priv->desc, 0, &word);
1300
1301 return rt2x00_get_field32(word, RXD_W0_OWNER_NIC);
1302 } else {
1303 rt2x00_desc_read(entry_priv->desc, 0, &word);
1304
1305 return (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
1306 rt2x00_get_field32(word, TXD_W0_VALID));
1307 }
1308 }
1309
1310 static void rt61pci_clear_entry(struct queue_entry *entry)
1311 {
1312 struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1313 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1314 u32 word;
1315
1316 if (entry->queue->qid == QID_RX) {
1317 rt2x00_desc_read(entry_priv->desc, 5, &word);
1318 rt2x00_set_field32(&word, RXD_W5_BUFFER_PHYSICAL_ADDRESS,
1319 skbdesc->skb_dma);
1320 rt2x00_desc_write(entry_priv->desc, 5, word);
1321
1322 rt2x00_desc_read(entry_priv->desc, 0, &word);
1323 rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
1324 rt2x00_desc_write(entry_priv->desc, 0, word);
1325 } else {
1326 rt2x00_desc_read(entry_priv->desc, 0, &word);
1327 rt2x00_set_field32(&word, TXD_W0_VALID, 0);
1328 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
1329 rt2x00_desc_write(entry_priv->desc, 0, word);
1330 }
1331 }
1332
1333 static int rt61pci_init_queues(struct rt2x00_dev *rt2x00dev)
1334 {
1335 struct queue_entry_priv_pci *entry_priv;
1336 u32 reg;
1337
1338 /*
1339 * Initialize registers.
1340 */
1341 rt2x00pci_register_read(rt2x00dev, TX_RING_CSR0, &reg);
1342 rt2x00_set_field32(&reg, TX_RING_CSR0_AC0_RING_SIZE,
1343 rt2x00dev->tx[0].limit);
1344 rt2x00_set_field32(&reg, TX_RING_CSR0_AC1_RING_SIZE,
1345 rt2x00dev->tx[1].limit);
1346 rt2x00_set_field32(&reg, TX_RING_CSR0_AC2_RING_SIZE,
1347 rt2x00dev->tx[2].limit);
1348 rt2x00_set_field32(&reg, TX_RING_CSR0_AC3_RING_SIZE,
1349 rt2x00dev->tx[3].limit);
1350 rt2x00pci_register_write(rt2x00dev, TX_RING_CSR0, reg);
1351
1352 rt2x00pci_register_read(rt2x00dev, TX_RING_CSR1, &reg);
1353 rt2x00_set_field32(&reg, TX_RING_CSR1_TXD_SIZE,
1354 rt2x00dev->tx[0].desc_size / 4);
1355 rt2x00pci_register_write(rt2x00dev, TX_RING_CSR1, reg);
1356
1357 entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
1358 rt2x00pci_register_read(rt2x00dev, AC0_BASE_CSR, &reg);
1359 rt2x00_set_field32(&reg, AC0_BASE_CSR_RING_REGISTER,
1360 entry_priv->desc_dma);
1361 rt2x00pci_register_write(rt2x00dev, AC0_BASE_CSR, reg);
1362
1363 entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
1364 rt2x00pci_register_read(rt2x00dev, AC1_BASE_CSR, &reg);
1365 rt2x00_set_field32(&reg, AC1_BASE_CSR_RING_REGISTER,
1366 entry_priv->desc_dma);
1367 rt2x00pci_register_write(rt2x00dev, AC1_BASE_CSR, reg);
1368
1369 entry_priv = rt2x00dev->tx[2].entries[0].priv_data;
1370 rt2x00pci_register_read(rt2x00dev, AC2_BASE_CSR, &reg);
1371 rt2x00_set_field32(&reg, AC2_BASE_CSR_RING_REGISTER,
1372 entry_priv->desc_dma);
1373 rt2x00pci_register_write(rt2x00dev, AC2_BASE_CSR, reg);
1374
1375 entry_priv = rt2x00dev->tx[3].entries[0].priv_data;
1376 rt2x00pci_register_read(rt2x00dev, AC3_BASE_CSR, &reg);
1377 rt2x00_set_field32(&reg, AC3_BASE_CSR_RING_REGISTER,
1378 entry_priv->desc_dma);
1379 rt2x00pci_register_write(rt2x00dev, AC3_BASE_CSR, reg);
1380
1381 rt2x00pci_register_read(rt2x00dev, RX_RING_CSR, &reg);
1382 rt2x00_set_field32(&reg, RX_RING_CSR_RING_SIZE, rt2x00dev->rx->limit);
1383 rt2x00_set_field32(&reg, RX_RING_CSR_RXD_SIZE,
1384 rt2x00dev->rx->desc_size / 4);
1385 rt2x00_set_field32(&reg, RX_RING_CSR_RXD_WRITEBACK_SIZE, 4);
1386 rt2x00pci_register_write(rt2x00dev, RX_RING_CSR, reg);
1387
1388 entry_priv = rt2x00dev->rx->entries[0].priv_data;
1389 rt2x00pci_register_read(rt2x00dev, RX_BASE_CSR, &reg);
1390 rt2x00_set_field32(&reg, RX_BASE_CSR_RING_REGISTER,
1391 entry_priv->desc_dma);
1392 rt2x00pci_register_write(rt2x00dev, RX_BASE_CSR, reg);
1393
1394 rt2x00pci_register_read(rt2x00dev, TX_DMA_DST_CSR, &reg);
1395 rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC0, 2);
1396 rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC1, 2);
1397 rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC2, 2);
1398 rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC3, 2);
1399 rt2x00pci_register_write(rt2x00dev, TX_DMA_DST_CSR, reg);
1400
1401 rt2x00pci_register_read(rt2x00dev, LOAD_TX_RING_CSR, &reg);
1402 rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC0, 1);
1403 rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC1, 1);
1404 rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC2, 1);
1405 rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC3, 1);
1406 rt2x00pci_register_write(rt2x00dev, LOAD_TX_RING_CSR, reg);
1407
1408 rt2x00pci_register_read(rt2x00dev, RX_CNTL_CSR, &reg);
1409 rt2x00_set_field32(&reg, RX_CNTL_CSR_LOAD_RXD, 1);
1410 rt2x00pci_register_write(rt2x00dev, RX_CNTL_CSR, reg);
1411
1412 return 0;
1413 }
1414
1415 static int rt61pci_init_registers(struct rt2x00_dev *rt2x00dev)
1416 {
1417 u32 reg;
1418
1419 rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
1420 rt2x00_set_field32(&reg, TXRX_CSR0_AUTO_TX_SEQ, 1);
1421 rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX, 0);
1422 rt2x00_set_field32(&reg, TXRX_CSR0_TX_WITHOUT_WAITING, 0);
1423 rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
1424
1425 rt2x00pci_register_read(rt2x00dev, TXRX_CSR1, &reg);
1426 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0, 47); /* CCK Signal */
1427 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0_VALID, 1);
1428 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1, 30); /* Rssi */
1429 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1_VALID, 1);
1430 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2, 42); /* OFDM Rate */
1431 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2_VALID, 1);
1432 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3, 30); /* Rssi */
1433 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3_VALID, 1);
1434 rt2x00pci_register_write(rt2x00dev, TXRX_CSR1, reg);
1435
1436 /*
1437 * CCK TXD BBP registers
1438 */
1439 rt2x00pci_register_read(rt2x00dev, TXRX_CSR2, &reg);
1440 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0, 13);
1441 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0_VALID, 1);
1442 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1, 12);
1443 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1_VALID, 1);
1444 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2, 11);
1445 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2_VALID, 1);
1446 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3, 10);
1447 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3_VALID, 1);
1448 rt2x00pci_register_write(rt2x00dev, TXRX_CSR2, reg);
1449
1450 /*
1451 * OFDM TXD BBP registers
1452 */
1453 rt2x00pci_register_read(rt2x00dev, TXRX_CSR3, &reg);
1454 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0, 7);
1455 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0_VALID, 1);
1456 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1, 6);
1457 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1_VALID, 1);
1458 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2, 5);
1459 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2_VALID, 1);
1460 rt2x00pci_register_write(rt2x00dev, TXRX_CSR3, reg);
1461
1462 rt2x00pci_register_read(rt2x00dev, TXRX_CSR7, &reg);
1463 rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_6MBS, 59);
1464 rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_9MBS, 53);
