rt2x00: Split rt2x00dev->flags
[deliverable/linux.git] / drivers / net / wireless / rt2x00 / rt61pci.c
1 /*
2 Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
3 <http://rt2x00.serialmonkey.com>
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the
17 Free Software Foundation, Inc.,
18 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 */
20
21 /*
22 Module: rt61pci
23 Abstract: rt61pci device specific routines.
24 Supported chipsets: RT2561, RT2561s, RT2661.
25 */
26
27 #include <linux/crc-itu-t.h>
28 #include <linux/delay.h>
29 #include <linux/etherdevice.h>
30 #include <linux/init.h>
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/slab.h>
34 #include <linux/pci.h>
35 #include <linux/eeprom_93cx6.h>
36
37 #include "rt2x00.h"
38 #include "rt2x00pci.h"
39 #include "rt61pci.h"
40
41 /*
42 * Allow hardware encryption to be disabled.
43 */
44 static int modparam_nohwcrypt = 0;
45 module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
46 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
47
48 /*
49 * Register access.
50 * BBP and RF register require indirect register access,
51 * and use the CSR registers PHY_CSR3 and PHY_CSR4 to achieve this.
52 * These indirect registers work with busy bits,
53 * and we will try maximal REGISTER_BUSY_COUNT times to access
54 * the register while taking a REGISTER_BUSY_DELAY us delay
55 * between each attempt. When the busy bit is still set at that time,
56 * the access attempt is considered to have failed,
57 * and we will print an error.
58 */
59 #define WAIT_FOR_BBP(__dev, __reg) \
60 rt2x00pci_regbusy_read((__dev), PHY_CSR3, PHY_CSR3_BUSY, (__reg))
61 #define WAIT_FOR_RF(__dev, __reg) \
62 rt2x00pci_regbusy_read((__dev), PHY_CSR4, PHY_CSR4_BUSY, (__reg))
63 #define WAIT_FOR_MCU(__dev, __reg) \
64 rt2x00pci_regbusy_read((__dev), H2M_MAILBOX_CSR, \
65 H2M_MAILBOX_CSR_OWNER, (__reg))
66
67 static void rt61pci_bbp_write(struct rt2x00_dev *rt2x00dev,
68 const unsigned int word, const u8 value)
69 {
70 u32 reg;
71
72 mutex_lock(&rt2x00dev->csr_mutex);
73
74 /*
75 * Wait until the BBP becomes available, afterwards we
76 * can safely write the new data into the register.
77 */
78 if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
79 reg = 0;
80 rt2x00_set_field32(&reg, PHY_CSR3_VALUE, value);
81 rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
82 rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
83 rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 0);
84
85 rt2x00pci_register_write(rt2x00dev, PHY_CSR3, reg);
86 }
87
88 mutex_unlock(&rt2x00dev->csr_mutex);
89 }
90
91 static void rt61pci_bbp_read(struct rt2x00_dev *rt2x00dev,
92 const unsigned int word, u8 *value)
93 {
94 u32 reg;
95
96 mutex_lock(&rt2x00dev->csr_mutex);
97
98 /*
99 * Wait until the BBP becomes available, afterwards we
100 * can safely write the read request into the register.
101 * After the data has been written, we wait until hardware
102 * returns the correct value, if at any time the register
103 * doesn't become available in time, reg will be 0xffffffff
104 * which means we return 0xff to the caller.
105 */
106 if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
107 reg = 0;
108 rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
109 rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
110 rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 1);
111
112 rt2x00pci_register_write(rt2x00dev, PHY_CSR3, reg);
113
114 WAIT_FOR_BBP(rt2x00dev, &reg);
115 }
116
117 *value = rt2x00_get_field32(reg, PHY_CSR3_VALUE);
118
119 mutex_unlock(&rt2x00dev->csr_mutex);
120 }
121
122 static void rt61pci_rf_write(struct rt2x00_dev *rt2x00dev,
123 const unsigned int word, const u32 value)
124 {
125 u32 reg;
126
127 mutex_lock(&rt2x00dev->csr_mutex);
128
129 /*
130 * Wait until the RF becomes available, afterwards we
131 * can safely write the new data into the register.
132 */
133 if (WAIT_FOR_RF(rt2x00dev, &reg)) {
134 reg = 0;
135 rt2x00_set_field32(&reg, PHY_CSR4_VALUE, value);
136 rt2x00_set_field32(&reg, PHY_CSR4_NUMBER_OF_BITS, 21);
137 rt2x00_set_field32(&reg, PHY_CSR4_IF_SELECT, 0);
138 rt2x00_set_field32(&reg, PHY_CSR4_BUSY, 1);
139
140 rt2x00pci_register_write(rt2x00dev, PHY_CSR4, reg);
141 rt2x00_rf_write(rt2x00dev, word, value);
142 }
143
144 mutex_unlock(&rt2x00dev->csr_mutex);
145 }
146
147 static void rt61pci_mcu_request(struct rt2x00_dev *rt2x00dev,
148 const u8 command, const u8 token,
149 const u8 arg0, const u8 arg1)
150 {
151 u32 reg;
152
153 mutex_lock(&rt2x00dev->csr_mutex);
154
155 /*
156 * Wait until the MCU becomes available, afterwards we
157 * can safely write the new data into the register.
158 */
159 if (WAIT_FOR_MCU(rt2x00dev, &reg)) {
160 rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_OWNER, 1);
161 rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_CMD_TOKEN, token);
162 rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_ARG0, arg0);
163 rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_ARG1, arg1);
164 rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CSR, reg);
165
166 rt2x00pci_register_read(rt2x00dev, HOST_CMD_CSR, &reg);
167 rt2x00_set_field32(&reg, HOST_CMD_CSR_HOST_COMMAND, command);
168 rt2x00_set_field32(&reg, HOST_CMD_CSR_INTERRUPT_MCU, 1);
169 rt2x00pci_register_write(rt2x00dev, HOST_CMD_CSR, reg);
170 }
171
172 mutex_unlock(&rt2x00dev->csr_mutex);
173
174 }
175
176 static void rt61pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
177 {
178 struct rt2x00_dev *rt2x00dev = eeprom->data;
179 u32 reg;
180
181 rt2x00pci_register_read(rt2x00dev, E2PROM_CSR, &reg);
182
183 eeprom->reg_data_in = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_IN);
184 eeprom->reg_data_out = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_OUT);
185 eeprom->reg_data_clock =
186 !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_CLOCK);
187 eeprom->reg_chip_select =
188 !!rt2x00_get_field32(reg, E2PROM_CSR_CHIP_SELECT);
189 }
190
191 static void rt61pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
192 {
193 struct rt2x00_dev *rt2x00dev = eeprom->data;
194 u32 reg = 0;
195
196 rt2x00_set_field32(&reg, E2PROM_CSR_DATA_IN, !!eeprom->reg_data_in);
197 rt2x00_set_field32(&reg, E2PROM_CSR_DATA_OUT, !!eeprom->reg_data_out);
198 rt2x00_set_field32(&reg, E2PROM_CSR_DATA_CLOCK,
199 !!eeprom->reg_data_clock);
200 rt2x00_set_field32(&reg, E2PROM_CSR_CHIP_SELECT,
201 !!eeprom->reg_chip_select);
202
203 rt2x00pci_register_write(rt2x00dev, E2PROM_CSR, reg);
204 }
205
206 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
207 static const struct rt2x00debug rt61pci_rt2x00debug = {
208 .owner = THIS_MODULE,
209 .csr = {
210 .read = rt2x00pci_register_read,
211 .write = rt2x00pci_register_write,
212 .flags = RT2X00DEBUGFS_OFFSET,
213 .word_base = CSR_REG_BASE,
214 .word_size = sizeof(u32),
215 .word_count = CSR_REG_SIZE / sizeof(u32),
216 },
217 .eeprom = {
218 .read = rt2x00_eeprom_read,
219 .write = rt2x00_eeprom_write,
220 .word_base = EEPROM_BASE,
221 .word_size = sizeof(u16),
222 .word_count = EEPROM_SIZE / sizeof(u16),
223 },
224 .bbp = {
225 .read = rt61pci_bbp_read,
226 .write = rt61pci_bbp_write,
227 .word_base = BBP_BASE,
228 .word_size = sizeof(u8),
229 .word_count = BBP_SIZE / sizeof(u8),
230 },
231 .rf = {
232 .read = rt2x00_rf_read,
233 .write = rt61pci_rf_write,
234 .word_base = RF_BASE,
235 .word_size = sizeof(u32),
236 .word_count = RF_SIZE / sizeof(u32),
237 },
238 };
239 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
240
241 static int rt61pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
242 {
243 u32 reg;
244
245 rt2x00pci_register_read(rt2x00dev, MAC_CSR13, &reg);
246 return rt2x00_get_field32(reg, MAC_CSR13_BIT5);
247 }
248
249 #ifdef CONFIG_RT2X00_LIB_LEDS
250 static void rt61pci_brightness_set(struct led_classdev *led_cdev,
251 enum led_brightness brightness)
252 {
253 struct rt2x00_led *led =
254 container_of(led_cdev, struct rt2x00_led, led_dev);
255 unsigned int enabled = brightness != LED_OFF;
256 unsigned int a_mode =
257 (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_5GHZ);
258 unsigned int bg_mode =
259 (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_2GHZ);
260
261 if (led->type == LED_TYPE_RADIO) {
262 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
263 MCU_LEDCS_RADIO_STATUS, enabled);
264
265 rt61pci_mcu_request(led->rt2x00dev, MCU_LED, 0xff,
266 (led->rt2x00dev->led_mcu_reg & 0xff),
267 ((led->rt2x00dev->led_mcu_reg >> 8)));
268 } else if (led->type == LED_TYPE_ASSOC) {
269 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
270 MCU_LEDCS_LINK_BG_STATUS, bg_mode);
271 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
272 MCU_LEDCS_LINK_A_STATUS, a_mode);
273
274 rt61pci_mcu_request(led->rt2x00dev, MCU_LED, 0xff,
275 (led->rt2x00dev->led_mcu_reg & 0xff),
276 ((led->rt2x00dev->led_mcu_reg >> 8)));
277 } else if (led->type == LED_TYPE_QUALITY) {
278 /*
279 * The brightness is divided into 6 levels (0 - 5),
280 * this means we need to convert the brightness
281 * argument into the matching level within that range.
282 */
283 rt61pci_mcu_request(led->rt2x00dev, MCU_LED_STRENGTH, 0xff,
284 brightness / (LED_FULL / 6), 0);
285 }
286 }
287
288 static int rt61pci_blink_set(struct led_classdev *led_cdev,
289 unsigned long *delay_on,
290 unsigned long *delay_off)
291 {
292 struct rt2x00_led *led =
293 container_of(led_cdev, struct rt2x00_led, led_dev);
294 u32 reg;
295
296 rt2x00pci_register_read(led->rt2x00dev, MAC_CSR14, &reg);
297 rt2x00_set_field32(&reg, MAC_CSR14_ON_PERIOD, *delay_on);
298 rt2x00_set_field32(&reg, MAC_CSR14_OFF_PERIOD, *delay_off);
299 rt2x00pci_register_write(led->rt2x00dev, MAC_CSR14, reg);
300
301 return 0;
302 }
303
304 static void rt61pci_init_led(struct rt2x00_dev *rt2x00dev,
305 struct rt2x00_led *led,
306 enum led_type type)
307 {
308 led->rt2x00dev = rt2x00dev;
309 led->type = type;
310 led->led_dev.brightness_set = rt61pci_brightness_set;
311 led->led_dev.blink_set = rt61pci_blink_set;
312 led->flags = LED_INITIALIZED;
313 }
314 #endif /* CONFIG_RT2X00_LIB_LEDS */
315
316 /*
317 * Configuration handlers.
318 */
319 static int rt61pci_config_shared_key(struct rt2x00_dev *rt2x00dev,
320 struct rt2x00lib_crypto *crypto,
321 struct ieee80211_key_conf *key)
322 {
323 struct hw_key_entry key_entry;
324 struct rt2x00_field32 field;
325 u32 mask;
326 u32 reg;
327
328 if (crypto->cmd == SET_KEY) {
329 /*
330 * rt2x00lib can't determine the correct free
331 * key_idx for shared keys. We have 1 register
332 * with key valid bits. The goal is simple, read
333 * the register, if that is full we have no slots
334 * left.
335 * Note that each BSS is allowed to have up to 4
336 * shared keys, so put a mask over the allowed
337 * entries.
338 */
339 mask = (0xf << crypto->bssidx);
340
341 rt2x00pci_register_read(rt2x00dev, SEC_CSR0, &reg);
342 reg &= mask;
343
344 if (reg && reg == mask)
345 return -ENOSPC;
346
347 key->hw_key_idx += reg ? ffz(reg) : 0;
348
349 /*
350 * Upload key to hardware
351 */
352 memcpy(key_entry.key, crypto->key,
353 sizeof(key_entry.key));
354 memcpy(key_entry.tx_mic, crypto->tx_mic,
355 sizeof(key_entry.tx_mic));
356 memcpy(key_entry.rx_mic, crypto->rx_mic,
357 sizeof(key_entry.rx_mic));
358
359 reg = SHARED_KEY_ENTRY(key->hw_key_idx);
360 rt2x00pci_register_multiwrite(rt2x00dev, reg,
361 &key_entry, sizeof(key_entry));
362
363 /*
364 * The cipher types are stored over 2 registers.
365 * bssidx 0 and 1 keys are stored in SEC_CSR1 and
366 * bssidx 1 and 2 keys are stored in SEC_CSR5.
367 * Using the correct defines correctly will cause overhead,
368 * so just calculate the correct offset.
369 */
370 if (key->hw_key_idx < 8) {
371 field.bit_offset = (3 * key->hw_key_idx);
372 field.bit_mask = 0x7 << field.bit_offset;
373
374 rt2x00pci_register_read(rt2x00dev, SEC_CSR1, &reg);
375 rt2x00_set_field32(&reg, field, crypto->cipher);
376 rt2x00pci_register_write(rt2x00dev, SEC_CSR1, reg);
377 } else {
378 field.bit_offset = (3 * (key->hw_key_idx - 8));
379 field.bit_mask = 0x7 << field.bit_offset;
380
381 rt2x00pci_register_read(rt2x00dev, SEC_CSR5, &reg);
382 rt2x00_set_field32(&reg, field, crypto->cipher);
383 rt2x00pci_register_write(rt2x00dev, SEC_CSR5, reg);
384 }
385
386 /*
387 * The driver does not support the IV/EIV generation
388 * in hardware. However it doesn't support the IV/EIV
389 * inside the ieee80211 frame either, but requires it
390 * to be provided separately for the descriptor.
391 * rt2x00lib will cut the IV/EIV data out of all frames
392 * given to us by mac80211, but we must tell mac80211
393 * to generate the IV/EIV data.
394 */
395 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
396 }
397
398 /*
399 * SEC_CSR0 contains only single-bit fields to indicate
400 * a particular key is valid. Because using the FIELD32()
401 * defines directly will cause a lot of overhead, we use
402 * a calculation to determine the correct bit directly.
