rt2x00: Refactor beacon code to make use of start- and stop_queue
[deliverable/linux.git] / drivers / net / wireless / rt2x00 / rt61pci.c
1 /*
2 Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
3 <http://rt2x00.serialmonkey.com>
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the
17 Free Software Foundation, Inc.,
18 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 */
20
21 /*
22 Module: rt61pci
23 Abstract: rt61pci device specific routines.
24 Supported chipsets: RT2561, RT2561s, RT2661.
25 */
26
27 #include <linux/crc-itu-t.h>
28 #include <linux/delay.h>
29 #include <linux/etherdevice.h>
30 #include <linux/init.h>
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/slab.h>
34 #include <linux/pci.h>
35 #include <linux/eeprom_93cx6.h>
36
37 #include "rt2x00.h"
38 #include "rt2x00pci.h"
39 #include "rt61pci.h"
40
41 /*
42 * Allow hardware encryption to be disabled.
43 */
44 static int modparam_nohwcrypt = 0;
45 module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
46 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
47
48 /*
49 * Register access.
50 * BBP and RF register require indirect register access,
51 * and use the CSR registers PHY_CSR3 and PHY_CSR4 to achieve this.
52 * These indirect registers work with busy bits,
53 * and we will try maximal REGISTER_BUSY_COUNT times to access
54 * the register while taking a REGISTER_BUSY_DELAY us delay
55 * between each attempt. When the busy bit is still set at that time,
56 * the access attempt is considered to have failed,
57 * and we will print an error.
58 */
59 #define WAIT_FOR_BBP(__dev, __reg) \
60 rt2x00pci_regbusy_read((__dev), PHY_CSR3, PHY_CSR3_BUSY, (__reg))
61 #define WAIT_FOR_RF(__dev, __reg) \
62 rt2x00pci_regbusy_read((__dev), PHY_CSR4, PHY_CSR4_BUSY, (__reg))
63 #define WAIT_FOR_MCU(__dev, __reg) \
64 rt2x00pci_regbusy_read((__dev), H2M_MAILBOX_CSR, \
65 H2M_MAILBOX_CSR_OWNER, (__reg))
66
67 static void rt61pci_bbp_write(struct rt2x00_dev *rt2x00dev,
68 const unsigned int word, const u8 value)
69 {
70 u32 reg;
71
72 mutex_lock(&rt2x00dev->csr_mutex);
73
74 /*
75 * Wait until the BBP becomes available, afterwards we
76 * can safely write the new data into the register.
77 */
78 if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
79 reg = 0;
80 rt2x00_set_field32(&reg, PHY_CSR3_VALUE, value);
81 rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
82 rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
83 rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 0);
84
85 rt2x00pci_register_write(rt2x00dev, PHY_CSR3, reg);
86 }
87
88 mutex_unlock(&rt2x00dev->csr_mutex);
89 }
90
91 static void rt61pci_bbp_read(struct rt2x00_dev *rt2x00dev,
92 const unsigned int word, u8 *value)
93 {
94 u32 reg;
95
96 mutex_lock(&rt2x00dev->csr_mutex);
97
98 /*
99 * Wait until the BBP becomes available, afterwards we
100 * can safely write the read request into the register.
101 * After the data has been written, we wait until hardware
102 * returns the correct value, if at any time the register
103 * doesn't become available in time, reg will be 0xffffffff
104 * which means we return 0xff to the caller.
105 */
106 if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
107 reg = 0;
108 rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
109 rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
110 rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 1);
111
112 rt2x00pci_register_write(rt2x00dev, PHY_CSR3, reg);
113
114 WAIT_FOR_BBP(rt2x00dev, &reg);
115 }
116
117 *value = rt2x00_get_field32(reg, PHY_CSR3_VALUE);
118
119 mutex_unlock(&rt2x00dev->csr_mutex);
120 }
121
122 static void rt61pci_rf_write(struct rt2x00_dev *rt2x00dev,
123 const unsigned int word, const u32 value)
124 {
125 u32 reg;
126
127 mutex_lock(&rt2x00dev->csr_mutex);
128
129 /*
130 * Wait until the RF becomes available, afterwards we
131 * can safely write the new data into the register.
132 */
133 if (WAIT_FOR_RF(rt2x00dev, &reg)) {
134 reg = 0;
135 rt2x00_set_field32(&reg, PHY_CSR4_VALUE, value);
136 rt2x00_set_field32(&reg, PHY_CSR4_NUMBER_OF_BITS, 21);
137 rt2x00_set_field32(&reg, PHY_CSR4_IF_SELECT, 0);
138 rt2x00_set_field32(&reg, PHY_CSR4_BUSY, 1);
139
140 rt2x00pci_register_write(rt2x00dev, PHY_CSR4, reg);
141 rt2x00_rf_write(rt2x00dev, word, value);
142 }
143
144 mutex_unlock(&rt2x00dev->csr_mutex);
145 }
146
147 static void rt61pci_mcu_request(struct rt2x00_dev *rt2x00dev,
148 const u8 command, const u8 token,
149 const u8 arg0, const u8 arg1)
150 {
151 u32 reg;
152
153 mutex_lock(&rt2x00dev->csr_mutex);
154
155 /*
156 * Wait until the MCU becomes available, afterwards we
157 * can safely write the new data into the register.
158 */
159 if (WAIT_FOR_MCU(rt2x00dev, &reg)) {
160 rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_OWNER, 1);
161 rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_CMD_TOKEN, token);
162 rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_ARG0, arg0);
163 rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_ARG1, arg1);
164 rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CSR, reg);
165
166 rt2x00pci_register_read(rt2x00dev, HOST_CMD_CSR, &reg);
167 rt2x00_set_field32(&reg, HOST_CMD_CSR_HOST_COMMAND, command);
168 rt2x00_set_field32(&reg, HOST_CMD_CSR_INTERRUPT_MCU, 1);
169 rt2x00pci_register_write(rt2x00dev, HOST_CMD_CSR, reg);
170 }
171
172 mutex_unlock(&rt2x00dev->csr_mutex);
173
174 }
175
176 static void rt61pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
177 {
178 struct rt2x00_dev *rt2x00dev = eeprom->data;
179 u32 reg;
180
181 rt2x00pci_register_read(rt2x00dev, E2PROM_CSR, &reg);
182
183 eeprom->reg_data_in = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_IN);
184 eeprom->reg_data_out = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_OUT);
185 eeprom->reg_data_clock =
186 !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_CLOCK);
187 eeprom->reg_chip_select =
188 !!rt2x00_get_field32(reg, E2PROM_CSR_CHIP_SELECT);
189 }
190
191 static void rt61pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
192 {
193 struct rt2x00_dev *rt2x00dev = eeprom->data;
194 u32 reg = 0;
195
196 rt2x00_set_field32(&reg, E2PROM_CSR_DATA_IN, !!eeprom->reg_data_in);
197 rt2x00_set_field32(&reg, E2PROM_CSR_DATA_OUT, !!eeprom->reg_data_out);
198 rt2x00_set_field32(&reg, E2PROM_CSR_DATA_CLOCK,
199 !!eeprom->reg_data_clock);
200 rt2x00_set_field32(&reg, E2PROM_CSR_CHIP_SELECT,
201 !!eeprom->reg_chip_select);
202
203 rt2x00pci_register_write(rt2x00dev, E2PROM_CSR, reg);
204 }
205
206 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
207 static const struct rt2x00debug rt61pci_rt2x00debug = {
208 .owner = THIS_MODULE,
209 .csr = {
210 .read = rt2x00pci_register_read,
211 .write = rt2x00pci_register_write,
212 .flags = RT2X00DEBUGFS_OFFSET,
213 .word_base = CSR_REG_BASE,
214 .word_size = sizeof(u32),
215 .word_count = CSR_REG_SIZE / sizeof(u32),
216 },
217 .eeprom = {
218 .read = rt2x00_eeprom_read,
219 .write = rt2x00_eeprom_write,
220 .word_base = EEPROM_BASE,
221 .word_size = sizeof(u16),
222 .word_count = EEPROM_SIZE / sizeof(u16),
223 },
224 .bbp = {
225 .read = rt61pci_bbp_read,
226 .write = rt61pci_bbp_write,
227 .word_base = BBP_BASE,
228 .word_size = sizeof(u8),
229 .word_count = BBP_SIZE / sizeof(u8),
230 },
231 .rf = {
232 .read = rt2x00_rf_read,
233 .write = rt61pci_rf_write,
234 .word_base = RF_BASE,
235 .word_size = sizeof(u32),
236 .word_count = RF_SIZE / sizeof(u32),
237 },
238 };
239 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
240
241 static int rt61pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
242 {
243 u32 reg;
244
245 rt2x00pci_register_read(rt2x00dev, MAC_CSR13, &reg);
246 return rt2x00_get_field32(reg, MAC_CSR13_BIT5);
247 }
248
249 #ifdef CONFIG_RT2X00_LIB_LEDS
250 static void rt61pci_brightness_set(struct led_classdev *led_cdev,
251 enum led_brightness brightness)
252 {
253 struct rt2x00_led *led =
254 container_of(led_cdev, struct rt2x00_led, led_dev);
255 unsigned int enabled = brightness != LED_OFF;
256 unsigned int a_mode =
257 (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_5GHZ);
258 unsigned int bg_mode =
259 (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_2GHZ);
260
261 if (led->type == LED_TYPE_RADIO) {
262 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
263 MCU_LEDCS_RADIO_STATUS, enabled);
264
265 rt61pci_mcu_request(led->rt2x00dev, MCU_LED, 0xff,
266 (led->rt2x00dev->led_mcu_reg & 0xff),
267 ((led->rt2x00dev->led_mcu_reg >> 8)));
268 } else if (led->type == LED_TYPE_ASSOC) {
269 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
270 MCU_LEDCS_LINK_BG_STATUS, bg_mode);
271 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
272 MCU_LEDCS_LINK_A_STATUS, a_mode);
273
274 rt61pci_mcu_request(led->rt2x00dev, MCU_LED, 0xff,
275 (led->rt2x00dev->led_mcu_reg & 0xff),
276 ((led->rt2x00dev->led_mcu_reg >> 8)));
277 } else if (led->type == LED_TYPE_QUALITY) {
278 /*
279 * The brightness is divided into 6 levels (0 - 5),
280 * this means we need to convert the brightness
281 * argument into the matching level within that range.
