net: convert print_mac to %pM
[deliverable/linux.git] / drivers / net / wireless / rt2x00 / rt61pci.c
1 /*
2 Copyright (C) 2004 - 2008 rt2x00 SourceForge Project
3 <http://rt2x00.serialmonkey.com>
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the
17 Free Software Foundation, Inc.,
18 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 */
20
21 /*
22 Module: rt61pci
23 Abstract: rt61pci device specific routines.
24 Supported chipsets: RT2561, RT2561s, RT2661.
25 */
26
27 #include <linux/crc-itu-t.h>
28 #include <linux/delay.h>
29 #include <linux/etherdevice.h>
30 #include <linux/init.h>
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/pci.h>
34 #include <linux/eeprom_93cx6.h>
35
36 #include "rt2x00.h"
37 #include "rt2x00pci.h"
38 #include "rt61pci.h"
39
40 /*
41 * Allow hardware encryption to be disabled.
42 */
43 static int modparam_nohwcrypt = 0;
44 module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
45 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
46
47 /*
48 * Register access.
49 * BBP and RF register require indirect register access,
50 * and use the CSR registers PHY_CSR3 and PHY_CSR4 to achieve this.
51 * These indirect registers work with busy bits,
52 * and we will try maximal REGISTER_BUSY_COUNT times to access
53 * the register while taking a REGISTER_BUSY_DELAY us delay
54 * between each attampt. When the busy bit is still set at that time,
55 * the access attempt is considered to have failed,
56 * and we will print an error.
57 */
58 static u32 rt61pci_bbp_check(struct rt2x00_dev *rt2x00dev)
59 {
60 u32 reg;
61 unsigned int i;
62
63 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
64 rt2x00pci_register_read(rt2x00dev, PHY_CSR3, &reg);
65 if (!rt2x00_get_field32(reg, PHY_CSR3_BUSY))
66 break;
67 udelay(REGISTER_BUSY_DELAY);
68 }
69
70 return reg;
71 }
72
73 static void rt61pci_bbp_write(struct rt2x00_dev *rt2x00dev,
74 const unsigned int word, const u8 value)
75 {
76 u32 reg;
77
78 /*
79 * Wait until the BBP becomes ready.
80 */
81 reg = rt61pci_bbp_check(rt2x00dev);
82 if (rt2x00_get_field32(reg, PHY_CSR3_BUSY)) {
83 ERROR(rt2x00dev, "PHY_CSR3 register busy. Write failed.\n");
84 return;
85 }
86
87 /*
88 * Write the data into the BBP.
89 */
90 reg = 0;
91 rt2x00_set_field32(&reg, PHY_CSR3_VALUE, value);
92 rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
93 rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
94 rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 0);
95
96 rt2x00pci_register_write(rt2x00dev, PHY_CSR3, reg);
97 }
98
99 static void rt61pci_bbp_read(struct rt2x00_dev *rt2x00dev,
100 const unsigned int word, u8 *value)
101 {
102 u32 reg;
103
104 /*
105 * Wait until the BBP becomes ready.
106 */
107 reg = rt61pci_bbp_check(rt2x00dev);
108 if (rt2x00_get_field32(reg, PHY_CSR3_BUSY)) {
109 ERROR(rt2x00dev, "PHY_CSR3 register busy. Read failed.\n");
110 return;
111 }
112
113 /*
114 * Write the request into the BBP.
115 */
116 reg = 0;
117 rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
118 rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
119 rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 1);
120
121 rt2x00pci_register_write(rt2x00dev, PHY_CSR3, reg);
122
123 /*
124 * Wait until the BBP becomes ready.
125 */
126 reg = rt61pci_bbp_check(rt2x00dev);
127 if (rt2x00_get_field32(reg, PHY_CSR3_BUSY)) {
128 ERROR(rt2x00dev, "PHY_CSR3 register busy. Read failed.\n");
129 *value = 0xff;
130 return;
131 }
132
133 *value = rt2x00_get_field32(reg, PHY_CSR3_VALUE);
134 }
135
136 static void rt61pci_rf_write(struct rt2x00_dev *rt2x00dev,
137 const unsigned int word, const u32 value)
138 {
139 u32 reg;
140 unsigned int i;
141
142 if (!word)
143 return;
144
145 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
146 rt2x00pci_register_read(rt2x00dev, PHY_CSR4, &reg);
147 if (!rt2x00_get_field32(reg, PHY_CSR4_BUSY))
148 goto rf_write;
149 udelay(REGISTER_BUSY_DELAY);
150 }
151
152 ERROR(rt2x00dev, "PHY_CSR4 register busy. Write failed.\n");
153 return;
154
155 rf_write:
156 reg = 0;
157 rt2x00_set_field32(&reg, PHY_CSR4_VALUE, value);
158 rt2x00_set_field32(&reg, PHY_CSR4_NUMBER_OF_BITS, 21);
159 rt2x00_set_field32(&reg, PHY_CSR4_IF_SELECT, 0);
160 rt2x00_set_field32(&reg, PHY_CSR4_BUSY, 1);
161
162 rt2x00pci_register_write(rt2x00dev, PHY_CSR4, reg);
163 rt2x00_rf_write(rt2x00dev, word, value);
164 }
165
166 #ifdef CONFIG_RT2X00_LIB_LEDS
167 /*
168 * This function is only called from rt61pci_led_brightness()
169 * make gcc happy by placing this function inside the
170 * same ifdef statement as the caller.
171 */
172 static void rt61pci_mcu_request(struct rt2x00_dev *rt2x00dev,
173 const u8 command, const u8 token,
174 const u8 arg0, const u8 arg1)
175 {
176 u32 reg;
177
178 rt2x00pci_register_read(rt2x00dev, H2M_MAILBOX_CSR, &reg);
179
180 if (rt2x00_get_field32(reg, H2M_MAILBOX_CSR_OWNER)) {
181 ERROR(rt2x00dev, "mcu request error. "
182 "Request 0x%02x failed for token 0x%02x.\n",
183 command, token);
184 return;
185 }
186
187 rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_OWNER, 1);
188 rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_CMD_TOKEN, token);
189 rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_ARG0, arg0);
190 rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_ARG1, arg1);
191 rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CSR, reg);
192
193 rt2x00pci_register_read(rt2x00dev, HOST_CMD_CSR, &reg);
194 rt2x00_set_field32(&reg, HOST_CMD_CSR_HOST_COMMAND, command);
195 rt2x00_set_field32(&reg, HOST_CMD_CSR_INTERRUPT_MCU, 1);
196 rt2x00pci_register_write(rt2x00dev, HOST_CMD_CSR, reg);
197 }
198 #endif /* CONFIG_RT2X00_LIB_LEDS */
199
200 static void rt61pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
201 {
202 struct rt2x00_dev *rt2x00dev = eeprom->data;
203 u32 reg;
204
205 rt2x00pci_register_read(rt2x00dev, E2PROM_CSR, &reg);
206
207 eeprom->reg_data_in = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_IN);
208 eeprom->reg_data_out = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_OUT);
209 eeprom->reg_data_clock =
210 !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_CLOCK);
211 eeprom->reg_chip_select =
212 !!rt2x00_get_field32(reg, E2PROM_CSR_CHIP_SELECT);
213 }
214
215 static void rt61pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
216 {
217 struct rt2x00_dev *rt2x00dev = eeprom->data;
218 u32 reg = 0;
219
220 rt2x00_set_field32(&reg, E2PROM_CSR_DATA_IN, !!eeprom->reg_data_in);
221 rt2x00_set_field32(&reg, E2PROM_CSR_DATA_OUT, !!eeprom->reg_data_out);
222 rt2x00_set_field32(&reg, E2PROM_CSR_DATA_CLOCK,
223 !!eeprom->reg_data_clock);
224 rt2x00_set_field32(&reg, E2PROM_CSR_CHIP_SELECT,
225 !!eeprom->reg_chip_select);
226
227 rt2x00pci_register_write(rt2x00dev, E2PROM_CSR, reg);
228 }
229
230 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
231 #define CSR_OFFSET(__word) ( CSR_REG_BASE + ((__word) * sizeof(u32)) )
232
233 static void rt61pci_read_csr(struct rt2x00_dev *rt2x00dev,
234 const unsigned int word, u32 *data)
235 {
236 rt2x00pci_register_read(rt2x00dev, CSR_OFFSET(word), data);
237 }
238
239 static void rt61pci_write_csr(struct rt2x00_dev *rt2x00dev,
240 const unsigned int word, u32 data)
241 {
242 rt2x00pci_register_write(rt2x00dev, CSR_OFFSET(word), data);
243 }
244
245 static const struct rt2x00debug rt61pci_rt2x00debug = {
246 .owner = THIS_MODULE,
247 .csr = {
248 .read = rt61pci_read_csr,
249 .write = rt61pci_write_csr,
250 .word_size = sizeof(u32),
251 .word_count = CSR_REG_SIZE / sizeof(u32),
252 },
253 .eeprom = {
254 .read = rt2x00_eeprom_read,
255 .write = rt2x00_eeprom_write,
256 .word_size = sizeof(u16),
257 .word_count = EEPROM_SIZE / sizeof(u16),
258 },
259 .bbp = {
260 .read = rt61pci_bbp_read,
261 .write = rt61pci_bbp_write,
262 .word_size = sizeof(u8),
263 .word_count = BBP_SIZE / sizeof(u8),
264 },
265 .rf = {
266 .read = rt2x00_rf_read,
267 .write = rt61pci_rf_write,
268 .word_size = sizeof(u32),
269 .word_count = RF_SIZE / sizeof(u32),
270 },
271 };
272 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
273
274 #ifdef CONFIG_RT2X00_LIB_RFKILL
275 static int rt61pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
276 {
277 u32 reg;
278
279 rt2x00pci_register_read(rt2x00dev, MAC_CSR13, &reg);
280 return rt2x00_get_field32(reg, MAC_CSR13_BIT5);
281 }
282 #else
283 #define rt61pci_rfkill_poll NULL
284 #endif /* CONFIG_RT2X00_LIB_RFKILL */
285
286 #ifdef CONFIG_RT2X00_LIB_LEDS
287 static void rt61pci_brightness_set(struct led_classdev *led_cdev,
288 enum led_brightness brightness)
289 {
290 struct rt2x00_led *led =
291 container_of(led_cdev, struct rt2x00_led, led_dev);
292 unsigned int enabled = brightness != LED_OFF;
293 unsigned int a_mode =
294 (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_5GHZ);
295 unsigned int bg_mode =
296 (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_2GHZ);
297
298 if (led->type == LED_TYPE_RADIO) {
299 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
300 MCU_LEDCS_RADIO_STATUS, enabled);
301
302 rt61pci_mcu_request(led->rt2x00dev, MCU_LED, 0xff,
303 (led->rt2x00dev->led_mcu_reg & 0xff),
304 ((led->rt2x00dev->led_mcu_reg >> 8)));
305 } else if (led->type == LED_TYPE_ASSOC) {
306 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
307 MCU_LEDCS_LINK_BG_STATUS, bg_mode);
308 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
309 MCU_LEDCS_LINK_A_STATUS, a_mode);
310
311 rt61pci_mcu_request(led->rt2x00dev, MCU_LED, 0xff,
312 (led->rt2x00dev->led_mcu_reg & 0xff),
313 ((led->rt2x00dev->led_mcu_reg >> 8)));
314 } else if (led->type == LED_TYPE_QUALITY) {
315 /*
316 * The brightness is divided into 6 levels (0 - 5),
317 * this means we need to convert the brightness
318 * argument into the matching level within that range.
319 */
320 rt61pci_mcu_request(led->rt2x00dev, MCU_LED_STRENGTH, 0xff,
321 brightness / (LED_FULL / 6), 0);
322 }
323 }
324
325 static int rt61pci_blink_set(struct led_classdev *led_cdev,
326 unsigned long *delay_on,
327 unsigned long *delay_off)
328 {
329 struct rt2x00_led *led =
330 container_of(led_cdev, struct rt2x00_led, led_dev);
331 u32 reg;
332
333 rt2x00pci_register_read(led->rt2x00dev, MAC_CSR14, &reg);
334 rt2x00_set_field32(&reg, MAC_CSR14_ON_PERIOD, *delay_on);
335 rt2x00_set_field32(&reg, MAC_CSR14_OFF_PERIOD, *delay_off);
336 rt2x00pci_register_write(led->rt2x00dev, MAC_CSR14, reg);
337
338 return 0;
339 }
340
341 static void rt61pci_init_led(struct rt2x00_dev *rt2x00dev,
342 struct rt2x00_led *led,
343 enum led_type type)
344 {
345 led->rt2x00dev = rt2x00dev;
346 led->type = type;
347 led->led_dev.brightness_set = rt61pci_brightness_set;
348 led->led_dev.blink_set = rt61pci_blink_set;
349 led->flags = LED_INITIALIZED;
350 }
351 #endif /* CONFIG_RT2X00_LIB_LEDS */
352
353 /*
354 * Configuration handlers.
355 */
356 static int rt61pci_config_shared_key(struct rt2x00_dev *rt2x00dev,
357 struct rt2x00lib_crypto *crypto,
358 struct ieee80211_key_conf *key)
359 {
360 struct hw_key_entry key_entry;
361 struct rt2x00_field32 field;
362 u32 mask;
363 u32 reg;
364
365 if (crypto->cmd == SET_KEY) {
366 /*
367 * rt2x00lib can't determine the correct free
368 * key_idx for shared keys. We have 1 register
369 * with key valid bits. The goal is simple, read
370 * the register, if that is full we have no slots
371 * left.
372 * Note that each BSS is allowed to have up to 4
373 * shared keys, so put a mask over the allowed
374 * entries.