403 */
404 mask = 1 << key->hw_key_idx;
405
406 rt2x00pci_register_read(rt2x00dev, SEC_CSR0, &reg);
407 if (crypto->cmd == SET_KEY)
408 reg |= mask;
409 else if (crypto->cmd == DISABLE_KEY)
410 reg &= ~mask;
411 rt2x00pci_register_write(rt2x00dev, SEC_CSR0, reg);
412
413 return 0;
414 }
415
416 static int rt61pci_config_pairwise_key(struct rt2x00_dev *rt2x00dev,
417 struct rt2x00lib_crypto *crypto,
418 struct ieee80211_key_conf *key)
419 {
420 struct hw_pairwise_ta_entry addr_entry;
421 struct hw_key_entry key_entry;
422 u32 mask;
423 u32 reg;
424
425 if (crypto->cmd == SET_KEY) {
426 /*
427 * rt2x00lib can't determine the correct free
428 * key_idx for pairwise keys. We have 2 registers
429 * with key valid bits. The goal is simple: read
430 * the first register. If that is full, move to
431 * the next register.
432 * When both registers are full, we drop the key.
433 * Otherwise, we use the first invalid entry.
434 */
435 rt2x00pci_register_read(rt2x00dev, SEC_CSR2, &reg);
436 if (reg && reg == ~0) {
437 key->hw_key_idx = 32;
438 rt2x00pci_register_read(rt2x00dev, SEC_CSR3, &reg);
439 if (reg && reg == ~0)
440 return -ENOSPC;
441 }
442
443 key->hw_key_idx += reg ? ffz(reg) : 0;
444
445 /*
446 * Upload key to hardware
447 */
448 memcpy(key_entry.key, crypto->key,
449 sizeof(key_entry.key));
450 memcpy(key_entry.tx_mic, crypto->tx_mic,
451 sizeof(key_entry.tx_mic));
452 memcpy(key_entry.rx_mic, crypto->rx_mic,
453 sizeof(key_entry.rx_mic));
454
455 memset(&addr_entry, 0, sizeof(addr_entry));
456 memcpy(&addr_entry, crypto->address, ETH_ALEN);
457 addr_entry.cipher = crypto->cipher;
458
459 reg = PAIRWISE_KEY_ENTRY(key->hw_key_idx);
460 rt2x00pci_register_multiwrite(rt2x00dev, reg,
461 &key_entry, sizeof(key_entry));
462
463 reg = PAIRWISE_TA_ENTRY(key->hw_key_idx);
464 rt2x00pci_register_multiwrite(rt2x00dev, reg,
465 &addr_entry, sizeof(addr_entry));
466
467 /*
468 * Enable pairwise lookup table for given BSS idx.
469 * Without this, received frames will not be decrypted
470 * by the hardware.
471 */
472 rt2x00pci_register_read(rt2x00dev, SEC_CSR4, &reg);
473 reg |= (1 << crypto->bssidx);
474 rt2x00pci_register_write(rt2x00dev, SEC_CSR4, reg);
475
476 /*
477 * The driver does not support the IV/EIV generation
478 * in hardware. However it doesn't support the IV/EIV
479 * inside the ieee80211 frame either, but requires it
480 * to be provided separately for the descriptor.
481 * rt2x00lib will cut the IV/EIV data out of all frames
482 * given to us by mac80211, but we must tell mac80211
483 * to generate the IV/EIV data.
484 */
485 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
486 }
487
488 /*
489 * SEC_CSR2 and SEC_CSR3 contain only single-bit fields to indicate
490 * a particular key is valid. Because using the FIELD32()
491 * defines directly will cause a lot of overhead, we use
492 * a calculation to determine the correct bit directly.
493 */
494 if (key->hw_key_idx < 32) {
495 mask = 1 << key->hw_key_idx;
496
497 rt2x00pci_register_read(rt2x00dev, SEC_CSR2, &reg);
498 if (crypto->cmd == SET_KEY)
499 reg |= mask;
500 else if (crypto->cmd == DISABLE_KEY)
501 reg &= ~mask;
502 rt2x00pci_register_write(rt2x00dev, SEC_CSR2, reg);
503 } else {
504 mask = 1 << (key->hw_key_idx - 32);
505
506 rt2x00pci_register_read(rt2x00dev, SEC_CSR3, &reg);
507 if (crypto->cmd == SET_KEY)
508 reg |= mask;
509 else if (crypto->cmd == DISABLE_KEY)
510 reg &= ~mask;
511 rt2x00pci_register_write(rt2x00dev, SEC_CSR3, reg);
512 }
513
514 return 0;
515 }
516
517 static void rt61pci_config_filter(struct rt2x00_dev *rt2x00dev,
518 const unsigned int filter_flags)
519 {
520 u32 reg;
521
522 /*
523 * Start configuration steps.
524 * Note that the version error will always be dropped
525 * and broadcast frames will always be accepted since
526 * there is no filter for it at this time.
527 */
528 rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
529 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CRC,
530 !(filter_flags & FIF_FCSFAIL));
531 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_PHYSICAL,
532 !(filter_flags & FIF_PLCPFAIL));
533 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CONTROL,
534 !(filter_flags & (FIF_CONTROL | FIF_PSPOLL)));
535 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_NOT_TO_ME,
536 !(filter_flags & FIF_PROMISC_IN_BSS));
537 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_TO_DS,
538 !(filter_flags & FIF_PROMISC_IN_BSS) &&
539 !rt2x00dev->intf_ap_count);
540 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_VERSION_ERROR, 1);
541 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_MULTICAST,
542 !(filter_flags & FIF_ALLMULTI));
543 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_BROADCAST, 0);
544 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_ACK_CTS,
545 !(filter_flags & FIF_CONTROL));
546 rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
547 }
548
549 static void rt61pci_config_intf(struct rt2x00_dev *rt2x00dev,
550 struct rt2x00_intf *intf,
551 struct rt2x00intf_conf *conf,
552 const unsigned int flags)
553 {
554 u32 reg;
555
556 if (flags & CONFIG_UPDATE_TYPE) {
557 /*
558 * Enable synchronisation.
559 */
560 rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
561 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_SYNC, conf->sync);
562 rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
563 }
564
565 if (flags & CONFIG_UPDATE_MAC) {
566 reg = le32_to_cpu(conf->mac[1]);
567 rt2x00_set_field32(&reg, MAC_CSR3_UNICAST_TO_ME_MASK, 0xff);
568 conf->mac[1] = cpu_to_le32(reg);
569
570 rt2x00pci_register_multiwrite(rt2x00dev, MAC_CSR2,
571 conf->mac, sizeof(conf->mac));
572 }
573
574 if (flags & CONFIG_UPDATE_BSSID) {
575 reg = le32_to_cpu(conf->bssid[1]);
576 rt2x00_set_field32(&reg, MAC_CSR5_BSS_ID_MASK, 3);
577 conf->bssid[1] = cpu_to_le32(reg);
578
579 rt2x00pci_register_multiwrite(rt2x00dev, MAC_CSR4,
580 conf->bssid, sizeof(conf->bssid));
581 }
582 }
583
584 static void rt61pci_config_erp(struct rt2x00_dev *rt2x00dev,
585 struct rt2x00lib_erp *erp,
586 u32 changed)
587 {
588 u32 reg;
589
590 rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
591 rt2x00_set_field32(&reg, TXRX_CSR0_RX_ACK_TIMEOUT, 0x32);
592 rt2x00_set_field32(&reg, TXRX_CSR0_TSF_OFFSET, IEEE80211_HEADER);
593 rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
594
595 if (changed & BSS_CHANGED_ERP_PREAMBLE) {
596 rt2x00pci_register_read(rt2x00dev, TXRX_CSR4, &reg);
597 rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_ENABLE, 1);
598 rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_PREAMBLE,
599 !!erp->short_preamble);
600 rt2x00pci_register_write(rt2x00dev, TXRX_CSR4, reg);
601 }
602
603 if (changed & BSS_CHANGED_BASIC_RATES)
604 rt2x00pci_register_write(rt2x00dev, TXRX_CSR5,
605 erp->basic_rates);
606
607 if (changed & BSS_CHANGED_BEACON_INT) {
608 rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
609 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_INTERVAL,
610 erp->beacon_int * 16);
611 rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
612 }
613
614 if (changed & BSS_CHANGED_ERP_SLOT) {
615 rt2x00pci_register_read(rt2x00dev, MAC_CSR9, &reg);
616 rt2x00_set_field32(&reg, MAC_CSR9_SLOT_TIME, erp->slot_time);
617 rt2x00pci_register_write(rt2x00dev, MAC_CSR9, reg);
618
619 rt2x00pci_register_read(rt2x00dev, MAC_CSR8, &reg);
620 rt2x00_set_field32(&reg, MAC_CSR8_SIFS, erp->sifs);
621 rt2x00_set_field32(&reg, MAC_CSR8_SIFS_AFTER_RX_OFDM, 3);
622 rt2x00_set_field32(&reg, MAC_CSR8_EIFS, erp->eifs);
623 rt2x00pci_register_write(rt2x00dev, MAC_CSR8, reg);
624 }
625 }
626
627 static void rt61pci_config_antenna_5x(struct rt2x00_dev *rt2x00dev,
628 struct antenna_setup *ant)
629 {
630 u8 r3;
631 u8 r4;
632 u8 r77;
633
634 rt61pci_bbp_read(rt2x00dev, 3, &r3);
635 rt61pci_bbp_read(rt2x00dev, 4, &r4);
636 rt61pci_bbp_read(rt2x00dev, 77, &r77);
637
638 rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, rt2x00_rf(rt2x00dev, RF5325));
639
640 /*
641 * Configure the RX antenna.
642 */
643 switch (ant->rx) {
644 case ANTENNA_HW_DIVERSITY:
645 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
646 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END,
647 (rt2x00dev->curr_band != IEEE80211_BAND_5GHZ));
648 break;
649 case ANTENNA_A:
650 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
651 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
652 if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ)
653 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
654 else
655 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
656 break;
657 case ANTENNA_B:
658 default:
659 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
660 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
661 if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ)
662 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
663 else
664 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
665 break;
666 }
667
668 rt61pci_bbp_write(rt2x00dev, 77, r77);
669 rt61pci_bbp_write(rt2x00dev, 3, r3);
670 rt61pci_bbp_write(rt2x00dev, 4, r4);
671 }
672
673 static void rt61pci_config_antenna_2x(struct rt2x00_dev *rt2x00dev,
674 struct antenna_setup *ant)
675 {
676 u8 r3;
677 u8 r4;
678 u8 r77;
679
680 rt61pci_bbp_read(rt2x00dev, 3, &r3);
681 rt61pci_bbp_read(rt2x00dev, 4, &r4);
682 rt61pci_bbp_read(rt2x00dev, 77, &r77);
683
684 rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, rt2x00_rf(rt2x00dev, RF2529));
685 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END,
686 !test_bit(CAPABILITY_FRAME_TYPE, &rt2x00dev->cap_flags));
687
688 /*
689 * Configure the RX antenna.
690 */
691 switch (ant->rx) {
692 case ANTENNA_HW_DIVERSITY:
693 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
694 break;
695 case ANTENNA_A:
696 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
697 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
698 break;
699 case ANTENNA_B:
700 default:
701 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
702 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
703 break;
704 }
705
706 rt61pci_bbp_write(rt2x00dev, 77, r77);
707 rt61pci_bbp_write(rt2x00dev, 3, r3);
708 rt61pci_bbp_write(rt2x00dev, 4, r4);
709 }
710
711 static void rt61pci_config_antenna_2529_rx(struct rt2x00_dev *rt2x00dev,
712 const int p1, const int p2)
713 {
714 u32 reg;
715
716 rt2x00pci_register_read(rt2x00dev, MAC_CSR13, &reg);
717
718 rt2x00_set_field32(&reg, MAC_CSR13_BIT4, p1);
719 rt2x00_set_field32(&reg, MAC_CSR13_BIT12, 0);
720
721 rt2x00_set_field32(&reg, MAC_CSR13_BIT3, !p2);
722 rt2x00_set_field32(&reg, MAC_CSR13_BIT11, 0);
723
724 rt2x00pci_register_write(rt2x00dev, MAC_CSR13, reg);
725 }
726
727 static void rt61pci_config_antenna_2529(struct rt2x00_dev *rt2x00dev,
728 struct antenna_setup *ant)
729 {
730 u8 r3;
731 u8 r4;
732 u8 r77;
733
734 rt61pci_bbp_read(rt2x00dev, 3, &r3);
735 rt61pci_bbp_read(rt2x00dev, 4, &r4);
736 rt61pci_bbp_read(rt2x00dev, 77, &r77);
737
738 /*
739 * Configure the RX antenna.
740 */
741 switch (ant->rx) {
742 case ANTENNA_A:
743 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
744 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
745 rt61pci_config_antenna_2529_rx(rt2x00dev, 0, 0);
746 break;
747 case ANTENNA_HW_DIVERSITY:
748 /*
749 * FIXME: Antenna selection for the rf 2529 is very confusing
750 * in the legacy driver. Just default to antenna B until the
751 * legacy code can be properly translated into rt2x00 code.
752 */
753 case ANTENNA_B:
754 default:
755 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
756 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
757 rt61pci_config_antenna_2529_rx(rt2x00dev, 1, 1);
758 break;
759 }
760
761 rt61pci_bbp_write(rt2x00dev, 77, r77);
762 rt61pci_bbp_write(rt2x00dev, 3, r3);
763 rt61pci_bbp_write(rt2x00dev, 4, r4);
764 }
765
766 struct antenna_sel {
767 u8 word;
768 /*
769 * value[0] -> non-LNA
770 * value[1] -> LNA
771 */
772 u8 value[2];
773 };
774
775 static const struct antenna_sel antenna_sel_a[] = {
776 { 96, { 0x58, 0x78 } },
777 { 104, { 0x38, 0x48 } },
778 { 75, { 0xfe, 0x80 } },
779 { 86, { 0xfe, 0x80 } },
780 { 88, { 0xfe, 0x80 } },
781 { 35, { 0x60, 0x60 } },
782 { 97, { 0x58, 0x58 } },
783 { 98, { 0x58, 0x58 } },
784 };
785
786 static const struct antenna_sel antenna_sel_bg[] = {
787 { 96, { 0x48, 0x68 } },
788 { 104, { 0x2c, 0x3c } },
789 { 75, { 0xfe, 0x80 } },
790 { 86, { 0xfe, 0x80 } },
791 { 88, { 0xfe, 0x80 } },
792 { 35, { 0x50, 0x50 } },
793 { 97, { 0x48, 0x48 } },
794 { 98, { 0x48, 0x48 } },
795 };
796
797 static void rt61pci_config_ant(struct rt2x00_dev *rt2x00dev,
798 struct antenna_setup *ant)
799 {
800 const struct antenna_sel *sel;
801 unsigned int lna;
802 unsigned int i;
803 u32 reg;
804
805 /*
806 * We should never come here because rt2x00lib is supposed
807 * to catch this and send us the correct antenna explicitely.