282 */
283 rt61pci_mcu_request(led->rt2x00dev, MCU_LED_STRENGTH, 0xff,
284 brightness / (LED_FULL / 6), 0);
285 }
286 }
287
288 static int rt61pci_blink_set(struct led_classdev *led_cdev,
289 unsigned long *delay_on,
290 unsigned long *delay_off)
291 {
292 struct rt2x00_led *led =
293 container_of(led_cdev, struct rt2x00_led, led_dev);
294 u32 reg;
295
296 rt2x00pci_register_read(led->rt2x00dev, MAC_CSR14, &reg);
297 rt2x00_set_field32(&reg, MAC_CSR14_ON_PERIOD, *delay_on);
298 rt2x00_set_field32(&reg, MAC_CSR14_OFF_PERIOD, *delay_off);
299 rt2x00pci_register_write(led->rt2x00dev, MAC_CSR14, reg);
300
301 return 0;
302 }
303
304 static void rt61pci_init_led(struct rt2x00_dev *rt2x00dev,
305 struct rt2x00_led *led,
306 enum led_type type)
307 {
308 led->rt2x00dev = rt2x00dev;
309 led->type = type;
310 led->led_dev.brightness_set = rt61pci_brightness_set;
311 led->led_dev.blink_set = rt61pci_blink_set;
312 led->flags = LED_INITIALIZED;
313 }
314 #endif /* CONFIG_RT2X00_LIB_LEDS */
315
316 /*
317 * Configuration handlers.
318 */
319 static int rt61pci_config_shared_key(struct rt2x00_dev *rt2x00dev,
320 struct rt2x00lib_crypto *crypto,
321 struct ieee80211_key_conf *key)
322 {
323 struct hw_key_entry key_entry;
324 struct rt2x00_field32 field;
325 u32 mask;
326 u32 reg;
327
328 if (crypto->cmd == SET_KEY) {
329 /*
330 * rt2x00lib can't determine the correct free
331 * key_idx for shared keys. We have 1 register
332 * with key valid bits. The goal is simple, read
333 * the register, if that is full we have no slots
334 * left.
335 * Note that each BSS is allowed to have up to 4
336 * shared keys, so put a mask over the allowed
337 * entries.
338 */
339 mask = (0xf << crypto->bssidx);
340
341 rt2x00pci_register_read(rt2x00dev, SEC_CSR0, &reg);
342 reg &= mask;
343
344 if (reg && reg == mask)
345 return -ENOSPC;
346
347 key->hw_key_idx += reg ? ffz(reg) : 0;
348
349 /*
350 * Upload key to hardware
351 */
352 memcpy(key_entry.key, crypto->key,
353 sizeof(key_entry.key));
354 memcpy(key_entry.tx_mic, crypto->tx_mic,
355 sizeof(key_entry.tx_mic));
356 memcpy(key_entry.rx_mic, crypto->rx_mic,
357 sizeof(key_entry.rx_mic));
358
359 reg = SHARED_KEY_ENTRY(key->hw_key_idx);
360 rt2x00pci_register_multiwrite(rt2x00dev, reg,
361 &key_entry, sizeof(key_entry));
362
363 /*
364 * The cipher types are stored over 2 registers.
365 * bssidx 0 and 1 keys are stored in SEC_CSR1 and
366 * bssidx 1 and 2 keys are stored in SEC_CSR5.
367 * Using the correct defines correctly will cause overhead,
368 * so just calculate the correct offset.
369 */
370 if (key->hw_key_idx < 8) {
371 field.bit_offset = (3 * key->hw_key_idx);
372 field.bit_mask = 0x7 << field.bit_offset;
373
374 rt2x00pci_register_read(rt2x00dev, SEC_CSR1, &reg);
375 rt2x00_set_field32(&reg, field, crypto->cipher);
376 rt2x00pci_register_write(rt2x00dev, SEC_CSR1, reg);
377 } else {
378 field.bit_offset = (3 * (key->hw_key_idx - 8));
379 field.bit_mask = 0x7 << field.bit_offset;
380
381 rt2x00pci_register_read(rt2x00dev, SEC_CSR5, &reg);
382 rt2x00_set_field32(&reg, field, crypto->cipher);
383 rt2x00pci_register_write(rt2x00dev, SEC_CSR5, reg);
384 }
385
386 /*
387 * The driver does not support the IV/EIV generation
388 * in hardware. However it doesn't support the IV/EIV
389 * inside the ieee80211 frame either, but requires it
390 * to be provided separately for the descriptor.
391 * rt2x00lib will cut the IV/EIV data out of all frames
392 * given to us by mac80211, but we must tell mac80211
393 * to generate the IV/EIV data.
394 */
395 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
396 }
397
398 /*
399 * SEC_CSR0 contains only single-bit fields to indicate
400 * a particular key is valid. Because using the FIELD32()
401 * defines directly will cause a lot of overhead, we use
402 * a calculation to determine the correct bit directly.
403 */
404 mask = 1 << key->hw_key_idx;
405
406 rt2x00pci_register_read(rt2x00dev, SEC_CSR0, &reg);
407 if (crypto->cmd == SET_KEY)
408 reg |= mask;
409 else if (crypto->cmd == DISABLE_KEY)
410 reg &= ~mask;
411 rt2x00pci_register_write(rt2x00dev, SEC_CSR0, reg);
412
413 return 0;
414 }
415
416 static int rt61pci_config_pairwise_key(struct rt2x00_dev *rt2x00dev,
417 struct rt2x00lib_crypto *crypto,
418 struct ieee80211_key_conf *key)
419 {
420 struct hw_pairwise_ta_entry addr_entry;
421 struct hw_key_entry key_entry;
422 u32 mask;
423 u32 reg;
424
425 if (crypto->cmd == SET_KEY) {
426 /*
427 * rt2x00lib can't determine the correct free
428 * key_idx for pairwise keys. We have 2 registers
429 * with key valid bits. The goal is simple: read
430 * the first register. If that is full, move to
431 * the next register.
432 * When both registers are full, we drop the key.
433 * Otherwise, we use the first invalid entry.
434 */
435 rt2x00pci_register_read(rt2x00dev, SEC_CSR2, &reg);
436 if (reg && reg == ~0) {
437 key->hw_key_idx = 32;
438 rt2x00pci_register_read(rt2x00dev, SEC_CSR3, &reg);
439 if (reg && reg == ~0)
440 return -ENOSPC;
441 }
442
443 key->hw_key_idx += reg ? ffz(reg) : 0;
444
445 /*
446 * Upload key to hardware
447 */
448 memcpy(key_entry.key, crypto->key,
449 sizeof(key_entry.key));
450 memcpy(key_entry.tx_mic, crypto->tx_mic,
451 sizeof(key_entry.tx_mic));
452 memcpy(key_entry.rx_mic, crypto->rx_mic,
453 sizeof(key_entry.rx_mic));
454
455 memset(&addr_entry, 0, sizeof(addr_entry));
456 memcpy(&addr_entry, crypto->address, ETH_ALEN);
457 addr_entry.cipher = crypto->cipher;
458
459 reg = PAIRWISE_KEY_ENTRY(key->hw_key_idx);
460 rt2x00pci_register_multiwrite(rt2x00dev, reg,
461 &key_entry, sizeof(key_entry));
462
463 reg = PAIRWISE_TA_ENTRY(key->hw_key_idx);
464 rt2x00pci_register_multiwrite(rt2x00dev, reg,
465 &addr_entry, sizeof(addr_entry));
466
467 /*
468 * Enable pairwise lookup table for given BSS idx.
469 * Without this, received frames will not be decrypted
470 * by the hardware.
471 */
472 rt2x00pci_register_read(rt2x00dev, SEC_CSR4, &reg);
473 reg |= (1 << crypto->bssidx);
474 rt2x00pci_register_write(rt2x00dev, SEC_CSR4, reg);
475
476 /*
477 * The driver does not support the IV/EIV generation
478 * in hardware. However it doesn't support the IV/EIV
479 * inside the ieee80211 frame either, but requires it
480 * to be provided separately for the descriptor.
481 * rt2x00lib will cut the IV/EIV data out of all frames
482 * given to us by mac80211, but we must tell mac80211
483 * to generate the IV/EIV data.
484 */
485 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
486 }
487
488 /*
489 * SEC_CSR2 and SEC_CSR3 contain only single-bit fields to indicate
490 * a particular key is valid. Because using the FIELD32()
491 * defines directly will cause a lot of overhead, we use
492 * a calculation to determine the correct bit directly.
493 */
494 if (key->hw_key_idx < 32) {
495 mask = 1 << key->hw_key_idx;
496
497 rt2x00pci_register_read(rt2x00dev, SEC_CSR2, &reg);
498 if (crypto->cmd == SET_KEY)
499 reg |= mask;
500 else if (crypto->cmd == DISABLE_KEY)
501 reg &= ~mask;
502 rt2x00pci_register_write(rt2x00dev, SEC_CSR2, reg);
503 } else {
504 mask = 1 << (key->hw_key_idx - 32);
505
506 rt2x00pci_register_read(rt2x00dev, SEC_CSR3, &reg);
507 if (crypto->cmd == SET_KEY)
508 reg |= mask;
509 else if (crypto->cmd == DISABLE_KEY)
510 reg &= ~mask;
511 rt2x00pci_register_write(rt2x00dev, SEC_CSR3, reg);
512 }
513
514 return 0;
515 }
516
517 static void rt61pci_config_filter(struct rt2x00_dev *rt2x00dev,
518 const unsigned int filter_flags)
519 {
520 u32 reg;
521
522 /*
523 * Start configuration steps.
524 * Note that the version error will always be dropped
525 * and broadcast frames will always be accepted since
526 * there is no filter for it at this time.