375 */
376 mask = (0xf << crypto->bssidx);
377
378 rt2x00pci_register_read(rt2x00dev, SEC_CSR0, &reg);
379 reg &= mask;
380
381 if (reg && reg == mask)
382 return -ENOSPC;
383
384 key->hw_key_idx += reg ? ffz(reg) : 0;
385
386 /*
387 * Upload key to hardware
388 */
389 memcpy(key_entry.key, crypto->key,
390 sizeof(key_entry.key));
391 memcpy(key_entry.tx_mic, crypto->tx_mic,
392 sizeof(key_entry.tx_mic));
393 memcpy(key_entry.rx_mic, crypto->rx_mic,
394 sizeof(key_entry.rx_mic));
395
396 reg = SHARED_KEY_ENTRY(key->hw_key_idx);
397 rt2x00pci_register_multiwrite(rt2x00dev, reg,
398 &key_entry, sizeof(key_entry));
399
400 /*
401 * The cipher types are stored over 2 registers.
402 * bssidx 0 and 1 keys are stored in SEC_CSR1 and
403 * bssidx 1 and 2 keys are stored in SEC_CSR5.
404 * Using the correct defines correctly will cause overhead,
405 * so just calculate the correct offset.
406 */
407 if (key->hw_key_idx < 8) {
408 field.bit_offset = (3 * key->hw_key_idx);
409 field.bit_mask = 0x7 << field.bit_offset;
410
411 rt2x00pci_register_read(rt2x00dev, SEC_CSR1, &reg);
412 rt2x00_set_field32(&reg, field, crypto->cipher);
413 rt2x00pci_register_write(rt2x00dev, SEC_CSR1, reg);
414 } else {
415 field.bit_offset = (3 * (key->hw_key_idx - 8));
416 field.bit_mask = 0x7 << field.bit_offset;
417
418 rt2x00pci_register_read(rt2x00dev, SEC_CSR5, &reg);
419 rt2x00_set_field32(&reg, field, crypto->cipher);
420 rt2x00pci_register_write(rt2x00dev, SEC_CSR5, reg);
421 }
422
423 /*
424 * The driver does not support the IV/EIV generation
425 * in hardware. However it doesn't support the IV/EIV
426 * inside the ieee80211 frame either, but requires it
427 * to be provided seperately for the descriptor.
428 * rt2x00lib will cut the IV/EIV data out of all frames
429 * given to us by mac80211, but we must tell mac80211
430 * to generate the IV/EIV data.
431 */
432 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
433 }
434
435 /*
436 * SEC_CSR0 contains only single-bit fields to indicate
437 * a particular key is valid. Because using the FIELD32()
438 * defines directly will cause a lot of overhead we use
439 * a calculation to determine the correct bit directly.
440 */
441 mask = 1 << key->hw_key_idx;
442
443 rt2x00pci_register_read(rt2x00dev, SEC_CSR0, &reg);
444 if (crypto->cmd == SET_KEY)
445 reg |= mask;
446 else if (crypto->cmd == DISABLE_KEY)
447 reg &= ~mask;
448 rt2x00pci_register_write(rt2x00dev, SEC_CSR0, reg);
449
450 return 0;
451 }
452
453 static int rt61pci_config_pairwise_key(struct rt2x00_dev *rt2x00dev,
454 struct rt2x00lib_crypto *crypto,
455 struct ieee80211_key_conf *key)
456 {
457 struct hw_pairwise_ta_entry addr_entry;
458 struct hw_key_entry key_entry;
459 u32 mask;
460 u32 reg;
461
462 if (crypto->cmd == SET_KEY) {
463 /*
464 * rt2x00lib can't determine the correct free
465 * key_idx for pairwise keys. We have 2 registers
466 * with key valid bits. The goal is simple, read
467 * the first register, if that is full move to
468 * the next register.
469 * When both registers are full, we drop the key,
470 * otherwise we use the first invalid entry.
471 */
472 rt2x00pci_register_read(rt2x00dev, SEC_CSR2, &reg);
473 if (reg && reg == ~0) {
474 key->hw_key_idx = 32;
475 rt2x00pci_register_read(rt2x00dev, SEC_CSR3, &reg);
476 if (reg && reg == ~0)
477 return -ENOSPC;
478 }
479
480 key->hw_key_idx += reg ? ffz(reg) : 0;
481
482 /*
483 * Upload key to hardware
484 */
485 memcpy(key_entry.key, crypto->key,
486 sizeof(key_entry.key));
487 memcpy(key_entry.tx_mic, crypto->tx_mic,
488 sizeof(key_entry.tx_mic));
489 memcpy(key_entry.rx_mic, crypto->rx_mic,
490 sizeof(key_entry.rx_mic));
491
492 memset(&addr_entry, 0, sizeof(addr_entry));
493 memcpy(&addr_entry, crypto->address, ETH_ALEN);
494 addr_entry.cipher = crypto->cipher;
495
496 reg = PAIRWISE_KEY_ENTRY(key->hw_key_idx);
497 rt2x00pci_register_multiwrite(rt2x00dev, reg,
498 &key_entry, sizeof(key_entry));
499
500 reg = PAIRWISE_TA_ENTRY(key->hw_key_idx);
501 rt2x00pci_register_multiwrite(rt2x00dev, reg,
502 &addr_entry, sizeof(addr_entry));
503
504 /*
505 * Enable pairwise lookup table for given BSS idx,
506 * without this received frames will not be decrypted
507 * by the hardware.
508 */
509 rt2x00pci_register_read(rt2x00dev, SEC_CSR4, &reg);
510 reg |= (1 << crypto->bssidx);
511 rt2x00pci_register_write(rt2x00dev, SEC_CSR4, reg);
512
513 /*
514 * The driver does not support the IV/EIV generation
515 * in hardware. However it doesn't support the IV/EIV
516 * inside the ieee80211 frame either, but requires it
517 * to be provided seperately for the descriptor.
518 * rt2x00lib will cut the IV/EIV data out of all frames
519 * given to us by mac80211, but we must tell mac80211
520 * to generate the IV/EIV data.
521 */
522 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
523 }
524
525 /*
526 * SEC_CSR2 and SEC_CSR3 contain only single-bit fields to indicate
527 * a particular key is valid. Because using the FIELD32()
528 * defines directly will cause a lot of overhead we use
529 * a calculation to determine the correct bit directly.
530 */
531 if (key->hw_key_idx < 32) {
532 mask = 1 << key->hw_key_idx;
533
534 rt2x00pci_register_read(rt2x00dev, SEC_CSR2, &reg);
535 if (crypto->cmd == SET_KEY)
536 reg |= mask;
537 else if (crypto->cmd == DISABLE_KEY)
538 reg &= ~mask;
539 rt2x00pci_register_write(rt2x00dev, SEC_CSR2, reg);
540 } else {
541 mask = 1 << (key->hw_key_idx - 32);
542
543 rt2x00pci_register_read(rt2x00dev, SEC_CSR3, &reg);
544 if (crypto->cmd == SET_KEY)
545 reg |= mask;
546 else if (crypto->cmd == DISABLE_KEY)
547 reg &= ~mask;
548 rt2x00pci_register_write(rt2x00dev, SEC_CSR3, reg);
549 }
550
551 return 0;
552 }
553
554 static void rt61pci_config_filter(struct rt2x00_dev *rt2x00dev,
555 const unsigned int filter_flags)
556 {
557 u32 reg;
558
559 /*
560 * Start configuration steps.
561 * Note that the version error will always be dropped
562 * and broadcast frames will always be accepted since
563 * there is no filter for it at this time.
564 */
565 rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
566 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CRC,
567 !(filter_flags & FIF_FCSFAIL));
568 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_PHYSICAL,
569 !(filter_flags & FIF_PLCPFAIL));
570 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CONTROL,
571 !(filter_flags & FIF_CONTROL));
572 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_NOT_TO_ME,
573 !(filter_flags & FIF_PROMISC_IN_BSS));
574 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_TO_DS,
575 !(filter_flags & FIF_PROMISC_IN_BSS) &&
576 !rt2x00dev->intf_ap_count);
577 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_VERSION_ERROR, 1);
578 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_MULTICAST,
579 !(filter_flags & FIF_ALLMULTI));
580 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_BROADCAST, 0);
581 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_ACK_CTS,
582 !(filter_flags & FIF_CONTROL));
583 rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
584 }
585
586 static void rt61pci_config_intf(struct rt2x00_dev *rt2x00dev,
587 struct rt2x00_intf *intf,
588 struct rt2x00intf_conf *conf,
589 const unsigned int flags)
590 {
591 unsigned int beacon_base;
592 u32 reg;
593
594 if (flags & CONFIG_UPDATE_TYPE) {
595 /*
596 * Clear current synchronisation setup.
597 * For the Beacon base registers we only need to clear
598 * the first byte since that byte contains the VALID and OWNER
599 * bits which (when set to 0) will invalidate the entire beacon.
600 */
601 beacon_base = HW_BEACON_OFFSET(intf->beacon->entry_idx);
602 rt2x00pci_register_write(rt2x00dev, beacon_base, 0);
603
604 /*
605 * Enable synchronisation.
606 */
607 rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
608 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 1);
609 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_SYNC, conf->sync);
610 rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 1);
611 rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
612 }
613
614 if (flags & CONFIG_UPDATE_MAC) {
615 reg = le32_to_cpu(conf->mac[1]);
616 rt2x00_set_field32(&reg, MAC_CSR3_UNICAST_TO_ME_MASK, 0xff);
617 conf->mac[1] = cpu_to_le32(reg);
618
619 rt2x00pci_register_multiwrite(rt2x00dev, MAC_CSR2,
620 conf->mac, sizeof(conf->mac));
621 }
622
623 if (flags & CONFIG_UPDATE_BSSID) {
624 reg = le32_to_cpu(conf->bssid[1]);
625 rt2x00_set_field32(&reg, MAC_CSR5_BSS_ID_MASK, 3);
626 conf->bssid[1] = cpu_to_le32(reg);
627
628 rt2x00pci_register_multiwrite(rt2x00dev, MAC_CSR4,
629 conf->bssid, sizeof(conf->bssid));
630 }
631 }
632
633 static void rt61pci_config_erp(struct rt2x00_dev *rt2x00dev,
634 struct rt2x00lib_erp *erp)
635 {
636 u32 reg;
637
638 rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
639 rt2x00_set_field32(&reg, TXRX_CSR0_RX_ACK_TIMEOUT, erp->ack_timeout);
640 rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
641
642 rt2x00pci_register_read(rt2x00dev, TXRX_CSR4, &reg);
643 rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_PREAMBLE,
644 !!erp->short_preamble);
645 rt2x00pci_register_write(rt2x00dev, TXRX_CSR4, reg);
646 }
647
648
649 static void rt61pci_config_lna_gain(struct rt2x00_dev *rt2x00dev,
650 struct rt2x00lib_conf *libconf)
651 {
652 u16 eeprom;
653 short lna_gain = 0;
654
655 if (libconf->band == IEEE80211_BAND_2GHZ) {
656 if (test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags))
657 lna_gain += 14;
658
659 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &eeprom);
660 lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_BG_1);
661 } else {
662 if (test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags))
663 lna_gain += 14;
664
665 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &eeprom);
666 lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_A_1);
667 }
668
669 rt2x00dev->lna_gain = lna_gain;
670 }
671
672 static void rt61pci_config_phymode(struct rt2x00_dev *rt2x00dev,
673 const int basic_rate_mask)
674 {
675 rt2x00pci_register_write(rt2x00dev, TXRX_CSR5, basic_rate_mask);
676 }
677
678 static void rt61pci_config_channel(struct rt2x00_dev *rt2x00dev,
679 struct rf_channel *rf, const int txpower)
680 {
681 u8 r3;
682 u8 r94;
683 u8 smart;
684
685 rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
686 rt2x00_set_field32(&rf->rf4, RF4_FREQ_OFFSET, rt2x00dev->freq_offset);
687
688 smart = !(rt2x00_rf(&rt2x00dev->chip, RF5225) ||
689 rt2x00_rf(&rt2x00dev->chip, RF2527));
690
691 rt61pci_bbp_read(rt2x00dev, 3, &r3);
692 rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, smart);
693 rt61pci_bbp_write(rt2x00dev, 3, r3);
694
695 r94 = 6;
696 if (txpower > MAX_TXPOWER && txpower <= (MAX_TXPOWER + r94))
697 r94 += txpower - MAX_TXPOWER;
698 else if (txpower < MIN_TXPOWER && txpower >= (MIN_TXPOWER - r94))
699 r94 += txpower;
700 rt61pci_bbp_write(rt2x00dev, 94, r94);
701
702 rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
703 rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
704 rt61pci_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
705 rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
706
707 udelay(200);
708
709 rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
710 rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
711 rt61pci_rf_write(rt2x00dev, 3, rf->rf3 | 0x00000004);
712 rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
713
714 udelay(200);
715
716 rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
717 rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
718 rt61pci_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
719 rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
720
721 msleep(1);
722 }
723
724 static void rt61pci_config_txpower(struct rt2x00_dev *rt2x00dev,
725 const int txpower)
726 {
727 struct rf_channel rf;
728
729 rt2x00_rf_read(rt2x00dev, 1, &rf.rf1);
730 rt2x00_rf_read(rt2x00dev, 2, &rf.rf2);
731 rt2x00_rf_read(rt2x00dev, 3, &rf.rf3);
732 rt2x00_rf_read(rt2x00dev, 4, &rf.rf4);
733
734 rt61pci_config_channel(rt2x00dev, &rf, txpower);
735 }
736
737 static void rt61pci_config_antenna_5x(struct rt2x00_dev *rt2x00dev,
738 struct antenna_setup *ant)
739 {
740 u8 r3;
741 u8 r4;
742 u8 r77;
743
744 rt61pci_bbp_read(rt2x00dev, 3, &r3);
745 rt61pci_bbp_read(rt2x00dev, 4, &r4);
746 rt61pci_bbp_read(rt2x00dev, 77, &r77);
747
748 rt2x00_set_field8(&r3, BBP_R3_SMART_MODE,
749 rt2x00_rf(&rt2x00dev->chip, RF5325));
750
751 /*
752 * Configure the RX antenna.