1465 rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_12MBS, 49);
1466 rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_18MBS, 46);
1467 rt2x00pci_register_write(rt2x00dev, TXRX_CSR7, reg);
1468
1469 rt2x00pci_register_read(rt2x00dev, TXRX_CSR8, &reg);
1470 rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_24MBS, 44);
1471 rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_36MBS, 42);
1472 rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_48MBS, 42);
1473 rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_54MBS, 42);
1474 rt2x00pci_register_write(rt2x00dev, TXRX_CSR8, reg);
1475
1476 rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
1477 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_INTERVAL, 0);
1478 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 0);
1479 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_SYNC, 0);
1480 rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 0);
1481 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1482 rt2x00_set_field32(&reg, TXRX_CSR9_TIMESTAMP_COMPENSATE, 0);
1483 rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
1484
1485 rt2x00pci_register_write(rt2x00dev, TXRX_CSR15, 0x0000000f);
1486
1487 rt2x00pci_register_write(rt2x00dev, MAC_CSR6, 0x00000fff);
1488
1489 rt2x00pci_register_read(rt2x00dev, MAC_CSR9, &reg);
1490 rt2x00_set_field32(&reg, MAC_CSR9_CW_SELECT, 0);
1491 rt2x00pci_register_write(rt2x00dev, MAC_CSR9, reg);
1492
1493 rt2x00pci_register_write(rt2x00dev, MAC_CSR10, 0x0000071c);
1494
1495 if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
1496 return -EBUSY;
1497
1498 rt2x00pci_register_write(rt2x00dev, MAC_CSR13, 0x0000e000);
1499
1500 /*
1501 * Invalidate all Shared Keys (SEC_CSR0),
1502 * and clear the Shared key Cipher algorithms (SEC_CSR1 & SEC_CSR5)
1503 */
1504 rt2x00pci_register_write(rt2x00dev, SEC_CSR0, 0x00000000);
1505 rt2x00pci_register_write(rt2x00dev, SEC_CSR1, 0x00000000);
1506 rt2x00pci_register_write(rt2x00dev, SEC_CSR5, 0x00000000);
1507
1508 rt2x00pci_register_write(rt2x00dev, PHY_CSR1, 0x000023b0);
1509 rt2x00pci_register_write(rt2x00dev, PHY_CSR5, 0x060a100c);
1510 rt2x00pci_register_write(rt2x00dev, PHY_CSR6, 0x00080606);
1511 rt2x00pci_register_write(rt2x00dev, PHY_CSR7, 0x00000a08);
1512
1513 rt2x00pci_register_write(rt2x00dev, PCI_CFG_CSR, 0x28ca4404);
1514
1515 rt2x00pci_register_write(rt2x00dev, TEST_MODE_CSR, 0x00000200);
1516
1517 rt2x00pci_register_write(rt2x00dev, M2H_CMD_DONE_CSR, 0xffffffff);
1518
1519 /*
1520 * Clear all beacons
1521 * For the Beacon base registers we only need to clear
1522 * the first byte since that byte contains the VALID and OWNER
1523 * bits which (when set to 0) will invalidate the entire beacon.
1524 */
1525 rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE0, 0);
1526 rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE1, 0);
1527 rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE2, 0);
1528 rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE3, 0);
1529
1530 /*
1531 * We must clear the error counters.
1532 * These registers are cleared on read,
1533 * so we may pass a useless variable to store the value.
1534 */
1535 rt2x00pci_register_read(rt2x00dev, STA_CSR0, &reg);
1536 rt2x00pci_register_read(rt2x00dev, STA_CSR1, &reg);
1537 rt2x00pci_register_read(rt2x00dev, STA_CSR2, &reg);
1538
1539 /*
1540 * Reset MAC and BBP registers.
1541 */
1542 rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1543 rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 1);
1544 rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 1);
1545 rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1546
1547 rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1548 rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 0);
1549 rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 0);
1550 rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1551
1552 rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1553 rt2x00_set_field32(&reg, MAC_CSR1_HOST_READY, 1);
1554 rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1555
1556 return 0;
1557 }
1558
1559 static int rt61pci_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
1560 {
1561 unsigned int i;
1562 u8 value;
1563
1564 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1565 rt61pci_bbp_read(rt2x00dev, 0, &value);
1566 if ((value != 0xff) && (value != 0x00))
1567 return 0;
1568 udelay(REGISTER_BUSY_DELAY);
1569 }
1570
1571 ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
1572 return -EACCES;
1573 }
1574
1575 static int rt61pci_init_bbp(struct rt2x00_dev *rt2x00dev)
1576 {
1577 unsigned int i;
1578 u16 eeprom;
1579 u8 reg_id;
1580 u8 value;
1581
1582 if (unlikely(rt61pci_wait_bbp_ready(rt2x00dev)))
1583 return -EACCES;
1584
1585 rt61pci_bbp_write(rt2x00dev, 3, 0x00);
1586 rt61pci_bbp_write(rt2x00dev, 15, 0x30);
1587 rt61pci_bbp_write(rt2x00dev, 21, 0xc8);
1588 rt61pci_bbp_write(rt2x00dev, 22, 0x38);
1589 rt61pci_bbp_write(rt2x00dev, 23, 0x06);
1590 rt61pci_bbp_write(rt2x00dev, 24, 0xfe);
1591 rt61pci_bbp_write(rt2x00dev, 25, 0x0a);
1592 rt61pci_bbp_write(rt2x00dev, 26, 0x0d);
1593 rt61pci_bbp_write(rt2x00dev, 34, 0x12);
1594 rt61pci_bbp_write(rt2x00dev, 37, 0x07);
1595 rt61pci_bbp_write(rt2x00dev, 39, 0xf8);
1596 rt61pci_bbp_write(rt2x00dev, 41, 0x60);
1597 rt61pci_bbp_write(rt2x00dev, 53, 0x10);
1598 rt61pci_bbp_write(rt2x00dev, 54, 0x18);
1599 rt61pci_bbp_write(rt2x00dev, 60, 0x10);
1600 rt61pci_bbp_write(rt2x00dev, 61, 0x04);
1601 rt61pci_bbp_write(rt2x00dev, 62, 0x04);
1602 rt61pci_bbp_write(rt2x00dev, 75, 0xfe);
1603 rt61pci_bbp_write(rt2x00dev, 86, 0xfe);
1604 rt61pci_bbp_write(rt2x00dev, 88, 0xfe);
1605 rt61pci_bbp_write(rt2x00dev, 90, 0x0f);
1606 rt61pci_bbp_write(rt2x00dev, 99, 0x00);
1607 rt61pci_bbp_write(rt2x00dev, 102, 0x16);
1608 rt61pci_bbp_write(rt2x00dev, 107, 0x04);
1609
1610 for (i = 0; i < EEPROM_BBP_SIZE; i++) {
1611 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
1612
1613 if (eeprom != 0xffff && eeprom != 0x0000) {
1614 reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
1615 value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
1616 rt61pci_bbp_write(rt2x00dev, reg_id, value);
1617 }
1618 }
1619
1620 return 0;
1621 }
1622
1623 /*
1624 * Device state switch handlers.
1625 */
1626 static void rt61pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
1627 enum dev_state state)
1628 {
1629 u32 reg;
1630
1631 rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
1632 rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX,
1633 (state == STATE_RADIO_RX_OFF) ||
1634 (state == STATE_RADIO_RX_OFF_LINK));
1635 rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
1636 }
1637
1638 static void rt61pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
1639 enum dev_state state)
1640 {
1641 int mask = (state == STATE_RADIO_IRQ_OFF);
1642 u32 reg;
1643
1644 /*
1645 * When interrupts are being enabled, the interrupt registers
1646 * should clear the register to assure a clean state.
1647 */
1648 if (state == STATE_RADIO_IRQ_ON) {
1649 rt2x00pci_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
1650 rt2x00pci_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
1651
1652 rt2x00pci_register_read(rt2x00dev, MCU_INT_SOURCE_CSR, &reg);
1653 rt2x00pci_register_write(rt2x00dev, MCU_INT_SOURCE_CSR, reg);
1654 }
1655
1656 /*
1657 * Only toggle the interrupts bits we are going to use.