527 */
528 rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
529 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CRC,
530 !(filter_flags & FIF_FCSFAIL));
531 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_PHYSICAL,
532 !(filter_flags & FIF_PLCPFAIL));
533 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CONTROL,
534 !(filter_flags & (FIF_CONTROL | FIF_PSPOLL)));
535 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_NOT_TO_ME,
536 !(filter_flags & FIF_PROMISC_IN_BSS));
537 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_TO_DS,
538 !(filter_flags & FIF_PROMISC_IN_BSS) &&
539 !rt2x00dev->intf_ap_count);
540 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_VERSION_ERROR, 1);
541 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_MULTICAST,
542 !(filter_flags & FIF_ALLMULTI));
543 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_BROADCAST, 0);
544 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_ACK_CTS,
545 !(filter_flags & FIF_CONTROL));
546 rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
547 }
548
549 static void rt61pci_config_intf(struct rt2x00_dev *rt2x00dev,
550 struct rt2x00_intf *intf,
551 struct rt2x00intf_conf *conf,
552 const unsigned int flags)
553 {
554 u32 reg;
555
556 if (flags & CONFIG_UPDATE_TYPE) {
557 /*
558 * Enable synchronisation.
559 */
560 rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
561 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_SYNC, conf->sync);
562 rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
563 }
564
565 if (flags & CONFIG_UPDATE_MAC) {
566 reg = le32_to_cpu(conf->mac[1]);
567 rt2x00_set_field32(&reg, MAC_CSR3_UNICAST_TO_ME_MASK, 0xff);
568 conf->mac[1] = cpu_to_le32(reg);
569
570 rt2x00pci_register_multiwrite(rt2x00dev, MAC_CSR2,
571 conf->mac, sizeof(conf->mac));
572 }
573
574 if (flags & CONFIG_UPDATE_BSSID) {
575 reg = le32_to_cpu(conf->bssid[1]);
576 rt2x00_set_field32(&reg, MAC_CSR5_BSS_ID_MASK, 3);
577 conf->bssid[1] = cpu_to_le32(reg);
578
579 rt2x00pci_register_multiwrite(rt2x00dev, MAC_CSR4,
580 conf->bssid, sizeof(conf->bssid));
581 }
582 }
583
584 static void rt61pci_config_erp(struct rt2x00_dev *rt2x00dev,
585 struct rt2x00lib_erp *erp,
586 u32 changed)
587 {
588 u32 reg;
589
590 rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
591 rt2x00_set_field32(&reg, TXRX_CSR0_RX_ACK_TIMEOUT, 0x32);
592 rt2x00_set_field32(&reg, TXRX_CSR0_TSF_OFFSET, IEEE80211_HEADER);
593 rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
594
595 if (changed & BSS_CHANGED_ERP_PREAMBLE) {
596 rt2x00pci_register_read(rt2x00dev, TXRX_CSR4, &reg);
597 rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_ENABLE, 1);
598 rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_PREAMBLE,
599 !!erp->short_preamble);
600 rt2x00pci_register_write(rt2x00dev, TXRX_CSR4, reg);
601 }
602
603 if (changed & BSS_CHANGED_BASIC_RATES)
604 rt2x00pci_register_write(rt2x00dev, TXRX_CSR5,
605 erp->basic_rates);
606
607 if (changed & BSS_CHANGED_BEACON_INT) {
608 rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
609 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_INTERVAL,
610 erp->beacon_int * 16);
611 rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
612 }
613
614 if (changed & BSS_CHANGED_ERP_SLOT) {
615 rt2x00pci_register_read(rt2x00dev, MAC_CSR9, &reg);
616 rt2x00_set_field32(&reg, MAC_CSR9_SLOT_TIME, erp->slot_time);
617 rt2x00pci_register_write(rt2x00dev, MAC_CSR9, reg);
618
619 rt2x00pci_register_read(rt2x00dev, MAC_CSR8, &reg);
620 rt2x00_set_field32(&reg, MAC_CSR8_SIFS, erp->sifs);
621 rt2x00_set_field32(&reg, MAC_CSR8_SIFS_AFTER_RX_OFDM, 3);
622 rt2x00_set_field32(&reg, MAC_CSR8_EIFS, erp->eifs);
623 rt2x00pci_register_write(rt2x00dev, MAC_CSR8, reg);
624 }
625 }
626
627 static void rt61pci_config_antenna_5x(struct rt2x00_dev *rt2x00dev,
628 struct antenna_setup *ant)
629 {
630 u8 r3;
631 u8 r4;
632 u8 r77;
633
634 rt61pci_bbp_read(rt2x00dev, 3, &r3);
635 rt61pci_bbp_read(rt2x00dev, 4, &r4);
636 rt61pci_bbp_read(rt2x00dev, 77, &r77);
637
638 rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, rt2x00_rf(rt2x00dev, RF5325));
639
640 /*
641 * Configure the RX antenna.
642 */
643 switch (ant->rx) {
644 case ANTENNA_HW_DIVERSITY:
645 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
646 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END,
647 (rt2x00dev->curr_band != IEEE80211_BAND_5GHZ));
648 break;
649 case ANTENNA_A:
650 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
651 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
652 if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ)
653 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
654 else
655 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
656 break;
657 case ANTENNA_B:
658 default:
659 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
660 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
661 if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ)
662 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
663 else
664 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
665 break;
666 }
667
668 rt61pci_bbp_write(rt2x00dev, 77, r77);
669 rt61pci_bbp_write(rt2x00dev, 3, r3);
670 rt61pci_bbp_write(rt2x00dev, 4, r4);
671 }
672
673 static void rt61pci_config_antenna_2x(struct rt2x00_dev *rt2x00dev,
674 struct antenna_setup *ant)
675 {
676 u8 r3;
677 u8 r4;
678 u8 r77;
679
680 rt61pci_bbp_read(rt2x00dev, 3, &r3);
681 rt61pci_bbp_read(rt2x00dev, 4, &r4);
682 rt61pci_bbp_read(rt2x00dev, 77, &r77);
683
684 rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, rt2x00_rf(rt2x00dev, RF2529));
685 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END,
686 !test_bit(CONFIG_FRAME_TYPE, &rt2x00dev->flags));
687
688 /*
689 * Configure the RX antenna.
690 */
691 switch (ant->rx) {
692 case ANTENNA_HW_DIVERSITY:
693 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
694 break;
695 case ANTENNA_A:
696 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
697 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
698 break;
699 case ANTENNA_B:
700 default:
701 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
702 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
703 break;
704 }
705
706 rt61pci_bbp_write(rt2x00dev, 77, r77);
707 rt61pci_bbp_write(rt2x00dev, 3, r3);
708 rt61pci_bbp_write(rt2x00dev, 4, r4);
709 }
710
711 static void rt61pci_config_antenna_2529_rx(struct rt2x00_dev *rt2x00dev,
712 const int p1, const int p2)
713 {
714 u32 reg;
715
716 rt2x00pci_register_read(rt2x00dev, MAC_CSR13, &reg);
717
718 rt2x00_set_field32(&reg, MAC_CSR13_BIT4, p1);
719 rt2x00_set_field32(&reg, MAC_CSR13_BIT12, 0);
720
721 rt2x00_set_field32(&reg, MAC_CSR13_BIT3, !p2);
722 rt2x00_set_field32(&reg, MAC_CSR13_BIT11, 0);
723
724 rt2x00pci_register_write(rt2x00dev, MAC_CSR13, reg);
725 }
726
727 static void rt61pci_config_antenna_2529(struct rt2x00_dev *rt2x00dev,
728 struct antenna_setup *ant)
729 {
730 u8 r3;
731 u8 r4;
732 u8 r77;
733
734 rt61pci_bbp_read(rt2x00dev, 3, &r3);
735 rt61pci_bbp_read(rt2x00dev, 4, &r4);
736 rt61pci_bbp_read(rt2x00dev, 77, &r77);
737
738 /*
739 * Configure the RX antenna.
740 */
741 switch (ant->rx) {
742 case ANTENNA_A:
743 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
744 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
745 rt61pci_config_antenna_2529_rx(rt2x00dev, 0, 0);
746 break;
747 case ANTENNA_HW_DIVERSITY:
748 /*
749 * FIXME: Antenna selection for the rf 2529 is very confusing
750 * in the legacy driver. Just default to antenna B until the
751 * legacy code can be properly translated into rt2x00 code.
752 */
753 case ANTENNA_B:
754 default:
755 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
756 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
757 rt61pci_config_antenna_2529_rx(rt2x00dev, 1, 1);
758 break;
759 }
760
761 rt61pci_bbp_write(rt2x00dev, 77, r77);
762 rt61pci_bbp_write(rt2x00dev, 3, r3);
763 rt61pci_bbp_write(rt2x00dev, 4, r4);
764 }
765
766 struct antenna_sel {
767 u8 word;
768 /*
769 * value[0] -> non-LNA
770 * value[1] -> LNA
771 */
772 u8 value[2];
773 };
774
775 static const struct antenna_sel antenna_sel_a[] = {
776 { 96, { 0x58, 0x78 } },
777 { 104, { 0x38, 0x48 } },
778 { 75, { 0xfe, 0x80 } },
779 { 86, { 0xfe, 0x80 } },
780 { 88, { 0xfe, 0x80 } },
781 { 35, { 0x60, 0x60 } },
782 { 97, { 0x58, 0x58 } },
783 { 98, { 0x58, 0x58 } },
784 };
785
786 static const struct antenna_sel antenna_sel_bg[] = {
787 { 96, { 0x48, 0x68 } },
788 { 104, { 0x2c, 0x3c } },
789 { 75, { 0xfe, 0x80 } },
790 { 86, { 0xfe, 0x80 } },
791 { 88, { 0xfe, 0x80 } },
792 { 35, { 0x50, 0x50 } },
793 { 97, { 0x48, 0x48 } },
794 { 98, { 0x48, 0x48 } },
795 };
796
797 static void rt61pci_config_ant(struct rt2x00_dev *rt2x00dev,
798 struct antenna_setup *ant)
799 {
800 const struct antenna_sel *sel;
801 unsigned int lna;
802 unsigned int i;
803 u32 reg;
804
805 /*
806 * We should never come here because rt2x00lib is supposed
807 * to catch this and send us the correct antenna explicitely.