753 */
754 switch (ant->rx) {
755 case ANTENNA_HW_DIVERSITY:
756 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
757 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END,
758 (rt2x00dev->curr_band != IEEE80211_BAND_5GHZ));
759 break;
760 case ANTENNA_A:
761 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
762 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
763 if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ)
764 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
765 else
766 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
767 break;
768 case ANTENNA_B:
769 default:
770 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
771 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
772 if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ)
773 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
774 else
775 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
776 break;
777 }
778
779 rt61pci_bbp_write(rt2x00dev, 77, r77);
780 rt61pci_bbp_write(rt2x00dev, 3, r3);
781 rt61pci_bbp_write(rt2x00dev, 4, r4);
782 }
783
784 static void rt61pci_config_antenna_2x(struct rt2x00_dev *rt2x00dev,
785 struct antenna_setup *ant)
786 {
787 u8 r3;
788 u8 r4;
789 u8 r77;
790
791 rt61pci_bbp_read(rt2x00dev, 3, &r3);
792 rt61pci_bbp_read(rt2x00dev, 4, &r4);
793 rt61pci_bbp_read(rt2x00dev, 77, &r77);
794
795 rt2x00_set_field8(&r3, BBP_R3_SMART_MODE,
796 rt2x00_rf(&rt2x00dev->chip, RF2529));
797 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END,
798 !test_bit(CONFIG_FRAME_TYPE, &rt2x00dev->flags));
799
800 /*
801 * Configure the RX antenna.
802 */
803 switch (ant->rx) {
804 case ANTENNA_HW_DIVERSITY:
805 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
806 break;
807 case ANTENNA_A:
808 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
809 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
810 break;
811 case ANTENNA_B:
812 default:
813 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
814 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
815 break;
816 }
817
818 rt61pci_bbp_write(rt2x00dev, 77, r77);
819 rt61pci_bbp_write(rt2x00dev, 3, r3);
820 rt61pci_bbp_write(rt2x00dev, 4, r4);
821 }
822
823 static void rt61pci_config_antenna_2529_rx(struct rt2x00_dev *rt2x00dev,
824 const int p1, const int p2)
825 {
826 u32 reg;
827
828 rt2x00pci_register_read(rt2x00dev, MAC_CSR13, &reg);
829
830 rt2x00_set_field32(&reg, MAC_CSR13_BIT4, p1);
831 rt2x00_set_field32(&reg, MAC_CSR13_BIT12, 0);
832
833 rt2x00_set_field32(&reg, MAC_CSR13_BIT3, !p2);
834 rt2x00_set_field32(&reg, MAC_CSR13_BIT11, 0);
835
836 rt2x00pci_register_write(rt2x00dev, MAC_CSR13, reg);
837 }
838
839 static void rt61pci_config_antenna_2529(struct rt2x00_dev *rt2x00dev,
840 struct antenna_setup *ant)
841 {
842 u8 r3;
843 u8 r4;
844 u8 r77;
845
846 rt61pci_bbp_read(rt2x00dev, 3, &r3);
847 rt61pci_bbp_read(rt2x00dev, 4, &r4);
848 rt61pci_bbp_read(rt2x00dev, 77, &r77);
849
850 /*
851 * Configure the RX antenna.
852 */
853 switch (ant->rx) {
854 case ANTENNA_A:
855 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
856 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
857 rt61pci_config_antenna_2529_rx(rt2x00dev, 0, 0);
858 break;
859 case ANTENNA_HW_DIVERSITY:
860 /*
861 * FIXME: Antenna selection for the rf 2529 is very confusing
862 * in the legacy driver. Just default to antenna B until the
863 * legacy code can be properly translated into rt2x00 code.
864 */
865 case ANTENNA_B:
866 default:
867 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
868 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
869 rt61pci_config_antenna_2529_rx(rt2x00dev, 1, 1);
870 break;
871 }
872
873 rt61pci_bbp_write(rt2x00dev, 77, r77);
874 rt61pci_bbp_write(rt2x00dev, 3, r3);
875 rt61pci_bbp_write(rt2x00dev, 4, r4);
876 }
877
878 struct antenna_sel {
879 u8 word;
880 /*
881 * value[0] -> non-LNA
882 * value[1] -> LNA
883 */
884 u8 value[2];
885 };
886
887 static const struct antenna_sel antenna_sel_a[] = {
888 { 96, { 0x58, 0x78 } },
889 { 104, { 0x38, 0x48 } },
890 { 75, { 0xfe, 0x80 } },
891 { 86, { 0xfe, 0x80 } },
892 { 88, { 0xfe, 0x80 } },
893 { 35, { 0x60, 0x60 } },
894 { 97, { 0x58, 0x58 } },
895 { 98, { 0x58, 0x58 } },
896 };
897
898 static const struct antenna_sel antenna_sel_bg[] = {
899 { 96, { 0x48, 0x68 } },
900 { 104, { 0x2c, 0x3c } },
901 { 75, { 0xfe, 0x80 } },
902 { 86, { 0xfe, 0x80 } },
903 { 88, { 0xfe, 0x80 } },
904 { 35, { 0x50, 0x50 } },
905 { 97, { 0x48, 0x48 } },
906 { 98, { 0x48, 0x48 } },
907 };
908
909 static void rt61pci_config_antenna(struct rt2x00_dev *rt2x00dev,
910 struct antenna_setup *ant)
911 {
912 const struct antenna_sel *sel;
913 unsigned int lna;
914 unsigned int i;
915 u32 reg;
916
917 /*
918 * We should never come here because rt2x00lib is supposed
919 * to catch this and send us the correct antenna explicitely.
920 */
921 BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
922 ant->tx == ANTENNA_SW_DIVERSITY);
923
924 if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) {
925 sel = antenna_sel_a;
926 lna = test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags);
927 } else {
928 sel = antenna_sel_bg;
929 lna = test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags);
930 }
931
932 for (i = 0; i < ARRAY_SIZE(antenna_sel_a); i++)
933 rt61pci_bbp_write(rt2x00dev, sel[i].word, sel[i].value[lna]);
934
935 rt2x00pci_register_read(rt2x00dev, PHY_CSR0, &reg);
936
937 rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_BG,
938 rt2x00dev->curr_band == IEEE80211_BAND_2GHZ);
939 rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_A,
940 rt2x00dev->curr_band == IEEE80211_BAND_5GHZ);
941
942 rt2x00pci_register_write(rt2x00dev, PHY_CSR0, reg);
943
944 if (rt2x00_rf(&rt2x00dev->chip, RF5225) ||
945 rt2x00_rf(&rt2x00dev->chip, RF5325))
946 rt61pci_config_antenna_5x(rt2x00dev, ant);
947 else if (rt2x00_rf(&rt2x00dev->chip, RF2527))
948 rt61pci_config_antenna_2x(rt2x00dev, ant);
949 else if (rt2x00_rf(&rt2x00dev->chip, RF2529)) {
950 if (test_bit(CONFIG_DOUBLE_ANTENNA, &rt2x00dev->flags))
951 rt61pci_config_antenna_2x(rt2x00dev, ant);
952 else
953 rt61pci_config_antenna_2529(rt2x00dev, ant);
954 }
955 }
956
957 static void rt61pci_config_duration(struct rt2x00_dev *rt2x00dev,
958 struct rt2x00lib_conf *libconf)
959 {
960 u32 reg;
961
962 rt2x00pci_register_read(rt2x00dev, MAC_CSR9, &reg);
963 rt2x00_set_field32(&reg, MAC_CSR9_SLOT_TIME, libconf->slot_time);
964 rt2x00pci_register_write(rt2x00dev, MAC_CSR9, reg);
965
966 rt2x00pci_register_read(rt2x00dev, MAC_CSR8, &reg);
967 rt2x00_set_field32(&reg, MAC_CSR8_SIFS, libconf->sifs);
968 rt2x00_set_field32(&reg, MAC_CSR8_SIFS_AFTER_RX_OFDM, 3);
969 rt2x00_set_field32(&reg, MAC_CSR8_EIFS, libconf->eifs);
970 rt2x00pci_register_write(rt2x00dev, MAC_CSR8, reg);
971
972 rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
973 rt2x00_set_field32(&reg, TXRX_CSR0_TSF_OFFSET, IEEE80211_HEADER);
974 rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
975
976 rt2x00pci_register_read(rt2x00dev, TXRX_CSR4, &reg);
977 rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_ENABLE, 1);
978 rt2x00pci_register_write(rt2x00dev, TXRX_CSR4, reg);
979
980 rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
981 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_INTERVAL,
982 libconf->conf->beacon_int * 16);
983 rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
984 }
985
986 static void rt61pci_config(struct rt2x00_dev *rt2x00dev,
987 struct rt2x00lib_conf *libconf,
988 const unsigned int flags)
989 {
990 /* Always recalculate LNA gain before changing configuration */
991 rt61pci_config_lna_gain(rt2x00dev, libconf);
992
993 if (flags & CONFIG_UPDATE_PHYMODE)
994 rt61pci_config_phymode(rt2x00dev, libconf->basic_rates);
995 if (flags & CONFIG_UPDATE_CHANNEL)
996 rt61pci_config_channel(rt2x00dev, &libconf->rf,
997 libconf->conf->power_level);
998 if ((flags & CONFIG_UPDATE_TXPOWER) && !(flags & CONFIG_UPDATE_CHANNEL))
999 rt61pci_config_txpower(rt2x00dev, libconf->conf->power_level);
1000 if (flags & CONFIG_UPDATE_ANTENNA)
1001 rt61pci_config_antenna(rt2x00dev, &libconf->ant);
1002 if (flags & (CONFIG_UPDATE_SLOT_TIME | CONFIG_UPDATE_BEACON_INT))
1003 rt61pci_config_duration(rt2x00dev, libconf);
1004 }
1005
1006 /*
1007 * Link tuning
1008 */
1009 static void rt61pci_link_stats(struct rt2x00_dev *rt2x00dev,
1010 struct link_qual *qual)
1011 {
1012 u32 reg;
1013
1014 /*
1015 * Update FCS error count from register.
1016 */
1017 rt2x00pci_register_read(rt2x00dev, STA_CSR0, &reg);
1018 qual->rx_failed = rt2x00_get_field32(reg, STA_CSR0_FCS_ERROR);
1019
1020 /*
1021 * Update False CCA count from register.
1022 */
1023 rt2x00pci_register_read(rt2x00dev, STA_CSR1, &reg);
1024 qual->false_cca = rt2x00_get_field32(reg, STA_CSR1_FALSE_CCA_ERROR);
1025 }
1026
1027 static void rt61pci_reset_tuner(struct rt2x00_dev *rt2x00dev)
1028 {
1029 rt61pci_bbp_write(rt2x00dev, 17, 0x20);
1030 rt2x00dev->link.vgc_level = 0x20;
1031 }
1032
1033 static void rt61pci_link_tuner(struct rt2x00_dev *rt2x00dev)
1034 {
1035 int rssi = rt2x00_get_link_rssi(&rt2x00dev->link);
1036 u8 r17;
1037 u8 up_bound;
1038 u8 low_bound;
1039
1040 rt61pci_bbp_read(rt2x00dev, 17, &r17);
1041
1042 /*
1043 * Determine r17 bounds.
1044 */
1045 if (rt2x00dev->rx_status.band == IEEE80211_BAND_5GHZ) {
1046 low_bound = 0x28;
1047 up_bound = 0x48;
1048 if (test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags)) {
1049 low_bound += 0x10;
1050 up_bound += 0x10;
1051 }
1052 } else {
1053 low_bound = 0x20;
1054 up_bound = 0x40;
1055 if (test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags)) {
1056 low_bound += 0x10;
1057 up_bound += 0x10;
1058 }
1059 }
1060
1061 /*
1062 * If we are not associated, we should go straight to the
1063 * dynamic CCA tuning.
1064 */
1065 if (!rt2x00dev->intf_associated)
1066 goto dynamic_cca_tune;
1067
1068 /*
1069 * Special big-R17 for very short distance
1070 */
1071 if (rssi >= -35) {
1072 if (r17 != 0x60)
1073 rt61pci_bbp_write(rt2x00dev, 17, 0x60);
1074 return;
1075 }
1076
1077 /*
1078 * Special big-R17 for short distance
1079 */
1080 if (rssi >= -58) {
1081 if (r17 != up_bound)
1082 rt61pci_bbp_write(rt2x00dev, 17, up_bound);
1083 return;
1084 }
1085
1086 /*
1087 * Special big-R17 for middle-short distance
1088 */
1089 if (rssi >= -66) {
1090 low_bound += 0x10;
1091 if (r17 != low_bound)
1092 rt61pci_bbp_write(rt2x00dev, 17, low_bound);
1093 return;
1094 }
1095
1096 /*
1097 * Special mid-R17 for middle distance
1098 */
1099 if (rssi >= -74) {
1100 low_bound += 0x08;
1101 if (r17 != low_bound)
1102 rt61pci_bbp_write(rt2x00dev, 17, low_bound);
1103 return;
1104 }
1105
1106 /*
1107 * Special case: Change up_bound based on the rssi.
1108 * Lower up_bound when rssi is weaker then -74 dBm.
1109 */
1110 up_bound -= 2 * (-74 - rssi);
1111 if (low_bound > up_bound)
1112 up_bound = low_bound;
1113
1114 if (r17 > up_bound) {
1115 rt61pci_bbp_write(rt2x00dev, 17, up_bound);
1116 return;
1117 }
1118
1119 dynamic_cca_tune:
1120
1121 /*
1122 * r17 does not yet exceed upper limit, continue and base
1123 * the r17 tuning on the false CCA count.