1658 * Non-checked interrupt bits are disabled by default.
1659 */
1660 rt2x00pci_register_read(rt2x00dev, INT_MASK_CSR, &reg);
1661 rt2x00_set_field32(&reg, INT_MASK_CSR_TXDONE, mask);
1662 rt2x00_set_field32(&reg, INT_MASK_CSR_RXDONE, mask);
1663 rt2x00_set_field32(&reg, INT_MASK_CSR_ENABLE_MITIGATION, mask);
1664 rt2x00_set_field32(&reg, INT_MASK_CSR_MITIGATION_PERIOD, 0xff);
1665 rt2x00pci_register_write(rt2x00dev, INT_MASK_CSR, reg);
1666
1667 rt2x00pci_register_read(rt2x00dev, MCU_INT_MASK_CSR, &reg);
1668 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_0, mask);
1669 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_1, mask);
1670 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_2, mask);
1671 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_3, mask);
1672 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_4, mask);
1673 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_5, mask);
1674 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_6, mask);
1675 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_7, mask);
1676 rt2x00pci_register_write(rt2x00dev, MCU_INT_MASK_CSR, reg);
1677 }
1678
1679 static int rt61pci_enable_radio(struct rt2x00_dev *rt2x00dev)
1680 {
1681 u32 reg;
1682
1683 /*
1684 * Initialize all registers.
1685 */
1686 if (unlikely(rt61pci_init_queues(rt2x00dev) ||
1687 rt61pci_init_registers(rt2x00dev) ||
1688 rt61pci_init_bbp(rt2x00dev)))
1689 return -EIO;
1690
1691 /*
1692 * Enable RX.
1693 */
1694 rt2x00pci_register_read(rt2x00dev, RX_CNTL_CSR, &reg);
1695 rt2x00_set_field32(&reg, RX_CNTL_CSR_ENABLE_RX_DMA, 1);
1696 rt2x00pci_register_write(rt2x00dev, RX_CNTL_CSR, reg);
1697
1698 return 0;
1699 }
1700
1701 static void rt61pci_disable_radio(struct rt2x00_dev *rt2x00dev)
1702 {
1703 /*
1704 * Disable power
1705 */
1706 rt2x00pci_register_write(rt2x00dev, MAC_CSR10, 0x00001818);
1707 }
1708
1709 static int rt61pci_set_state(struct rt2x00_dev *rt2x00dev, enum dev_state state)
1710 {
1711 u32 reg;
1712 unsigned int i;
1713 char put_to_sleep;
1714
1715 put_to_sleep = (state != STATE_AWAKE);
1716
1717 rt2x00pci_register_read(rt2x00dev, MAC_CSR12, &reg);
1718 rt2x00_set_field32(&reg, MAC_CSR12_FORCE_WAKEUP, !put_to_sleep);
1719 rt2x00_set_field32(&reg, MAC_CSR12_PUT_TO_SLEEP, put_to_sleep);
1720 rt2x00pci_register_write(rt2x00dev, MAC_CSR12, reg);
1721
1722 /*
1723 * Device is not guaranteed to be in the requested state yet.
1724 * We must wait until the register indicates that the
1725 * device has entered the correct state.
1726 */
1727 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1728 rt2x00pci_register_read(rt2x00dev, MAC_CSR12, &reg);
1729 state = rt2x00_get_field32(reg, MAC_CSR12_BBP_CURRENT_STATE);
1730 if (state == !put_to_sleep)
1731 return 0;
1732 msleep(10);
1733 }
1734
1735 return -EBUSY;
1736 }
1737
1738 static int rt61pci_set_device_state(struct rt2x00_dev *rt2x00dev,
1739 enum dev_state state)
1740 {
1741 int retval = 0;
1742
1743 switch (state) {
1744 case STATE_RADIO_ON:
1745 retval = rt61pci_enable_radio(rt2x00dev);
1746 break;
1747 case STATE_RADIO_OFF:
1748 rt61pci_disable_radio(rt2x00dev);
1749 break;
1750 case STATE_RADIO_RX_ON:
1751 case STATE_RADIO_RX_ON_LINK:
1752 case STATE_RADIO_RX_OFF:
1753 case STATE_RADIO_RX_OFF_LINK:
1754 rt61pci_toggle_rx(rt2x00dev, state);
1755 break;
1756 case STATE_RADIO_IRQ_ON:
1757 case STATE_RADIO_IRQ_OFF:
1758 rt61pci_toggle_irq(rt2x00dev, state);
1759 break;
1760 case STATE_DEEP_SLEEP:
1761 case STATE_SLEEP:
1762 case STATE_STANDBY:
1763 case STATE_AWAKE:
1764 retval = rt61pci_set_state(rt2x00dev, state);
1765 break;
1766 default:
1767 retval = -ENOTSUPP;
1768 break;
1769 }
1770
1771 if (unlikely(retval))
1772 ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
1773 state, retval);
1774
1775 return retval;
1776 }
1777
1778 /*
1779 * TX descriptor initialization
1780 */
1781 static void rt61pci_write_tx_desc(struct rt2x00_dev *rt2x00dev,
1782 struct sk_buff *skb,
1783 struct txentry_desc *txdesc)
1784 {
1785 struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
1786 __le32 *txd = skbdesc->desc;
1787 u32 word;
1788
1789 /*
1790 * Start writing the descriptor words.
1791 */
1792 rt2x00_desc_read(txd, 1, &word);
1793 rt2x00_set_field32(&word, TXD_W1_HOST_Q_ID, txdesc->queue);
1794 rt2x00_set_field32(&word, TXD_W1_AIFSN, txdesc->aifs);
1795 rt2x00_set_field32(&word, TXD_W1_CWMIN, txdesc->cw_min);
1796 rt2x00_set_field32(&word, TXD_W1_CWMAX, txdesc->cw_max);
1797 rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, txdesc->iv_offset);
1798 rt2x00_set_field32(&word, TXD_W1_HW_SEQUENCE,
1799 test_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags));
1800 rt2x00_set_field32(&word, TXD_W1_BUFFER_COUNT, 1);
1801 rt2x00_desc_write(txd, 1, word);
1802
1803 rt2x00_desc_read(txd, 2, &word);
1804 rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->signal);
1805 rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->service);
1806 rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW, txdesc->length_low);
1807 rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH, txdesc->length_high);
1808 rt2x00_desc_write(txd, 2, word);
1809
1810 if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags)) {
1811 _rt2x00_desc_write(txd, 3, skbdesc->iv[0]);
1812 _rt2x00_desc_write(txd, 4, skbdesc->iv[1]);
1813 }
1814
1815 rt2x00_desc_read(txd, 5, &word);
1816 rt2x00_set_field32(&word, TXD_W5_PID_TYPE, skbdesc->entry->queue->qid);
1817 rt2x00_set_field32(&word, TXD_W5_PID_SUBTYPE,
1818 skbdesc->entry->entry_idx);
1819 rt2x00_set_field32(&word, TXD_W5_TX_POWER,
1820 TXPOWER_TO_DEV(rt2x00dev->tx_power));
1821 rt2x00_set_field32(&word, TXD_W5_WAITING_DMA_DONE_INT, 1);
1822 rt2x00_desc_write(txd, 5, word);
1823
1824 rt2x00_desc_read(txd, 6, &word);
1825 rt2x00_set_field32(&word, TXD_W6_BUFFER_PHYSICAL_ADDRESS,
1826 skbdesc->skb_dma);
1827 rt2x00_desc_write(txd, 6, word);
1828
1829 if (skbdesc->desc_len > TXINFO_SIZE) {
1830 rt2x00_desc_read(txd, 11, &word);
1831 rt2x00_set_field32(&word, TXD_W11_BUFFER_LENGTH0, skb->len);
1832 rt2x00_desc_write(txd, 11, word);
1833 }
1834
1835 rt2x00_desc_read(txd, 0, &word);
1836 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
1837 rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1838 rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1839 test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1840 rt2x00_set_field32(&word, TXD_W0_ACK,
1841 test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1842 rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1843 test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1844 rt2x00_set_field32(&word, TXD_W0_OFDM,
1845 (txdesc->rate_mode == RATE_MODE_OFDM));
1846 rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->ifs);
1847 rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1848 test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
1849 rt2x00_set_field32(&word, TXD_W0_TKIP_MIC,
1850 test_bit(ENTRY_TXD_ENCRYPT_MMIC, &txdesc->flags));
1851 rt2x00_set_field32(&word, TXD_W0_KEY_TABLE,
1852 test_bit(ENTRY_TXD_ENCRYPT_PAIRWISE, &txdesc->flags));
1853 rt2x00_set_field32(&word, TXD_W0_KEY_INDEX, txdesc->key_idx);
1854 rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, skb->len);
1855 rt2x00_set_field32(&word, TXD_W0_BURST,
1856 test_bit(ENTRY_TXD_BURST, &txdesc->flags));
1857 rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, txdesc->cipher);
1858 rt2x00_desc_write(txd, 0, word);
1859 }
1860
1861 /*
1862 * TX data initialization
1863 */
1864 static void rt61pci_write_beacon(struct queue_entry *entry)
1865 {
1866 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1867 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1868 unsigned int beacon_base;
1869 u32 reg;
1870
1871 /*
1872 * Disable beaconing while we are reloading the beacon data,
1873 * otherwise we might be sending out invalid data.