808 */
809 BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
810 ant->tx == ANTENNA_SW_DIVERSITY);
811
812 if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) {
813 sel = antenna_sel_a;
814 lna = test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags);
815 } else {
816 sel = antenna_sel_bg;
817 lna = test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags);
818 }
819
820 for (i = 0; i < ARRAY_SIZE(antenna_sel_a); i++)
821 rt61pci_bbp_write(rt2x00dev, sel[i].word, sel[i].value[lna]);
822
823 rt2x00pci_register_read(rt2x00dev, PHY_CSR0, &reg);
824
825 rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_BG,
826 rt2x00dev->curr_band == IEEE80211_BAND_2GHZ);
827 rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_A,
828 rt2x00dev->curr_band == IEEE80211_BAND_5GHZ);
829
830 rt2x00pci_register_write(rt2x00dev, PHY_CSR0, reg);
831
832 if (rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF5325))
833 rt61pci_config_antenna_5x(rt2x00dev, ant);
834 else if (rt2x00_rf(rt2x00dev, RF2527))
835 rt61pci_config_antenna_2x(rt2x00dev, ant);
836 else if (rt2x00_rf(rt2x00dev, RF2529)) {
837 if (test_bit(CONFIG_DOUBLE_ANTENNA, &rt2x00dev->flags))
838 rt61pci_config_antenna_2x(rt2x00dev, ant);
839 else
840 rt61pci_config_antenna_2529(rt2x00dev, ant);
841 }
842 }
843
844 static void rt61pci_config_lna_gain(struct rt2x00_dev *rt2x00dev,
845 struct rt2x00lib_conf *libconf)
846 {
847 u16 eeprom;
848 short lna_gain = 0;
849
850 if (libconf->conf->channel->band == IEEE80211_BAND_2GHZ) {
851 if (test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags))
852 lna_gain += 14;
853
854 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &eeprom);
855 lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_BG_1);
856 } else {
857 if (test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags))
858 lna_gain += 14;
859
860 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &eeprom);
861 lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_A_1);
862 }
863
864 rt2x00dev->lna_gain = lna_gain;
865 }
866
867 static void rt61pci_config_channel(struct rt2x00_dev *rt2x00dev,
868 struct rf_channel *rf, const int txpower)
869 {
870 u8 r3;
871 u8 r94;
872 u8 smart;
873
874 rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
875 rt2x00_set_field32(&rf->rf4, RF4_FREQ_OFFSET, rt2x00dev->freq_offset);
876
877 smart = !(rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF2527));
878
879 rt61pci_bbp_read(rt2x00dev, 3, &r3);
880 rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, smart);
881 rt61pci_bbp_write(rt2x00dev, 3, r3);
882
883 r94 = 6;
884 if (txpower > MAX_TXPOWER && txpower <= (MAX_TXPOWER + r94))
885 r94 += txpower - MAX_TXPOWER;
886 else if (txpower < MIN_TXPOWER && txpower >= (MIN_TXPOWER - r94))
887 r94 += txpower;
888 rt61pci_bbp_write(rt2x00dev, 94, r94);
889
890 rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
891 rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
892 rt61pci_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
893 rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
894
895 udelay(200);
896
897 rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
898 rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
899 rt61pci_rf_write(rt2x00dev, 3, rf->rf3 | 0x00000004);
900 rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
901
902 udelay(200);
903
904 rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
905 rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
906 rt61pci_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
907 rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
908
909 msleep(1);
910 }
911
912 static void rt61pci_config_txpower(struct rt2x00_dev *rt2x00dev,
913 const int txpower)
914 {
915 struct rf_channel rf;
916
917 rt2x00_rf_read(rt2x00dev, 1, &rf.rf1);
918 rt2x00_rf_read(rt2x00dev, 2, &rf.rf2);
919 rt2x00_rf_read(rt2x00dev, 3, &rf.rf3);
920 rt2x00_rf_read(rt2x00dev, 4, &rf.rf4);
921
922 rt61pci_config_channel(rt2x00dev, &rf, txpower);
923 }
924
925 static void rt61pci_config_retry_limit(struct rt2x00_dev *rt2x00dev,
926 struct rt2x00lib_conf *libconf)
927 {
928 u32 reg;
929
930 rt2x00pci_register_read(rt2x00dev, TXRX_CSR4, &reg);
931 rt2x00_set_field32(&reg, TXRX_CSR4_OFDM_TX_RATE_DOWN, 1);
932 rt2x00_set_field32(&reg, TXRX_CSR4_OFDM_TX_RATE_STEP, 0);
933 rt2x00_set_field32(&reg, TXRX_CSR4_OFDM_TX_FALLBACK_CCK, 0);
934 rt2x00_set_field32(&reg, TXRX_CSR4_LONG_RETRY_LIMIT,
935 libconf->conf->long_frame_max_tx_count);
936 rt2x00_set_field32(&reg, TXRX_CSR4_SHORT_RETRY_LIMIT,
937 libconf->conf->short_frame_max_tx_count);
938 rt2x00pci_register_write(rt2x00dev, TXRX_CSR4, reg);
939 }
940
941 static void rt61pci_config_ps(struct rt2x00_dev *rt2x00dev,
942 struct rt2x00lib_conf *libconf)
943 {
944 enum dev_state state =
945 (libconf->conf->flags & IEEE80211_CONF_PS) ?
946 STATE_SLEEP : STATE_AWAKE;
947 u32 reg;
948
949 if (state == STATE_SLEEP) {
950 rt2x00pci_register_read(rt2x00dev, MAC_CSR11, &reg);
951 rt2x00_set_field32(&reg, MAC_CSR11_DELAY_AFTER_TBCN,
952 rt2x00dev->beacon_int - 10);
953 rt2x00_set_field32(&reg, MAC_CSR11_TBCN_BEFORE_WAKEUP,
954 libconf->conf->listen_interval - 1);
955 rt2x00_set_field32(&reg, MAC_CSR11_WAKEUP_LATENCY, 5);
956
957 /* We must first disable autowake before it can be enabled */
958 rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 0);
959 rt2x00pci_register_write(rt2x00dev, MAC_CSR11, reg);
960
961 rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 1);
962 rt2x00pci_register_write(rt2x00dev, MAC_CSR11, reg);
963
964 rt2x00pci_register_write(rt2x00dev, SOFT_RESET_CSR, 0x00000005);
965 rt2x00pci_register_write(rt2x00dev, IO_CNTL_CSR, 0x0000001c);
966 rt2x00pci_register_write(rt2x00dev, PCI_USEC_CSR, 0x00000060);
967
968 rt61pci_mcu_request(rt2x00dev, MCU_SLEEP, 0xff, 0, 0);
969 } else {
970 rt2x00pci_register_read(rt2x00dev, MAC_CSR11, &reg);
971 rt2x00_set_field32(&reg, MAC_CSR11_DELAY_AFTER_TBCN, 0);
972 rt2x00_set_field32(&reg, MAC_CSR11_TBCN_BEFORE_WAKEUP, 0);
973 rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 0);
974 rt2x00_set_field32(&reg, MAC_CSR11_WAKEUP_LATENCY, 0);
975 rt2x00pci_register_write(rt2x00dev, MAC_CSR11, reg);
976
977 rt2x00pci_register_write(rt2x00dev, SOFT_RESET_CSR, 0x00000007);
978 rt2x00pci_register_write(rt2x00dev, IO_CNTL_CSR, 0x00000018);
979 rt2x00pci_register_write(rt2x00dev, PCI_USEC_CSR, 0x00000020);
980
981 rt61pci_mcu_request(rt2x00dev, MCU_WAKEUP, 0xff, 0, 0);
982 }
983 }
984
985 static void rt61pci_config(struct rt2x00_dev *rt2x00dev,
986 struct rt2x00lib_conf *libconf,
987 const unsigned int flags)
988 {
989 /* Always recalculate LNA gain before changing configuration */
990 rt61pci_config_lna_gain(rt2x00dev, libconf);
991
992 if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
993 rt61pci_config_channel(rt2x00dev, &libconf->rf,
994 libconf->conf->power_level);
995 if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
996 !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
997 rt61pci_config_txpower(rt2x00dev, libconf->conf->power_level);
998 if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
999 rt61pci_config_retry_limit(rt2x00dev, libconf);
1000 if (flags & IEEE80211_CONF_CHANGE_PS)
1001 rt61pci_config_ps(rt2x00dev, libconf);
1002 }
1003
1004 /*
1005 * Link tuning
1006 */
1007 static void rt61pci_link_stats(struct rt2x00_dev *rt2x00dev,
1008 struct link_qual *qual)
1009 {
1010 u32 reg;
1011
1012 /*
1013 * Update FCS error count from register.
1014 */
1015 rt2x00pci_register_read(rt2x00dev, STA_CSR0, &reg);
1016 qual->rx_failed = rt2x00_get_field32(reg, STA_CSR0_FCS_ERROR);
1017
1018 /*
1019 * Update False CCA count from register.
1020 */
1021 rt2x00pci_register_read(rt2x00dev, STA_CSR1, &reg);
1022 qual->false_cca = rt2x00_get_field32(reg, STA_CSR1_FALSE_CCA_ERROR);
1023 }
1024
1025 static inline void rt61pci_set_vgc(struct rt2x00_dev *rt2x00dev,
1026 struct link_qual *qual, u8 vgc_level)
1027 {
1028 if (qual->vgc_level != vgc_level) {
1029 rt61pci_bbp_write(rt2x00dev, 17, vgc_level);
1030 qual->vgc_level = vgc_level;
1031 qual->vgc_level_reg = vgc_level;
1032 }
1033 }
1034
1035 static void rt61pci_reset_tuner(struct rt2x00_dev *rt2x00dev,
1036 struct link_qual *qual)
1037 {
1038 rt61pci_set_vgc(rt2x00dev, qual, 0x20);
1039 }
1040
1041 static void rt61pci_link_tuner(struct rt2x00_dev *rt2x00dev,
1042 struct link_qual *qual, const u32 count)
1043 {
1044 u8 up_bound;
1045 u8 low_bound;
1046
1047 /*
1048 * Determine r17 bounds.
1049 */
1050 if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) {
1051 low_bound = 0x28;
1052 up_bound = 0x48;
1053 if (test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags)) {
1054 low_bound += 0x10;
1055 up_bound += 0x10;
1056 }
1057 } else {
1058 low_bound = 0x20;
1059 up_bound = 0x40;
1060 if (test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags)) {
1061 low_bound += 0x10;
1062 up_bound += 0x10;
1063 }
1064 }
1065
1066 /*
1067 * If we are not associated, we should go straight to the
1068 * dynamic CCA tuning.