1124 */
1125 if (rt2x00dev->link.qual.false_cca > 512 && r17 < up_bound) {
1126 if (++r17 > up_bound)
1127 r17 = up_bound;
1128 rt61pci_bbp_write(rt2x00dev, 17, r17);
1129 } else if (rt2x00dev->link.qual.false_cca < 100 && r17 > low_bound) {
1130 if (--r17 < low_bound)
1131 r17 = low_bound;
1132 rt61pci_bbp_write(rt2x00dev, 17, r17);
1133 }
1134 }
1135
1136 /*
1137 * Firmware functions
1138 */
1139 static char *rt61pci_get_firmware_name(struct rt2x00_dev *rt2x00dev)
1140 {
1141 char *fw_name;
1142
1143 switch (rt2x00dev->chip.rt) {
1144 case RT2561:
1145 fw_name = FIRMWARE_RT2561;
1146 break;
1147 case RT2561s:
1148 fw_name = FIRMWARE_RT2561s;
1149 break;
1150 case RT2661:
1151 fw_name = FIRMWARE_RT2661;
1152 break;
1153 default:
1154 fw_name = NULL;
1155 break;
1156 }
1157
1158 return fw_name;
1159 }
1160
1161 static u16 rt61pci_get_firmware_crc(const void *data, const size_t len)
1162 {
1163 u16 crc;
1164
1165 /*
1166 * Use the crc itu-t algorithm.
1167 * The last 2 bytes in the firmware array are the crc checksum itself,
1168 * this means that we should never pass those 2 bytes to the crc
1169 * algorithm.
1170 */
1171 crc = crc_itu_t(0, data, len - 2);
1172 crc = crc_itu_t_byte(crc, 0);
1173 crc = crc_itu_t_byte(crc, 0);
1174
1175 return crc;
1176 }
1177
1178 static int rt61pci_load_firmware(struct rt2x00_dev *rt2x00dev, const void *data,
1179 const size_t len)
1180 {
1181 int i;
1182 u32 reg;
1183
1184 /*
1185 * Wait for stable hardware.
1186 */
1187 for (i = 0; i < 100; i++) {
1188 rt2x00pci_register_read(rt2x00dev, MAC_CSR0, &reg);
1189 if (reg)
1190 break;
1191 msleep(1);
1192 }
1193
1194 if (!reg) {
1195 ERROR(rt2x00dev, "Unstable hardware.\n");
1196 return -EBUSY;
1197 }
1198
1199 /*
1200 * Prepare MCU and mailbox for firmware loading.
1201 */
1202 reg = 0;
1203 rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 1);
1204 rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1205 rt2x00pci_register_write(rt2x00dev, M2H_CMD_DONE_CSR, 0xffffffff);
1206 rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
1207 rt2x00pci_register_write(rt2x00dev, HOST_CMD_CSR, 0);
1208
1209 /*
1210 * Write firmware to device.
1211 */
1212 reg = 0;
1213 rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 1);
1214 rt2x00_set_field32(&reg, MCU_CNTL_CSR_SELECT_BANK, 1);
1215 rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1216
1217 rt2x00pci_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE,
1218 data, len);
1219
1220 rt2x00_set_field32(&reg, MCU_CNTL_CSR_SELECT_BANK, 0);
1221 rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1222
1223 rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 0);
1224 rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1225
1226 for (i = 0; i < 100; i++) {
1227 rt2x00pci_register_read(rt2x00dev, MCU_CNTL_CSR, &reg);
1228 if (rt2x00_get_field32(reg, MCU_CNTL_CSR_READY))
1229 break;
1230 msleep(1);
1231 }
1232
1233 if (i == 100) {
1234 ERROR(rt2x00dev, "MCU Control register not ready.\n");
1235 return -EBUSY;
1236 }
1237
1238 /*
1239 * Hardware needs another millisecond before it is ready.
1240 */
1241 msleep(1);
1242
1243 /*
1244 * Reset MAC and BBP registers.
1245 */
1246 reg = 0;
1247 rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 1);
1248 rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 1);
1249 rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1250
1251 rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1252 rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 0);
1253 rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 0);
1254 rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1255
1256 rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1257 rt2x00_set_field32(&reg, MAC_CSR1_HOST_READY, 1);
1258 rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1259
1260 return 0;
1261 }
1262
1263 /*
1264 * Initialization functions.
1265 */
1266 static void rt61pci_init_rxentry(struct rt2x00_dev *rt2x00dev,
1267 struct queue_entry *entry)
1268 {
1269 struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1270 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1271 u32 word;
1272
1273 rt2x00_desc_read(entry_priv->desc, 5, &word);
1274 rt2x00_set_field32(&word, RXD_W5_BUFFER_PHYSICAL_ADDRESS,
1275 skbdesc->skb_dma);
1276 rt2x00_desc_write(entry_priv->desc, 5, word);
1277
1278 rt2x00_desc_read(entry_priv->desc, 0, &word);
1279 rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
1280 rt2x00_desc_write(entry_priv->desc, 0, word);
1281 }
1282
1283 static void rt61pci_init_txentry(struct rt2x00_dev *rt2x00dev,
1284 struct queue_entry *entry)
1285 {
1286 struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1287 u32 word;
1288
1289 rt2x00_desc_read(entry_priv->desc, 0, &word);
1290 rt2x00_set_field32(&word, TXD_W0_VALID, 0);
1291 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
1292 rt2x00_desc_write(entry_priv->desc, 0, word);
1293 }
1294
1295 static int rt61pci_init_queues(struct rt2x00_dev *rt2x00dev)
1296 {
1297 struct queue_entry_priv_pci *entry_priv;
1298 u32 reg;
1299
1300 /*
1301 * Initialize registers.
1302 */
1303 rt2x00pci_register_read(rt2x00dev, TX_RING_CSR0, &reg);
1304 rt2x00_set_field32(&reg, TX_RING_CSR0_AC0_RING_SIZE,
1305 rt2x00dev->tx[0].limit);
1306 rt2x00_set_field32(&reg, TX_RING_CSR0_AC1_RING_SIZE,
1307 rt2x00dev->tx[1].limit);
1308 rt2x00_set_field32(&reg, TX_RING_CSR0_AC2_RING_SIZE,
1309 rt2x00dev->tx[2].limit);
1310 rt2x00_set_field32(&reg, TX_RING_CSR0_AC3_RING_SIZE,
1311 rt2x00dev->tx[3].limit);
1312 rt2x00pci_register_write(rt2x00dev, TX_RING_CSR0, reg);
1313
1314 rt2x00pci_register_read(rt2x00dev, TX_RING_CSR1, &reg);
1315 rt2x00_set_field32(&reg, TX_RING_CSR1_TXD_SIZE,
1316 rt2x00dev->tx[0].desc_size / 4);
1317 rt2x00pci_register_write(rt2x00dev, TX_RING_CSR1, reg);
1318
1319 entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
1320 rt2x00pci_register_read(rt2x00dev, AC0_BASE_CSR, &reg);
1321 rt2x00_set_field32(&reg, AC0_BASE_CSR_RING_REGISTER,
1322 entry_priv->desc_dma);
1323 rt2x00pci_register_write(rt2x00dev, AC0_BASE_CSR, reg);
1324
1325 entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
1326 rt2x00pci_register_read(rt2x00dev, AC1_BASE_CSR, &reg);
1327 rt2x00_set_field32(&reg, AC1_BASE_CSR_RING_REGISTER,
1328 entry_priv->desc_dma);
1329 rt2x00pci_register_write(rt2x00dev, AC1_BASE_CSR, reg);
1330
1331 entry_priv = rt2x00dev->tx[2].entries[0].priv_data;
1332 rt2x00pci_register_read(rt2x00dev, AC2_BASE_CSR, &reg);
1333 rt2x00_set_field32(&reg, AC2_BASE_CSR_RING_REGISTER,
1334 entry_priv->desc_dma);
1335 rt2x00pci_register_write(rt2x00dev, AC2_BASE_CSR, reg);
1336
1337 entry_priv = rt2x00dev->tx[3].entries[0].priv_data;
1338 rt2x00pci_register_read(rt2x00dev, AC3_BASE_CSR, &reg);
1339 rt2x00_set_field32(&reg, AC3_BASE_CSR_RING_REGISTER,
1340 entry_priv->desc_dma);
1341 rt2x00pci_register_write(rt2x00dev, AC3_BASE_CSR, reg);
1342
1343 rt2x00pci_register_read(rt2x00dev, RX_RING_CSR, &reg);
1344 rt2x00_set_field32(&reg, RX_RING_CSR_RING_SIZE, rt2x00dev->rx->limit);
1345 rt2x00_set_field32(&reg, RX_RING_CSR_RXD_SIZE,
1346 rt2x00dev->rx->desc_size / 4);
1347 rt2x00_set_field32(&reg, RX_RING_CSR_RXD_WRITEBACK_SIZE, 4);
1348 rt2x00pci_register_write(rt2x00dev, RX_RING_CSR, reg);
1349
1350 entry_priv = rt2x00dev->rx->entries[0].priv_data;
1351 rt2x00pci_register_read(rt2x00dev, RX_BASE_CSR, &reg);
1352 rt2x00_set_field32(&reg, RX_BASE_CSR_RING_REGISTER,
1353 entry_priv->desc_dma);
1354 rt2x00pci_register_write(rt2x00dev, RX_BASE_CSR, reg);
1355
1356 rt2x00pci_register_read(rt2x00dev, TX_DMA_DST_CSR, &reg);
1357 rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC0, 2);
1358 rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC1, 2);
1359 rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC2, 2);
1360 rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC3, 2);
1361 rt2x00pci_register_write(rt2x00dev, TX_DMA_DST_CSR, reg);
1362
1363 rt2x00pci_register_read(rt2x00dev, LOAD_TX_RING_CSR, &reg);
1364 rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC0, 1);
1365 rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC1, 1);
1366 rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC2, 1);
1367 rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC3, 1);
1368 rt2x00pci_register_write(rt2x00dev, LOAD_TX_RING_CSR, reg);
1369
1370 rt2x00pci_register_read(rt2x00dev, RX_CNTL_CSR, &reg);
1371 rt2x00_set_field32(&reg, RX_CNTL_CSR_LOAD_RXD, 1);
1372 rt2x00pci_register_write(rt2x00dev, RX_CNTL_CSR, reg);
1373
1374 return 0;
1375 }
1376
1377 static int rt61pci_init_registers(struct rt2x00_dev *rt2x00dev)
1378 {
1379 u32 reg;
1380
1381 rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
1382 rt2x00_set_field32(&reg, TXRX_CSR0_AUTO_TX_SEQ, 1);
1383 rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX, 0);
1384 rt2x00_set_field32(&reg, TXRX_CSR0_TX_WITHOUT_WAITING, 0);
1385 rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
1386
1387 rt2x00pci_register_read(rt2x00dev, TXRX_CSR1, &reg);
1388 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0, 47); /* CCK Signal */
1389 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0_VALID, 1);
1390 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1, 30); /* Rssi */
1391 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1_VALID, 1);
1392 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2, 42); /* OFDM Rate */
1393 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2_VALID, 1);
1394 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3, 30); /* Rssi */
1395 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3_VALID, 1);
1396 rt2x00pci_register_write(rt2x00dev, TXRX_CSR1, reg);
1397
1398 /*
1399 * CCK TXD BBP registers
1400 */
1401 rt2x00pci_register_read(rt2x00dev, TXRX_CSR2, &reg);
1402 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0, 13);
1403 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0_VALID, 1);
1404 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1, 12);
1405 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1_VALID, 1);
1406 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2, 11);
1407 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2_VALID, 1);
1408 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3, 10);
1409 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3_VALID, 1);
1410 rt2x00pci_register_write(rt2x00dev, TXRX_CSR2, reg);
1411
1412 /*
1413 * OFDM TXD BBP registers
1414 */
1415 rt2x00pci_register_read(rt2x00dev, TXRX_CSR3, &reg);
1416 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0, 7);
1417 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0_VALID, 1);
1418 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1, 6);
1419 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1_VALID, 1);
1420 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2, 5);
1421 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2_VALID, 1);
1422 rt2x00pci_register_write(rt2x00dev, TXRX_CSR3, reg);
1423
1424 rt2x00pci_register_read(rt2x00dev, TXRX_CSR7, &reg);
1425 rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_6MBS, 59);
1426 rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_9MBS, 53);
1427 rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_12MBS, 49);
1428 rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_18MBS, 46);
1429 rt2x00pci_register_write(rt2x00dev, TXRX_CSR7, reg);
1430
1431 rt2x00pci_register_read(rt2x00dev, TXRX_CSR8, &reg);
1432 rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_24MBS, 44);
1433 rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_36MBS, 42);
1434 rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_48MBS, 42);
1435 rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_54MBS, 42);
1436 rt2x00pci_register_write(rt2x00dev, TXRX_CSR8, reg);
1437
1438 rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
1439 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_INTERVAL, 0);
1440 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 0);
1441 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_SYNC, 0);
1442 rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 0);
1443 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1444 rt2x00_set_field32(&reg, TXRX_CSR9_TIMESTAMP_COMPENSATE, 0);
1445 rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
1446
1447 rt2x00pci_register_write(rt2x00dev, TXRX_CSR15, 0x0000000f);
1448
1449 rt2x00pci_register_write(rt2x00dev, MAC_CSR6, 0x00000fff);
1450
1451 rt2x00pci_register_read(rt2x00dev, MAC_CSR9, &reg);
1452 rt2x00_set_field32(&reg, MAC_CSR9_CW_SELECT, 0);
1453 rt2x00pci_register_write(rt2x00dev, MAC_CSR9, reg);
1454
1455 rt2x00pci_register_write(rt2x00dev, MAC_CSR10, 0x0000071c);
1456
1457 if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
1458 return -EBUSY;
1459
1460 rt2x00pci_register_write(rt2x00dev, MAC_CSR13, 0x0000e000);
1461
1462 /*
1463 * Invalidate all Shared Keys (SEC_CSR0),
1464 * and clear the Shared key Cipher algorithms (SEC_CSR1 & SEC_CSR5)
1465 */
1466 rt2x00pci_register_write(rt2x00dev, SEC_CSR0, 0x00000000);
1467 rt2x00pci_register_write(rt2x00dev, SEC_CSR1, 0x00000000);
1468 rt2x00pci_register_write(rt2x00dev, SEC_CSR5, 0x00000000);
1469
1470 rt2x00pci_register_write(rt2x00dev, PHY_CSR1, 0x000023b0);
1471 rt2x00pci_register_write(rt2x00dev, PHY_CSR5, 0x060a100c);
1472 rt2x00pci_register_write(rt2x00dev, PHY_CSR6, 0x00080606);
1473 rt2x00pci_register_write(rt2x00dev, PHY_CSR7, 0x00000a08);
1474
1475 rt2x00pci_register_write(rt2x00dev, PCI_CFG_CSR, 0x28ca4404);
1476
1477 rt2x00pci_register_write(rt2x00dev, TEST_MODE_CSR, 0x00000200);
1478
1479 rt2x00pci_register_write(rt2x00dev, M2H_CMD_DONE_CSR, 0xffffffff);
1480
1481 /*
1482 * Clear all beacons
1483 * For the Beacon base registers we only need to clear
1484 * the first byte since that byte contains the VALID and OWNER
1485 * bits which (when set to 0) will invalidate the entire beacon.