808 */
809 BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
810 ant->tx == ANTENNA_SW_DIVERSITY);
811
812 if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) {
813 sel = antenna_sel_a;
814 lna = test_bit(CAPABILITY_EXTERNAL_LNA_A, &rt2x00dev->cap_flags);
815 } else {
816 sel = antenna_sel_bg;
817 lna = test_bit(CAPABILITY_EXTERNAL_LNA_BG, &rt2x00dev->cap_flags);
818 }
819
820 for (i = 0; i < ARRAY_SIZE(antenna_sel_a); i++)
821 rt61pci_bbp_write(rt2x00dev, sel[i].word, sel[i].value[lna]);
822
823 rt2x00pci_register_read(rt2x00dev, PHY_CSR0, &reg);
824
825 rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_BG,
826 rt2x00dev->curr_band == IEEE80211_BAND_2GHZ);
827 rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_A,
828 rt2x00dev->curr_band == IEEE80211_BAND_5GHZ);
829
830 rt2x00pci_register_write(rt2x00dev, PHY_CSR0, reg);
831
832 if (rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF5325))
833 rt61pci_config_antenna_5x(rt2x00dev, ant);
834 else if (rt2x00_rf(rt2x00dev, RF2527))
835 rt61pci_config_antenna_2x(rt2x00dev, ant);
836 else if (rt2x00_rf(rt2x00dev, RF2529)) {
837 if (test_bit(CAPABILITY_DOUBLE_ANTENNA, &rt2x00dev->cap_flags))
838 rt61pci_config_antenna_2x(rt2x00dev, ant);
839 else
840 rt61pci_config_antenna_2529(rt2x00dev, ant);
841 }
842 }
843
844 static void rt61pci_config_lna_gain(struct rt2x00_dev *rt2x00dev,
845 struct rt2x00lib_conf *libconf)
846 {
847 u16 eeprom;
848 short lna_gain = 0;
849
850 if (libconf->conf->channel->band == IEEE80211_BAND_2GHZ) {
851 if (test_bit(CAPABILITY_EXTERNAL_LNA_BG, &rt2x00dev->cap_flags))
852 lna_gain += 14;
853
854 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &eeprom);
855 lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_BG_1);
856 } else {
857 if (test_bit(CAPABILITY_EXTERNAL_LNA_A, &rt2x00dev->cap_flags))
858 lna_gain += 14;
859
860 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &eeprom);
861 lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_A_1);
862 }
863
864 rt2x00dev->lna_gain = lna_gain;
865 }
866
867 static void rt61pci_config_channel(struct rt2x00_dev *rt2x00dev,
868 struct rf_channel *rf, const int txpower)
869 {
870 u8 r3;
871 u8 r94;
872 u8 smart;
873
874 rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
875 rt2x00_set_field32(&rf->rf4, RF4_FREQ_OFFSET, rt2x00dev->freq_offset);
876
877 smart = !(rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF2527));
878
879 rt61pci_bbp_read(rt2x00dev, 3, &r3);
880 rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, smart);
881 rt61pci_bbp_write(rt2x00dev, 3, r3);
882
883 r94 = 6;
884 if (txpower > MAX_TXPOWER && txpower <= (MAX_TXPOWER + r94))
885 r94 += txpower - MAX_TXPOWER;
886 else if (txpower < MIN_TXPOWER && txpower >= (MIN_TXPOWER - r94))
887 r94 += txpower;
888 rt61pci_bbp_write(rt2x00dev, 94, r94);
889
890 rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
891 rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
892 rt61pci_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
893 rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
894
895 udelay(200);
896
897 rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
898 rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
899 rt61pci_rf_write(rt2x00dev, 3, rf->rf3 | 0x00000004);
900 rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
901
902 udelay(200);
903
904 rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
905 rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
906 rt61pci_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
907 rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
908
909 msleep(1);
910 }
911
912 static void rt61pci_config_txpower(struct rt2x00_dev *rt2x00dev,
913 const int txpower)
914 {
915 struct rf_channel rf;
916
917 rt2x00_rf_read(rt2x00dev, 1, &rf.rf1);
918 rt2x00_rf_read(rt2x00dev, 2, &rf.rf2);
919 rt2x00_rf_read(rt2x00dev, 3, &rf.rf3);
920 rt2x00_rf_read(rt2x00dev, 4, &rf.rf4);
921
922 rt61pci_config_channel(rt2x00dev, &rf, txpower);
923 }
924
925 static void rt61pci_config_retry_limit(struct rt2x00_dev *rt2x00dev,
926 struct rt2x00lib_conf *libconf)
927 {
928 u32 reg;
929
930 rt2x00pci_register_read(rt2x00dev, TXRX_CSR4, &reg);
931 rt2x00_set_field32(&reg, TXRX_CSR4_OFDM_TX_RATE_DOWN, 1);
932 rt2x00_set_field32(&reg, TXRX_CSR4_OFDM_TX_RATE_STEP, 0);
933 rt2x00_set_field32(&reg, TXRX_CSR4_OFDM_TX_FALLBACK_CCK, 0);
934 rt2x00_set_field32(&reg, TXRX_CSR4_LONG_RETRY_LIMIT,
935 libconf->conf->long_frame_max_tx_count);
936 rt2x00_set_field32(&reg, TXRX_CSR4_SHORT_RETRY_LIMIT,
937 libconf->conf->short_frame_max_tx_count);
938 rt2x00pci_register_write(rt2x00dev, TXRX_CSR4, reg);
939 }
940
941 static void rt61pci_config_ps(struct rt2x00_dev *rt2x00dev,
942 struct rt2x00lib_conf *libconf)
943 {
944 enum dev_state state =
945 (libconf->conf->flags & IEEE80211_CONF_PS) ?
946 STATE_SLEEP : STATE_AWAKE;
947 u32 reg;
948
949 if (state == STATE_SLEEP) {
950 rt2x00pci_register_read(rt2x00dev, MAC_CSR11, &reg);
951 rt2x00_set_field32(&reg, MAC_CSR11_DELAY_AFTER_TBCN,
952 rt2x00dev->beacon_int - 10);
953 rt2x00_set_field32(&reg, MAC_CSR11_TBCN_BEFORE_WAKEUP,
954 libconf->conf->listen_interval - 1);
955 rt2x00_set_field32(&reg, MAC_CSR11_WAKEUP_LATENCY, 5);
956
957 /* We must first disable autowake before it can be enabled */
958 rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 0);
959 rt2x00pci_register_write(rt2x00dev, MAC_CSR11, reg);
960
961 rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 1);
962 rt2x00pci_register_write(rt2x00dev, MAC_CSR11, reg);
963
964 rt2x00pci_register_write(rt2x00dev, SOFT_RESET_CSR, 0x00000005);
965 rt2x00pci_register_write(rt2x00dev, IO_CNTL_CSR, 0x0000001c);
966 rt2x00pci_register_write(rt2x00dev, PCI_USEC_CSR, 0x00000060);
967
968 rt61pci_mcu_request(rt2x00dev, MCU_SLEEP, 0xff, 0, 0);
969 } else {
970 rt2x00pci_register_read(rt2x00dev, MAC_CSR11, &reg);
971 rt2x00_set_field32(&reg, MAC_CSR11_DELAY_AFTER_TBCN, 0);
972 rt2x00_set_field32(&reg, MAC_CSR11_TBCN_BEFORE_WAKEUP, 0);
973 rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 0);
974 rt2x00_set_field32(&reg, MAC_CSR11_WAKEUP_LATENCY, 0);
975 rt2x00pci_register_write(rt2x00dev, MAC_CSR11, reg);
976
977 rt2x00pci_register_write(rt2x00dev, SOFT_RESET_CSR, 0x00000007);
978 rt2x00pci_register_write(rt2x00dev, IO_CNTL_CSR, 0x00000018);
979 rt2x00pci_register_write(rt2x00dev, PCI_USEC_CSR, 0x00000020);
980
981 rt61pci_mcu_request(rt2x00dev, MCU_WAKEUP, 0xff, 0, 0);
982 }
983 }
984
985 static void rt61pci_config(struct rt2x00_dev *rt2x00dev,
986 struct rt2x00lib_conf *libconf,
987 const unsigned int flags)
988 {
989 /* Always recalculate LNA gain before changing configuration */
990 rt61pci_config_lna_gain(rt2x00dev, libconf);
991
992 if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
993 rt61pci_config_channel(rt2x00dev, &libconf->rf,
994 libconf->conf->power_level);
995 if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
996 !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
997 rt61pci_config_txpower(rt2x00dev, libconf->conf->power_level);
998 if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
999 rt61pci_config_retry_limit(rt2x00dev, libconf);
1000 if (flags & IEEE80211_CONF_CHANGE_PS)
1001 rt61pci_config_ps(rt2x00dev, libconf);
1002 }
1003
1004 /*
1005 * Link tuning
1006 */
1007 static void rt61pci_link_stats(struct rt2x00_dev *rt2x00dev,
1008 struct link_qual *qual)
1009 {
1010 u32 reg;
1011
1012 /*
1013 * Update FCS error count from register.
1014 */
1015 rt2x00pci_register_read(rt2x00dev, STA_CSR0, &reg);
1016 qual->rx_failed = rt2x00_get_field32(reg, STA_CSR0_FCS_ERROR);
1017
1018 /*
1019 * Update False CCA count from register.
1020 */
1021 rt2x00pci_register_read(rt2x00dev, STA_CSR1, &reg);
1022 qual->false_cca = rt2x00_get_field32(reg, STA_CSR1_FALSE_CCA_ERROR);
1023 }
1024
1025 static inline void rt61pci_set_vgc(struct rt2x00_dev *rt2x00dev,
1026 struct link_qual *qual, u8 vgc_level)
1027 {
1028 if (qual->vgc_level != vgc_level) {
1029 rt61pci_bbp_write(rt2x00dev, 17, vgc_level);
1030 qual->vgc_level = vgc_level;
1031 qual->vgc_level_reg = vgc_level;
1032 }
1033 }
1034
1035 static void rt61pci_reset_tuner(struct rt2x00_dev *rt2x00dev,
1036 struct link_qual *qual)
1037 {
1038 rt61pci_set_vgc(rt2x00dev, qual, 0x20);
1039 }
1040
1041 static void rt61pci_link_tuner(struct rt2x00_dev *rt2x00dev,
1042 struct link_qual *qual, const u32 count)
1043 {
1044 u8 up_bound;
1045 u8 low_bound;
1046
1047 /*
1048 * Determine r17 bounds.
1049 */
1050 if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) {
1051 low_bound = 0x28;
1052 up_bound = 0x48;
1053 if (test_bit(CAPABILITY_EXTERNAL_LNA_A, &rt2x00dev->cap_flags)) {
1054 low_bound += 0x10;
1055 up_bound += 0x10;
1056 }
1057 } else {
1058 low_bound = 0x20;
1059 up_bound = 0x40;
1060 if (test_bit(CAPABILITY_EXTERNAL_LNA_BG, &rt2x00dev->cap_flags)) {
1061 low_bound += 0x10;
1062 up_bound += 0x10;
1063 }
1064 }
1065
1066 /*
1067 * If we are not associated, we should go straight to the
1068 * dynamic CCA tuning.
1069 */
1070 if (!rt2x00dev->intf_associated)
1071 goto dynamic_cca_tune;
1072
1073 /*
1074 * Special big-R17 for very short distance
1075 */
1076 if (qual->rssi >= -35) {
1077 rt61pci_set_vgc(rt2x00dev, qual, 0x60);
1078 return;
1079 }
1080
1081 /*
1082 * Special big-R17 for short distance
1083 */
1084 if (qual->rssi >= -58) {
1085 rt61pci_set_vgc(rt2x00dev, qual, up_bound);
1086 return;
1087 }
1088
1089 /*
1090 * Special big-R17 for middle-short distance
1091 */
1092 if (qual->rssi >= -66) {
1093 rt61pci_set_vgc(rt2x00dev, qual, low_bound + 0x10);
1094 return;
1095 }
1096
1097 /*
1098 * Special mid-R17 for middle distance
1099 */
1100 if (qual->rssi >= -74) {
1101 rt61pci_set_vgc(rt2x00dev, qual, low_bound + 0x08);
1102 return;
1103 }
1104
1105 /*
1106 * Special case: Change up_bound based on the rssi.
1107 * Lower up_bound when rssi is weaker then -74 dBm.
1108 */
1109 up_bound -= 2 * (-74 - qual->rssi);
1110 if (low_bound > up_bound)
1111 up_bound = low_bound;
1112
1113 if (qual->vgc_level > up_bound) {
1114 rt61pci_set_vgc(rt2x00dev, qual, up_bound);
1115 return;
1116 }
1117
1118 dynamic_cca_tune:
1119
1120 /*
1121 * r17 does not yet exceed upper limit, continue and base
1122 * the r17 tuning on the false CCA count.
1123 */
1124 if ((qual->false_cca > 512) && (qual->vgc_level < up_bound))
1125 rt61pci_set_vgc(rt2x00dev, qual, ++qual->vgc_level);
1126 else if ((qual->false_cca < 100) && (qual->vgc_level > low_bound))
1127 rt61pci_set_vgc(rt2x00dev, qual, --qual->vgc_level);
1128 }
1129
1130 /*
1131 * Queue handlers.
1132 */
1133 static void rt61pci_start_queue(struct data_queue *queue)
1134 {
1135 struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
1136 u32 reg;
1137
1138 switch (queue->qid) {
1139 case QID_RX:
1140 rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
1141 rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX, 0);
1142 rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
1143 break;
1144 case QID_BEACON:
1145 /*
1146 * Allow the tbtt tasklet to be scheduled.
1147 */
1148 tasklet_enable(&rt2x00dev->tbtt_tasklet);
1149
1150 rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
1151 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 1);
1152 rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 1);
1153 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 1);
1154 rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
1155 break;
1156 default:
1157 break;
1158 }
1159 }
1160
1161 static void rt61pci_kick_queue(struct data_queue *queue)
1162 {
1163 struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
1164 u32 reg;
1165
1166 switch (queue->qid) {
1167 case QID_AC_VO:
1168 rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1169 rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC0, 1);
1170 rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1171 break;
1172 case QID_AC_VI:
1173 rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1174 rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC1, 1);
1175 rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1176 break;
1177 case QID_AC_BE:
1178 rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1179 rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC2, 1);
1180 rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1181 break;
1182 case QID_AC_BK:
1183 rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1184 rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC3, 1);
1185 rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1186 break;
1187 default:
1188 break;
1189 }
1190 }
1191
1192 static void rt61pci_stop_queue(struct data_queue *queue)
1193 {
1194 struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
1195 u32 reg;
1196
1197 switch (queue->qid) {
1198 case QID_AC_VO:
1199 rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1200 rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC0, 1);
1201 rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1202 break;
1203 case QID_AC_VI:
1204 rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1205 rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC1, 1);
1206 rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1207 break;
1208 case QID_AC_BE:
1209 rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1210 rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC2, 1);
1211 rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1212 break;
1213 case QID_AC_BK:
1214 rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1215 rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC3, 1);
1216 rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1217 break;
1218 case QID_RX:
1219 rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
1220 rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX, 1);
1221 rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
1222 break;
1223 case QID_BEACON:
1224 rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
1225 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 0);
1226 rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 0);
1227 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1228 rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
1229
1230 /*
1231 * Wait for possibly running tbtt tasklets.