1069 */
1070 if (!rt2x00dev->intf_associated)
1071 goto dynamic_cca_tune;
1072
1073 /*
1074 * Special big-R17 for very short distance
1075 */
1076 if (qual->rssi >= -35) {
1077 rt61pci_set_vgc(rt2x00dev, qual, 0x60);
1078 return;
1079 }
1080
1081 /*
1082 * Special big-R17 for short distance
1083 */
1084 if (qual->rssi >= -58) {
1085 rt61pci_set_vgc(rt2x00dev, qual, up_bound);
1086 return;
1087 }
1088
1089 /*
1090 * Special big-R17 for middle-short distance
1091 */
1092 if (qual->rssi >= -66) {
1093 rt61pci_set_vgc(rt2x00dev, qual, low_bound + 0x10);
1094 return;
1095 }
1096
1097 /*
1098 * Special mid-R17 for middle distance
1099 */
1100 if (qual->rssi >= -74) {
1101 rt61pci_set_vgc(rt2x00dev, qual, low_bound + 0x08);
1102 return;
1103 }
1104
1105 /*
1106 * Special case: Change up_bound based on the rssi.
1107 * Lower up_bound when rssi is weaker then -74 dBm.
1108 */
1109 up_bound -= 2 * (-74 - qual->rssi);
1110 if (low_bound > up_bound)
1111 up_bound = low_bound;
1112
1113 if (qual->vgc_level > up_bound) {
1114 rt61pci_set_vgc(rt2x00dev, qual, up_bound);
1115 return;
1116 }
1117
1118 dynamic_cca_tune:
1119
1120 /*
1121 * r17 does not yet exceed upper limit, continue and base
1122 * the r17 tuning on the false CCA count.
1123 */
1124 if ((qual->false_cca > 512) && (qual->vgc_level < up_bound))
1125 rt61pci_set_vgc(rt2x00dev, qual, ++qual->vgc_level);
1126 else if ((qual->false_cca < 100) && (qual->vgc_level > low_bound))
1127 rt61pci_set_vgc(rt2x00dev, qual, --qual->vgc_level);
1128 }
1129
1130 /*
1131 * Queue handlers.
1132 */
1133 static void rt61pci_start_queue(struct data_queue *queue)
1134 {
1135 struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
1136 u32 reg;
1137
1138 switch (queue->qid) {
1139 case QID_RX:
1140 rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
1141 rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX, 0);
1142 rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
1143 break;
1144 case QID_BEACON:
1145 rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
1146 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 1);
1147 rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 1);
1148 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 1);
1149 rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
1150 break;
1151 default:
1152 break;
1153 }
1154 }
1155
1156 static void rt61pci_kick_queue(struct data_queue *queue)
1157 {
1158 struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
1159 u32 reg;
1160
1161 switch (queue->qid) {
1162 case QID_AC_VO:
1163 rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1164 rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC0, 1);
1165 rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1166 break;
1167 case QID_AC_VI:
1168 rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1169 rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC1, 1);
1170 rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1171 break;
1172 case QID_AC_BE:
1173 rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1174 rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC2, 1);
1175 rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1176 break;
1177 case QID_AC_BK:
1178 rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1179 rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC3, 1);
1180 rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1181 break;
1182 default:
1183 break;
1184 }
1185 }
1186
1187 static void rt61pci_stop_queue(struct data_queue *queue)
1188 {
1189 struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
1190 u32 reg;
1191
1192 switch (queue->qid) {
1193 case QID_AC_VO:
1194 rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1195 rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC0, 1);
1196 rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1197 break;
1198 case QID_AC_VI:
1199 rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1200 rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC1, 1);
1201 rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1202 break;
1203 case QID_AC_BE:
1204 rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1205 rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC2, 1);
1206 rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1207 break;
1208 case QID_AC_BK:
1209 rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1210 rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC3, 1);
1211 rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1212 break;
1213 case QID_RX:
1214 rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
1215 rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX, 1);
1216 rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
1217 break;
1218 case QID_BEACON:
1219 rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
1220 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 0);
1221 rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 0);
1222 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1223 rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
1224 break;
1225 default:
1226 break;
1227 }
1228 }
1229
1230 /*
1231 * Firmware functions
1232 */
1233 static char *rt61pci_get_firmware_name(struct rt2x00_dev *rt2x00dev)
1234 {
1235 u16 chip;
1236 char *fw_name;
1237
1238 pci_read_config_word(to_pci_dev(rt2x00dev->dev), PCI_DEVICE_ID, &chip);
1239 switch (chip) {
1240 case RT2561_PCI_ID:
1241 fw_name = FIRMWARE_RT2561;
1242 break;
1243 case RT2561s_PCI_ID:
1244 fw_name = FIRMWARE_RT2561s;
1245 break;
1246 case RT2661_PCI_ID:
1247 fw_name = FIRMWARE_RT2661;
1248 break;
1249 default:
1250 fw_name = NULL;
1251 break;
1252 }
1253
1254 return fw_name;
1255 }
1256
1257 static int rt61pci_check_firmware(struct rt2x00_dev *rt2x00dev,
1258 const u8 *data, const size_t len)
1259 {
1260 u16 fw_crc;
1261 u16 crc;
1262
1263 /*
1264 * Only support 8kb firmware files.
1265 */
1266 if (len != 8192)
1267 return FW_BAD_LENGTH;
1268
1269 /*
1270 * The last 2 bytes in the firmware array are the crc checksum itself.
1271 * This means that we should never pass those 2 bytes to the crc
1272 * algorithm.
1273 */
1274 fw_crc = (data[len - 2] << 8 | data[len - 1]);
1275
1276 /*
1277 * Use the crc itu-t algorithm.
1278 */
1279 crc = crc_itu_t(0, data, len - 2);
1280 crc = crc_itu_t_byte(crc, 0);
1281 crc = crc_itu_t_byte(crc, 0);
1282
1283 return (fw_crc == crc) ? FW_OK : FW_BAD_CRC;
1284 }
1285
1286 static int rt61pci_load_firmware(struct rt2x00_dev *rt2x00dev,
1287 const u8 *data, const size_t len)
1288 {
1289 int i;
1290 u32 reg;
1291
1292 /*
1293 * Wait for stable hardware.
1294 */
1295 for (i = 0; i < 100; i++) {
1296 rt2x00pci_register_read(rt2x00dev, MAC_CSR0, &reg);
1297 if (reg)
1298 break;
1299 msleep(1);
1300 }
1301
1302 if (!reg) {
1303 ERROR(rt2x00dev, "Unstable hardware.\n");
1304 return -EBUSY;
1305 }
1306
1307 /*
1308 * Prepare MCU and mailbox for firmware loading.
1309 */
1310 reg = 0;
1311 rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 1);
1312 rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1313 rt2x00pci_register_write(rt2x00dev, M2H_CMD_DONE_CSR, 0xffffffff);
1314 rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
1315 rt2x00pci_register_write(rt2x00dev, HOST_CMD_CSR, 0);
1316
1317 /*
1318 * Write firmware to device.
1319 */
1320 reg = 0;
1321 rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 1);
1322 rt2x00_set_field32(&reg, MCU_CNTL_CSR_SELECT_BANK, 1);
1323 rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1324
1325 rt2x00pci_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE,
1326 data, len);
1327
1328 rt2x00_set_field32(&reg, MCU_CNTL_CSR_SELECT_BANK, 0);
1329 rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1330
1331 rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 0);
1332 rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1333
1334 for (i = 0; i < 100; i++) {
1335 rt2x00pci_register_read(rt2x00dev, MCU_CNTL_CSR, &reg);
1336 if (rt2x00_get_field32(reg, MCU_CNTL_CSR_READY))
1337 break;
1338 msleep(1);
1339 }
1340
1341 if (i == 100) {
1342 ERROR(rt2x00dev, "MCU Control register not ready.\n");
1343 return -EBUSY;
1344 }
1345
1346 /*
1347 * Hardware needs another millisecond before it is ready.
1348 */
1349 msleep(1);
1350
1351 /*
1352 * Reset MAC and BBP registers.
1353 */
1354 reg = 0;
1355 rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 1);
1356 rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 1);
1357 rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1358
1359 rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1360 rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 0);
1361 rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 0);
1362 rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1363
1364 rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1365 rt2x00_set_field32(&reg, MAC_CSR1_HOST_READY, 1);
1366 rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1367
1368 return 0;
1369 }
1370
1371 /*
1372 * Initialization functions.
1373 */
1374 static bool rt61pci_get_entry_state(struct queue_entry *entry)
1375 {
1376 struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1377 u32 word;
1378
1379 if (entry->queue->qid == QID_RX) {
1380 rt2x00_desc_read(entry_priv->desc, 0, &word);
1381
1382 return rt2x00_get_field32(word, RXD_W0_OWNER_NIC);
1383 } else {
1384 rt2x00_desc_read(entry_priv->desc, 0, &word);
1385
1386 return (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
1387 rt2x00_get_field32(word, TXD_W0_VALID));
1388 }
1389 }
1390
1391 static void rt61pci_clear_entry(struct queue_entry *entry)
1392 {
1393 struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1394 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1395 u32 word;
1396
1397 if (entry->queue->qid == QID_RX) {
1398 rt2x00_desc_read(entry_priv->desc, 5, &word);
1399 rt2x00_set_field32(&word, RXD_W5_BUFFER_PHYSICAL_ADDRESS,
1400 skbdesc->skb_dma);
1401 rt2x00_desc_write(entry_priv->desc, 5, word);
1402
1403 rt2x00_desc_read(entry_priv->desc, 0, &word);
1404 rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
1405 rt2x00_desc_write(entry_priv->desc, 0, word);
1406 } else {
1407 rt2x00_desc_read(entry_priv->desc, 0, &word);
1408 rt2x00_set_field32(&word, TXD_W0_VALID, 0);
1409 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
1410 rt2x00_desc_write(entry_priv->desc, 0, word);
1411 }
1412 }
1413
1414 static int rt61pci_init_queues(struct rt2x00_dev *rt2x00dev)
1415 {
1416 struct queue_entry_priv_pci *entry_priv;
1417 u32 reg;
1418
1419 /*
1420 * Initialize registers.