1874 */
1875 rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
1876 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 0);
1877 rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 0);
1878 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1879 rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
1880
1881 /*
1882 * Write entire beacon with descriptor to register.
1883 */
1884 beacon_base = HW_BEACON_OFFSET(entry->entry_idx);
1885 rt2x00pci_register_multiwrite(rt2x00dev,
1886 beacon_base,
1887 skbdesc->desc, skbdesc->desc_len);
1888 rt2x00pci_register_multiwrite(rt2x00dev,
1889 beacon_base + skbdesc->desc_len,
1890 entry->skb->data, entry->skb->len);
1891
1892 /*
1893 * Clean up beacon skb.
1894 */
1895 dev_kfree_skb_any(entry->skb);
1896 entry->skb = NULL;
1897 }
1898
1899 static void rt61pci_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
1900 const enum data_queue_qid queue)
1901 {
1902 u32 reg;
1903
1904 if (queue == QID_BEACON) {
1905 /*
1906 * For Wi-Fi faily generated beacons between participating
1907 * stations. Set TBTT phase adaptive adjustment step to 8us.
1908 */
1909 rt2x00pci_register_write(rt2x00dev, TXRX_CSR10, 0x00001008);
1910
1911 rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
1912 if (!rt2x00_get_field32(reg, TXRX_CSR9_BEACON_GEN)) {
1913 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 1);
1914 rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 1);
1915 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 1);
1916 rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
1917 }
1918 return;
1919 }
1920
1921 rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1922 rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC0, (queue == QID_AC_BE));
1923 rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC1, (queue == QID_AC_BK));
1924 rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC2, (queue == QID_AC_VI));
1925 rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC3, (queue == QID_AC_VO));
1926 rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1927 }
1928
1929 static void rt61pci_kill_tx_queue(struct rt2x00_dev *rt2x00dev,
1930 const enum data_queue_qid qid)
1931 {
1932 u32 reg;
1933
1934 if (qid == QID_BEACON) {
1935 rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, 0);
1936 return;
1937 }
1938
1939 rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1940 rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC0, (qid == QID_AC_BE));
1941 rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC1, (qid == QID_AC_BK));
1942 rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC2, (qid == QID_AC_VI));
1943 rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC3, (qid == QID_AC_VO));
1944 rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1945 }
1946
1947 /*
1948 * RX control handlers
1949 */
1950 static int rt61pci_agc_to_rssi(struct rt2x00_dev *rt2x00dev, int rxd_w1)
1951 {
1952 u8 offset = rt2x00dev->lna_gain;
1953 u8 lna;
1954
1955 lna = rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_LNA);
1956 switch (lna) {
1957 case 3:
1958 offset += 90;
1959 break;
1960 case 2:
1961 offset += 74;
1962 break;
1963 case 1:
1964 offset += 64;
1965 break;
1966 default:
1967 return 0;
1968 }
1969
1970 if (rt2x00dev->rx_status.band == IEEE80211_BAND_5GHZ) {
1971 if (lna == 3 || lna == 2)
1972 offset += 10;
1973 }
1974
1975 return rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_AGC) * 2 - offset;
1976 }
1977
1978 static void rt61pci_fill_rxdone(struct queue_entry *entry,
1979 struct rxdone_entry_desc *rxdesc)
1980 {
1981 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1982 struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1983 u32 word0;
1984 u32 word1;
1985
1986 rt2x00_desc_read(entry_priv->desc, 0, &word0);
1987 rt2x00_desc_read(entry_priv->desc, 1, &word1);
1988
1989 if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1990 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1991
1992 if (test_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags)) {
1993 rxdesc->cipher =
1994 rt2x00_get_field32(word0, RXD_W0_CIPHER_ALG);
1995 rxdesc->cipher_status =
1996 rt2x00_get_field32(word0, RXD_W0_CIPHER_ERROR);
1997 }
1998
1999 if (rxdesc->cipher != CIPHER_NONE) {
2000 _rt2x00_desc_read(entry_priv->desc, 2, &rxdesc->iv[0]);
2001 _rt2x00_desc_read(entry_priv->desc, 3, &rxdesc->iv[1]);
2002 rxdesc->dev_flags |= RXDONE_CRYPTO_IV;
2003
2004 _rt2x00_desc_read(entry_priv->desc, 4, &rxdesc->icv);
2005 rxdesc->dev_flags |= RXDONE_CRYPTO_ICV;
2006
2007 /*
2008 * Hardware has stripped IV/EIV data from 802.11 frame during
2009 * decryption. It has provided the data seperately but rt2x00lib
2010 * should decide if it should be reinserted.
2011 */
2012 rxdesc->flags |= RX_FLAG_IV_STRIPPED;
2013
2014 /*
2015 * FIXME: Legacy driver indicates that the frame does
2016 * contain the Michael Mic. Unfortunately, in rt2x00
2017 * the MIC seems to be missing completely...
2018 */
2019 rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;
2020
2021 if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
2022 rxdesc->flags |= RX_FLAG_DECRYPTED;
2023 else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
2024 rxdesc->flags |= RX_FLAG_MMIC_ERROR;
2025 }
2026
2027 /*
2028 * Obtain the status about this packet.
2029 * When frame was received with an OFDM bitrate,
2030 * the signal is the PLCP value. If it was received with
2031 * a CCK bitrate the signal is the rate in 100kbit/s.
2032 */
2033 rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL);
2034 rxdesc->rssi = rt61pci_agc_to_rssi(rt2x00dev, word1);
2035 rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
2036
2037 if (rt2x00_get_field32(word0, RXD_W0_OFDM))
2038 rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
2039 else
2040 rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
2041 if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
2042 rxdesc->dev_flags |= RXDONE_MY_BSS;
2043 }
2044
2045 /*
2046 * Interrupt functions.
2047 */
2048 static void rt61pci_txdone(struct rt2x00_dev *rt2x00dev)
2049 {
2050 struct data_queue *queue;
2051 struct queue_entry *entry;
2052 struct queue_entry *entry_done;
2053 struct queue_entry_priv_pci *entry_priv;
2054 struct txdone_entry_desc txdesc;
2055 u32 word;
2056 u32 reg;
2057 u32 old_reg;
2058 int type;
2059 int index;
2060
2061 /*
2062 * During each loop we will compare the freshly read
2063 * STA_CSR4 register value with the value read from
2064 * the previous loop. If the 2 values are equal then
2065 * we should stop processing because the chance it
2066 * quite big that the device has been unplugged and
2067 * we risk going into an endless loop.
2068 */
2069 old_reg = 0;
2070
2071 while (1) {
2072 rt2x00pci_register_read(rt2x00dev, STA_CSR4, &reg);
2073 if (!rt2x00_get_field32(reg, STA_CSR4_VALID))
2074 break;
2075
2076 if (old_reg == reg)
2077 break;
2078 old_reg = reg;
2079
2080 /*
2081 * Skip this entry when it contains an invalid
2082 * queue identication number.
2083 */
2084 type = rt2x00_get_field32(reg, STA_CSR4_PID_TYPE);
2085 queue = rt2x00queue_get_queue(rt2x00dev, type);
2086 if (unlikely(!queue))
2087 continue;
2088
2089 /*
2090 * Skip this entry when it contains an invalid
2091 * index number.