1486 */
1487 rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE0, 0);
1488 rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE1, 0);
1489 rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE2, 0);
1490 rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE3, 0);
1491
1492 /*
1493 * We must clear the error counters.
1494 * These registers are cleared on read,
1495 * so we may pass a useless variable to store the value.
1496 */
1497 rt2x00pci_register_read(rt2x00dev, STA_CSR0, &reg);
1498 rt2x00pci_register_read(rt2x00dev, STA_CSR1, &reg);
1499 rt2x00pci_register_read(rt2x00dev, STA_CSR2, &reg);
1500
1501 /*
1502 * Reset MAC and BBP registers.
1503 */
1504 rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1505 rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 1);
1506 rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 1);
1507 rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1508
1509 rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1510 rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 0);
1511 rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 0);
1512 rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1513
1514 rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1515 rt2x00_set_field32(&reg, MAC_CSR1_HOST_READY, 1);
1516 rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1517
1518 return 0;
1519 }
1520
1521 static int rt61pci_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
1522 {
1523 unsigned int i;
1524 u8 value;
1525
1526 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1527 rt61pci_bbp_read(rt2x00dev, 0, &value);
1528 if ((value != 0xff) && (value != 0x00))
1529 return 0;
1530 udelay(REGISTER_BUSY_DELAY);
1531 }
1532
1533 ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
1534 return -EACCES;
1535 }
1536
1537 static int rt61pci_init_bbp(struct rt2x00_dev *rt2x00dev)
1538 {
1539 unsigned int i;
1540 u16 eeprom;
1541 u8 reg_id;
1542 u8 value;
1543
1544 if (unlikely(rt61pci_wait_bbp_ready(rt2x00dev)))
1545 return -EACCES;
1546
1547 rt61pci_bbp_write(rt2x00dev, 3, 0x00);
1548 rt61pci_bbp_write(rt2x00dev, 15, 0x30);
1549 rt61pci_bbp_write(rt2x00dev, 21, 0xc8);
1550 rt61pci_bbp_write(rt2x00dev, 22, 0x38);
1551 rt61pci_bbp_write(rt2x00dev, 23, 0x06);
1552 rt61pci_bbp_write(rt2x00dev, 24, 0xfe);
1553 rt61pci_bbp_write(rt2x00dev, 25, 0x0a);
1554 rt61pci_bbp_write(rt2x00dev, 26, 0x0d);
1555 rt61pci_bbp_write(rt2x00dev, 34, 0x12);
1556 rt61pci_bbp_write(rt2x00dev, 37, 0x07);
1557 rt61pci_bbp_write(rt2x00dev, 39, 0xf8);
1558 rt61pci_bbp_write(rt2x00dev, 41, 0x60);
1559 rt61pci_bbp_write(rt2x00dev, 53, 0x10);
1560 rt61pci_bbp_write(rt2x00dev, 54, 0x18);
1561 rt61pci_bbp_write(rt2x00dev, 60, 0x10);
1562 rt61pci_bbp_write(rt2x00dev, 61, 0x04);
1563 rt61pci_bbp_write(rt2x00dev, 62, 0x04);
1564 rt61pci_bbp_write(rt2x00dev, 75, 0xfe);
1565 rt61pci_bbp_write(rt2x00dev, 86, 0xfe);
1566 rt61pci_bbp_write(rt2x00dev, 88, 0xfe);
1567 rt61pci_bbp_write(rt2x00dev, 90, 0x0f);
1568 rt61pci_bbp_write(rt2x00dev, 99, 0x00);
1569 rt61pci_bbp_write(rt2x00dev, 102, 0x16);
1570 rt61pci_bbp_write(rt2x00dev, 107, 0x04);
1571
1572 for (i = 0; i < EEPROM_BBP_SIZE; i++) {
1573 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
1574
1575 if (eeprom != 0xffff && eeprom != 0x0000) {
1576 reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
1577 value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
1578 rt61pci_bbp_write(rt2x00dev, reg_id, value);
1579 }
1580 }
1581
1582 return 0;
1583 }
1584
1585 /*
1586 * Device state switch handlers.
1587 */
1588 static void rt61pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
1589 enum dev_state state)
1590 {
1591 u32 reg;
1592
1593 rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
1594 rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX,
1595 (state == STATE_RADIO_RX_OFF) ||
1596 (state == STATE_RADIO_RX_OFF_LINK));
1597 rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
1598 }
1599
1600 static void rt61pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
1601 enum dev_state state)
1602 {
1603 int mask = (state == STATE_RADIO_IRQ_OFF);
1604 u32 reg;
1605
1606 /*
1607 * When interrupts are being enabled, the interrupt registers
1608 * should clear the register to assure a clean state.
1609 */
1610 if (state == STATE_RADIO_IRQ_ON) {
1611 rt2x00pci_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
1612 rt2x00pci_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
1613
1614 rt2x00pci_register_read(rt2x00dev, MCU_INT_SOURCE_CSR, &reg);
1615 rt2x00pci_register_write(rt2x00dev, MCU_INT_SOURCE_CSR, reg);
1616 }
1617
1618 /*
1619 * Only toggle the interrupts bits we are going to use.
1620 * Non-checked interrupt bits are disabled by default.
1621 */
1622 rt2x00pci_register_read(rt2x00dev, INT_MASK_CSR, &reg);
1623 rt2x00_set_field32(&reg, INT_MASK_CSR_TXDONE, mask);
1624 rt2x00_set_field32(&reg, INT_MASK_CSR_RXDONE, mask);
1625 rt2x00_set_field32(&reg, INT_MASK_CSR_ENABLE_MITIGATION, mask);
1626 rt2x00_set_field32(&reg, INT_MASK_CSR_MITIGATION_PERIOD, 0xff);
1627 rt2x00pci_register_write(rt2x00dev, INT_MASK_CSR, reg);
1628
1629 rt2x00pci_register_read(rt2x00dev, MCU_INT_MASK_CSR, &reg);
1630 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_0, mask);
1631 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_1, mask);
1632 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_2, mask);
1633 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_3, mask);
1634 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_4, mask);
1635 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_5, mask);
1636 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_6, mask);
1637 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_7, mask);
1638 rt2x00pci_register_write(rt2x00dev, MCU_INT_MASK_CSR, reg);
1639 }
1640
1641 static int rt61pci_enable_radio(struct rt2x00_dev *rt2x00dev)
1642 {
1643 u32 reg;
1644
1645 /*
1646 * Initialize all registers.
1647 */
1648 if (unlikely(rt61pci_init_queues(rt2x00dev) ||
1649 rt61pci_init_registers(rt2x00dev) ||
1650 rt61pci_init_bbp(rt2x00dev)))
1651 return -EIO;
1652
1653 /*
1654 * Enable RX.
1655 */
1656 rt2x00pci_register_read(rt2x00dev, RX_CNTL_CSR, &reg);
1657 rt2x00_set_field32(&reg, RX_CNTL_CSR_ENABLE_RX_DMA, 1);
1658 rt2x00pci_register_write(rt2x00dev, RX_CNTL_CSR, reg);
1659
1660 return 0;
1661 }
1662
1663 static void rt61pci_disable_radio(struct rt2x00_dev *rt2x00dev)
1664 {
1665 u32 reg;
1666
1667 rt2x00pci_register_write(rt2x00dev, MAC_CSR10, 0x00001818);
1668
1669 /*
1670 * Disable synchronisation.
1671 */
1672 rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, 0);
1673
1674 /*
1675 * Cancel RX and TX.
1676 */
1677 rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1678 rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC0, 1);
1679 rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC1, 1);
1680 rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC2, 1);
1681 rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC3, 1);
1682 rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1683 }
1684
1685 static int rt61pci_set_state(struct rt2x00_dev *rt2x00dev, enum dev_state state)
1686 {
1687 u32 reg;
1688 unsigned int i;
1689 char put_to_sleep;
1690
1691 put_to_sleep = (state != STATE_AWAKE);
1692
1693 rt2x00pci_register_read(rt2x00dev, MAC_CSR12, &reg);
1694 rt2x00_set_field32(&reg, MAC_CSR12_FORCE_WAKEUP, !put_to_sleep);
1695 rt2x00_set_field32(&reg, MAC_CSR12_PUT_TO_SLEEP, put_to_sleep);
1696 rt2x00pci_register_write(rt2x00dev, MAC_CSR12, reg);
1697
1698 /*
1699 * Device is not guaranteed to be in the requested state yet.
1700 * We must wait until the register indicates that the
1701 * device has entered the correct state.
1702 */
1703 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1704 rt2x00pci_register_read(rt2x00dev, MAC_CSR12, &reg);
1705 state = rt2x00_get_field32(reg, MAC_CSR12_BBP_CURRENT_STATE);
1706 if (state == !put_to_sleep)
1707 return 0;
1708 msleep(10);
1709 }
1710
1711 return -EBUSY;
1712 }
1713
1714 static int rt61pci_set_device_state(struct rt2x00_dev *rt2x00dev,
1715 enum dev_state state)
1716 {
1717 int retval = 0;
1718
1719 switch (state) {
1720 case STATE_RADIO_ON:
1721 retval = rt61pci_enable_radio(rt2x00dev);
1722 break;
1723 case STATE_RADIO_OFF:
1724 rt61pci_disable_radio(rt2x00dev);
1725 break;
1726 case STATE_RADIO_RX_ON:
1727 case STATE_RADIO_RX_ON_LINK:
1728 case STATE_RADIO_RX_OFF:
1729 case STATE_RADIO_RX_OFF_LINK:
1730 rt61pci_toggle_rx(rt2x00dev, state);
1731 break;
1732 case STATE_RADIO_IRQ_ON:
1733 case STATE_RADIO_IRQ_OFF:
1734 rt61pci_toggle_irq(rt2x00dev, state);
1735 break;
1736 case STATE_DEEP_SLEEP:
1737 case STATE_SLEEP:
1738 case STATE_STANDBY:
1739 case STATE_AWAKE:
1740 retval = rt61pci_set_state(rt2x00dev, state);
1741 break;
1742 default:
1743 retval = -ENOTSUPP;
1744 break;
1745 }
1746
1747 if (unlikely(retval))
1748 ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
1749 state, retval);
1750
1751 return retval;
1752 }
1753
1754 /*
1755 * TX descriptor initialization
1756 */
1757 static void rt61pci_write_tx_desc(struct rt2x00_dev *rt2x00dev,
1758 struct sk_buff *skb,
1759 struct txentry_desc *txdesc)
1760 {
1761 struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
1762 __le32 *txd = skbdesc->desc;
1763 u32 word;
1764
1765 /*
1766 * Start writing the descriptor words.
1767 */
1768 rt2x00_desc_read(txd, 1, &word);
1769 rt2x00_set_field32(&word, TXD_W1_HOST_Q_ID, txdesc->queue);
1770 rt2x00_set_field32(&word, TXD_W1_AIFSN, txdesc->aifs);
1771 rt2x00_set_field32(&word, TXD_W1_CWMIN, txdesc->cw_min);
1772 rt2x00_set_field32(&word, TXD_W1_CWMAX, txdesc->cw_max);
1773 rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, txdesc->iv_offset);
1774 rt2x00_set_field32(&word, TXD_W1_HW_SEQUENCE,
1775 test_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags));
1776 rt2x00_set_field32(&word, TXD_W1_BUFFER_COUNT, 1);
1777 rt2x00_desc_write(txd, 1, word);
1778
1779 rt2x00_desc_read(txd, 2, &word);
1780 rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->signal);
1781 rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->service);
1782 rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW, txdesc->length_low);
1783 rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH, txdesc->length_high);
1784 rt2x00_desc_write(txd, 2, word);
1785
1786 if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags)) {
1787 _rt2x00_desc_write(txd, 3, skbdesc->iv);
1788 _rt2x00_desc_write(txd, 4, skbdesc->eiv);
1789 }
1790
1791 rt2x00_desc_read(txd, 5, &word);
1792 rt2x00_set_field32(&word, TXD_W5_PID_TYPE, skbdesc->entry->queue->qid);
1793 rt2x00_set_field32(&word, TXD_W5_PID_SUBTYPE,
1794 skbdesc->entry->entry_idx);
1795 rt2x00_set_field32(&word, TXD_W5_TX_POWER,
1796 TXPOWER_TO_DEV(rt2x00dev->tx_power));
1797 rt2x00_set_field32(&word, TXD_W5_WAITING_DMA_DONE_INT, 1);
1798 rt2x00_desc_write(txd, 5, word);
1799
1800 rt2x00_desc_read(txd, 6, &word);
1801 rt2x00_set_field32(&word, TXD_W6_BUFFER_PHYSICAL_ADDRESS,
1802 skbdesc->skb_dma);
1803 rt2x00_desc_write(txd, 6, word);
1804
1805 if (skbdesc->desc_len > TXINFO_SIZE) {
1806 rt2x00_desc_read(txd, 11, &word);
1807 rt2x00_set_field32(&word, TXD_W11_BUFFER_LENGTH0, skb->len);
1808 rt2x00_desc_write(txd, 11, word);
1809 }
1810
1811 rt2x00_desc_read(txd, 0, &word);
1812 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
1813 rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1814 rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1815 test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1816 rt2x00_set_field32(&word, TXD_W0_ACK,
1817 test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1818 rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1819 test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1820 rt2x00_set_field32(&word, TXD_W0_OFDM,
1821 test_bit(ENTRY_TXD_OFDM_RATE, &txdesc->flags));
1822 rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->ifs);
1823 rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1824 test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
1825 rt2x00_set_field32(&word, TXD_W0_TKIP_MIC,
1826 test_bit(ENTRY_TXD_ENCRYPT_MMIC, &txdesc->flags));
1827 rt2x00_set_field32(&word, TXD_W0_KEY_TABLE,
1828 test_bit(ENTRY_TXD_ENCRYPT_PAIRWISE, &txdesc->flags));
1829 rt2x00_set_field32(&word, TXD_W0_KEY_INDEX, txdesc->key_idx);
1830 rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, skb->len);
1831 rt2x00_set_field32(&word, TXD_W0_BURST,
1832 test_bit(ENTRY_TXD_BURST, &txdesc->flags));
1833 rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, txdesc->cipher);
1834 rt2x00_desc_write(txd, 0, word);
1835 }
1836
1837 /*
1838 * TX data initialization
1839 */
1840 static void rt61pci_write_beacon(struct queue_entry *entry)
1841 {
1842 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1843 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1844 unsigned int beacon_base;
1845 u32 reg;
1846
1847 /*
1848 * Disable beaconing while we are reloading the beacon data,
1849 * otherwise we might be sending out invalid data.