1232 */
1233 tasklet_disable(&rt2x00dev->tbtt_tasklet);
1234 break;
1235 default:
1236 break;
1237 }
1238 }
1239
1240 /*
1241 * Firmware functions
1242 */
1243 static char *rt61pci_get_firmware_name(struct rt2x00_dev *rt2x00dev)
1244 {
1245 u16 chip;
1246 char *fw_name;
1247
1248 pci_read_config_word(to_pci_dev(rt2x00dev->dev), PCI_DEVICE_ID, &chip);
1249 switch (chip) {
1250 case RT2561_PCI_ID:
1251 fw_name = FIRMWARE_RT2561;
1252 break;
1253 case RT2561s_PCI_ID:
1254 fw_name = FIRMWARE_RT2561s;
1255 break;
1256 case RT2661_PCI_ID:
1257 fw_name = FIRMWARE_RT2661;
1258 break;
1259 default:
1260 fw_name = NULL;
1261 break;
1262 }
1263
1264 return fw_name;
1265 }
1266
1267 static int rt61pci_check_firmware(struct rt2x00_dev *rt2x00dev,
1268 const u8 *data, const size_t len)
1269 {
1270 u16 fw_crc;
1271 u16 crc;
1272
1273 /*
1274 * Only support 8kb firmware files.
1275 */
1276 if (len != 8192)
1277 return FW_BAD_LENGTH;
1278
1279 /*
1280 * The last 2 bytes in the firmware array are the crc checksum itself.
1281 * This means that we should never pass those 2 bytes to the crc
1282 * algorithm.
1283 */
1284 fw_crc = (data[len - 2] << 8 | data[len - 1]);
1285
1286 /*
1287 * Use the crc itu-t algorithm.
1288 */
1289 crc = crc_itu_t(0, data, len - 2);
1290 crc = crc_itu_t_byte(crc, 0);
1291 crc = crc_itu_t_byte(crc, 0);
1292
1293 return (fw_crc == crc) ? FW_OK : FW_BAD_CRC;
1294 }
1295
1296 static int rt61pci_load_firmware(struct rt2x00_dev *rt2x00dev,
1297 const u8 *data, const size_t len)
1298 {
1299 int i;
1300 u32 reg;
1301
1302 /*
1303 * Wait for stable hardware.
1304 */
1305 for (i = 0; i < 100; i++) {
1306 rt2x00pci_register_read(rt2x00dev, MAC_CSR0, &reg);
1307 if (reg)
1308 break;
1309 msleep(1);
1310 }
1311
1312 if (!reg) {
1313 ERROR(rt2x00dev, "Unstable hardware.\n");
1314 return -EBUSY;
1315 }
1316
1317 /*
1318 * Prepare MCU and mailbox for firmware loading.
1319 */
1320 reg = 0;
1321 rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 1);
1322 rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1323 rt2x00pci_register_write(rt2x00dev, M2H_CMD_DONE_CSR, 0xffffffff);
1324 rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
1325 rt2x00pci_register_write(rt2x00dev, HOST_CMD_CSR, 0);
1326
1327 /*
1328 * Write firmware to device.
1329 */
1330 reg = 0;
1331 rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 1);
1332 rt2x00_set_field32(&reg, MCU_CNTL_CSR_SELECT_BANK, 1);
1333 rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1334
1335 rt2x00pci_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE,
1336 data, len);
1337
1338 rt2x00_set_field32(&reg, MCU_CNTL_CSR_SELECT_BANK, 0);
1339 rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1340
1341 rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 0);
1342 rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1343
1344 for (i = 0; i < 100; i++) {
1345 rt2x00pci_register_read(rt2x00dev, MCU_CNTL_CSR, &reg);
1346 if (rt2x00_get_field32(reg, MCU_CNTL_CSR_READY))
1347 break;
1348 msleep(1);
1349 }
1350
1351 if (i == 100) {
1352 ERROR(rt2x00dev, "MCU Control register not ready.\n");
1353 return -EBUSY;
1354 }
1355
1356 /*
1357 * Hardware needs another millisecond before it is ready.
1358 */
1359 msleep(1);
1360
1361 /*
1362 * Reset MAC and BBP registers.
1363 */
1364 reg = 0;
1365 rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 1);
1366 rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 1);
1367 rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1368
1369 rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1370 rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 0);
1371 rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 0);
1372 rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1373
1374 rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1375 rt2x00_set_field32(&reg, MAC_CSR1_HOST_READY, 1);
1376 rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1377
1378 return 0;
1379 }
1380
1381 /*
1382 * Initialization functions.
1383 */
1384 static bool rt61pci_get_entry_state(struct queue_entry *entry)
1385 {
1386 struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1387 u32 word;
1388
1389 if (entry->queue->qid == QID_RX) {
1390 rt2x00_desc_read(entry_priv->desc, 0, &word);
1391
1392 return rt2x00_get_field32(word, RXD_W0_OWNER_NIC);
1393 } else {
1394 rt2x00_desc_read(entry_priv->desc, 0, &word);
1395
1396 return (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
1397 rt2x00_get_field32(word, TXD_W0_VALID));
1398 }
1399 }
1400
1401 static void rt61pci_clear_entry(struct queue_entry *entry)
1402 {
1403 struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1404 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1405 u32 word;
1406
1407 if (entry->queue->qid == QID_RX) {
1408 rt2x00_desc_read(entry_priv->desc, 5, &word);
1409 rt2x00_set_field32(&word, RXD_W5_BUFFER_PHYSICAL_ADDRESS,
1410 skbdesc->skb_dma);
1411 rt2x00_desc_write(entry_priv->desc, 5, word);
1412
1413 rt2x00_desc_read(entry_priv->desc, 0, &word);
1414 rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
1415 rt2x00_desc_write(entry_priv->desc, 0, word);
1416 } else {
1417 rt2x00_desc_read(entry_priv->desc, 0, &word);
1418 rt2x00_set_field32(&word, TXD_W0_VALID, 0);
1419 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
1420 rt2x00_desc_write(entry_priv->desc, 0, word);
1421 }
1422 }
1423
1424 static int rt61pci_init_queues(struct rt2x00_dev *rt2x00dev)
1425 {
1426 struct queue_entry_priv_pci *entry_priv;
1427 u32 reg;
1428
1429 /*
1430 * Initialize registers.
1431 */
1432 rt2x00pci_register_read(rt2x00dev, TX_RING_CSR0, &reg);
1433 rt2x00_set_field32(&reg, TX_RING_CSR0_AC0_RING_SIZE,
1434 rt2x00dev->tx[0].limit);
1435 rt2x00_set_field32(&reg, TX_RING_CSR0_AC1_RING_SIZE,
1436 rt2x00dev->tx[1].limit);
1437 rt2x00_set_field32(&reg, TX_RING_CSR0_AC2_RING_SIZE,
1438 rt2x00dev->tx[2].limit);
1439 rt2x00_set_field32(&reg, TX_RING_CSR0_AC3_RING_SIZE,
1440 rt2x00dev->tx[3].limit);
1441 rt2x00pci_register_write(rt2x00dev, TX_RING_CSR0, reg);
1442
1443 rt2x00pci_register_read(rt2x00dev, TX_RING_CSR1, &reg);
1444 rt2x00_set_field32(&reg, TX_RING_CSR1_TXD_SIZE,
1445 rt2x00dev->tx[0].desc_size / 4);
1446 rt2x00pci_register_write(rt2x00dev, TX_RING_CSR1, reg);
1447
1448 entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
1449 rt2x00pci_register_read(rt2x00dev, AC0_BASE_CSR, &reg);
1450 rt2x00_set_field32(&reg, AC0_BASE_CSR_RING_REGISTER,
1451 entry_priv->desc_dma);
1452 rt2x00pci_register_write(rt2x00dev, AC0_BASE_CSR, reg);
1453
1454 entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
1455 rt2x00pci_register_read(rt2x00dev, AC1_BASE_CSR, &reg);
1456 rt2x00_set_field32(&reg, AC1_BASE_CSR_RING_REGISTER,
1457 entry_priv->desc_dma);
1458 rt2x00pci_register_write(rt2x00dev, AC1_BASE_CSR, reg);
1459
1460 entry_priv = rt2x00dev->tx[2].entries[0].priv_data;
1461 rt2x00pci_register_read(rt2x00dev, AC2_BASE_CSR, &reg);
1462 rt2x00_set_field32(&reg, AC2_BASE_CSR_RING_REGISTER,
1463 entry_priv->desc_dma);
1464 rt2x00pci_register_write(rt2x00dev, AC2_BASE_CSR, reg);
1465
1466 entry_priv = rt2x00dev->tx[3].entries[0].priv_data;
1467 rt2x00pci_register_read(rt2x00dev, AC3_BASE_CSR, &reg);
1468 rt2x00_set_field32(&reg, AC3_BASE_CSR_RING_REGISTER,
1469 entry_priv->desc_dma);
1470 rt2x00pci_register_write(rt2x00dev, AC3_BASE_CSR, reg);
1471
1472 rt2x00pci_register_read(rt2x00dev, RX_RING_CSR, &reg);
1473 rt2x00_set_field32(&reg, RX_RING_CSR_RING_SIZE, rt2x00dev->rx->limit);
1474 rt2x00_set_field32(&reg, RX_RING_CSR_RXD_SIZE,
1475 rt2x00dev->rx->desc_size / 4);
1476 rt2x00_set_field32(&reg, RX_RING_CSR_RXD_WRITEBACK_SIZE, 4);
1477 rt2x00pci_register_write(rt2x00dev, RX_RING_CSR, reg);
1478
1479 entry_priv = rt2x00dev->rx->entries[0].priv_data;
1480 rt2x00pci_register_read(rt2x00dev, RX_BASE_CSR, &reg);
1481 rt2x00_set_field32(&reg, RX_BASE_CSR_RING_REGISTER,
1482 entry_priv->desc_dma);
1483 rt2x00pci_register_write(rt2x00dev, RX_BASE_CSR, reg);
1484
1485 rt2x00pci_register_read(rt2x00dev, TX_DMA_DST_CSR, &reg);
1486 rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC0, 2);
1487 rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC1, 2);
1488 rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC2, 2);
1489 rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC3, 2);
1490 rt2x00pci_register_write(rt2x00dev, TX_DMA_DST_CSR, reg);
1491
1492 rt2x00pci_register_read(rt2x00dev, LOAD_TX_RING_CSR, &reg);
1493 rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC0, 1);
1494 rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC1, 1);
1495 rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC2, 1);
1496 rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC3, 1);
1497 rt2x00pci_register_write(rt2x00dev, LOAD_TX_RING_CSR, reg);
1498
1499 rt2x00pci_register_read(rt2x00dev, RX_CNTL_CSR, &reg);
1500 rt2x00_set_field32(&reg, RX_CNTL_CSR_LOAD_RXD, 1);
1501 rt2x00pci_register_write(rt2x00dev, RX_CNTL_CSR, reg);
1502
1503 return 0;
1504 }
1505
1506 static int rt61pci_init_registers(struct rt2x00_dev *rt2x00dev)
1507 {
1508 u32 reg;
1509
1510 rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
1511 rt2x00_set_field32(&reg, TXRX_CSR0_AUTO_TX_SEQ, 1);
1512 rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX, 0);
1513 rt2x00_set_field32(&reg, TXRX_CSR0_TX_WITHOUT_WAITING, 0);
1514 rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
1515
1516 rt2x00pci_register_read(rt2x00dev, TXRX_CSR1, &reg);
1517 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0, 47); /* CCK Signal */
1518 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0_VALID, 1);
1519 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1, 30); /* Rssi */
1520 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1_VALID, 1);
1521 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2, 42); /* OFDM Rate */
1522 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2_VALID, 1);
1523 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3, 30); /* Rssi */
1524 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3_VALID, 1);
1525 rt2x00pci_register_write(rt2x00dev, TXRX_CSR1, reg);
1526
1527 /*
1528 * CCK TXD BBP registers
1529 */
1530 rt2x00pci_register_read(rt2x00dev, TXRX_CSR2, &reg);
1531 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0, 13);
1532 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0_VALID, 1);
1533 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1, 12);
1534 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1_VALID, 1);
1535 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2, 11);
1536 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2_VALID, 1);
1537 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3, 10);
1538 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3_VALID, 1);
1539 rt2x00pci_register_write(rt2x00dev, TXRX_CSR2, reg);
1540
1541 /*
1542 * OFDM TXD BBP registers
1543 */
1544 rt2x00pci_register_read(rt2x00dev, TXRX_CSR3, &reg);
1545 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0, 7);
1546 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0_VALID, 1);
1547 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1, 6);
1548 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1_VALID, 1);
1549 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2, 5);
1550 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2_VALID, 1);
1551 rt2x00pci_register_write(rt2x00dev, TXRX_CSR3, reg);
1552
1553 rt2x00pci_register_read(rt2x00dev, TXRX_CSR7, &reg);
1554 rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_6MBS, 59);
1555 rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_9MBS, 53);
1556 rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_12MBS, 49);
1557 rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_18MBS, 46);
1558 rt2x00pci_register_write(rt2x00dev, TXRX_CSR7, reg);
1559
1560 rt2x00pci_register_read(rt2x00dev, TXRX_CSR8, &reg);
1561 rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_24MBS, 44);
1562 rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_36MBS, 42);
1563 rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_48MBS, 42);
1564 rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_54MBS, 42);
1565 rt2x00pci_register_write(rt2x00dev, TXRX_CSR8, reg);
1566
1567 rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
1568 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_INTERVAL, 0);
1569 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 0);
1570 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_SYNC, 0);
1571 rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 0);
1572 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1573 rt2x00_set_field32(&reg, TXRX_CSR9_TIMESTAMP_COMPENSATE, 0);
1574 rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
1575
1576 rt2x00pci_register_write(rt2x00dev, TXRX_CSR15, 0x0000000f);
1577
1578 rt2x00pci_register_write(rt2x00dev, MAC_CSR6, 0x00000fff);
1579
1580 rt2x00pci_register_read(rt2x00dev, MAC_CSR9, &reg);
1581 rt2x00_set_field32(&reg, MAC_CSR9_CW_SELECT, 0);
1582 rt2x00pci_register_write(rt2x00dev, MAC_CSR9, reg);
1583
1584 rt2x00pci_register_write(rt2x00dev, MAC_CSR10, 0x0000071c);
1585
1586 if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
1587 return -EBUSY;
1588
1589 rt2x00pci_register_write(rt2x00dev, MAC_CSR13, 0x0000e000);
1590
1591 /*
1592 * Invalidate all Shared Keys (SEC_CSR0),
1593 * and clear the Shared key Cipher algorithms (SEC_CSR1 & SEC_CSR5)
1594 */
1595 rt2x00pci_register_write(rt2x00dev, SEC_CSR0, 0x00000000);
1596 rt2x00pci_register_write(rt2x00dev, SEC_CSR1, 0x00000000);
1597 rt2x00pci_register_write(rt2x00dev, SEC_CSR5, 0x00000000);
1598
1599 rt2x00pci_register_write(rt2x00dev, PHY_CSR1, 0x000023b0);
1600 rt2x00pci_register_write(rt2x00dev, PHY_CSR5, 0x060a100c);
1601 rt2x00pci_register_write(rt2x00dev, PHY_CSR6, 0x00080606);
1602 rt2x00pci_register_write(rt2x00dev, PHY_CSR7, 0x00000a08);
1603
1604 rt2x00pci_register_write(rt2x00dev, PCI_CFG_CSR, 0x28ca4404);
1605
1606 rt2x00pci_register_write(rt2x00dev, TEST_MODE_CSR, 0x00000200);
1607
1608 rt2x00pci_register_write(rt2x00dev, M2H_CMD_DONE_CSR, 0xffffffff);
1609
1610 /*
1611 * Clear all beacons
1612 * For the Beacon base registers we only need to clear
1613 * the first byte since that byte contains the VALID and OWNER
1614 * bits which (when set to 0) will invalidate the entire beacon.