2092 */
2093 index = rt2x00_get_field32(reg, STA_CSR4_PID_SUBTYPE);
2094 if (unlikely(index >= queue->limit))
2095 continue;
2096
2097 entry = &queue->entries[index];
2098 entry_priv = entry->priv_data;
2099 rt2x00_desc_read(entry_priv->desc, 0, &word);
2100
2101 if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
2102 !rt2x00_get_field32(word, TXD_W0_VALID))
2103 return;
2104
2105 entry_done = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
2106 while (entry != entry_done) {
2107 /* Catch up.
2108 * Just report any entries we missed as failed.
2109 */
2110 WARNING(rt2x00dev,
2111 "TX status report missed for entry %d\n",
2112 entry_done->entry_idx);
2113
2114 txdesc.flags = 0;
2115 __set_bit(TXDONE_UNKNOWN, &txdesc.flags);
2116 txdesc.retry = 0;
2117
2118 rt2x00lib_txdone(entry_done, &txdesc);
2119 entry_done = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
2120 }
2121
2122 /*
2123 * Obtain the status about this packet.
2124 */
2125 txdesc.flags = 0;
2126 switch (rt2x00_get_field32(reg, STA_CSR4_TX_RESULT)) {
2127 case 0: /* Success, maybe with retry */
2128 __set_bit(TXDONE_SUCCESS, &txdesc.flags);
2129 break;
2130 case 6: /* Failure, excessive retries */
2131 __set_bit(TXDONE_EXCESSIVE_RETRY, &txdesc.flags);
2132 /* Don't break, this is a failed frame! */
2133 default: /* Failure */
2134 __set_bit(TXDONE_FAILURE, &txdesc.flags);
2135 }
2136 txdesc.retry = rt2x00_get_field32(reg, STA_CSR4_RETRY_COUNT);
2137
2138 rt2x00lib_txdone(entry, &txdesc);
2139 }
2140 }
2141
2142 static irqreturn_t rt61pci_interrupt(int irq, void *dev_instance)
2143 {
2144 struct rt2x00_dev *rt2x00dev = dev_instance;
2145 u32 reg_mcu;
2146 u32 reg;
2147
2148 /*
2149 * Get the interrupt sources & saved to local variable.
2150 * Write register value back to clear pending interrupts.
2151 */
2152 rt2x00pci_register_read(rt2x00dev, MCU_INT_SOURCE_CSR, &reg_mcu);
2153 rt2x00pci_register_write(rt2x00dev, MCU_INT_SOURCE_CSR, reg_mcu);
2154
2155 rt2x00pci_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
2156 rt2x00pci_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
2157
2158 if (!reg && !reg_mcu)
2159 return IRQ_NONE;
2160
2161 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
2162 return IRQ_HANDLED;
2163
2164 /*
2165 * Handle interrupts, walk through all bits
2166 * and run the tasks, the bits are checked in order of
2167 * priority.
2168 */
2169
2170 /*
2171 * 1 - Rx ring done interrupt.
2172 */
2173 if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RXDONE))
2174 rt2x00pci_rxdone(rt2x00dev);
2175
2176 /*
2177 * 2 - Tx ring done interrupt.
2178 */
2179 if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TXDONE))
2180 rt61pci_txdone(rt2x00dev);
2181
2182 /*
2183 * 3 - Handle MCU command done.
2184 */
2185 if (reg_mcu)
2186 rt2x00pci_register_write(rt2x00dev,
2187 M2H_CMD_DONE_CSR, 0xffffffff);
2188
2189 return IRQ_HANDLED;
2190 }
2191
2192 /*
2193 * Device probe functions.
2194 */
2195 static int rt61pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
2196 {
2197 struct eeprom_93cx6 eeprom;
2198 u32 reg;
2199 u16 word;
2200 u8 *mac;
2201 s8 value;
2202
2203 rt2x00pci_register_read(rt2x00dev, E2PROM_CSR, &reg);
2204
2205 eeprom.data = rt2x00dev;
2206 eeprom.register_read = rt61pci_eepromregister_read;
2207 eeprom.register_write = rt61pci_eepromregister_write;
2208 eeprom.width = rt2x00_get_field32(reg, E2PROM_CSR_TYPE_93C46) ?
2209 PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
2210 eeprom.reg_data_in = 0;
2211 eeprom.reg_data_out = 0;
2212 eeprom.reg_data_clock = 0;
2213 eeprom.reg_chip_select = 0;
2214
2215 eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
2216 EEPROM_SIZE / sizeof(u16));
2217
2218 /*
2219 * Start validation of the data that has been read.
2220 */
2221 mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
2222 if (!is_valid_ether_addr(mac)) {
2223 random_ether_addr(mac);
2224 EEPROM(rt2x00dev, "MAC: %pM\n", mac);
2225 }
2226
2227 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
2228 if (word == 0xffff) {
2229 rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
2230 rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
2231 ANTENNA_B);
2232 rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
2233 ANTENNA_B);
2234 rt2x00_set_field16(&word, EEPROM_ANTENNA_FRAME_TYPE, 0);
2235 rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
2236 rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
2237 rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF5225);
2238 rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
2239 EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
2240 }
2241
2242 rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
2243 if (word == 0xffff) {
2244 rt2x00_set_field16(&word, EEPROM_NIC_ENABLE_DIVERSITY, 0);
2245 rt2x00_set_field16(&word, EEPROM_NIC_TX_DIVERSITY, 0);
2246 rt2x00_set_field16(&word, EEPROM_NIC_RX_FIXED, 0);
2247 rt2x00_set_field16(&word, EEPROM_NIC_TX_FIXED, 0);
2248 rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_BG, 0);
2249 rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
2250 rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_A, 0);
2251 rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
2252 EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
2253 }
2254
2255 rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &word);
2256 if (word == 0xffff) {
2257 rt2x00_set_field16(&word, EEPROM_LED_LED_MODE,
2258 LED_MODE_DEFAULT);
2259 rt2x00_eeprom_write(rt2x00dev, EEPROM_LED, word);
2260 EEPROM(rt2x00dev, "Led: 0x%04x\n", word);
2261 }
2262
2263 rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &word);
2264 if (word == 0xffff) {
2265 rt2x00_set_field16(&word, EEPROM_FREQ_OFFSET, 0);
2266 rt2x00_set_field16(&word, EEPROM_FREQ_SEQ, 0);
2267 rt2x00_eeprom_write(rt2x00dev, EEPROM_FREQ, word);
2268 EEPROM(rt2x00dev, "Freq: 0x%04x\n", word);
2269 }
2270
2271 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &word);
2272 if (word == 0xffff) {
2273 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
2274 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
2275 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
2276 EEPROM(rt2x00dev, "RSSI OFFSET BG: 0x%04x\n", word);
2277 } else {
2278 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_1);
2279 if (value < -10 || value > 10)
2280 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
2281 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_2);
2282 if (value < -10 || value > 10)
2283 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
2284 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
2285 }
2286
2287 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &word);
2288 if (word == 0xffff) {
2289 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
2290 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
2291 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
2292 EEPROM(rt2x00dev, "RSSI OFFSET A: 0x%04x\n", word);
2293 } else {
2294 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_1);
2295 if (value < -10 || value > 10)
2296 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
2297 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_2);
2298 if (value < -10 || value > 10)
2299 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
2300 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
2301 }
2302
2303 return 0;
2304 }
2305
2306 static int rt61pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
2307 {
2308 u32 reg;
2309 u16 value;
2310 u16 eeprom;
2311 u16 device;
2312
2313 /*
2314 * Read EEPROM word for configuration.
2315 */
2316 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
2317
2318 /*
2319 * Identify RF chipset.
2320 * To determine the RT chip we have to read the
2321 * PCI header of the device.
2322 */
2323 pci_read_config_word(to_pci_dev(rt2x00dev->dev),
2324 PCI_CONFIG_HEADER_DEVICE, &device);
2325 value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
2326 rt2x00pci_register_read(rt2x00dev, MAC_CSR0, &reg);
2327 rt2x00_set_chip(rt2x00dev, device, value, reg);
2328
2329 if (!rt2x00_rf(&rt2x00dev->chip, RF5225) &&
2330 !rt2x00_rf(&rt2x00dev->chip, RF5325) &&
2331 !rt2x00_rf(&rt2x00dev->chip, RF2527) &&
2332 !rt2x00_rf(&rt2x00dev->chip, RF2529)) {
2333 ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
2334 return -ENODEV;
2335 }
2336
2337 /*
2338 * Determine number of antenna's.