1850 */
1851 rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
1852 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 0);
1853 rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 0);
1854 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1855 rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
1856
1857 /*
1858 * Write entire beacon with descriptor to register.
1859 */
1860 beacon_base = HW_BEACON_OFFSET(entry->entry_idx);
1861 rt2x00pci_register_multiwrite(rt2x00dev,
1862 beacon_base,
1863 skbdesc->desc, skbdesc->desc_len);
1864 rt2x00pci_register_multiwrite(rt2x00dev,
1865 beacon_base + skbdesc->desc_len,
1866 entry->skb->data, entry->skb->len);
1867
1868 /*
1869 * Clean up beacon skb.
1870 */
1871 dev_kfree_skb_any(entry->skb);
1872 entry->skb = NULL;
1873 }
1874
1875 static void rt61pci_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
1876 const enum data_queue_qid queue)
1877 {
1878 u32 reg;
1879
1880 if (queue == QID_BEACON) {
1881 /*
1882 * For Wi-Fi faily generated beacons between participating
1883 * stations. Set TBTT phase adaptive adjustment step to 8us.
1884 */
1885 rt2x00pci_register_write(rt2x00dev, TXRX_CSR10, 0x00001008);
1886
1887 rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
1888 if (!rt2x00_get_field32(reg, TXRX_CSR9_BEACON_GEN)) {
1889 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 1);
1890 rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 1);
1891 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 1);
1892 rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
1893 }
1894 return;
1895 }
1896
1897 rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1898 rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC0, (queue == QID_AC_BE));
1899 rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC1, (queue == QID_AC_BK));
1900 rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC2, (queue == QID_AC_VI));
1901 rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC3, (queue == QID_AC_VO));
1902 rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1903 }
1904
1905 /*
1906 * RX control handlers
1907 */
1908 static int rt61pci_agc_to_rssi(struct rt2x00_dev *rt2x00dev, int rxd_w1)
1909 {
1910 u8 offset = rt2x00dev->lna_gain;
1911 u8 lna;
1912
1913 lna = rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_LNA);
1914 switch (lna) {
1915 case 3:
1916 offset += 90;
1917 break;
1918 case 2:
1919 offset += 74;
1920 break;
1921 case 1:
1922 offset += 64;
1923 break;
1924 default:
1925 return 0;
1926 }
1927
1928 if (rt2x00dev->rx_status.band == IEEE80211_BAND_5GHZ) {
1929 if (lna == 3 || lna == 2)
1930 offset += 10;
1931 }
1932
1933 return rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_AGC) * 2 - offset;
1934 }
1935
1936 static void rt61pci_fill_rxdone(struct queue_entry *entry,
1937 struct rxdone_entry_desc *rxdesc)
1938 {
1939 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1940 struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1941 u32 word0;
1942 u32 word1;
1943
1944 rt2x00_desc_read(entry_priv->desc, 0, &word0);
1945 rt2x00_desc_read(entry_priv->desc, 1, &word1);
1946
1947 if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1948 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1949
1950 if (test_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags)) {
1951 rxdesc->cipher =
1952 rt2x00_get_field32(word0, RXD_W0_CIPHER_ALG);
1953 rxdesc->cipher_status =
1954 rt2x00_get_field32(word0, RXD_W0_CIPHER_ERROR);
1955 }
1956
1957 if (rxdesc->cipher != CIPHER_NONE) {
1958 _rt2x00_desc_read(entry_priv->desc, 2, &rxdesc->iv);
1959 _rt2x00_desc_read(entry_priv->desc, 3, &rxdesc->eiv);
1960 _rt2x00_desc_read(entry_priv->desc, 4, &rxdesc->icv);
1961
1962 /*
1963 * Hardware has stripped IV/EIV data from 802.11 frame during
1964 * decryption. It has provided the data seperately but rt2x00lib
1965 * should decide if it should be reinserted.
1966 */
1967 rxdesc->flags |= RX_FLAG_IV_STRIPPED;
1968
1969 /*
1970 * FIXME: Legacy driver indicates that the frame does
1971 * contain the Michael Mic. Unfortunately, in rt2x00
1972 * the MIC seems to be missing completely...
1973 */
1974 rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;
1975
1976 if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
1977 rxdesc->flags |= RX_FLAG_DECRYPTED;
1978 else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
1979 rxdesc->flags |= RX_FLAG_MMIC_ERROR;
1980 }
1981
1982 /*
1983 * Obtain the status about this packet.
1984 * When frame was received with an OFDM bitrate,
1985 * the signal is the PLCP value. If it was received with
1986 * a CCK bitrate the signal is the rate in 100kbit/s.
1987 */
1988 rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL);
1989 rxdesc->rssi = rt61pci_agc_to_rssi(rt2x00dev, word1);
1990 rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1991
1992 if (rt2x00_get_field32(word0, RXD_W0_OFDM))
1993 rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
1994 else
1995 rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
1996 if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
1997 rxdesc->dev_flags |= RXDONE_MY_BSS;
1998 }
1999
2000 /*
2001 * Interrupt functions.
2002 */
2003 static void rt61pci_txdone(struct rt2x00_dev *rt2x00dev)
2004 {
2005 struct data_queue *queue;
2006 struct queue_entry *entry;
2007 struct queue_entry *entry_done;
2008 struct queue_entry_priv_pci *entry_priv;
2009 struct txdone_entry_desc txdesc;
2010 u32 word;
2011 u32 reg;
2012 u32 old_reg;
2013 int type;
2014 int index;
2015
2016 /*
2017 * During each loop we will compare the freshly read
2018 * STA_CSR4 register value with the value read from
2019 * the previous loop. If the 2 values are equal then
2020 * we should stop processing because the chance it
2021 * quite big that the device has been unplugged and
2022 * we risk going into an endless loop.
2023 */
2024 old_reg = 0;
2025
2026 while (1) {
2027 rt2x00pci_register_read(rt2x00dev, STA_CSR4, &reg);
2028 if (!rt2x00_get_field32(reg, STA_CSR4_VALID))
2029 break;
2030
2031 if (old_reg == reg)
2032 break;
2033 old_reg = reg;
2034
2035 /*
2036 * Skip this entry when it contains an invalid
2037 * queue identication number.
2038 */
2039 type = rt2x00_get_field32(reg, STA_CSR4_PID_TYPE);
2040 queue = rt2x00queue_get_queue(rt2x00dev, type);
2041 if (unlikely(!queue))
2042 continue;
2043
2044 /*
2045 * Skip this entry when it contains an invalid
2046 * index number.
2047 */
2048 index = rt2x00_get_field32(reg, STA_CSR4_PID_SUBTYPE);
2049 if (unlikely(index >= queue->limit))
2050 continue;
2051
2052 entry = &queue->entries[index];
2053 entry_priv = entry->priv_data;
2054 rt2x00_desc_read(entry_priv->desc, 0, &word);
2055
2056 if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
2057 !rt2x00_get_field32(word, TXD_W0_VALID))
2058 return;
2059
2060 entry_done = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
2061 while (entry != entry_done) {
2062 /* Catch up.
2063 * Just report any entries we missed as failed.
2064 */
2065 WARNING(rt2x00dev,
2066 "TX status report missed for entry %d\n",
2067 entry_done->entry_idx);
2068
2069 txdesc.flags = 0;
2070 __set_bit(TXDONE_UNKNOWN, &txdesc.flags);
2071 txdesc.retry = 0;
2072
2073 rt2x00lib_txdone(entry_done, &txdesc);
2074 entry_done = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
2075 }
2076
2077 /*
2078 * Obtain the status about this packet.
2079 */
2080 txdesc.flags = 0;
2081 switch (rt2x00_get_field32(reg, STA_CSR4_TX_RESULT)) {
2082 case 0: /* Success, maybe with retry */
2083 __set_bit(TXDONE_SUCCESS, &txdesc.flags);
2084 break;
2085 case 6: /* Failure, excessive retries */
2086 __set_bit(TXDONE_EXCESSIVE_RETRY, &txdesc.flags);
2087 /* Don't break, this is a failed frame! */
2088 default: /* Failure */
2089 __set_bit(TXDONE_FAILURE, &txdesc.flags);
2090 }
2091 txdesc.retry = rt2x00_get_field32(reg, STA_CSR4_RETRY_COUNT);
2092
2093 rt2x00lib_txdone(entry, &txdesc);
2094 }
2095 }
2096
2097 static irqreturn_t rt61pci_interrupt(int irq, void *dev_instance)
2098 {
2099 struct rt2x00_dev *rt2x00dev = dev_instance;
2100 u32 reg_mcu;
2101 u32 reg;
2102
2103 /*
2104 * Get the interrupt sources & saved to local variable.
2105 * Write register value back to clear pending interrupts.
2106 */
2107 rt2x00pci_register_read(rt2x00dev, MCU_INT_SOURCE_CSR, &reg_mcu);
2108 rt2x00pci_register_write(rt2x00dev, MCU_INT_SOURCE_CSR, reg_mcu);
2109
2110 rt2x00pci_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
2111 rt2x00pci_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
2112
2113 if (!reg && !reg_mcu)
2114 return IRQ_NONE;
2115
2116 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
2117 return IRQ_HANDLED;
2118
2119 /*
2120 * Handle interrupts, walk through all bits
2121 * and run the tasks, the bits are checked in order of
2122 * priority.
2123 */
2124
2125 /*
2126 * 1 - Rx ring done interrupt.
2127 */
2128 if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RXDONE))
2129 rt2x00pci_rxdone(rt2x00dev);
2130
2131 /*
2132 * 2 - Tx ring done interrupt.
2133 */
2134 if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TXDONE))
2135 rt61pci_txdone(rt2x00dev);
2136
2137 /*
2138 * 3 - Handle MCU command done.
2139 */
2140 if (reg_mcu)
2141 rt2x00pci_register_write(rt2x00dev,
2142 M2H_CMD_DONE_CSR, 0xffffffff);
2143
2144 return IRQ_HANDLED;
2145 }
2146
2147 /*
2148 * Device probe functions.
2149 */
2150 static int rt61pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
2151 {
2152 struct eeprom_93cx6 eeprom;
2153 u32 reg;
2154 u16 word;
2155 u8 *mac;
2156 s8 value;
2157
2158 rt2x00pci_register_read(rt2x00dev, E2PROM_CSR, &reg);
2159
2160 eeprom.data = rt2x00dev;
2161 eeprom.register_read = rt61pci_eepromregister_read;
2162 eeprom.register_write = rt61pci_eepromregister_write;
2163 eeprom.width = rt2x00_get_field32(reg, E2PROM_CSR_TYPE_93C46) ?
2164 PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
2165 eeprom.reg_data_in = 0;
2166 eeprom.reg_data_out = 0;
2167 eeprom.reg_data_clock = 0;
2168 eeprom.reg_chip_select = 0;
2169
2170 eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
2171 EEPROM_SIZE / sizeof(u16));
2172
2173 /*
2174 * Start validation of the data that has been read.