1615 */
1616 rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE0, 0);
1617 rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE1, 0);
1618 rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE2, 0);
1619 rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE3, 0);
1620
1621 /*
1622 * We must clear the error counters.
1623 * These registers are cleared on read,
1624 * so we may pass a useless variable to store the value.
1625 */
1626 rt2x00pci_register_read(rt2x00dev, STA_CSR0, &reg);
1627 rt2x00pci_register_read(rt2x00dev, STA_CSR1, &reg);
1628 rt2x00pci_register_read(rt2x00dev, STA_CSR2, &reg);
1629
1630 /*
1631 * Reset MAC and BBP registers.
1632 */
1633 rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1634 rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 1);
1635 rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 1);
1636 rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1637
1638 rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1639 rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 0);
1640 rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 0);
1641 rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1642
1643 rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1644 rt2x00_set_field32(&reg, MAC_CSR1_HOST_READY, 1);
1645 rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1646
1647 return 0;
1648 }
1649
1650 static int rt61pci_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
1651 {
1652 unsigned int i;
1653 u8 value;
1654
1655 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1656 rt61pci_bbp_read(rt2x00dev, 0, &value);
1657 if ((value != 0xff) && (value != 0x00))
1658 return 0;
1659 udelay(REGISTER_BUSY_DELAY);
1660 }
1661
1662 ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
1663 return -EACCES;
1664 }
1665
1666 static int rt61pci_init_bbp(struct rt2x00_dev *rt2x00dev)
1667 {
1668 unsigned int i;
1669 u16 eeprom;
1670 u8 reg_id;
1671 u8 value;
1672
1673 if (unlikely(rt61pci_wait_bbp_ready(rt2x00dev)))
1674 return -EACCES;
1675
1676 rt61pci_bbp_write(rt2x00dev, 3, 0x00);
1677 rt61pci_bbp_write(rt2x00dev, 15, 0x30);
1678 rt61pci_bbp_write(rt2x00dev, 21, 0xc8);
1679 rt61pci_bbp_write(rt2x00dev, 22, 0x38);
1680 rt61pci_bbp_write(rt2x00dev, 23, 0x06);
1681 rt61pci_bbp_write(rt2x00dev, 24, 0xfe);
1682 rt61pci_bbp_write(rt2x00dev, 25, 0x0a);
1683 rt61pci_bbp_write(rt2x00dev, 26, 0x0d);
1684 rt61pci_bbp_write(rt2x00dev, 34, 0x12);
1685 rt61pci_bbp_write(rt2x00dev, 37, 0x07);
1686 rt61pci_bbp_write(rt2x00dev, 39, 0xf8);
1687 rt61pci_bbp_write(rt2x00dev, 41, 0x60);
1688 rt61pci_bbp_write(rt2x00dev, 53, 0x10);
1689 rt61pci_bbp_write(rt2x00dev, 54, 0x18);
1690 rt61pci_bbp_write(rt2x00dev, 60, 0x10);
1691 rt61pci_bbp_write(rt2x00dev, 61, 0x04);
1692 rt61pci_bbp_write(rt2x00dev, 62, 0x04);
1693 rt61pci_bbp_write(rt2x00dev, 75, 0xfe);
1694 rt61pci_bbp_write(rt2x00dev, 86, 0xfe);
1695 rt61pci_bbp_write(rt2x00dev, 88, 0xfe);
1696 rt61pci_bbp_write(rt2x00dev, 90, 0x0f);
1697 rt61pci_bbp_write(rt2x00dev, 99, 0x00);
1698 rt61pci_bbp_write(rt2x00dev, 102, 0x16);
1699 rt61pci_bbp_write(rt2x00dev, 107, 0x04);
1700
1701 for (i = 0; i < EEPROM_BBP_SIZE; i++) {
1702 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
1703
1704 if (eeprom != 0xffff && eeprom != 0x0000) {
1705 reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
1706 value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
1707 rt61pci_bbp_write(rt2x00dev, reg_id, value);
1708 }
1709 }
1710
1711 return 0;
1712 }
1713
1714 /*
1715 * Device state switch handlers.
1716 */
1717 static void rt61pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
1718 enum dev_state state)
1719 {
1720 int mask = (state == STATE_RADIO_IRQ_OFF);
1721 u32 reg;
1722 unsigned long flags;
1723
1724 /*
1725 * When interrupts are being enabled, the interrupt registers
1726 * should clear the register to assure a clean state.
1727 */
1728 if (state == STATE_RADIO_IRQ_ON) {
1729 rt2x00pci_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
1730 rt2x00pci_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
1731
1732 rt2x00pci_register_read(rt2x00dev, MCU_INT_SOURCE_CSR, &reg);
1733 rt2x00pci_register_write(rt2x00dev, MCU_INT_SOURCE_CSR, reg);
1734
1735 /*
1736 * Enable tasklets.
1737 */
1738 tasklet_enable(&rt2x00dev->txstatus_tasklet);
1739 tasklet_enable(&rt2x00dev->rxdone_tasklet);
1740 tasklet_enable(&rt2x00dev->autowake_tasklet);
1741 }
1742
1743 /*
1744 * Only toggle the interrupts bits we are going to use.
1745 * Non-checked interrupt bits are disabled by default.
1746 */
1747 spin_lock_irqsave(&rt2x00dev->irqmask_lock, flags);
1748
1749 rt2x00pci_register_read(rt2x00dev, INT_MASK_CSR, &reg);
1750 rt2x00_set_field32(&reg, INT_MASK_CSR_TXDONE, mask);
1751 rt2x00_set_field32(&reg, INT_MASK_CSR_RXDONE, mask);
1752 rt2x00_set_field32(&reg, INT_MASK_CSR_BEACON_DONE, mask);
1753 rt2x00_set_field32(&reg, INT_MASK_CSR_ENABLE_MITIGATION, mask);
1754 rt2x00_set_field32(&reg, INT_MASK_CSR_MITIGATION_PERIOD, 0xff);
1755 rt2x00pci_register_write(rt2x00dev, INT_MASK_CSR, reg);
1756
1757 rt2x00pci_register_read(rt2x00dev, MCU_INT_MASK_CSR, &reg);
1758 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_0, mask);
1759 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_1, mask);
1760 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_2, mask);
1761 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_3, mask);
1762 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_4, mask);
1763 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_5, mask);
1764 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_6, mask);
1765 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_7, mask);
1766 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_TWAKEUP, mask);
1767 rt2x00pci_register_write(rt2x00dev, MCU_INT_MASK_CSR, reg);
1768
1769 spin_unlock_irqrestore(&rt2x00dev->irqmask_lock, flags);
1770
1771 if (state == STATE_RADIO_IRQ_OFF) {
1772 /*
1773 * Ensure that all tasklets are finished.
1774 */
1775 tasklet_disable(&rt2x00dev->txstatus_tasklet);
1776 tasklet_disable(&rt2x00dev->rxdone_tasklet);
1777 tasklet_disable(&rt2x00dev->autowake_tasklet);
1778 }
1779 }
1780
1781 static int rt61pci_enable_radio(struct rt2x00_dev *rt2x00dev)
1782 {
1783 u32 reg;
1784
1785 /*
1786 * Initialize all registers.
1787 */
1788 if (unlikely(rt61pci_init_queues(rt2x00dev) ||
1789 rt61pci_init_registers(rt2x00dev) ||
1790 rt61pci_init_bbp(rt2x00dev)))
1791 return -EIO;
1792
1793 /*
1794 * Enable RX.
1795 */
1796 rt2x00pci_register_read(rt2x00dev, RX_CNTL_CSR, &reg);
1797 rt2x00_set_field32(&reg, RX_CNTL_CSR_ENABLE_RX_DMA, 1);
1798 rt2x00pci_register_write(rt2x00dev, RX_CNTL_CSR, reg);
1799
1800 return 0;
1801 }
1802
1803 static void rt61pci_disable_radio(struct rt2x00_dev *rt2x00dev)
1804 {
1805 /*
1806 * Disable power
1807 */
1808 rt2x00pci_register_write(rt2x00dev, MAC_CSR10, 0x00001818);
1809 }
1810
1811 static int rt61pci_set_state(struct rt2x00_dev *rt2x00dev, enum dev_state state)
1812 {
1813 u32 reg, reg2;
1814 unsigned int i;
1815 char put_to_sleep;
1816
1817 put_to_sleep = (state != STATE_AWAKE);
1818
1819 rt2x00pci_register_read(rt2x00dev, MAC_CSR12, &reg);
1820 rt2x00_set_field32(&reg, MAC_CSR12_FORCE_WAKEUP, !put_to_sleep);
1821 rt2x00_set_field32(&reg, MAC_CSR12_PUT_TO_SLEEP, put_to_sleep);
1822 rt2x00pci_register_write(rt2x00dev, MAC_CSR12, reg);
1823
1824 /*
1825 * Device is not guaranteed to be in the requested state yet.
1826 * We must wait until the register indicates that the
1827 * device has entered the correct state.
1828 */
1829 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1830 rt2x00pci_register_read(rt2x00dev, MAC_CSR12, &reg2);
1831 state = rt2x00_get_field32(reg2, MAC_CSR12_BBP_CURRENT_STATE);
1832 if (state == !put_to_sleep)
1833 return 0;
1834 rt2x00pci_register_write(rt2x00dev, MAC_CSR12, reg);
1835 msleep(10);
1836 }
1837
1838 return -EBUSY;
1839 }
1840
1841 static int rt61pci_set_device_state(struct rt2x00_dev *rt2x00dev,
1842 enum dev_state state)
1843 {
1844 int retval = 0;
1845
1846 switch (state) {
1847 case STATE_RADIO_ON:
1848 retval = rt61pci_enable_radio(rt2x00dev);
1849 break;
1850 case STATE_RADIO_OFF:
1851 rt61pci_disable_radio(rt2x00dev);
1852 break;
1853 case STATE_RADIO_IRQ_ON:
1854 case STATE_RADIO_IRQ_OFF:
1855 rt61pci_toggle_irq(rt2x00dev, state);
1856 break;
1857 case STATE_DEEP_SLEEP:
1858 case STATE_SLEEP:
1859 case STATE_STANDBY:
1860 case STATE_AWAKE:
1861 retval = rt61pci_set_state(rt2x00dev, state);
1862 break;
1863 default:
1864 retval = -ENOTSUPP;
1865 break;
1866 }
1867
1868 if (unlikely(retval))
1869 ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
1870 state, retval);
1871
1872 return retval;
1873 }
1874
1875 /*
1876 * TX descriptor initialization
1877 */
1878 static void rt61pci_write_tx_desc(struct queue_entry *entry,
1879 struct txentry_desc *txdesc)
1880 {
1881 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1882 struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1883 __le32 *txd = entry_priv->desc;
1884 u32 word;
1885
1886 /*
1887 * Start writing the descriptor words.
1888 */
1889 rt2x00_desc_read(txd, 1, &word);
1890 rt2x00_set_field32(&word, TXD_W1_HOST_Q_ID, entry->queue->qid);
1891 rt2x00_set_field32(&word, TXD_W1_AIFSN, entry->queue->aifs);
1892 rt2x00_set_field32(&word, TXD_W1_CWMIN, entry->queue->cw_min);
1893 rt2x00_set_field32(&word, TXD_W1_CWMAX, entry->queue->cw_max);
1894 rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, txdesc->iv_offset);
1895 rt2x00_set_field32(&word, TXD_W1_HW_SEQUENCE,
1896 test_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags));
1897 rt2x00_set_field32(&word, TXD_W1_BUFFER_COUNT, 1);
1898 rt2x00_desc_write(txd, 1, word);
1899
1900 rt2x00_desc_read(txd, 2, &word);
1901 rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->u.plcp.signal);
1902 rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->u.plcp.service);
1903 rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW,
1904 txdesc->u.plcp.length_low);
1905 rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH,
1906 txdesc->u.plcp.length_high);
1907 rt2x00_desc_write(txd, 2, word);
1908
1909 if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags)) {
1910 _rt2x00_desc_write(txd, 3, skbdesc->iv[0]);
1911 _rt2x00_desc_write(txd, 4, skbdesc->iv[1]);
1912 }
1913
1914 rt2x00_desc_read(txd, 5, &word);
1915 rt2x00_set_field32(&word, TXD_W5_PID_TYPE, entry->queue->qid);
1916 rt2x00_set_field32(&word, TXD_W5_PID_SUBTYPE,
1917 skbdesc->entry->entry_idx);
1918 rt2x00_set_field32(&word, TXD_W5_TX_POWER,
1919 TXPOWER_TO_DEV(entry->queue->rt2x00dev->tx_power));
1920 rt2x00_set_field32(&word, TXD_W5_WAITING_DMA_DONE_INT, 1);
1921 rt2x00_desc_write(txd, 5, word);
1922
1923 if (entry->queue->qid != QID_BEACON) {
1924 rt2x00_desc_read(txd, 6, &word);
1925 rt2x00_set_field32(&word, TXD_W6_BUFFER_PHYSICAL_ADDRESS,
1926 skbdesc->skb_dma);
1927 rt2x00_desc_write(txd, 6, word);
1928
1929 rt2x00_desc_read(txd, 11, &word);
1930 rt2x00_set_field32(&word, TXD_W11_BUFFER_LENGTH0,
1931 txdesc->length);
1932 rt2x00_desc_write(txd, 11, word);
1933 }
1934
1935 /*
1936 * Writing TXD word 0 must the last to prevent a race condition with
1937 * the device, whereby the device may take hold of the TXD before we
1938 * finished updating it.
1939 */
1940 rt2x00_desc_read(txd, 0, &word);
1941 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
1942 rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1943 rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1944 test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1945 rt2x00_set_field32(&word, TXD_W0_ACK,
1946 test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1947 rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1948 test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1949 rt2x00_set_field32(&word, TXD_W0_OFDM,
1950 (txdesc->rate_mode == RATE_MODE_OFDM));
1951 rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->u.plcp.ifs);
1952 rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1953 test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
1954 rt2x00_set_field32(&word, TXD_W0_TKIP_MIC,
1955 test_bit(ENTRY_TXD_ENCRYPT_MMIC, &txdesc->flags));
1956 rt2x00_set_field32(&word, TXD_W0_KEY_TABLE,
1957 test_bit(ENTRY_TXD_ENCRYPT_PAIRWISE, &txdesc->flags));
1958 rt2x00_set_field32(&word, TXD_W0_KEY_INDEX, txdesc->key_idx);
1959 rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, txdesc->length);
1960 rt2x00_set_field32(&word, TXD_W0_BURST,
1961 test_bit(ENTRY_TXD_BURST, &txdesc->flags));
1962 rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, txdesc->cipher);
1963 rt2x00_desc_write(txd, 0, word);
1964
1965 /*
1966 * Register descriptor details in skb frame descriptor.
1967 */
1968 skbdesc->desc = txd;
1969 skbdesc->desc_len = (entry->queue->qid == QID_BEACON) ? TXINFO_SIZE :
1970 TXD_DESC_SIZE;
1971 }
1972
1973 /*
1974 * TX data initialization
1975 */
1976 static void rt61pci_write_beacon(struct queue_entry *entry,
1977 struct txentry_desc *txdesc)
1978 {
1979 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1980 struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1981 unsigned int beacon_base;
1982 unsigned int padding_len;
1983 u32 orig_reg, reg;
1984
1985 /*
1986 * Disable beaconing while we are reloading the beacon data,
1987 * otherwise we might be sending out invalid data.