2339 */
2340 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_NUM) == 2)
2341 __set_bit(CONFIG_DOUBLE_ANTENNA, &rt2x00dev->flags);
2342
2343 /*
2344 * Identify default antenna configuration.
2345 */
2346 rt2x00dev->default_ant.tx =
2347 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
2348 rt2x00dev->default_ant.rx =
2349 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
2350
2351 /*
2352 * Read the Frame type.
2353 */
2354 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_FRAME_TYPE))
2355 __set_bit(CONFIG_FRAME_TYPE, &rt2x00dev->flags);
2356
2357 /*
2358 * Detect if this device has an hardware controlled radio.
2359 */
2360 #ifdef CONFIG_RT2X00_LIB_RFKILL
2361 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
2362 __set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
2363 #endif /* CONFIG_RT2X00_LIB_RFKILL */
2364
2365 /*
2366 * Read frequency offset and RF programming sequence.
2367 */
2368 rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &eeprom);
2369 if (rt2x00_get_field16(eeprom, EEPROM_FREQ_SEQ))
2370 __set_bit(CONFIG_RF_SEQUENCE, &rt2x00dev->flags);
2371
2372 rt2x00dev->freq_offset = rt2x00_get_field16(eeprom, EEPROM_FREQ_OFFSET);
2373
2374 /*
2375 * Read external LNA informations.
2376 */
2377 rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
2378
2379 if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_A))
2380 __set_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags);
2381 if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_BG))
2382 __set_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags);
2383
2384 /*
2385 * When working with a RF2529 chip without double antenna
2386 * the antenna settings should be gathered from the NIC
2387 * eeprom word.
2388 */
2389 if (rt2x00_rf(&rt2x00dev->chip, RF2529) &&
2390 !test_bit(CONFIG_DOUBLE_ANTENNA, &rt2x00dev->flags)) {
2391 rt2x00dev->default_ant.rx =
2392 ANTENNA_A + rt2x00_get_field16(eeprom, EEPROM_NIC_RX_FIXED);
2393 rt2x00dev->default_ant.tx =
2394 ANTENNA_B - rt2x00_get_field16(eeprom, EEPROM_NIC_TX_FIXED);
2395
2396 if (rt2x00_get_field16(eeprom, EEPROM_NIC_TX_DIVERSITY))
2397 rt2x00dev->default_ant.tx = ANTENNA_SW_DIVERSITY;
2398 if (rt2x00_get_field16(eeprom, EEPROM_NIC_ENABLE_DIVERSITY))
2399 rt2x00dev->default_ant.rx = ANTENNA_SW_DIVERSITY;
2400 }
2401
2402 /*
2403 * Store led settings, for correct led behaviour.
2404 * If the eeprom value is invalid,
2405 * switch to default led mode.
2406 */
2407 #ifdef CONFIG_RT2X00_LIB_LEDS
2408 rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &eeprom);
2409 value = rt2x00_get_field16(eeprom, EEPROM_LED_LED_MODE);
2410
2411 rt61pci_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
2412 rt61pci_init_led(rt2x00dev, &rt2x00dev->led_assoc, LED_TYPE_ASSOC);
2413 if (value == LED_MODE_SIGNAL_STRENGTH)
2414 rt61pci_init_led(rt2x00dev, &rt2x00dev->led_qual,
2415 LED_TYPE_QUALITY);
2416
2417 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_LED_MODE, value);
2418 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_0,
2419 rt2x00_get_field16(eeprom,
2420 EEPROM_LED_POLARITY_GPIO_0));
2421 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_1,
2422 rt2x00_get_field16(eeprom,
2423 EEPROM_LED_POLARITY_GPIO_1));
2424 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_2,
2425 rt2x00_get_field16(eeprom,
2426 EEPROM_LED_POLARITY_GPIO_2));
2427 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_3,
2428 rt2x00_get_field16(eeprom,
2429 EEPROM_LED_POLARITY_GPIO_3));
2430 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_4,
2431 rt2x00_get_field16(eeprom,
2432 EEPROM_LED_POLARITY_GPIO_4));
2433 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_ACT,
2434 rt2x00_get_field16(eeprom, EEPROM_LED_POLARITY_ACT));
2435 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_BG,
2436 rt2x00_get_field16(eeprom,
2437 EEPROM_LED_POLARITY_RDY_G));
2438 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_A,
2439 rt2x00_get_field16(eeprom,
2440 EEPROM_LED_POLARITY_RDY_A));
2441 #endif /* CONFIG_RT2X00_LIB_LEDS */
2442
2443 return 0;
2444 }
2445
2446 /*
2447 * RF value list for RF5225 & RF5325
2448 * Supports: 2.4 GHz & 5.2 GHz, rf_sequence disabled
2449 */
2450 static const struct rf_channel rf_vals_noseq[] = {
2451 { 1, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
2452 { 2, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
2453 { 3, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
2454 { 4, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
2455 { 5, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
2456 { 6, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
2457 { 7, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
2458 { 8, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
2459 { 9, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
2460 { 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
2461 { 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
2462 { 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
2463 { 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
2464 { 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
2465
2466 /* 802.11 UNI / HyperLan 2 */
2467 { 36, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa23 },
2468 { 40, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa03 },
2469 { 44, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa0b },
2470 { 48, 0x00002ccc, 0x000049aa, 0x0009be55, 0x000ffa13 },
2471 { 52, 0x00002ccc, 0x000049ae, 0x0009ae55, 0x000ffa1b },
2472 { 56, 0x00002ccc, 0x000049b2, 0x0009ae55, 0x000ffa23 },
2473 { 60, 0x00002ccc, 0x000049ba, 0x0009ae55, 0x000ffa03 },
2474 { 64, 0x00002ccc, 0x000049be, 0x0009ae55, 0x000ffa0b },
2475
2476 /* 802.11 HyperLan 2 */
2477 { 100, 0x00002ccc, 0x00004a2a, 0x000bae55, 0x000ffa03 },
2478 { 104, 0x00002ccc, 0x00004a2e, 0x000bae55, 0x000ffa0b },
2479 { 108, 0x00002ccc, 0x00004a32, 0x000bae55, 0x000ffa13 },
2480 { 112, 0x00002ccc, 0x00004a36, 0x000bae55, 0x000ffa1b },
2481 { 116, 0x00002ccc, 0x00004a3a, 0x000bbe55, 0x000ffa23 },
2482 { 120, 0x00002ccc, 0x00004a82, 0x000bbe55, 0x000ffa03 },
2483 { 124, 0x00002ccc, 0x00004a86, 0x000bbe55, 0x000ffa0b },
2484 { 128, 0x00002ccc, 0x00004a8a, 0x000bbe55, 0x000ffa13 },
2485 { 132, 0x00002ccc, 0x00004a8e, 0x000bbe55, 0x000ffa1b },
2486 { 136, 0x00002ccc, 0x00004a92, 0x000bbe55, 0x000ffa23 },
2487
2488 /* 802.11 UNII */
2489 { 140, 0x00002ccc, 0x00004a9a, 0x000bbe55, 0x000ffa03 },
2490 { 149, 0x00002ccc, 0x00004aa2, 0x000bbe55, 0x000ffa1f },
2491 { 153, 0x00002ccc, 0x00004aa6, 0x000bbe55, 0x000ffa27 },
2492 { 157, 0x00002ccc, 0x00004aae, 0x000bbe55, 0x000ffa07 },
2493 { 161, 0x00002ccc, 0x00004ab2, 0x000bbe55, 0x000ffa0f },
2494 { 165, 0x00002ccc, 0x00004ab6, 0x000bbe55, 0x000ffa17 },