2175 */
2176 mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
2177 if (!is_valid_ether_addr(mac)) {
2178 random_ether_addr(mac);
2179 EEPROM(rt2x00dev, "MAC: %pM\n", mac);
2180 }
2181
2182 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
2183 if (word == 0xffff) {
2184 rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
2185 rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
2186 ANTENNA_B);
2187 rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
2188 ANTENNA_B);
2189 rt2x00_set_field16(&word, EEPROM_ANTENNA_FRAME_TYPE, 0);
2190 rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
2191 rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
2192 rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF5225);
2193 rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
2194 EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
2195 }
2196
2197 rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
2198 if (word == 0xffff) {
2199 rt2x00_set_field16(&word, EEPROM_NIC_ENABLE_DIVERSITY, 0);
2200 rt2x00_set_field16(&word, EEPROM_NIC_TX_DIVERSITY, 0);
2201 rt2x00_set_field16(&word, EEPROM_NIC_TX_RX_FIXED, 0);
2202 rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_BG, 0);
2203 rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
2204 rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_A, 0);
2205 rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
2206 EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
2207 }
2208
2209 rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &word);
2210 if (word == 0xffff) {
2211 rt2x00_set_field16(&word, EEPROM_LED_LED_MODE,
2212 LED_MODE_DEFAULT);
2213 rt2x00_eeprom_write(rt2x00dev, EEPROM_LED, word);
2214 EEPROM(rt2x00dev, "Led: 0x%04x\n", word);
2215 }
2216
2217 rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &word);
2218 if (word == 0xffff) {
2219 rt2x00_set_field16(&word, EEPROM_FREQ_OFFSET, 0);
2220 rt2x00_set_field16(&word, EEPROM_FREQ_SEQ, 0);
2221 rt2x00_eeprom_write(rt2x00dev, EEPROM_FREQ, word);
2222 EEPROM(rt2x00dev, "Freq: 0x%04x\n", word);
2223 }
2224
2225 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &word);
2226 if (word == 0xffff) {
2227 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
2228 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
2229 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
2230 EEPROM(rt2x00dev, "RSSI OFFSET BG: 0x%04x\n", word);
2231 } else {
2232 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_1);
2233 if (value < -10 || value > 10)
2234 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
2235 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_2);
2236 if (value < -10 || value > 10)
2237 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
2238 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
2239 }
2240
2241 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &word);
2242 if (word == 0xffff) {
2243 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
2244 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
2245 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
2246 EEPROM(rt2x00dev, "RSSI OFFSET A: 0x%04x\n", word);
2247 } else {
2248 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_1);
2249 if (value < -10 || value > 10)
2250 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
2251 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_2);
2252 if (value < -10 || value > 10)
2253 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
2254 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
2255 }
2256
2257 return 0;
2258 }
2259
2260 static int rt61pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
2261 {
2262 u32 reg;
2263 u16 value;
2264 u16 eeprom;
2265 u16 device;
2266
2267 /*
2268 * Read EEPROM word for configuration.
2269 */
2270 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
2271
2272 /*
2273 * Identify RF chipset.
2274 * To determine the RT chip we have to read the
2275 * PCI header of the device.
2276 */
2277 pci_read_config_word(to_pci_dev(rt2x00dev->dev),
2278 PCI_CONFIG_HEADER_DEVICE, &device);
2279 value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
2280 rt2x00pci_register_read(rt2x00dev, MAC_CSR0, &reg);
2281 rt2x00_set_chip(rt2x00dev, device, value, reg);
2282
2283 if (!rt2x00_rf(&rt2x00dev->chip, RF5225) &&
2284 !rt2x00_rf(&rt2x00dev->chip, RF5325) &&
2285 !rt2x00_rf(&rt2x00dev->chip, RF2527) &&
2286 !rt2x00_rf(&rt2x00dev->chip, RF2529)) {
2287 ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
2288 return -ENODEV;
2289 }
2290
2291 /*
2292 * Determine number of antenna's.
2293 */
2294 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_NUM) == 2)
2295 __set_bit(CONFIG_DOUBLE_ANTENNA, &rt2x00dev->flags);
2296
2297 /*
2298 * Identify default antenna configuration.
2299 */
2300 rt2x00dev->default_ant.tx =
2301 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
2302 rt2x00dev->default_ant.rx =
2303 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
2304
2305 /*
2306 * Read the Frame type.
2307 */
2308 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_FRAME_TYPE))
2309 __set_bit(CONFIG_FRAME_TYPE, &rt2x00dev->flags);
2310
2311 /*
2312 * Detect if this device has an hardware controlled radio.
2313 */
2314 #ifdef CONFIG_RT2X00_LIB_RFKILL
2315 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
2316 __set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
2317 #endif /* CONFIG_RT2X00_LIB_RFKILL */
2318
2319 /*
2320 * Read frequency offset and RF programming sequence.
2321 */
2322 rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &eeprom);
2323 if (rt2x00_get_field16(eeprom, EEPROM_FREQ_SEQ))
2324 __set_bit(CONFIG_RF_SEQUENCE, &rt2x00dev->flags);
2325
2326 rt2x00dev->freq_offset = rt2x00_get_field16(eeprom, EEPROM_FREQ_OFFSET);
2327
2328 /*
2329 * Read external LNA informations.
2330 */
2331 rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
2332
2333 if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_A))
2334 __set_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags);
2335 if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_BG))
2336 __set_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags);
2337
2338 /*
2339 * When working with a RF2529 chip without double antenna
2340 * the antenna settings should be gathered from the NIC
2341 * eeprom word.
2342 */
2343 if (rt2x00_rf(&rt2x00dev->chip, RF2529) &&
2344 !test_bit(CONFIG_DOUBLE_ANTENNA, &rt2x00dev->flags)) {
2345 switch (rt2x00_get_field16(eeprom, EEPROM_NIC_TX_RX_FIXED)) {
2346 case 0:
2347 rt2x00dev->default_ant.tx = ANTENNA_B;
2348 rt2x00dev->default_ant.rx = ANTENNA_A;
2349 break;
2350 case 1:
2351 rt2x00dev->default_ant.tx = ANTENNA_B;
2352 rt2x00dev->default_ant.rx = ANTENNA_B;
2353 break;
2354 case 2:
2355 rt2x00dev->default_ant.tx = ANTENNA_A;
2356 rt2x00dev->default_ant.rx = ANTENNA_A;
2357 break;
2358 case 3:
2359 rt2x00dev->default_ant.tx = ANTENNA_A;
2360 rt2x00dev->default_ant.rx = ANTENNA_B;
2361 break;
2362 }
2363
2364 if (rt2x00_get_field16(eeprom, EEPROM_NIC_TX_DIVERSITY))
2365 rt2x00dev->default_ant.tx = ANTENNA_SW_DIVERSITY;
2366 if (rt2x00_get_field16(eeprom, EEPROM_NIC_ENABLE_DIVERSITY))
2367 rt2x00dev->default_ant.rx = ANTENNA_SW_DIVERSITY;
2368 }
2369
2370 /*
2371 * Store led settings, for correct led behaviour.
2372 * If the eeprom value is invalid,
2373 * switch to default led mode.
2374 */
2375 #ifdef CONFIG_RT2X00_LIB_LEDS
2376 rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &eeprom);
2377 value = rt2x00_get_field16(eeprom, EEPROM_LED_LED_MODE);
2378
2379 rt61pci_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
2380 rt61pci_init_led(rt2x00dev, &rt2x00dev->led_assoc, LED_TYPE_ASSOC);
2381 if (value == LED_MODE_SIGNAL_STRENGTH)
2382 rt61pci_init_led(rt2x00dev, &rt2x00dev->led_qual,
2383 LED_TYPE_QUALITY);
2384
2385 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_LED_MODE, value);
2386 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_0,
2387 rt2x00_get_field16(eeprom,
2388 EEPROM_LED_POLARITY_GPIO_0));
2389 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_1,
2390 rt2x00_get_field16(eeprom,
2391 EEPROM_LED_POLARITY_GPIO_1));
2392 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_2,
2393 rt2x00_get_field16(eeprom,
2394 EEPROM_LED_POLARITY_GPIO_2));
2395 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_3,
2396 rt2x00_get_field16(eeprom,
2397 EEPROM_LED_POLARITY_GPIO_3));
2398 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_4,
2399 rt2x00_get_field16(eeprom,
2400 EEPROM_LED_POLARITY_GPIO_4));
2401 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_ACT,
2402 rt2x00_get_field16(eeprom, EEPROM_LED_POLARITY_ACT));
2403 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_BG,
2404 rt2x00_get_field16(eeprom,
2405 EEPROM_LED_POLARITY_RDY_G));
2406 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_A,
2407 rt2x00_get_field16(eeprom,
2408 EEPROM_LED_POLARITY_RDY_A));
2409 #endif /* CONFIG_RT2X00_LIB_LEDS */
2410
2411 return 0;
2412 }
2413
2414 /*
2415 * RF value list for RF5225 & RF5325
2416 * Supports: 2.4 GHz & 5.2 GHz, rf_sequence disabled
2417 */
2418 static const struct rf_channel rf_vals_noseq[] = {
2419 { 1, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
2420 { 2, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
2421 { 3, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
2422 { 4, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
2423 { 5, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
2424 { 6, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
2425 { 7, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
2426 { 8, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
2427 { 9, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
2428 { 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
2429 { 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
2430 { 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
2431 { 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
2432 { 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
2433
2434 /* 802.11 UNI / HyperLan 2 */
2435 { 36, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa23 },
2436 { 40, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa03 },
2437 { 44, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa0b },
2438 { 48, 0x00002ccc, 0x000049aa, 0x0009be55, 0x000ffa13 },
2439 { 52, 0x00002ccc, 0x000049ae, 0x0009ae55, 0x000ffa1b },
2440 { 56, 0x00002ccc, 0x000049b2, 0x0009ae55, 0x000ffa23 },
2441 { 60, 0x00002ccc, 0x000049ba, 0x0009ae55, 0x000ffa03 },
2442 { 64, 0x00002ccc, 0x000049be, 0x0009ae55, 0x000ffa0b },
2443
2444 /* 802.11 HyperLan 2 */
2445 { 100, 0x00002ccc, 0x00004a2a, 0x000bae55, 0x000ffa03 },
2446 { 104, 0x00002ccc, 0x00004a2e, 0x000bae55, 0x000ffa0b },
2447 { 108, 0x00002ccc, 0x00004a32, 0x000bae55, 0x000ffa13 },
2448 { 112, 0x00002ccc, 0x00004a36, 0x000bae55, 0x000ffa1b },
2449 { 116, 0x00002ccc, 0x00004a3a, 0x000bbe55, 0x000ffa23 },
2450 { 120, 0x00002ccc, 0x00004a82, 0x000bbe55, 0x000ffa03 },
2451 { 124, 0x00002ccc, 0x00004a86, 0x000bbe55, 0x000ffa0b },
2452 { 128, 0x00002ccc, 0x00004a8a, 0x000bbe55, 0x000ffa13 },
2453 { 132, 0x00002ccc, 0x00004a8e, 0x000bbe55, 0x000ffa1b },
2454 { 136, 0x00002ccc, 0x00004a92, 0x000bbe55, 0x000ffa23 },
2455
2456 /* 802.11 UNII */
2457 { 140, 0x00002ccc, 0x00004a9a, 0x000bbe55, 0x000ffa03 },
2458 { 149, 0x00002ccc, 0x00004aa2, 0x000bbe55, 0x000ffa1f },
2459 { 153, 0x00002ccc, 0x00004aa6, 0x000bbe55, 0x000ffa27 },
2460 { 157, 0x00002ccc, 0x00004aae, 0x000bbe55, 0x000ffa07 },
2461 { 161, 0x00002ccc, 0x00004ab2, 0x000bbe55, 0x000ffa0f },
2462 { 165, 0x00002ccc, 0x00004ab6, 0x000bbe55, 0x000ffa17 },
2463
2464 /* MMAC(Japan)J52 ch 34,38,42,46 */
2465 { 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa0b },
2466 { 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000ffa13 },
2467 { 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa1b },
2468 { 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa23 },
2469 };
2470
2471 /*
2472 * RF value list for RF5225 & RF5325
2473 * Supports: 2.4 GHz & 5.2 GHz, rf_sequence enabled
2474 */
2475 static const struct rf_channel rf_vals_seq[] = {
2476 { 1, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
2477 { 2, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
2478 { 3, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
2479 { 4, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
2480 { 5, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
2481 { 6, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
2482 { 7, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
2483 { 8, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
2484 { 9, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
2485 { 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
2486 { 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
2487 { 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
2488 { 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
2489 { 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
2490
2491 /* 802.11 UNI / HyperLan 2 */
2492 { 36, 0x00002cd4, 0x0004481a, 0x00098455, 0x000c0a03 },
2493 { 40, 0x00002cd0, 0x00044682, 0x00098455, 0x000c0a03 },
2494 { 44, 0x00002cd0, 0x00044686, 0x00098455, 0x000c0a1b },
2495 { 48, 0x00002cd0, 0x0004468e, 0x00098655, 0x000c0a0b },
2496 { 52, 0x00002cd0, 0x00044692, 0x00098855, 0x000c0a23 },
2497 { 56, 0x00002cd0, 0x0004469a, 0x00098c55, 0x000c0a13 },
2498 { 60, 0x00002cd0, 0x000446a2, 0x00098e55, 0x000c0a03 },
2499 { 64, 0x00002cd0, 0x000446a6, 0x00099255, 0x000c0a1b },
2500
2501 /* 802.11 HyperLan 2 */
2502 { 100, 0x00002cd4, 0x0004489a, 0x000b9855, 0x000c0a03 },
2503 { 104, 0x00002cd4, 0x000448a2, 0x000b9855, 0x000c0a03 },
2504 { 108, 0x00002cd4, 0x000448aa, 0x000b9855, 0x000c0a03 },
2505 { 112, 0x00002cd4, 0x000448b2, 0x000b9a55, 0x000c0a03 },
2506 { 116, 0x00002cd4, 0x000448ba, 0x000b9a55, 0x000c0a03 },
2507 { 120, 0x00002cd0, 0x00044702, 0x000b9a55, 0x000c0a03 },
2508 { 124, 0x00002cd0, 0x00044706, 0x000b9a55, 0x000c0a1b },
2509 { 128, 0x00002cd0, 0x0004470e, 0x000b9c55, 0x000c0a0b },
2510 { 132, 0x00002cd0, 0x00044712, 0x000b9c55, 0x000c0a23 },
2511 { 136, 0x00002cd0, 0x0004471a, 0x000b9e55, 0x000c0a13 },
2512
2513 /* 802.11 UNII */
2514 { 140, 0x00002cd0, 0x00044722, 0x000b9e55, 0x000c0a03 },
2515 { 149, 0x00002cd0, 0x0004472e, 0x000ba255, 0x000c0a1b },
2516 { 153, 0x00002cd0, 0x00044736, 0x000ba255, 0x000c0a0b },
2517 { 157, 0x00002cd4, 0x0004490a, 0x000ba255, 0x000c0a17 },
2518 { 161, 0x00002cd4, 0x00044912, 0x000ba255, 0x000c0a17 },
2519 { 165, 0x00002cd4, 0x0004491a, 0x000ba255, 0x000c0a17 },
2520
2521 /* MMAC(Japan)J52 ch 34,38,42,46 */
2522 { 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000c0a0b },
2523 { 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000c0a13 },
2524 { 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000c0a1b },
2525 { 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000c0a23 },
2526 };
2527
2528 static int rt61pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
2529 {
2530 struct hw_mode_spec *spec = &rt2x00dev->spec;
2531 struct channel_info *info;
2532 char *tx_power;
2533 unsigned int i;
2534
2535 /*
2536 * Initialize all hw fields.