1988 */
1989 rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
1990 orig_reg = reg;
1991 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1992 rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
1993
1994 /*
1995 * Write the TX descriptor for the beacon.
1996 */
1997 rt61pci_write_tx_desc(entry, txdesc);
1998
1999 /*
2000 * Dump beacon to userspace through debugfs.
2001 */
2002 rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry->skb);
2003
2004 /*
2005 * Write entire beacon with descriptor and padding to register.
2006 */
2007 padding_len = roundup(entry->skb->len, 4) - entry->skb->len;
2008 if (padding_len && skb_pad(entry->skb, padding_len)) {
2009 ERROR(rt2x00dev, "Failure padding beacon, aborting\n");
2010 /* skb freed by skb_pad() on failure */
2011 entry->skb = NULL;
2012 rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, orig_reg);
2013 return;
2014 }
2015
2016 beacon_base = HW_BEACON_OFFSET(entry->entry_idx);
2017 rt2x00pci_register_multiwrite(rt2x00dev, beacon_base,
2018 entry_priv->desc, TXINFO_SIZE);
2019 rt2x00pci_register_multiwrite(rt2x00dev, beacon_base + TXINFO_SIZE,
2020 entry->skb->data,
2021 entry->skb->len + padding_len);
2022
2023 /*
2024 * Enable beaconing again.
2025 *
2026 * For Wi-Fi faily generated beacons between participating
2027 * stations. Set TBTT phase adaptive adjustment step to 8us.
2028 */
2029 rt2x00pci_register_write(rt2x00dev, TXRX_CSR10, 0x00001008);
2030
2031 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 1);
2032 rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
2033
2034 /*
2035 * Clean up beacon skb.
2036 */
2037 dev_kfree_skb_any(entry->skb);
2038 entry->skb = NULL;
2039 }
2040
2041 static void rt61pci_clear_beacon(struct queue_entry *entry)
2042 {
2043 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
2044 u32 reg;
2045
2046 /*
2047 * Disable beaconing while we are reloading the beacon data,
2048 * otherwise we might be sending out invalid data.
2049 */
2050 rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
2051 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
2052 rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
2053
2054 /*
2055 * Clear beacon.
2056 */
2057 rt2x00pci_register_write(rt2x00dev,
2058 HW_BEACON_OFFSET(entry->entry_idx), 0);
2059
2060 /*
2061 * Enable beaconing again.
2062 */
2063 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 1);
2064 rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
2065 }
2066
2067 /*
2068 * RX control handlers
2069 */
2070 static int rt61pci_agc_to_rssi(struct rt2x00_dev *rt2x00dev, int rxd_w1)
2071 {
2072 u8 offset = rt2x00dev->lna_gain;
2073 u8 lna;
2074
2075 lna = rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_LNA);
2076 switch (lna) {
2077 case 3:
2078 offset += 90;
2079 break;
2080 case 2:
2081 offset += 74;
2082 break;
2083 case 1:
2084 offset += 64;
2085 break;
2086 default:
2087 return 0;
2088 }
2089
2090 if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) {
2091 if (lna == 3 || lna == 2)
2092 offset += 10;
2093 }
2094
2095 return rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_AGC) * 2 - offset;
2096 }
2097
2098 static void rt61pci_fill_rxdone(struct queue_entry *entry,
2099 struct rxdone_entry_desc *rxdesc)
2100 {
2101 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
2102 struct queue_entry_priv_pci *entry_priv = entry->priv_data;
2103 u32 word0;
2104 u32 word1;
2105
2106 rt2x00_desc_read(entry_priv->desc, 0, &word0);
2107 rt2x00_desc_read(entry_priv->desc, 1, &word1);
2108
2109 if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
2110 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
2111
2112 rxdesc->cipher = rt2x00_get_field32(word0, RXD_W0_CIPHER_ALG);
2113 rxdesc->cipher_status = rt2x00_get_field32(word0, RXD_W0_CIPHER_ERROR);
2114
2115 if (rxdesc->cipher != CIPHER_NONE) {
2116 _rt2x00_desc_read(entry_priv->desc, 2, &rxdesc->iv[0]);
2117 _rt2x00_desc_read(entry_priv->desc, 3, &rxdesc->iv[1]);
2118 rxdesc->dev_flags |= RXDONE_CRYPTO_IV;
2119
2120 _rt2x00_desc_read(entry_priv->desc, 4, &rxdesc->icv);
2121 rxdesc->dev_flags |= RXDONE_CRYPTO_ICV;
2122
2123 /*
2124 * Hardware has stripped IV/EIV data from 802.11 frame during
2125 * decryption. It has provided the data separately but rt2x00lib
2126 * should decide if it should be reinserted.
2127 */
2128 rxdesc->flags |= RX_FLAG_IV_STRIPPED;
2129
2130 /*
2131 * The hardware has already checked the Michael Mic and has
2132 * stripped it from the frame. Signal this to mac80211.
2133 */
2134 rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;
2135
2136 if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
2137 rxdesc->flags |= RX_FLAG_DECRYPTED;
2138 else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
2139 rxdesc->flags |= RX_FLAG_MMIC_ERROR;
2140 }
2141
2142 /*
2143 * Obtain the status about this packet.
2144 * When frame was received with an OFDM bitrate,
2145 * the signal is the PLCP value. If it was received with
2146 * a CCK bitrate the signal is the rate in 100kbit/s.
2147 */
2148 rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL);
2149 rxdesc->rssi = rt61pci_agc_to_rssi(rt2x00dev, word1);
2150 rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
2151
2152 if (rt2x00_get_field32(word0, RXD_W0_OFDM))
2153 rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
2154 else
2155 rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
2156 if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
2157 rxdesc->dev_flags |= RXDONE_MY_BSS;
2158 }
2159
2160 /*
2161 * Interrupt functions.
2162 */
2163 static void rt61pci_txdone(struct rt2x00_dev *rt2x00dev)
2164 {
2165 struct data_queue *queue;
2166 struct queue_entry *entry;
2167 struct queue_entry *entry_done;
2168 struct queue_entry_priv_pci *entry_priv;
2169 struct txdone_entry_desc txdesc;
2170 u32 word;
2171 u32 reg;
2172 int type;
2173 int index;
2174 int i;
2175
2176 /*
2177 * TX_STA_FIFO is a stack of X entries, hence read TX_STA_FIFO
2178 * at most X times and also stop processing once the TX_STA_FIFO_VALID
2179 * flag is not set anymore.
2180 *
2181 * The legacy drivers use X=TX_RING_SIZE but state in a comment
2182 * that the TX_STA_FIFO stack has a size of 16. We stick to our
2183 * tx ring size for now.
2184 */
2185 for (i = 0; i < rt2x00dev->ops->tx->entry_num; i++) {
2186 rt2x00pci_register_read(rt2x00dev, STA_CSR4, &reg);
2187 if (!rt2x00_get_field32(reg, STA_CSR4_VALID))
2188 break;
2189
2190 /*
2191 * Skip this entry when it contains an invalid
2192 * queue identication number.
2193 */
2194 type = rt2x00_get_field32(reg, STA_CSR4_PID_TYPE);
2195 queue = rt2x00queue_get_tx_queue(rt2x00dev, type);
2196 if (unlikely(!queue))
2197 continue;
2198
2199 /*
2200 * Skip this entry when it contains an invalid
2201 * index number.
2202 */
2203 index = rt2x00_get_field32(reg, STA_CSR4_PID_SUBTYPE);
2204 if (unlikely(index >= queue->limit))
2205 continue;
2206
2207 entry = &queue->entries[index];
2208 entry_priv = entry->priv_data;
2209 rt2x00_desc_read(entry_priv->desc, 0, &word);
2210
2211 if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
2212 !rt2x00_get_field32(word, TXD_W0_VALID))
2213 return;
2214
2215 entry_done = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
2216 while (entry != entry_done) {
2217 /* Catch up.
2218 * Just report any entries we missed as failed.
2219 */
2220 WARNING(rt2x00dev,
2221 "TX status report missed for entry %d\n",
2222 entry_done->entry_idx);
2223
2224 rt2x00lib_txdone_noinfo(entry_done, TXDONE_UNKNOWN);
2225 entry_done = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
2226 }
2227
2228 /*
2229 * Obtain the status about this packet.
2230 */
2231 txdesc.flags = 0;
2232 switch (rt2x00_get_field32(reg, STA_CSR4_TX_RESULT)) {
2233 case 0: /* Success, maybe with retry */
2234 __set_bit(TXDONE_SUCCESS, &txdesc.flags);
2235 break;
2236 case 6: /* Failure, excessive retries */
2237 __set_bit(TXDONE_EXCESSIVE_RETRY, &txdesc.flags);
2238 /* Don't break, this is a failed frame! */
2239 default: /* Failure */
2240 __set_bit(TXDONE_FAILURE, &txdesc.flags);
2241 }
2242 txdesc.retry = rt2x00_get_field32(reg, STA_CSR4_RETRY_COUNT);
2243
2244 /*
2245 * the frame was retried at least once
2246 * -> hw used fallback rates
2247 */
2248 if (txdesc.retry)
2249 __set_bit(TXDONE_FALLBACK, &txdesc.flags);
2250
2251 rt2x00lib_txdone(entry, &txdesc);
2252 }
2253 }
2254
2255 static void rt61pci_wakeup(struct rt2x00_dev *rt2x00dev)
2256 {
2257 struct ieee80211_conf conf = { .flags = 0 };
2258 struct rt2x00lib_conf libconf = { .conf = &conf };
2259
2260 rt61pci_config(rt2x00dev, &libconf, IEEE80211_CONF_CHANGE_PS);
2261 }
2262
2263 static void rt61pci_enable_interrupt(struct rt2x00_dev *rt2x00dev,
2264 struct rt2x00_field32 irq_field)
2265 {
2266 u32 reg;
2267
2268 /*
2269 * Enable a single interrupt. The interrupt mask register
2270 * access needs locking.
2271 */
2272 spin_lock_irq(&rt2x00dev->irqmask_lock);
2273
2274 rt2x00pci_register_read(rt2x00dev, INT_MASK_CSR, &reg);
2275 rt2x00_set_field32(&reg, irq_field, 0);
2276 rt2x00pci_register_write(rt2x00dev, INT_MASK_CSR, reg);
2277
2278 spin_unlock_irq(&rt2x00dev->irqmask_lock);
2279 }
2280
2281 static void rt61pci_enable_mcu_interrupt(struct rt2x00_dev *rt2x00dev,
2282 struct rt2x00_field32 irq_field)
2283 {
2284 u32 reg;
2285
2286 /*
2287 * Enable a single MCU interrupt. The interrupt mask register
2288 * access needs locking.
2289 */
2290 spin_lock_irq(&rt2x00dev->irqmask_lock);
2291
2292 rt2x00pci_register_read(rt2x00dev, MCU_INT_MASK_CSR, &reg);
2293 rt2x00_set_field32(&reg, irq_field, 0);
2294 rt2x00pci_register_write(rt2x00dev, MCU_INT_MASK_CSR, reg);
2295
2296 spin_unlock_irq(&rt2x00dev->irqmask_lock);
2297 }
2298
2299 static void rt61pci_txstatus_tasklet(unsigned long data)
2300 {
2301 struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
2302 rt61pci_txdone(rt2x00dev);
2303 rt61pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_TXDONE);
2304 }
2305
2306 static void rt61pci_tbtt_tasklet(unsigned long data)
2307 {
2308 struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
2309 rt2x00lib_beacondone(rt2x00dev);
2310 rt61pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_BEACON_DONE);
2311 }
2312
2313 static void rt61pci_rxdone_tasklet(unsigned long data)
2314 {
2315 struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
2316 if (rt2x00pci_rxdone(rt2x00dev))
2317 rt2x00pci_rxdone(rt2x00dev);
2318 else
2319 rt61pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_RXDONE);
2320 }
2321
2322 static void rt61pci_autowake_tasklet(unsigned long data)
2323 {
2324 struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
2325 rt61pci_wakeup(rt2x00dev);
2326 rt2x00pci_register_write(rt2x00dev,
2327 M2H_CMD_DONE_CSR, 0xffffffff);
2328 rt61pci_enable_mcu_interrupt(rt2x00dev, MCU_INT_MASK_CSR_TWAKEUP);
2329 }
2330
2331 static irqreturn_t rt61pci_interrupt(int irq, void *dev_instance)
2332 {
2333 struct rt2x00_dev *rt2x00dev = dev_instance;
2334 u32 reg_mcu, mask_mcu;
2335 u32 reg, mask;
2336
2337 /*
2338 * Get the interrupt sources & saved to local variable.
2339 * Write register value back to clear pending interrupts.
2340 */
2341 rt2x00pci_register_read(rt2x00dev, MCU_INT_SOURCE_CSR, &reg_mcu);
2342 rt2x00pci_register_write(rt2x00dev, MCU_INT_SOURCE_CSR, reg_mcu);
2343
2344 rt2x00pci_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
2345 rt2x00pci_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
2346
2347 if (!reg && !reg_mcu)
2348 return IRQ_NONE;
2349
2350 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
2351 return IRQ_HANDLED;
2352
2353 /*
2354 * Schedule tasklets for interrupt handling.
2355 */
2356 if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RXDONE))
2357 tasklet_schedule(&rt2x00dev->rxdone_tasklet);
2358
2359 if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TXDONE))
2360 tasklet_schedule(&rt2x00dev->txstatus_tasklet);
2361
2362 if (rt2x00_get_field32(reg, INT_SOURCE_CSR_BEACON_DONE))
2363 tasklet_hi_schedule(&rt2x00dev->tbtt_tasklet);
2364
2365 if (rt2x00_get_field32(reg_mcu, MCU_INT_SOURCE_CSR_TWAKEUP))
2366 tasklet_schedule(&rt2x00dev->autowake_tasklet);
2367
2368 /*
2369 * Since INT_MASK_CSR and INT_SOURCE_CSR use the same bits
2370 * for interrupts and interrupt masks we can just use the value of
2371 * INT_SOURCE_CSR to create the interrupt mask.
2372 */
2373 mask = reg;
2374 mask_mcu = reg_mcu;
2375
2376 /*
2377 * Disable all interrupts for which a tasklet was scheduled right now,
2378 * the tasklet will reenable the appropriate interrupts.
2379 */
2380 spin_lock(&rt2x00dev->irqmask_lock);
2381
2382 rt2x00pci_register_read(rt2x00dev, INT_MASK_CSR, &reg);
2383 reg |= mask;
2384 rt2x00pci_register_write(rt2x00dev, INT_MASK_CSR, reg);
2385
2386 rt2x00pci_register_read(rt2x00dev, MCU_INT_MASK_CSR, &reg);
2387 reg |= mask_mcu;
2388 rt2x00pci_register_write(rt2x00dev, MCU_INT_MASK_CSR, reg);
2389
2390 spin_unlock(&rt2x00dev->irqmask_lock);
2391
2392 return IRQ_HANDLED;
2393 }
2394
2395 /*
2396 * Device probe functions.