2495
2496 /* MMAC(Japan)J52 ch 34,38,42,46 */
2497 { 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa0b },
2498 { 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000ffa13 },
2499 { 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa1b },
2500 { 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa23 },
2501 };
2502
2503 /*
2504 * RF value list for RF5225 & RF5325
2505 * Supports: 2.4 GHz & 5.2 GHz, rf_sequence enabled
2506 */
2507 static const struct rf_channel rf_vals_seq[] = {
2508 { 1, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
2509 { 2, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
2510 { 3, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
2511 { 4, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
2512 { 5, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
2513 { 6, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
2514 { 7, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
2515 { 8, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
2516 { 9, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
2517 { 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
2518 { 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
2519 { 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
2520 { 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
2521 { 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
2522
2523 /* 802.11 UNI / HyperLan 2 */
2524 { 36, 0x00002cd4, 0x0004481a, 0x00098455, 0x000c0a03 },
2525 { 40, 0x00002cd0, 0x00044682, 0x00098455, 0x000c0a03 },
2526 { 44, 0x00002cd0, 0x00044686, 0x00098455, 0x000c0a1b },
2527 { 48, 0x00002cd0, 0x0004468e, 0x00098655, 0x000c0a0b },
2528 { 52, 0x00002cd0, 0x00044692, 0x00098855, 0x000c0a23 },
2529 { 56, 0x00002cd0, 0x0004469a, 0x00098c55, 0x000c0a13 },
2530 { 60, 0x00002cd0, 0x000446a2, 0x00098e55, 0x000c0a03 },
2531 { 64, 0x00002cd0, 0x000446a6, 0x00099255, 0x000c0a1b },
2532
2533 /* 802.11 HyperLan 2 */
2534 { 100, 0x00002cd4, 0x0004489a, 0x000b9855, 0x000c0a03 },
2535 { 104, 0x00002cd4, 0x000448a2, 0x000b9855, 0x000c0a03 },
2536 { 108, 0x00002cd4, 0x000448aa, 0x000b9855, 0x000c0a03 },
2537 { 112, 0x00002cd4, 0x000448b2, 0x000b9a55, 0x000c0a03 },
2538 { 116, 0x00002cd4, 0x000448ba, 0x000b9a55, 0x000c0a03 },
2539 { 120, 0x00002cd0, 0x00044702, 0x000b9a55, 0x000c0a03 },
2540 { 124, 0x00002cd0, 0x00044706, 0x000b9a55, 0x000c0a1b },
2541 { 128, 0x00002cd0, 0x0004470e, 0x000b9c55, 0x000c0a0b },
2542 { 132, 0x00002cd0, 0x00044712, 0x000b9c55, 0x000c0a23 },
2543 { 136, 0x00002cd0, 0x0004471a, 0x000b9e55, 0x000c0a13 },
2544
2545 /* 802.11 UNII */
2546 { 140, 0x00002cd0, 0x00044722, 0x000b9e55, 0x000c0a03 },
2547 { 149, 0x00002cd0, 0x0004472e, 0x000ba255, 0x000c0a1b },
2548 { 153, 0x00002cd0, 0x00044736, 0x000ba255, 0x000c0a0b },
2549 { 157, 0x00002cd4, 0x0004490a, 0x000ba255, 0x000c0a17 },
2550 { 161, 0x00002cd4, 0x00044912, 0x000ba255, 0x000c0a17 },
2551 { 165, 0x00002cd4, 0x0004491a, 0x000ba255, 0x000c0a17 },
2552
2553 /* MMAC(Japan)J52 ch 34,38,42,46 */
2554 { 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000c0a0b },
2555 { 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000c0a13 },
2556 { 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000c0a1b },
2557 { 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000c0a23 },
2558 };
2559
2560 static int rt61pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
2561 {
2562 struct hw_mode_spec *spec = &rt2x00dev->spec;
2563 struct channel_info *info;
2564 char *tx_power;
2565 unsigned int i;
2566
2567 /*
2568 * Initialize all hw fields.
2569 */
2570 rt2x00dev->hw->flags =
2571 IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
2572 IEEE80211_HW_SIGNAL_DBM |
2573 IEEE80211_HW_SUPPORTS_PS |
2574 IEEE80211_HW_PS_NULLFUNC_STACK;
2575 rt2x00dev->hw->extra_tx_headroom = 0;
2576
2577 SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
2578 SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
2579 rt2x00_eeprom_addr(rt2x00dev,
2580 EEPROM_MAC_ADDR_0));
2581
2582 /*
2583 * Initialize hw_mode information.
2584 */
2585 spec->supported_bands = SUPPORT_BAND_2GHZ;
2586 spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
2587
2588 if (!test_bit(CONFIG_RF_SEQUENCE, &rt2x00dev->flags)) {
2589 spec->num_channels = 14;
2590 spec->channels = rf_vals_noseq;
2591 } else {
2592 spec->num_channels = 14;
2593 spec->channels = rf_vals_seq;
2594 }
2595
2596 if (rt2x00_rf(&rt2x00dev->chip, RF5225) ||
2597 rt2x00_rf(&rt2x00dev->chip, RF5325)) {
2598 spec->supported_bands |= SUPPORT_BAND_5GHZ;
2599 spec->num_channels = ARRAY_SIZE(rf_vals_seq);
2600 }
2601
2602 /*
2603 * Create channel information array
2604 */
2605 info = kzalloc(spec->num_channels * sizeof(*info), GFP_KERNEL);
2606 if (!info)
2607 return -ENOMEM;
2608
2609 spec->channels_info = info;
2610
2611 tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_G_START);
2612 for (i = 0; i < 14; i++)
2613 info[i].tx_power1 = TXPOWER_FROM_DEV(tx_power[i]);
2614
2615 if (spec->num_channels > 14) {
2616 tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_A_START);
2617 for (i = 14; i < spec->num_channels; i++)
2618 info[i].tx_power1 = TXPOWER_FROM_DEV(tx_power[i]);
2619 }
2620
2621 return 0;
2622 }
2623
2624 static int rt61pci_probe_hw(struct rt2x00_dev *rt2x00dev)
2625 {
2626 int retval;
2627
2628 /*
2629 * Allocate eeprom data.
2630 */
2631 retval = rt61pci_validate_eeprom(rt2x00dev);
2632 if (retval)
2633 return retval;
2634
2635 retval = rt61pci_init_eeprom(rt2x00dev);
2636 if (retval)
2637 return retval;
2638
2639 /*
2640 * Initialize hw specifications.
2641 */
2642 retval = rt61pci_probe_hw_mode(rt2x00dev);
2643 if (retval)
2644 return retval;
2645
2646 /*
2647 * This device requires firmware and DMA mapped skbs.
2648 */
2649 __set_bit(DRIVER_REQUIRE_FIRMWARE, &rt2x00dev->flags);
2650 __set_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags);
2651 if (!modparam_nohwcrypt)
2652 __set_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags);
2653
2654 /*
2655 * Set the rssi offset.
2656 */
2657 rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
2658
2659 return 0;
2660 }
2661
2662 /*
2663 * IEEE80211 stack callback functions.
2664 */
2665 static int rt61pci_conf_tx(struct ieee80211_hw *hw, u16 queue_idx,
2666 const struct ieee80211_tx_queue_params *params)
2667 {
2668 struct rt2x00_dev *rt2x00dev = hw->priv;
2669 struct data_queue *queue;
2670 struct rt2x00_field32 field;
2671 int retval;
2672 u32 reg;
2673 u32 offset;
2674
2675 /*
2676 * First pass the configuration through rt2x00lib, that will
2677 * update the queue settings and validate the input. After that
2678 * we are free to update the registers based on the value
2679 * in the queue parameter.