1421 */
1422 rt2x00pci_register_read(rt2x00dev, TX_RING_CSR0, &reg);
1423 rt2x00_set_field32(&reg, TX_RING_CSR0_AC0_RING_SIZE,
1424 rt2x00dev->tx[0].limit);
1425 rt2x00_set_field32(&reg, TX_RING_CSR0_AC1_RING_SIZE,
1426 rt2x00dev->tx[1].limit);
1427 rt2x00_set_field32(&reg, TX_RING_CSR0_AC2_RING_SIZE,
1428 rt2x00dev->tx[2].limit);
1429 rt2x00_set_field32(&reg, TX_RING_CSR0_AC3_RING_SIZE,
1430 rt2x00dev->tx[3].limit);
1431 rt2x00pci_register_write(rt2x00dev, TX_RING_CSR0, reg);
1432
1433 rt2x00pci_register_read(rt2x00dev, TX_RING_CSR1, &reg);
1434 rt2x00_set_field32(&reg, TX_RING_CSR1_TXD_SIZE,
1435 rt2x00dev->tx[0].desc_size / 4);
1436 rt2x00pci_register_write(rt2x00dev, TX_RING_CSR1, reg);
1437
1438 entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
1439 rt2x00pci_register_read(rt2x00dev, AC0_BASE_CSR, &reg);
1440 rt2x00_set_field32(&reg, AC0_BASE_CSR_RING_REGISTER,
1441 entry_priv->desc_dma);
1442 rt2x00pci_register_write(rt2x00dev, AC0_BASE_CSR, reg);
1443
1444 entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
1445 rt2x00pci_register_read(rt2x00dev, AC1_BASE_CSR, &reg);
1446 rt2x00_set_field32(&reg, AC1_BASE_CSR_RING_REGISTER,
1447 entry_priv->desc_dma);
1448 rt2x00pci_register_write(rt2x00dev, AC1_BASE_CSR, reg);
1449
1450 entry_priv = rt2x00dev->tx[2].entries[0].priv_data;
1451 rt2x00pci_register_read(rt2x00dev, AC2_BASE_CSR, &reg);
1452 rt2x00_set_field32(&reg, AC2_BASE_CSR_RING_REGISTER,
1453 entry_priv->desc_dma);
1454 rt2x00pci_register_write(rt2x00dev, AC2_BASE_CSR, reg);
1455
1456 entry_priv = rt2x00dev->tx[3].entries[0].priv_data;
1457 rt2x00pci_register_read(rt2x00dev, AC3_BASE_CSR, &reg);
1458 rt2x00_set_field32(&reg, AC3_BASE_CSR_RING_REGISTER,
1459 entry_priv->desc_dma);
1460 rt2x00pci_register_write(rt2x00dev, AC3_BASE_CSR, reg);
1461
1462 rt2x00pci_register_read(rt2x00dev, RX_RING_CSR, &reg);
1463 rt2x00_set_field32(&reg, RX_RING_CSR_RING_SIZE, rt2x00dev->rx->limit);
1464 rt2x00_set_field32(&reg, RX_RING_CSR_RXD_SIZE,
1465 rt2x00dev->rx->desc_size / 4);
1466 rt2x00_set_field32(&reg, RX_RING_CSR_RXD_WRITEBACK_SIZE, 4);
1467 rt2x00pci_register_write(rt2x00dev, RX_RING_CSR, reg);
1468
1469 entry_priv = rt2x00dev->rx->entries[0].priv_data;
1470 rt2x00pci_register_read(rt2x00dev, RX_BASE_CSR, &reg);
1471 rt2x00_set_field32(&reg, RX_BASE_CSR_RING_REGISTER,
1472 entry_priv->desc_dma);
1473 rt2x00pci_register_write(rt2x00dev, RX_BASE_CSR, reg);
1474
1475 rt2x00pci_register_read(rt2x00dev, TX_DMA_DST_CSR, &reg);
1476 rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC0, 2);
1477 rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC1, 2);
1478 rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC2, 2);
1479 rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC3, 2);
1480 rt2x00pci_register_write(rt2x00dev, TX_DMA_DST_CSR, reg);
1481
1482 rt2x00pci_register_read(rt2x00dev, LOAD_TX_RING_CSR, &reg);
1483 rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC0, 1);
1484 rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC1, 1);
1485 rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC2, 1);
1486 rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC3, 1);
1487 rt2x00pci_register_write(rt2x00dev, LOAD_TX_RING_CSR, reg);
1488
1489 rt2x00pci_register_read(rt2x00dev, RX_CNTL_CSR, &reg);
1490 rt2x00_set_field32(&reg, RX_CNTL_CSR_LOAD_RXD, 1);
1491 rt2x00pci_register_write(rt2x00dev, RX_CNTL_CSR, reg);
1492
1493 return 0;
1494 }
1495
1496 static int rt61pci_init_registers(struct rt2x00_dev *rt2x00dev)
1497 {
1498 u32 reg;
1499
1500 rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
1501 rt2x00_set_field32(&reg, TXRX_CSR0_AUTO_TX_SEQ, 1);
1502 rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX, 0);
1503 rt2x00_set_field32(&reg, TXRX_CSR0_TX_WITHOUT_WAITING, 0);
1504 rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
1505
1506 rt2x00pci_register_read(rt2x00dev, TXRX_CSR1, &reg);
1507 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0, 47); /* CCK Signal */
1508 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0_VALID, 1);
1509 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1, 30); /* Rssi */
1510 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1_VALID, 1);
1511 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2, 42); /* OFDM Rate */
1512 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2_VALID, 1);
1513 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3, 30); /* Rssi */
1514 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3_VALID, 1);
1515 rt2x00pci_register_write(rt2x00dev, TXRX_CSR1, reg);
1516
1517 /*
1518 * CCK TXD BBP registers
1519 */
1520 rt2x00pci_register_read(rt2x00dev, TXRX_CSR2, &reg);
1521 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0, 13);
1522 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0_VALID, 1);
1523 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1, 12);
1524 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1_VALID, 1);
1525 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2, 11);
1526 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2_VALID, 1);
1527 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3, 10);
1528 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3_VALID, 1);
1529 rt2x00pci_register_write(rt2x00dev, TXRX_CSR2, reg);
1530
1531 /*
1532 * OFDM TXD BBP registers
1533 */
1534 rt2x00pci_register_read(rt2x00dev, TXRX_CSR3, &reg);
1535 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0, 7);
1536 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0_VALID, 1);
1537 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1, 6);
1538 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1_VALID, 1);
1539 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2, 5);
1540 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2_VALID, 1);
1541 rt2x00pci_register_write(rt2x00dev, TXRX_CSR3, reg);
1542
1543 rt2x00pci_register_read(rt2x00dev, TXRX_CSR7, &reg);
1544 rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_6MBS, 59);
1545 rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_9MBS, 53);
1546 rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_12MBS, 49);
1547 rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_18MBS, 46);
1548 rt2x00pci_register_write(rt2x00dev, TXRX_CSR7, reg);
1549
1550 rt2x00pci_register_read(rt2x00dev, TXRX_CSR8, &reg);
1551 rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_24MBS, 44);
1552 rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_36MBS, 42);
1553 rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_48MBS, 42);
1554 rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_54MBS, 42);
1555 rt2x00pci_register_write(rt2x00dev, TXRX_CSR8, reg);
1556
1557 rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
1558 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_INTERVAL, 0);
1559 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 0);
1560 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_SYNC, 0);
1561 rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 0);
1562 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1563 rt2x00_set_field32(&reg, TXRX_CSR9_TIMESTAMP_COMPENSATE, 0);
1564 rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
1565
1566 rt2x00pci_register_write(rt2x00dev, TXRX_CSR15, 0x0000000f);
1567
1568 rt2x00pci_register_write(rt2x00dev, MAC_CSR6, 0x00000fff);
1569
1570 rt2x00pci_register_read(rt2x00dev, MAC_CSR9, &reg);
1571 rt2x00_set_field32(&reg, MAC_CSR9_CW_SELECT, 0);
1572 rt2x00pci_register_write(rt2x00dev, MAC_CSR9, reg);
1573
1574 rt2x00pci_register_write(rt2x00dev, MAC_CSR10, 0x0000071c);
1575
1576 if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
1577 return -EBUSY;
1578
1579 rt2x00pci_register_write(rt2x00dev, MAC_CSR13, 0x0000e000);
1580
1581 /*
1582 * Invalidate all Shared Keys (SEC_CSR0),
1583 * and clear the Shared key Cipher algorithms (SEC_CSR1 & SEC_CSR5)
1584 */
1585 rt2x00pci_register_write(rt2x00dev, SEC_CSR0, 0x00000000);
1586 rt2x00pci_register_write(rt2x00dev, SEC_CSR1, 0x00000000);
1587 rt2x00pci_register_write(rt2x00dev, SEC_CSR5, 0x00000000);
1588
1589 rt2x00pci_register_write(rt2x00dev, PHY_CSR1, 0x000023b0);
1590 rt2x00pci_register_write(rt2x00dev, PHY_CSR5, 0x060a100c);
1591 rt2x00pci_register_write(rt2x00dev, PHY_CSR6, 0x00080606);
1592 rt2x00pci_register_write(rt2x00dev, PHY_CSR7, 0x00000a08);
1593
1594 rt2x00pci_register_write(rt2x00dev, PCI_CFG_CSR, 0x28ca4404);
1595
1596 rt2x00pci_register_write(rt2x00dev, TEST_MODE_CSR, 0x00000200);
1597
1598 rt2x00pci_register_write(rt2x00dev, M2H_CMD_DONE_CSR, 0xffffffff);
1599
1600 /*
1601 * Clear all beacons
1602 * For the Beacon base registers we only need to clear
1603 * the first byte since that byte contains the VALID and OWNER
1604 * bits which (when set to 0) will invalidate the entire beacon.
1605 */
1606 rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE0, 0);
1607 rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE1, 0);
1608 rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE2, 0);
1609 rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE3, 0);
1610
1611 /*
1612 * We must clear the error counters.
1613 * These registers are cleared on read,
1614 * so we may pass a useless variable to store the value.
1615 */
1616 rt2x00pci_register_read(rt2x00dev, STA_CSR0, &reg);
1617 rt2x00pci_register_read(rt2x00dev, STA_CSR1, &reg);
1618 rt2x00pci_register_read(rt2x00dev, STA_CSR2, &reg);
1619
1620 /*
1621 * Reset MAC and BBP registers.