2397 */
2398 static int rt61pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
2399 {
2400 struct eeprom_93cx6 eeprom;
2401 u32 reg;
2402 u16 word;
2403 u8 *mac;
2404 s8 value;
2405
2406 rt2x00pci_register_read(rt2x00dev, E2PROM_CSR, &reg);
2407
2408 eeprom.data = rt2x00dev;
2409 eeprom.register_read = rt61pci_eepromregister_read;
2410 eeprom.register_write = rt61pci_eepromregister_write;
2411 eeprom.width = rt2x00_get_field32(reg, E2PROM_CSR_TYPE_93C46) ?
2412 PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
2413 eeprom.reg_data_in = 0;
2414 eeprom.reg_data_out = 0;
2415 eeprom.reg_data_clock = 0;
2416 eeprom.reg_chip_select = 0;
2417
2418 eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
2419 EEPROM_SIZE / sizeof(u16));
2420
2421 /*
2422 * Start validation of the data that has been read.
2423 */
2424 mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
2425 if (!is_valid_ether_addr(mac)) {
2426 random_ether_addr(mac);
2427 EEPROM(rt2x00dev, "MAC: %pM\n", mac);
2428 }
2429
2430 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
2431 if (word == 0xffff) {
2432 rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
2433 rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
2434 ANTENNA_B);
2435 rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
2436 ANTENNA_B);
2437 rt2x00_set_field16(&word, EEPROM_ANTENNA_FRAME_TYPE, 0);
2438 rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
2439 rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
2440 rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF5225);
2441 rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
2442 EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
2443 }
2444
2445 rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
2446 if (word == 0xffff) {
2447 rt2x00_set_field16(&word, EEPROM_NIC_ENABLE_DIVERSITY, 0);
2448 rt2x00_set_field16(&word, EEPROM_NIC_TX_DIVERSITY, 0);
2449 rt2x00_set_field16(&word, EEPROM_NIC_RX_FIXED, 0);
2450 rt2x00_set_field16(&word, EEPROM_NIC_TX_FIXED, 0);
2451 rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_BG, 0);
2452 rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
2453 rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_A, 0);
2454 rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
2455 EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
2456 }
2457
2458 rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &word);
2459 if (word == 0xffff) {
2460 rt2x00_set_field16(&word, EEPROM_LED_LED_MODE,
2461 LED_MODE_DEFAULT);
2462 rt2x00_eeprom_write(rt2x00dev, EEPROM_LED, word);
2463 EEPROM(rt2x00dev, "Led: 0x%04x\n", word);
2464 }
2465
2466 rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &word);
2467 if (word == 0xffff) {
2468 rt2x00_set_field16(&word, EEPROM_FREQ_OFFSET, 0);
2469 rt2x00_set_field16(&word, EEPROM_FREQ_SEQ, 0);
2470 rt2x00_eeprom_write(rt2x00dev, EEPROM_FREQ, word);
2471 EEPROM(rt2x00dev, "Freq: 0x%04x\n", word);
2472 }
2473
2474 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &word);
2475 if (word == 0xffff) {
2476 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
2477 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
2478 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
2479 EEPROM(rt2x00dev, "RSSI OFFSET BG: 0x%04x\n", word);
2480 } else {
2481 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_1);
2482 if (value < -10 || value > 10)
2483 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
2484 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_2);
2485 if (value < -10 || value > 10)
2486 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
2487 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
2488 }
2489
2490 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &word);
2491 if (word == 0xffff) {
2492 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
2493 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
2494 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
2495 EEPROM(rt2x00dev, "RSSI OFFSET A: 0x%04x\n", word);
2496 } else {
2497 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_1);
2498 if (value < -10 || value > 10)
2499 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
2500 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_2);
2501 if (value < -10 || value > 10)
2502 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
2503 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
2504 }
2505
2506 return 0;
2507 }
2508
2509 static int rt61pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
2510 {
2511 u32 reg;
2512 u16 value;
2513 u16 eeprom;
2514
2515 /*
2516 * Read EEPROM word for configuration.
2517 */
2518 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
2519
2520 /*
2521 * Identify RF chipset.
2522 */
2523 value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
2524 rt2x00pci_register_read(rt2x00dev, MAC_CSR0, &reg);
2525 rt2x00_set_chip(rt2x00dev, rt2x00_get_field32(reg, MAC_CSR0_CHIPSET),
2526 value, rt2x00_get_field32(reg, MAC_CSR0_REVISION));
2527
2528 if (!rt2x00_rf(rt2x00dev, RF5225) &&
2529 !rt2x00_rf(rt2x00dev, RF5325) &&
2530 !rt2x00_rf(rt2x00dev, RF2527) &&
2531 !rt2x00_rf(rt2x00dev, RF2529)) {
2532 ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
2533 return -ENODEV;
2534 }
2535
2536 /*
2537 * Determine number of antennas.
2538 */
2539 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_NUM) == 2)
2540 __set_bit(CAPABILITY_DOUBLE_ANTENNA, &rt2x00dev->cap_flags);
2541
2542 /*
2543 * Identify default antenna configuration.
2544 */
2545 rt2x00dev->default_ant.tx =
2546 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
2547 rt2x00dev->default_ant.rx =
2548 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
2549
2550 /*
2551 * Read the Frame type.
2552 */
2553 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_FRAME_TYPE))
2554 __set_bit(CAPABILITY_FRAME_TYPE, &rt2x00dev->cap_flags);
2555
2556 /*
2557 * Detect if this device has a hardware controlled radio.
2558 */
2559 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
2560 __set_bit(CAPABILITY_HW_BUTTON, &rt2x00dev->cap_flags);
2561
2562 /*
2563 * Read frequency offset and RF programming sequence.
2564 */
2565 rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &eeprom);
2566 if (rt2x00_get_field16(eeprom, EEPROM_FREQ_SEQ))
2567 __set_bit(CAPABILITY_RF_SEQUENCE, &rt2x00dev->cap_flags);
2568
2569 rt2x00dev->freq_offset = rt2x00_get_field16(eeprom, EEPROM_FREQ_OFFSET);
2570
2571 /*
2572 * Read external LNA informations.
2573 */
2574 rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
2575
2576 if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_A))
2577 __set_bit(CAPABILITY_EXTERNAL_LNA_A, &rt2x00dev->cap_flags);
2578 if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_BG))
2579 __set_bit(CAPABILITY_EXTERNAL_LNA_BG, &rt2x00dev->cap_flags);
2580
2581 /*
2582 * When working with a RF2529 chip without double antenna,
2583 * the antenna settings should be gathered from the NIC
2584 * eeprom word.
2585 */
2586 if (rt2x00_rf(rt2x00dev, RF2529) &&
2587 !test_bit(CAPABILITY_DOUBLE_ANTENNA, &rt2x00dev->cap_flags)) {
2588 rt2x00dev->default_ant.rx =
2589 ANTENNA_A + rt2x00_get_field16(eeprom, EEPROM_NIC_RX_FIXED);
2590 rt2x00dev->default_ant.tx =
2591 ANTENNA_B - rt2x00_get_field16(eeprom, EEPROM_NIC_TX_FIXED);
2592
2593 if (rt2x00_get_field16(eeprom, EEPROM_NIC_TX_DIVERSITY))
2594 rt2x00dev->default_ant.tx = ANTENNA_SW_DIVERSITY;
2595 if (rt2x00_get_field16(eeprom, EEPROM_NIC_ENABLE_DIVERSITY))
2596 rt2x00dev->default_ant.rx = ANTENNA_SW_DIVERSITY;
2597 }
2598
2599 /*
2600 * Store led settings, for correct led behaviour.
2601 * If the eeprom value is invalid,
2602 * switch to default led mode.
2603 */
2604 #ifdef CONFIG_RT2X00_LIB_LEDS
2605 rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &eeprom);
2606 value = rt2x00_get_field16(eeprom, EEPROM_LED_LED_MODE);
2607
2608 rt61pci_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
2609 rt61pci_init_led(rt2x00dev, &rt2x00dev->led_assoc, LED_TYPE_ASSOC);
2610 if (value == LED_MODE_SIGNAL_STRENGTH)
2611 rt61pci_init_led(rt2x00dev, &rt2x00dev->led_qual,
2612 LED_TYPE_QUALITY);
2613
2614 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_LED_MODE, value);
2615 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_0,
2616 rt2x00_get_field16(eeprom,
2617 EEPROM_LED_POLARITY_GPIO_0));
2618 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_1,
2619 rt2x00_get_field16(eeprom,
2620 EEPROM_LED_POLARITY_GPIO_1));
2621 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_2,
2622 rt2x00_get_field16(eeprom,
2623 EEPROM_LED_POLARITY_GPIO_2));
2624 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_3,
2625 rt2x00_get_field16(eeprom,
2626 EEPROM_LED_POLARITY_GPIO_3));
2627 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_4,
2628 rt2x00_get_field16(eeprom,
2629 EEPROM_LED_POLARITY_GPIO_4));
2630 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_ACT,
2631 rt2x00_get_field16(eeprom, EEPROM_LED_POLARITY_ACT));
2632 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_BG,
2633 rt2x00_get_field16(eeprom,
2634 EEPROM_LED_POLARITY_RDY_G));
2635 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_A,
2636 rt2x00_get_field16(eeprom,
2637 EEPROM_LED_POLARITY_RDY_A));
2638 #endif /* CONFIG_RT2X00_LIB_LEDS */
2639
2640 return 0;
2641 }
2642
2643 /*
2644 * RF value list for RF5225 & RF5325
2645 * Supports: 2.4 GHz & 5.2 GHz, rf_sequence disabled
2646 */
2647 static const struct rf_channel rf_vals_noseq[] = {
2648 { 1, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
2649 { 2, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
2650 { 3, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
2651 { 4, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
2652 { 5, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
2653 { 6, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
2654 { 7, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
2655 { 8, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
2656 { 9, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
2657 { 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
2658 { 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
2659 { 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
2660 { 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
2661 { 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
2662
2663 /* 802.11 UNI / HyperLan 2 */
2664 { 36, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa23 },
2665 { 40, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa03 },
2666 { 44, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa0b },
2667 { 48, 0x00002ccc, 0x000049aa, 0x0009be55, 0x000ffa13 },
2668 { 52, 0x00002ccc, 0x000049ae, 0x0009ae55, 0x000ffa1b },
2669 { 56, 0x00002ccc, 0x000049b2, 0x0009ae55, 0x000ffa23 },
2670 { 60, 0x00002ccc, 0x000049ba, 0x0009ae55, 0x000ffa03 },
2671 { 64, 0x00002ccc, 0x000049be, 0x0009ae55, 0x000ffa0b },
2672
2673 /* 802.11 HyperLan 2 */
2674 { 100, 0x00002ccc, 0x00004a2a, 0x000bae55, 0x000ffa03 },
2675 { 104, 0x00002ccc, 0x00004a2e, 0x000bae55, 0x000ffa0b },
2676 { 108, 0x00002ccc, 0x00004a32, 0x000bae55, 0x000ffa13 },
2677 { 112, 0x00002ccc, 0x00004a36, 0x000bae55, 0x000ffa1b },
2678 { 116, 0x00002ccc, 0x00004a3a, 0x000bbe55, 0x000ffa23 },
2679 { 120, 0x00002ccc, 0x00004a82, 0x000bbe55, 0x000ffa03 },
2680 { 124, 0x00002ccc, 0x00004a86, 0x000bbe55, 0x000ffa0b },
2681 { 128, 0x00002ccc, 0x00004a8a, 0x000bbe55, 0x000ffa13 },
2682 { 132, 0x00002ccc, 0x00004a8e, 0x000bbe55, 0x000ffa1b },
2683 { 136, 0x00002ccc, 0x00004a92, 0x000bbe55, 0x000ffa23 },
2684
2685 /* 802.11 UNII */
2686 { 140, 0x00002ccc, 0x00004a9a, 0x000bbe55, 0x000ffa03 },
2687 { 149, 0x00002ccc, 0x00004aa2, 0x000bbe55, 0x000ffa1f },
2688 { 153, 0x00002ccc, 0x00004aa6, 0x000bbe55, 0x000ffa27 },
2689 { 157, 0x00002ccc, 0x00004aae, 0x000bbe55, 0x000ffa07 },
2690 { 161, 0x00002ccc, 0x00004ab2, 0x000bbe55, 0x000ffa0f },
2691 { 165, 0x00002ccc, 0x00004ab6, 0x000bbe55, 0x000ffa17 },
2692
2693 /* MMAC(Japan)J52 ch 34,38,42,46 */
2694 { 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa0b },
2695 { 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000ffa13 },
2696 { 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa1b },
2697 { 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa23 },
2698 };
2699
2700 /*
2701 * RF value list for RF5225 & RF5325
2702 * Supports: 2.4 GHz & 5.2 GHz, rf_sequence enabled
2703 */
2704 static const struct rf_channel rf_vals_seq[] = {
2705 { 1, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
2706 { 2, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
2707 { 3, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
2708 { 4, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
2709 { 5, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
2710 { 6, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
2711 { 7, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
2712 { 8, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
2713 { 9, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
2714 { 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
2715 { 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
2716 { 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
2717 { 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
2718 { 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
2719
2720 /* 802.11 UNI / HyperLan 2 */
2721 { 36, 0x00002cd4, 0x0004481a, 0x00098455, 0x000c0a03 },
2722 { 40, 0x00002cd0, 0x00044682, 0x00098455, 0x000c0a03 },
2723 { 44, 0x00002cd0, 0x00044686, 0x00098455, 0x000c0a1b },
2724 { 48, 0x00002cd0, 0x0004468e, 0x00098655, 0x000c0a0b },
2725 { 52, 0x00002cd0, 0x00044692, 0x00098855, 0x000c0a23 },
2726 { 56, 0x00002cd0, 0x0004469a, 0x00098c55, 0x000c0a13 },
2727 { 60, 0x00002cd0, 0x000446a2, 0x00098e55, 0x000c0a03 },
2728 { 64, 0x00002cd0, 0x000446a6, 0x00099255, 0x000c0a1b },
2729
2730 /* 802.11 HyperLan 2 */
2731 { 100, 0x00002cd4, 0x0004489a, 0x000b9855, 0x000c0a03 },
2732 { 104, 0x00002cd4, 0x000448a2, 0x000b9855, 0x000c0a03 },
2733 { 108, 0x00002cd4, 0x000448aa, 0x000b9855, 0x000c0a03 },
2734 { 112, 0x00002cd4, 0x000448b2, 0x000b9a55, 0x000c0a03 },
2735 { 116, 0x00002cd4, 0x000448ba, 0x000b9a55, 0x000c0a03 },
2736 { 120, 0x00002cd0, 0x00044702, 0x000b9a55, 0x000c0a03 },
2737 { 124, 0x00002cd0, 0x00044706, 0x000b9a55, 0x000c0a1b },
2738 { 128, 0x00002cd0, 0x0004470e, 0x000b9c55, 0x000c0a0b },
2739 { 132, 0x00002cd0, 0x00044712, 0x000b9c55, 0x000c0a23 },
2740 { 136, 0x00002cd0, 0x0004471a, 0x000b9e55, 0x000c0a13 },
2741
2742 /* 802.11 UNII */
2743 { 140, 0x00002cd0, 0x00044722, 0x000b9e55, 0x000c0a03 },
2744 { 149, 0x00002cd0, 0x0004472e, 0x000ba255, 0x000c0a1b },
2745 { 153, 0x00002cd0, 0x00044736, 0x000ba255, 0x000c0a0b },
2746 { 157, 0x00002cd4, 0x0004490a, 0x000ba255, 0x000c0a17 },
2747 { 161, 0x00002cd4, 0x00044912, 0x000ba255, 0x000c0a17 },
2748 { 165, 0x00002cd4, 0x0004491a, 0x000ba255, 0x000c0a17 },
2749
2750 /* MMAC(Japan)J52 ch 34,38,42,46 */
2751 { 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000c0a0b },
2752 { 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000c0a13 },
2753 { 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000c0a1b },
2754 { 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000c0a23 },
2755 };
2756
2757 static int rt61pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
2758 {
2759 struct hw_mode_spec *spec = &rt2x00dev->spec;
2760 struct channel_info *info;
2761 char *tx_power;
2762 unsigned int i;
2763
2764 /*
2765 * Disable powersaving as default.