2537 */
2538 rt2x00dev->hw->flags =
2539 IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
2540 IEEE80211_HW_SIGNAL_DBM;
2541 rt2x00dev->hw->extra_tx_headroom = 0;
2542
2543 SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
2544 SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
2545 rt2x00_eeprom_addr(rt2x00dev,
2546 EEPROM_MAC_ADDR_0));
2547
2548 /*
2549 * Initialize hw_mode information.
2550 */
2551 spec->supported_bands = SUPPORT_BAND_2GHZ;
2552 spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
2553
2554 if (!test_bit(CONFIG_RF_SEQUENCE, &rt2x00dev->flags)) {
2555 spec->num_channels = 14;
2556 spec->channels = rf_vals_noseq;
2557 } else {
2558 spec->num_channels = 14;
2559 spec->channels = rf_vals_seq;
2560 }
2561
2562 if (rt2x00_rf(&rt2x00dev->chip, RF5225) ||
2563 rt2x00_rf(&rt2x00dev->chip, RF5325)) {
2564 spec->supported_bands |= SUPPORT_BAND_5GHZ;
2565 spec->num_channels = ARRAY_SIZE(rf_vals_seq);
2566 }
2567
2568 /*
2569 * Create channel information array
2570 */
2571 info = kzalloc(spec->num_channels * sizeof(*info), GFP_KERNEL);
2572 if (!info)
2573 return -ENOMEM;
2574
2575 spec->channels_info = info;
2576
2577 tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_G_START);
2578 for (i = 0; i < 14; i++)
2579 info[i].tx_power1 = TXPOWER_FROM_DEV(tx_power[i]);
2580
2581 if (spec->num_channels > 14) {
2582 tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_A_START);
2583 for (i = 14; i < spec->num_channels; i++)
2584 info[i].tx_power1 = TXPOWER_FROM_DEV(tx_power[i]);
2585 }
2586
2587 return 0;
2588 }
2589
2590 static int rt61pci_probe_hw(struct rt2x00_dev *rt2x00dev)
2591 {
2592 int retval;
2593
2594 /*
2595 * Allocate eeprom data.
2596 */
2597 retval = rt61pci_validate_eeprom(rt2x00dev);
2598 if (retval)
2599 return retval;
2600
2601 retval = rt61pci_init_eeprom(rt2x00dev);
2602 if (retval)
2603 return retval;
2604
2605 /*
2606 * Initialize hw specifications.
2607 */
2608 retval = rt61pci_probe_hw_mode(rt2x00dev);
2609 if (retval)
2610 return retval;
2611
2612 /*
2613 * This device requires firmware and DMA mapped skbs.
2614 */
2615 __set_bit(DRIVER_REQUIRE_FIRMWARE, &rt2x00dev->flags);
2616 __set_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags);
2617 if (!modparam_nohwcrypt)
2618 __set_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags);
2619
2620 /*
2621 * Set the rssi offset.
2622 */
2623 rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
2624
2625 return 0;
2626 }
2627
2628 /*
2629 * IEEE80211 stack callback functions.
2630 */
2631 static int rt61pci_set_retry_limit(struct ieee80211_hw *hw,
2632 u32 short_retry, u32 long_retry)
2633 {
2634 struct rt2x00_dev *rt2x00dev = hw->priv;
2635 u32 reg;
2636
2637 rt2x00pci_register_read(rt2x00dev, TXRX_CSR4, &reg);
2638 rt2x00_set_field32(&reg, TXRX_CSR4_LONG_RETRY_LIMIT, long_retry);
2639 rt2x00_set_field32(&reg, TXRX_CSR4_SHORT_RETRY_LIMIT, short_retry);
2640 rt2x00pci_register_write(rt2x00dev, TXRX_CSR4, reg);
2641
2642 return 0;
2643 }
2644
2645 static int rt61pci_conf_tx(struct ieee80211_hw *hw, u16 queue_idx,
2646 const struct ieee80211_tx_queue_params *params)
2647 {
2648 struct rt2x00_dev *rt2x00dev = hw->priv;
2649 struct data_queue *queue;
2650 struct rt2x00_field32 field;
2651 int retval;
2652 u32 reg;
2653
2654 /*
2655 * First pass the configuration through rt2x00lib, that will
2656 * update the queue settings and validate the input. After that
2657 * we are free to update the registers based on the value
2658 * in the queue parameter.
2659 */
2660 retval = rt2x00mac_conf_tx(hw, queue_idx, params);
2661 if (retval)
2662 return retval;
2663
2664 queue = rt2x00queue_get_queue(rt2x00dev, queue_idx);
2665
2666 /* Update WMM TXOP register */
2667 if (queue_idx < 2) {
2668 field.bit_offset = queue_idx * 16;
2669 field.bit_mask = 0xffff << field.bit_offset;
2670
2671 rt2x00pci_register_read(rt2x00dev, AC_TXOP_CSR0, &reg);
2672 rt2x00_set_field32(&reg, field, queue->txop);
2673 rt2x00pci_register_write(rt2x00dev, AC_TXOP_CSR0, reg);
2674 } else if (queue_idx < 4) {
2675 field.bit_offset = (queue_idx - 2) * 16;
2676 field.bit_mask = 0xffff << field.bit_offset;
2677
2678 rt2x00pci_register_read(rt2x00dev, AC_TXOP_CSR1, &reg);
2679 rt2x00_set_field32(&reg, field, queue->txop);
2680 rt2x00pci_register_write(rt2x00dev, AC_TXOP_CSR1, reg);
2681 }
2682
2683 /* Update WMM registers */
2684 field.bit_offset = queue_idx * 4;
2685 field.bit_mask = 0xf << field.bit_offset;
2686
2687 rt2x00pci_register_read(rt2x00dev, AIFSN_CSR, &reg);
2688 rt2x00_set_field32(&reg, field, queue->aifs);
2689 rt2x00pci_register_write(rt2x00dev, AIFSN_CSR, reg);
2690
2691 rt2x00pci_register_read(rt2x00dev, CWMIN_CSR, &reg);
2692 rt2x00_set_field32(&reg, field, queue->cw_min);
2693 rt2x00pci_register_write(rt2x00dev, CWMIN_CSR, reg);
2694
2695 rt2x00pci_register_read(rt2x00dev, CWMAX_CSR, &reg);
2696 rt2x00_set_field32(&reg, field, queue->cw_max);
2697 rt2x00pci_register_write(rt2x00dev, CWMAX_CSR, reg);
2698
2699 return 0;
2700 }
2701
2702 static u64 rt61pci_get_tsf(struct ieee80211_hw *hw)
2703 {
2704 struct rt2x00_dev *rt2x00dev = hw->priv;
2705 u64 tsf;
2706 u32 reg;
2707
2708 rt2x00pci_register_read(rt2x00dev, TXRX_CSR13, &reg);
2709 tsf = (u64) rt2x00_get_field32(reg, TXRX_CSR13_HIGH_TSFTIMER) << 32;
2710 rt2x00pci_register_read(rt2x00dev, TXRX_CSR12, &reg);
2711 tsf |= rt2x00_get_field32(reg, TXRX_CSR12_LOW_TSFTIMER);
2712
2713 return tsf;
2714 }
2715
2716 static const struct ieee80211_ops rt61pci_mac80211_ops = {
2717 .tx = rt2x00mac_tx,
2718 .start = rt2x00mac_start,
2719 .stop = rt2x00mac_stop,
2720 .add_interface = rt2x00mac_add_interface,
2721 .remove_interface = rt2x00mac_remove_interface,
2722 .config = rt2x00mac_config,
2723 .config_interface = rt2x00mac_config_interface,
2724 .configure_filter = rt2x00mac_configure_filter,
2725 .set_key = rt2x00mac_set_key,
2726 .get_stats = rt2x00mac_get_stats,
2727 .set_retry_limit = rt61pci_set_retry_limit,
2728 .bss_info_changed = rt2x00mac_bss_info_changed,
2729 .conf_tx = rt61pci_conf_tx,
2730 .get_tx_stats = rt2x00mac_get_tx_stats,
2731 .get_tsf = rt61pci_get_tsf,
2732 };
2733
2734 static const struct rt2x00lib_ops rt61pci_rt2x00_ops = {
2735 .irq_handler = rt61pci_interrupt,
2736 .probe_hw = rt61pci_probe_hw,
2737 .get_firmware_name = rt61pci_get_firmware_name,
2738 .get_firmware_crc = rt61pci_get_firmware_crc,
2739 .load_firmware = rt61pci_load_firmware,
2740 .initialize = rt2x00pci_initialize,
2741 .uninitialize = rt2x00pci_uninitialize,
2742 .init_rxentry = rt61pci_init_rxentry,
2743 .init_txentry = rt61pci_init_txentry,
2744 .set_device_state = rt61pci_set_device_state,
2745 .rfkill_poll = rt61pci_rfkill_poll,
2746 .link_stats = rt61pci_link_stats,
2747 .reset_tuner = rt61pci_reset_tuner,
2748 .link_tuner = rt61pci_link_tuner,
2749 .write_tx_desc = rt61pci_write_tx_desc,
2750 .write_tx_data = rt2x00pci_write_tx_data,
2751 .write_beacon = rt61pci_write_beacon,
2752 .kick_tx_queue = rt61pci_kick_tx_queue,
2753 .fill_rxdone = rt61pci_fill_rxdone,
2754 .config_shared_key = rt61pci_config_shared_key,
2755 .config_pairwise_key = rt61pci_config_pairwise_key,
2756 .config_filter = rt61pci_config_filter,
2757 .config_intf = rt61pci_config_intf,
2758 .config_erp = rt61pci_config_erp,
2759 .config = rt61pci_config,
2760 };
2761
2762 static const struct data_queue_desc rt61pci_queue_rx = {
2763 .entry_num = RX_ENTRIES,
2764 .data_size = DATA_FRAME_SIZE,
2765 .desc_size = RXD_DESC_SIZE,
2766 .priv_size = sizeof(struct queue_entry_priv_pci),
2767 };
2768
2769 static const struct data_queue_desc rt61pci_queue_tx = {
2770 .entry_num = TX_ENTRIES,
2771 .data_size = DATA_FRAME_SIZE,
2772 .desc_size = TXD_DESC_SIZE,
2773 .priv_size = sizeof(struct queue_entry_priv_pci),
2774 };
2775
2776 static const struct data_queue_desc rt61pci_queue_bcn = {
2777 .entry_num = 4 * BEACON_ENTRIES,
2778 .data_size = 0, /* No DMA required for beacons */
2779 .desc_size = TXINFO_SIZE,
2780 .priv_size = sizeof(struct queue_entry_priv_pci),
2781 };
2782
2783 static const struct rt2x00_ops rt61pci_ops = {
2784 .name = KBUILD_MODNAME,
2785 .max_sta_intf = 1,
2786 .max_ap_intf = 4,
2787 .eeprom_size = EEPROM_SIZE,
2788 .rf_size = RF_SIZE,
2789 .tx_queues = NUM_TX_QUEUES,
2790 .rx = &rt61pci_queue_rx,
2791 .tx = &rt61pci_queue_tx,
2792 .bcn = &rt61pci_queue_bcn,
2793 .lib = &rt61pci_rt2x00_ops,
2794 .hw = &rt61pci_mac80211_ops,
2795 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
2796 .debugfs = &rt61pci_rt2x00debug,
2797 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
2798 };
2799
2800 /*
2801 * RT61pci module information.
2802 */
2803 static struct pci_device_id rt61pci_device_table[] = {
2804 /* RT2561s */
2805 { PCI_DEVICE(0x1814, 0x0301), PCI_DEVICE_DATA(&rt61pci_ops) },
2806 /* RT2561 v2 */
2807 { PCI_DEVICE(0x1814, 0x0302), PCI_DEVICE_DATA(&rt61pci_ops) },
2808 /* RT2661 */
2809 { PCI_DEVICE(0x1814, 0x0401), PCI_DEVICE_DATA(&rt61pci_ops) },
2810 { 0, }
2811 };
2812
2813 MODULE_AUTHOR(DRV_PROJECT);
2814 MODULE_VERSION(DRV_VERSION);
2815 MODULE_DESCRIPTION("Ralink RT61 PCI & PCMCIA Wireless LAN driver.");
2816 MODULE_SUPPORTED_DEVICE("Ralink RT2561, RT2561s & RT2661 "
2817 "PCI & PCMCIA chipset based cards");
2818 MODULE_DEVICE_TABLE(pci, rt61pci_device_table);
2819 MODULE_FIRMWARE(FIRMWARE_RT2561);
2820 MODULE_FIRMWARE(FIRMWARE_RT2561s);
2821 MODULE_FIRMWARE(FIRMWARE_RT2661);
2822 MODULE_LICENSE("GPL");
2823
2824 static struct pci_driver rt61pci_driver = {
2825 .name = KBUILD_MODNAME,
2826 .id_table = rt61pci_device_table,
2827 .probe = rt2x00pci_probe,
2828 .remove = __devexit_p(rt2x00pci_remove),
2829 .suspend = rt2x00pci_suspend,
2830 .resume = rt2x00pci_resume,
2831 };
2832
2833 static int __init rt61pci_init(void)
2834 {
2835 return pci_register_driver(&rt61pci_driver);
2836 }
2837
2838 static void __exit rt61pci_exit(void)
2839 {
2840 pci_unregister_driver(&rt61pci_driver);
2841 }
2842
2843 module_init(rt61pci_init);
2844 module_exit(rt61pci_exit);
This page took 0.095691 seconds and 5 git commands to generate.