1622 */
1623 rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1624 rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 1);
1625 rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 1);
1626 rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1627
1628 rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1629 rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 0);
1630 rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 0);
1631 rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1632
1633 rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1634 rt2x00_set_field32(&reg, MAC_CSR1_HOST_READY, 1);
1635 rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1636
1637 return 0;
1638 }
1639
1640 static int rt61pci_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
1641 {
1642 unsigned int i;
1643 u8 value;
1644
1645 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1646 rt61pci_bbp_read(rt2x00dev, 0, &value);
1647 if ((value != 0xff) && (value != 0x00))
1648 return 0;
1649 udelay(REGISTER_BUSY_DELAY);
1650 }
1651
1652 ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
1653 return -EACCES;
1654 }
1655
1656 static int rt61pci_init_bbp(struct rt2x00_dev *rt2x00dev)
1657 {
1658 unsigned int i;
1659 u16 eeprom;
1660 u8 reg_id;
1661 u8 value;
1662
1663 if (unlikely(rt61pci_wait_bbp_ready(rt2x00dev)))
1664 return -EACCES;
1665
1666 rt61pci_bbp_write(rt2x00dev, 3, 0x00);
1667 rt61pci_bbp_write(rt2x00dev, 15, 0x30);
1668 rt61pci_bbp_write(rt2x00dev, 21, 0xc8);
1669 rt61pci_bbp_write(rt2x00dev, 22, 0x38);
1670 rt61pci_bbp_write(rt2x00dev, 23, 0x06);
1671 rt61pci_bbp_write(rt2x00dev, 24, 0xfe);
1672 rt61pci_bbp_write(rt2x00dev, 25, 0x0a);
1673 rt61pci_bbp_write(rt2x00dev, 26, 0x0d);
1674 rt61pci_bbp_write(rt2x00dev, 34, 0x12);
1675 rt61pci_bbp_write(rt2x00dev, 37, 0x07);
1676 rt61pci_bbp_write(rt2x00dev, 39, 0xf8);
1677 rt61pci_bbp_write(rt2x00dev, 41, 0x60);
1678 rt61pci_bbp_write(rt2x00dev, 53, 0x10);
1679 rt61pci_bbp_write(rt2x00dev, 54, 0x18);
1680 rt61pci_bbp_write(rt2x00dev, 60, 0x10);
1681 rt61pci_bbp_write(rt2x00dev, 61, 0x04);
1682 rt61pci_bbp_write(rt2x00dev, 62, 0x04);
1683 rt61pci_bbp_write(rt2x00dev, 75, 0xfe);
1684 rt61pci_bbp_write(rt2x00dev, 86, 0xfe);
1685 rt61pci_bbp_write(rt2x00dev, 88, 0xfe);
1686 rt61pci_bbp_write(rt2x00dev, 90, 0x0f);
1687 rt61pci_bbp_write(rt2x00dev, 99, 0x00);
1688 rt61pci_bbp_write(rt2x00dev, 102, 0x16);
1689 rt61pci_bbp_write(rt2x00dev, 107, 0x04);
1690
1691 for (i = 0; i < EEPROM_BBP_SIZE; i++) {
1692 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
1693
1694 if (eeprom != 0xffff && eeprom != 0x0000) {
1695 reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
1696 value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
1697 rt61pci_bbp_write(rt2x00dev, reg_id, value);
1698 }
1699 }
1700
1701 return 0;
1702 }
1703
1704 /*
1705 * Device state switch handlers.
1706 */
1707 static void rt61pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
1708 enum dev_state state)
1709 {
1710 int mask = (state == STATE_RADIO_IRQ_OFF) ||
1711 (state == STATE_RADIO_IRQ_OFF_ISR);
1712 u32 reg;
1713
1714 /*
1715 * When interrupts are being enabled, the interrupt registers
1716 * should clear the register to assure a clean state.
1717 */
1718 if (state == STATE_RADIO_IRQ_ON) {
1719 rt2x00pci_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
1720 rt2x00pci_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
1721
1722 rt2x00pci_register_read(rt2x00dev, MCU_INT_SOURCE_CSR, &reg);
1723 rt2x00pci_register_write(rt2x00dev, MCU_INT_SOURCE_CSR, reg);
1724 }
1725
1726 /*
1727 * Only toggle the interrupts bits we are going to use.
1728 * Non-checked interrupt bits are disabled by default.
1729 */
1730 rt2x00pci_register_read(rt2x00dev, INT_MASK_CSR, &reg);
1731 rt2x00_set_field32(&reg, INT_MASK_CSR_TXDONE, mask);
1732 rt2x00_set_field32(&reg, INT_MASK_CSR_RXDONE, mask);
1733 rt2x00_set_field32(&reg, INT_MASK_CSR_BEACON_DONE, mask);
1734 rt2x00_set_field32(&reg, INT_MASK_CSR_ENABLE_MITIGATION, mask);
1735 rt2x00_set_field32(&reg, INT_MASK_CSR_MITIGATION_PERIOD, 0xff);
1736 rt2x00pci_register_write(rt2x00dev, INT_MASK_CSR, reg);
1737
1738 rt2x00pci_register_read(rt2x00dev, MCU_INT_MASK_CSR, &reg);
1739 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_0, mask);
1740 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_1, mask);
1741 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_2, mask);
1742 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_3, mask);
1743 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_4, mask);
1744 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_5, mask);
1745 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_6, mask);
1746 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_7, mask);
1747 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_TWAKEUP, mask);
1748 rt2x00pci_register_write(rt2x00dev, MCU_INT_MASK_CSR, reg);
1749 }
1750
1751 static int rt61pci_enable_radio(struct rt2x00_dev *rt2x00dev)
1752 {
1753 u32 reg;
1754
1755 /*
1756 * Initialize all registers.
1757 */
1758 if (unlikely(rt61pci_init_queues(rt2x00dev) ||
1759 rt61pci_init_registers(rt2x00dev) ||
1760 rt61pci_init_bbp(rt2x00dev)))
1761 return -EIO;
1762
1763 /*
1764 * Enable RX.
1765 */
1766 rt2x00pci_register_read(rt2x00dev, RX_CNTL_CSR, &reg);
1767 rt2x00_set_field32(&reg, RX_CNTL_CSR_ENABLE_RX_DMA, 1);
1768 rt2x00pci_register_write(rt2x00dev, RX_CNTL_CSR, reg);
1769
1770 return 0;
1771 }
1772
1773 static void rt61pci_disable_radio(struct rt2x00_dev *rt2x00dev)
1774 {
1775 /*
1776 * Disable power
1777 */
1778 rt2x00pci_register_write(rt2x00dev, MAC_CSR10, 0x00001818);
1779 }
1780
1781 static int rt61pci_set_state(struct rt2x00_dev *rt2x00dev, enum dev_state state)
1782 {
1783 u32 reg, reg2;
1784 unsigned int i;
1785 char put_to_sleep;
1786
1787 put_to_sleep = (state != STATE_AWAKE);
1788
1789 rt2x00pci_register_read(rt2x00dev, MAC_CSR12, &reg);
1790 rt2x00_set_field32(&reg, MAC_CSR12_FORCE_WAKEUP, !put_to_sleep);
1791 rt2x00_set_field32(&reg, MAC_CSR12_PUT_TO_SLEEP, put_to_sleep);
1792 rt2x00pci_register_write(rt2x00dev, MAC_CSR12, reg);
1793
1794 /*
1795 * Device is not guaranteed to be in the requested state yet.
1796 * We must wait until the register indicates that the
1797 * device has entered the correct state.
1798 */
1799 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1800 rt2x00pci_register_read(rt2x00dev, MAC_CSR12, &reg2);
1801 state = rt2x00_get_field32(reg2, MAC_CSR12_BBP_CURRENT_STATE);
1802 if (state == !put_to_sleep)
1803 return 0;
1804 rt2x00pci_register_write(rt2x00dev, MAC_CSR12, reg);
1805 msleep(10);
1806 }
1807
1808 return -EBUSY;
1809 }
1810
1811 static int rt61pci_set_device_state(struct rt2x00_dev *rt2x00dev,
1812 enum dev_state state)
1813 {
1814 int retval = 0;
1815
1816 switch (state) {
1817 case STATE_RADIO_ON:
1818 retval = rt61pci_enable_radio(rt2x00dev);
1819 break;
1820 case STATE_RADIO_OFF:
1821 rt61pci_disable_radio(rt2x00dev);
1822 break;
1823 case STATE_RADIO_IRQ_ON:
1824 case STATE_RADIO_IRQ_ON_ISR:
1825 case STATE_RADIO_IRQ_OFF:
1826 case STATE_RADIO_IRQ_OFF_ISR:
1827 rt61pci_toggle_irq(rt2x00dev, state);
1828 break;
1829 case STATE_DEEP_SLEEP:
1830 case STATE_SLEEP:
1831 case STATE_STANDBY:
1832 case STATE_AWAKE:
1833 retval = rt61pci_set_state(rt2x00dev, state);
1834 break;
1835 default:
1836 retval = -ENOTSUPP;
1837 break;
1838 }
1839
1840 if (unlikely(retval))
1841 ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
1842 state, retval);
1843
1844 return retval;
1845 }
1846
1847 /*
1848 * TX descriptor initialization
1849 */
1850 static void rt61pci_write_tx_desc(struct queue_entry *entry,
1851 struct txentry_desc *txdesc)
1852 {
1853 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1854 struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1855 __le32 *txd = entry_priv->desc;
1856 u32 word;
1857
1858 /*
1859 * Start writing the descriptor words.