2766 */
2767 rt2x00dev->hw->wiphy->flags &= ~WIPHY_FLAG_PS_ON_BY_DEFAULT;
2768
2769 /*
2770 * Initialize all hw fields.
2771 */
2772 rt2x00dev->hw->flags =
2773 IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
2774 IEEE80211_HW_SIGNAL_DBM |
2775 IEEE80211_HW_SUPPORTS_PS |
2776 IEEE80211_HW_PS_NULLFUNC_STACK;
2777
2778 SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
2779 SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
2780 rt2x00_eeprom_addr(rt2x00dev,
2781 EEPROM_MAC_ADDR_0));
2782
2783 /*
2784 * As rt61 has a global fallback table we cannot specify
2785 * more then one tx rate per frame but since the hw will
2786 * try several rates (based on the fallback table) we should
2787 * initialize max_report_rates to the maximum number of rates
2788 * we are going to try. Otherwise mac80211 will truncate our
2789 * reported tx rates and the rc algortihm will end up with
2790 * incorrect data.
2791 */
2792 rt2x00dev->hw->max_rates = 1;
2793 rt2x00dev->hw->max_report_rates = 7;
2794 rt2x00dev->hw->max_rate_tries = 1;
2795
2796 /*
2797 * Initialize hw_mode information.
2798 */
2799 spec->supported_bands = SUPPORT_BAND_2GHZ;
2800 spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
2801
2802 if (!test_bit(CAPABILITY_RF_SEQUENCE, &rt2x00dev->cap_flags)) {
2803 spec->num_channels = 14;
2804 spec->channels = rf_vals_noseq;
2805 } else {
2806 spec->num_channels = 14;
2807 spec->channels = rf_vals_seq;
2808 }
2809
2810 if (rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF5325)) {
2811 spec->supported_bands |= SUPPORT_BAND_5GHZ;
2812 spec->num_channels = ARRAY_SIZE(rf_vals_seq);
2813 }
2814
2815 /*
2816 * Create channel information array
2817 */
2818 info = kcalloc(spec->num_channels, sizeof(*info), GFP_KERNEL);
2819 if (!info)
2820 return -ENOMEM;
2821
2822 spec->channels_info = info;
2823
2824 tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_G_START);
2825 for (i = 0; i < 14; i++) {
2826 info[i].max_power = MAX_TXPOWER;
2827 info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]);
2828 }
2829
2830 if (spec->num_channels > 14) {
2831 tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_A_START);
2832 for (i = 14; i < spec->num_channels; i++) {
2833 info[i].max_power = MAX_TXPOWER;
2834 info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]);
2835 }
2836 }
2837
2838 return 0;
2839 }
2840
2841 static int rt61pci_probe_hw(struct rt2x00_dev *rt2x00dev)
2842 {
2843 int retval;
2844
2845 /*
2846 * Disable power saving.
2847 */
2848 rt2x00pci_register_write(rt2x00dev, SOFT_RESET_CSR, 0x00000007);
2849
2850 /*
2851 * Allocate eeprom data.
2852 */
2853 retval = rt61pci_validate_eeprom(rt2x00dev);
2854 if (retval)
2855 return retval;
2856
2857 retval = rt61pci_init_eeprom(rt2x00dev);
2858 if (retval)
2859 return retval;
2860
2861 /*
2862 * Initialize hw specifications.
2863 */
2864 retval = rt61pci_probe_hw_mode(rt2x00dev);
2865 if (retval)
2866 return retval;
2867
2868 /*
2869 * This device has multiple filters for control frames,
2870 * but has no a separate filter for PS Poll frames.
2871 */
2872 __set_bit(CAPABILITY_CONTROL_FILTERS, &rt2x00dev->cap_flags);
2873
2874 /*
2875 * This device requires firmware and DMA mapped skbs.
2876 */
2877 __set_bit(REQUIRE_FIRMWARE, &rt2x00dev->cap_flags);
2878 __set_bit(REQUIRE_DMA, &rt2x00dev->cap_flags);
2879 if (!modparam_nohwcrypt)
2880 __set_bit(CAPABILITY_HW_CRYPTO, &rt2x00dev->cap_flags);
2881 __set_bit(CAPABILITY_LINK_TUNING, &rt2x00dev->cap_flags);
2882
2883 /*
2884 * Set the rssi offset.
2885 */
2886 rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
2887
2888 return 0;
2889 }
2890
2891 /*
2892 * IEEE80211 stack callback functions.
2893 */
2894 static int rt61pci_conf_tx(struct ieee80211_hw *hw, u16 queue_idx,
2895 const struct ieee80211_tx_queue_params *params)
2896 {
2897 struct rt2x00_dev *rt2x00dev = hw->priv;
2898 struct data_queue *queue;
2899 struct rt2x00_field32 field;
2900 int retval;
2901 u32 reg;
2902 u32 offset;
2903
2904 /*
2905 * First pass the configuration through rt2x00lib, that will
2906 * update the queue settings and validate the input. After that
2907 * we are free to update the registers based on the value
2908 * in the queue parameter.
2909 */
2910 retval = rt2x00mac_conf_tx(hw, queue_idx, params);
2911 if (retval)
2912 return retval;
2913
2914 /*
2915 * We only need to perform additional register initialization
2916 * for WMM queues.
2917 */
2918 if (queue_idx >= 4)
2919 return 0;
2920
2921 queue = rt2x00queue_get_tx_queue(rt2x00dev, queue_idx);
2922
2923 /* Update WMM TXOP register */
2924 offset = AC_TXOP_CSR0 + (sizeof(u32) * (!!(queue_idx & 2)));
2925 field.bit_offset = (queue_idx & 1) * 16;
2926 field.bit_mask = 0xffff << field.bit_offset;
2927
2928 rt2x00pci_register_read(rt2x00dev, offset, &reg);
2929 rt2x00_set_field32(&reg, field, queue->txop);
2930 rt2x00pci_register_write(rt2x00dev, offset, reg);
2931
2932 /* Update WMM registers */
2933 field.bit_offset = queue_idx * 4;
2934 field.bit_mask = 0xf << field.bit_offset;
2935
2936 rt2x00pci_register_read(rt2x00dev, AIFSN_CSR, &reg);
2937 rt2x00_set_field32(&reg, field, queue->aifs);
2938 rt2x00pci_register_write(rt2x00dev, AIFSN_CSR, reg);
2939
2940 rt2x00pci_register_read(rt2x00dev, CWMIN_CSR, &reg);
2941 rt2x00_set_field32(&reg, field, queue->cw_min);
2942 rt2x00pci_register_write(rt2x00dev, CWMIN_CSR, reg);
2943
2944 rt2x00pci_register_read(rt2x00dev, CWMAX_CSR, &reg);
2945 rt2x00_set_field32(&reg, field, queue->cw_max);
2946 rt2x00pci_register_write(rt2x00dev, CWMAX_CSR, reg);
2947
2948 return 0;
2949 }
2950
2951 static u64 rt61pci_get_tsf(struct ieee80211_hw *hw)
2952 {
2953 struct rt2x00_dev *rt2x00dev = hw->priv;
2954 u64 tsf;
2955 u32 reg;
2956
2957 rt2x00pci_register_read(rt2x00dev, TXRX_CSR13, &reg);
2958 tsf = (u64) rt2x00_get_field32(reg, TXRX_CSR13_HIGH_TSFTIMER) << 32;
2959 rt2x00pci_register_read(rt2x00dev, TXRX_CSR12, &reg);
2960 tsf |= rt2x00_get_field32(reg, TXRX_CSR12_LOW_TSFTIMER);
2961
2962 return tsf;
2963 }
2964
2965 static const struct ieee80211_ops rt61pci_mac80211_ops = {
2966 .tx = rt2x00mac_tx,
2967 .start = rt2x00mac_start,
2968 .stop = rt2x00mac_stop,
2969 .add_interface = rt2x00mac_add_interface,
2970 .remove_interface = rt2x00mac_remove_interface,
2971 .config = rt2x00mac_config,
2972 .configure_filter = rt2x00mac_configure_filter,
2973 .set_key = rt2x00mac_set_key,
2974 .sw_scan_start = rt2x00mac_sw_scan_start,
2975 .sw_scan_complete = rt2x00mac_sw_scan_complete,
2976 .get_stats = rt2x00mac_get_stats,
2977 .bss_info_changed = rt2x00mac_bss_info_changed,
2978 .conf_tx = rt61pci_conf_tx,
2979 .get_tsf = rt61pci_get_tsf,
2980 .rfkill_poll = rt2x00mac_rfkill_poll,
2981 .flush = rt2x00mac_flush,
2982 };
2983
2984 static const struct rt2x00lib_ops rt61pci_rt2x00_ops = {
2985 .irq_handler = rt61pci_interrupt,
2986 .txstatus_tasklet = rt61pci_txstatus_tasklet,
2987 .tbtt_tasklet = rt61pci_tbtt_tasklet,
2988 .rxdone_tasklet = rt61pci_rxdone_tasklet,
2989 .autowake_tasklet = rt61pci_autowake_tasklet,
2990 .probe_hw = rt61pci_probe_hw,
2991 .get_firmware_name = rt61pci_get_firmware_name,
2992 .check_firmware = rt61pci_check_firmware,
2993 .load_firmware = rt61pci_load_firmware,
2994 .initialize = rt2x00pci_initialize,
2995 .uninitialize = rt2x00pci_uninitialize,
2996 .get_entry_state = rt61pci_get_entry_state,
2997 .clear_entry = rt61pci_clear_entry,
2998 .set_device_state = rt61pci_set_device_state,
2999 .rfkill_poll = rt61pci_rfkill_poll,
3000 .link_stats = rt61pci_link_stats,
3001 .reset_tuner = rt61pci_reset_tuner,
3002 .link_tuner = rt61pci_link_tuner,
3003 .start_queue = rt61pci_start_queue,
3004 .kick_queue = rt61pci_kick_queue,
3005 .stop_queue = rt61pci_stop_queue,
3006 .write_tx_desc = rt61pci_write_tx_desc,
3007 .write_beacon = rt61pci_write_beacon,
3008 .clear_beacon = rt61pci_clear_beacon,
3009 .fill_rxdone = rt61pci_fill_rxdone,
3010 .config_shared_key = rt61pci_config_shared_key,
3011 .config_pairwise_key = rt61pci_config_pairwise_key,
3012 .config_filter = rt61pci_config_filter,
3013 .config_intf = rt61pci_config_intf,
3014 .config_erp = rt61pci_config_erp,
3015 .config_ant = rt61pci_config_ant,
3016 .config = rt61pci_config,
3017 };
3018
3019 static const struct data_queue_desc rt61pci_queue_rx = {
3020 .entry_num = 32,
3021 .data_size = DATA_FRAME_SIZE,
3022 .desc_size = RXD_DESC_SIZE,
3023 .priv_size = sizeof(struct queue_entry_priv_pci),
3024 };
3025
3026 static const struct data_queue_desc rt61pci_queue_tx = {
3027 .entry_num = 32,
3028 .data_size = DATA_FRAME_SIZE,
3029 .desc_size = TXD_DESC_SIZE,
3030 .priv_size = sizeof(struct queue_entry_priv_pci),
3031 };
3032
3033 static const struct data_queue_desc rt61pci_queue_bcn = {
3034 .entry_num = 4,
3035 .data_size = 0, /* No DMA required for beacons */
3036 .desc_size = TXINFO_SIZE,
3037 .priv_size = sizeof(struct queue_entry_priv_pci),
3038 };
3039
3040 static const struct rt2x00_ops rt61pci_ops = {
3041 .name = KBUILD_MODNAME,
3042 .max_sta_intf = 1,
3043 .max_ap_intf = 4,
3044 .eeprom_size = EEPROM_SIZE,
3045 .rf_size = RF_SIZE,
3046 .tx_queues = NUM_TX_QUEUES,
3047 .extra_tx_headroom = 0,
3048 .rx = &rt61pci_queue_rx,
3049 .tx = &rt61pci_queue_tx,
3050 .bcn = &rt61pci_queue_bcn,
3051 .lib = &rt61pci_rt2x00_ops,
3052 .hw = &rt61pci_mac80211_ops,
3053 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
3054 .debugfs = &rt61pci_rt2x00debug,
3055 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
3056 };
3057
3058 /*
3059 * RT61pci module information.
3060 */
3061 static DEFINE_PCI_DEVICE_TABLE(rt61pci_device_table) = {
3062 /* RT2561s */
3063 { PCI_DEVICE(0x1814, 0x0301), PCI_DEVICE_DATA(&rt61pci_ops) },
3064 /* RT2561 v2 */
3065 { PCI_DEVICE(0x1814, 0x0302), PCI_DEVICE_DATA(&rt61pci_ops) },
3066 /* RT2661 */
3067 { PCI_DEVICE(0x1814, 0x0401), PCI_DEVICE_DATA(&rt61pci_ops) },
3068 { 0, }
3069 };
3070
3071 MODULE_AUTHOR(DRV_PROJECT);
3072 MODULE_VERSION(DRV_VERSION);
3073 MODULE_DESCRIPTION("Ralink RT61 PCI & PCMCIA Wireless LAN driver.");
3074 MODULE_SUPPORTED_DEVICE("Ralink RT2561, RT2561s & RT2661 "
3075 "PCI & PCMCIA chipset based cards");
3076 MODULE_DEVICE_TABLE(pci, rt61pci_device_table);
3077 MODULE_FIRMWARE(FIRMWARE_RT2561);
3078 MODULE_FIRMWARE(FIRMWARE_RT2561s);
3079 MODULE_FIRMWARE(FIRMWARE_RT2661);
3080 MODULE_LICENSE("GPL");
3081
3082 static struct pci_driver rt61pci_driver = {
3083 .name = KBUILD_MODNAME,
3084 .id_table = rt61pci_device_table,
3085 .probe = rt2x00pci_probe,
3086 .remove = __devexit_p(rt2x00pci_remove),
3087 .suspend = rt2x00pci_suspend,
3088 .resume = rt2x00pci_resume,
3089 };
3090
3091 static int __init rt61pci_init(void)
3092 {
3093 return pci_register_driver(&rt61pci_driver);
3094 }
3095
3096 static void __exit rt61pci_exit(void)
3097 {
3098 pci_unregister_driver(&rt61pci_driver);
3099 }
3100
3101 module_init(rt61pci_init);
3102 module_exit(rt61pci_exit);
This page took 0.128467 seconds and 5 git commands to generate.