2680 */
2681 retval = rt2x00mac_conf_tx(hw, queue_idx, params);
2682 if (retval)
2683 return retval;
2684
2685 /*
2686 * We only need to perform additional register initialization
2687 * for WMM queues/
2688 */
2689 if (queue_idx >= 4)
2690 return 0;
2691
2692 queue = rt2x00queue_get_queue(rt2x00dev, queue_idx);
2693
2694 /* Update WMM TXOP register */
2695 offset = AC_TXOP_CSR0 + (sizeof(u32) * (!!(queue_idx & 2)));
2696 field.bit_offset = (queue_idx & 1) * 16;
2697 field.bit_mask = 0xffff << field.bit_offset;
2698
2699 rt2x00pci_register_read(rt2x00dev, offset, &reg);
2700 rt2x00_set_field32(&reg, field, queue->txop);
2701 rt2x00pci_register_write(rt2x00dev, offset, reg);
2702
2703 /* Update WMM registers */
2704 field.bit_offset = queue_idx * 4;
2705 field.bit_mask = 0xf << field.bit_offset;
2706
2707 rt2x00pci_register_read(rt2x00dev, AIFSN_CSR, &reg);
2708 rt2x00_set_field32(&reg, field, queue->aifs);
2709 rt2x00pci_register_write(rt2x00dev, AIFSN_CSR, reg);
2710
2711 rt2x00pci_register_read(rt2x00dev, CWMIN_CSR, &reg);
2712 rt2x00_set_field32(&reg, field, queue->cw_min);
2713 rt2x00pci_register_write(rt2x00dev, CWMIN_CSR, reg);
2714
2715 rt2x00pci_register_read(rt2x00dev, CWMAX_CSR, &reg);
2716 rt2x00_set_field32(&reg, field, queue->cw_max);
2717 rt2x00pci_register_write(rt2x00dev, CWMAX_CSR, reg);
2718
2719 return 0;
2720 }
2721
2722 static u64 rt61pci_get_tsf(struct ieee80211_hw *hw)
2723 {
2724 struct rt2x00_dev *rt2x00dev = hw->priv;
2725 u64 tsf;
2726 u32 reg;
2727
2728 rt2x00pci_register_read(rt2x00dev, TXRX_CSR13, &reg);
2729 tsf = (u64) rt2x00_get_field32(reg, TXRX_CSR13_HIGH_TSFTIMER) << 32;
2730 rt2x00pci_register_read(rt2x00dev, TXRX_CSR12, &reg);
2731 tsf |= rt2x00_get_field32(reg, TXRX_CSR12_LOW_TSFTIMER);
2732
2733 return tsf;
2734 }
2735
2736 static const struct ieee80211_ops rt61pci_mac80211_ops = {
2737 .tx = rt2x00mac_tx,
2738 .start = rt2x00mac_start,
2739 .stop = rt2x00mac_stop,
2740 .add_interface = rt2x00mac_add_interface,
2741 .remove_interface = rt2x00mac_remove_interface,
2742 .config = rt2x00mac_config,
2743 .config_interface = rt2x00mac_config_interface,
2744 .configure_filter = rt2x00mac_configure_filter,
2745 .set_key = rt2x00mac_set_key,
2746 .get_stats = rt2x00mac_get_stats,
2747 .bss_info_changed = rt2x00mac_bss_info_changed,
2748 .conf_tx = rt61pci_conf_tx,
2749 .get_tx_stats = rt2x00mac_get_tx_stats,
2750 .get_tsf = rt61pci_get_tsf,
2751 };
2752
2753 static const struct rt2x00lib_ops rt61pci_rt2x00_ops = {
2754 .irq_handler = rt61pci_interrupt,
2755 .probe_hw = rt61pci_probe_hw,
2756 .get_firmware_name = rt61pci_get_firmware_name,
2757 .check_firmware = rt61pci_check_firmware,
2758 .load_firmware = rt61pci_load_firmware,
2759 .initialize = rt2x00pci_initialize,
2760 .uninitialize = rt2x00pci_uninitialize,
2761 .get_entry_state = rt61pci_get_entry_state,
2762 .clear_entry = rt61pci_clear_entry,
2763 .set_device_state = rt61pci_set_device_state,
2764 .rfkill_poll = rt61pci_rfkill_poll,
2765 .link_stats = rt61pci_link_stats,
2766 .reset_tuner = rt61pci_reset_tuner,
2767 .link_tuner = rt61pci_link_tuner,
2768 .write_tx_desc = rt61pci_write_tx_desc,
2769 .write_tx_data = rt2x00pci_write_tx_data,
2770 .write_beacon = rt61pci_write_beacon,
2771 .kick_tx_queue = rt61pci_kick_tx_queue,
2772 .kill_tx_queue = rt61pci_kill_tx_queue,
2773 .fill_rxdone = rt61pci_fill_rxdone,
2774 .config_shared_key = rt61pci_config_shared_key,
2775 .config_pairwise_key = rt61pci_config_pairwise_key,
2776 .config_filter = rt61pci_config_filter,
2777 .config_intf = rt61pci_config_intf,
2778 .config_erp = rt61pci_config_erp,
2779 .config_ant = rt61pci_config_ant,
2780 .config = rt61pci_config,
2781 };
2782
2783 static const struct data_queue_desc rt61pci_queue_rx = {
2784 .entry_num = RX_ENTRIES,
2785 .data_size = DATA_FRAME_SIZE,
2786 .desc_size = RXD_DESC_SIZE,
2787 .priv_size = sizeof(struct queue_entry_priv_pci),
2788 };
2789
2790 static const struct data_queue_desc rt61pci_queue_tx = {
2791 .entry_num = TX_ENTRIES,
2792 .data_size = DATA_FRAME_SIZE,
2793 .desc_size = TXD_DESC_SIZE,
2794 .priv_size = sizeof(struct queue_entry_priv_pci),
2795 };
2796
2797 static const struct data_queue_desc rt61pci_queue_bcn = {
2798 .entry_num = 4 * BEACON_ENTRIES,
2799 .data_size = 0, /* No DMA required for beacons */
2800 .desc_size = TXINFO_SIZE,
2801 .priv_size = sizeof(struct queue_entry_priv_pci),
2802 };
2803
2804 static const struct rt2x00_ops rt61pci_ops = {
2805 .name = KBUILD_MODNAME,
2806 .max_sta_intf = 1,
2807 .max_ap_intf = 4,
2808 .eeprom_size = EEPROM_SIZE,
2809 .rf_size = RF_SIZE,
2810 .tx_queues = NUM_TX_QUEUES,
2811 .rx = &rt61pci_queue_rx,
2812 .tx = &rt61pci_queue_tx,
2813 .bcn = &rt61pci_queue_bcn,
2814 .lib = &rt61pci_rt2x00_ops,
2815 .hw = &rt61pci_mac80211_ops,
2816 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
2817 .debugfs = &rt61pci_rt2x00debug,
2818 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
2819 };
2820
2821 /*
2822 * RT61pci module information.
2823 */
2824 static struct pci_device_id rt61pci_device_table[] = {
2825 /* RT2561s */
2826 { PCI_DEVICE(0x1814, 0x0301), PCI_DEVICE_DATA(&rt61pci_ops) },
2827 /* RT2561 v2 */
2828 { PCI_DEVICE(0x1814, 0x0302), PCI_DEVICE_DATA(&rt61pci_ops) },
2829 /* RT2661 */
2830 { PCI_DEVICE(0x1814, 0x0401), PCI_DEVICE_DATA(&rt61pci_ops) },
2831 { 0, }
2832 };
2833
2834 MODULE_AUTHOR(DRV_PROJECT);
2835 MODULE_VERSION(DRV_VERSION);
2836 MODULE_DESCRIPTION("Ralink RT61 PCI & PCMCIA Wireless LAN driver.");
2837 MODULE_SUPPORTED_DEVICE("Ralink RT2561, RT2561s & RT2661 "
2838 "PCI & PCMCIA chipset based cards");
2839 MODULE_DEVICE_TABLE(pci, rt61pci_device_table);
2840 MODULE_FIRMWARE(FIRMWARE_RT2561);
2841 MODULE_FIRMWARE(FIRMWARE_RT2561s);
2842 MODULE_FIRMWARE(FIRMWARE_RT2661);
2843 MODULE_LICENSE("GPL");
2844
2845 static struct pci_driver rt61pci_driver = {
2846 .name = KBUILD_MODNAME,
2847 .id_table = rt61pci_device_table,
2848 .probe = rt2x00pci_probe,
2849 .remove = __devexit_p(rt2x00pci_remove),
2850 .suspend = rt2x00pci_suspend,
2851 .resume = rt2x00pci_resume,
2852 };
2853
2854 static int __init rt61pci_init(void)
2855 {
2856 return pci_register_driver(&rt61pci_driver);
2857 }
2858
2859 static void __exit rt61pci_exit(void)
2860 {
2861 pci_unregister_driver(&rt61pci_driver);
2862 }
2863
2864 module_init(rt61pci_init);
2865 module_exit(rt61pci_exit);
This page took 0.164641 seconds and 5 git commands to generate.