1860 */
1861 rt2x00_desc_read(txd, 1, &word);
1862 rt2x00_set_field32(&word, TXD_W1_HOST_Q_ID, entry->queue->qid);
1863 rt2x00_set_field32(&word, TXD_W1_AIFSN, entry->queue->aifs);
1864 rt2x00_set_field32(&word, TXD_W1_CWMIN, entry->queue->cw_min);
1865 rt2x00_set_field32(&word, TXD_W1_CWMAX, entry->queue->cw_max);
1866 rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, txdesc->iv_offset);
1867 rt2x00_set_field32(&word, TXD_W1_HW_SEQUENCE,
1868 test_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags));
1869 rt2x00_set_field32(&word, TXD_W1_BUFFER_COUNT, 1);
1870 rt2x00_desc_write(txd, 1, word);
1871
1872 rt2x00_desc_read(txd, 2, &word);
1873 rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->signal);
1874 rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->service);
1875 rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW, txdesc->length_low);
1876 rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH, txdesc->length_high);
1877 rt2x00_desc_write(txd, 2, word);
1878
1879 if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags)) {
1880 _rt2x00_desc_write(txd, 3, skbdesc->iv[0]);
1881 _rt2x00_desc_write(txd, 4, skbdesc->iv[1]);
1882 }
1883
1884 rt2x00_desc_read(txd, 5, &word);
1885 rt2x00_set_field32(&word, TXD_W5_PID_TYPE, entry->queue->qid);
1886 rt2x00_set_field32(&word, TXD_W5_PID_SUBTYPE,
1887 skbdesc->entry->entry_idx);
1888 rt2x00_set_field32(&word, TXD_W5_TX_POWER,
1889 TXPOWER_TO_DEV(entry->queue->rt2x00dev->tx_power));
1890 rt2x00_set_field32(&word, TXD_W5_WAITING_DMA_DONE_INT, 1);
1891 rt2x00_desc_write(txd, 5, word);
1892
1893 if (entry->queue->qid != QID_BEACON) {
1894 rt2x00_desc_read(txd, 6, &word);
1895 rt2x00_set_field32(&word, TXD_W6_BUFFER_PHYSICAL_ADDRESS,
1896 skbdesc->skb_dma);
1897 rt2x00_desc_write(txd, 6, word);
1898
1899 rt2x00_desc_read(txd, 11, &word);
1900 rt2x00_set_field32(&word, TXD_W11_BUFFER_LENGTH0,
1901 txdesc->length);
1902 rt2x00_desc_write(txd, 11, word);
1903 }
1904
1905 /*
1906 * Writing TXD word 0 must the last to prevent a race condition with
1907 * the device, whereby the device may take hold of the TXD before we
1908 * finished updating it.
1909 */
1910 rt2x00_desc_read(txd, 0, &word);
1911 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
1912 rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1913 rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1914 test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1915 rt2x00_set_field32(&word, TXD_W0_ACK,
1916 test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1917 rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1918 test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1919 rt2x00_set_field32(&word, TXD_W0_OFDM,
1920 (txdesc->rate_mode == RATE_MODE_OFDM));
1921 rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->ifs);
1922 rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1923 test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
1924 rt2x00_set_field32(&word, TXD_W0_TKIP_MIC,
1925 test_bit(ENTRY_TXD_ENCRYPT_MMIC, &txdesc->flags));
1926 rt2x00_set_field32(&word, TXD_W0_KEY_TABLE,
1927 test_bit(ENTRY_TXD_ENCRYPT_PAIRWISE, &txdesc->flags));
1928 rt2x00_set_field32(&word, TXD_W0_KEY_INDEX, txdesc->key_idx);
1929 rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, txdesc->length);
1930 rt2x00_set_field32(&word, TXD_W0_BURST,
1931 test_bit(ENTRY_TXD_BURST, &txdesc->flags));
1932 rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, txdesc->cipher);
1933 rt2x00_desc_write(txd, 0, word);
1934
1935 /*
1936 * Register descriptor details in skb frame descriptor.
1937 */
1938 skbdesc->desc = txd;
1939 skbdesc->desc_len = (entry->queue->qid == QID_BEACON) ? TXINFO_SIZE :
1940 TXD_DESC_SIZE;
1941 }
1942
1943 /*
1944 * TX data initialization
1945 */
1946 static void rt61pci_write_beacon(struct queue_entry *entry,
1947 struct txentry_desc *txdesc)
1948 {
1949 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1950 struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1951 unsigned int beacon_base;
1952 unsigned int padding_len;
1953 u32 reg;
1954
1955 /*
1956 * Disable beaconing while we are reloading the beacon data,
1957 * otherwise we might be sending out invalid data.
1958 */
1959 rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
1960 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1961 rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
1962
1963 /*
1964 * Write the TX descriptor for the beacon.
1965 */
1966 rt61pci_write_tx_desc(entry, txdesc);
1967
1968 /*
1969 * Dump beacon to userspace through debugfs.
1970 */
1971 rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry->skb);
1972
1973 /*
1974 * Write entire beacon with descriptor and padding to register.
1975 */
1976 padding_len = roundup(entry->skb->len, 4) - entry->skb->len;
1977 skb_pad(entry->skb, padding_len);
1978 beacon_base = HW_BEACON_OFFSET(entry->entry_idx);
1979 rt2x00pci_register_multiwrite(rt2x00dev, beacon_base,
1980 entry_priv->desc, TXINFO_SIZE);
1981 rt2x00pci_register_multiwrite(rt2x00dev, beacon_base + TXINFO_SIZE,
1982 entry->skb->data,
1983 entry->skb->len + padding_len);
1984
1985 /*
1986 * Enable beaconing again.
1987 *
1988 * For Wi-Fi faily generated beacons between participating
1989 * stations. Set TBTT phase adaptive adjustment step to 8us.
1990 */
1991 rt2x00pci_register_write(rt2x00dev, TXRX_CSR10, 0x00001008);
1992
1993 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 1);
1994 rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
1995
1996 /*
1997 * Clean up beacon skb.
1998 */
1999 dev_kfree_skb_any(entry->skb);
2000 entry->skb = NULL;
2001 }
2002
2003 static void rt61pci_clear_beacon(struct queue_entry *entry)
2004 {
2005 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
2006 u32 reg;
2007
2008 /*
2009 * Disable beaconing while we are reloading the beacon data,
2010 * otherwise we might be sending out invalid data.
2011 */
2012 rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
2013 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
2014 rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
2015
2016 /*
2017 * Clear beacon.
2018 */
2019 rt2x00pci_register_write(rt2x00dev,
2020 HW_BEACON_OFFSET(entry->entry_idx), 0);
2021
2022 /*
2023 * Enable beaconing again.
2024 */
2025 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 1);
2026 rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
2027 }
2028
2029 /*
2030 * RX control handlers
2031 */
2032 static int rt61pci_agc_to_rssi(struct rt2x00_dev *rt2x00dev, int rxd_w1)
2033 {
2034 u8 offset = rt2x00dev->lna_gain;
2035 u8 lna;
2036
2037 lna = rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_LNA);
2038 switch (lna) {
2039 case 3:
2040 offset += 90;
2041 break;
2042 case 2:
2043 offset += 74;
2044 break;
2045 case 1:
2046 offset += 64;
2047 break;
2048 default:
2049 return 0;
2050 }
2051
2052 if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) {
2053 if (lna == 3 || lna == 2)
2054 offset += 10;
2055 }
2056
2057 return rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_AGC) * 2 - offset;
2058 }
2059
2060 static void rt61pci_fill_rxdone(struct queue_entry *entry,
2061 struct rxdone_entry_desc *rxdesc)
2062 {
2063 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
2064 struct queue_entry_priv_pci *entry_priv = entry->priv_data;
2065 u32 word0;
2066 u32 word1;
2067
2068 rt2x00_desc_read(entry_priv->desc, 0, &word0);
2069 rt2x00_desc_read(entry_priv->desc, 1, &word1);
2070
2071 if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
2072 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
2073
2074 rxdesc->cipher = rt2x00_get_field32(word0, RXD_W0_CIPHER_ALG);
2075 rxdesc->cipher_status = rt2x00_get_field32(word0, RXD_W0_CIPHER_ERROR);
2076
2077 if (rxdesc->cipher != CIPHER_NONE) {
2078 _rt2x00_desc_read(entry_priv->desc, 2, &rxdesc->iv[0]);
2079 _rt2x00_desc_read(entry_priv->desc, 3, &rxdesc->iv[1]);
2080 rxdesc->dev_flags |= RXDONE_CRYPTO_IV;
2081
2082 _rt2x00_desc_read(entry_priv->desc, 4, &rxdesc->icv);
2083 rxdesc->dev_flags |= RXDONE_CRYPTO_ICV;
2084
2085 /*
2086 * Hardware has stripped IV/EIV data from 802.11 frame during
2087 * decryption. It has provided the data separately but rt2x00lib
2088 * should decide if it should be reinserted.
2089 */
2090 rxdesc->flags |= RX_FLAG_IV_STRIPPED;
2091
2092 /*
2093 * FIXME: Legacy driver indicates that the frame does
2094 * contain the Michael Mic. Unfortunately, in rt2x00
2095 * the MIC seems to be missing completely...
2096 */
2097 rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;
2098
2099 if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
2100 rxdesc->flags |= RX_FLAG_DECRYPTED;
2101 else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
2102 rxdesc->flags |= RX_FLAG_MMIC_ERROR;
2103 }
2104
2105 /*
2106 * Obtain the status about this packet.
2107 * When frame was received with an OFDM bitrate,
2108 * the signal is the PLCP value. If it was received with
2109 * a CCK bitrate the signal is the rate in 100kbit/s.
2110 */
2111 rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL);
2112 rxdesc->rssi = rt61pci_agc_to_rssi(rt2x00dev, word1);
2113 rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
2114
2115 if (rt2x00_get_field32(word0, RXD_W0_OFDM))
2116 rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
2117 else
2118 rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
2119 if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
2120 rxdesc->dev_flags |= RXDONE_MY_BSS;
2121 }
2122
2123 /*
2124 * Interrupt functions.
2125 */
2126 static void rt61pci_txdone(struct rt2x00_dev *rt2x00dev)
2127 {
2128 struct data_queue *queue;
2129 struct queue_entry *entry;
2130 struct queue_entry *entry_done;
2131 struct queue_entry_priv_pci *entry_priv;
2132 struct txdone_entry_desc txdesc;
2133 u32 word;
2134 u32 reg;
2135 int type;
2136 int index;
2137 int i;
2138
2139 /*
2140 * TX_STA_FIFO is a stack of X entries, hence read TX_STA_FIFO
2141 * at most X times and also stop processing once the TX_STA_FIFO_VALID
2142 * flag is not set anymore.
2143 *
2144 * The legacy drivers use X=TX_RING_SIZE but state in a comment
2145 * that the TX_STA_FIFO stack has a size of 16. We stick to our
2146 * tx ring size for now.
2147 */
2148 for (i = 0; i < rt2x00dev->ops->tx->entry_num; i++) {
2149 rt2x00pci_register_read(rt2x00dev, STA_CSR4, &reg);
2150 if (!rt2x00_get_field32(reg, STA_CSR4_VALID))
2151 break;
2152
2153 /*
2154 * Skip this entry when it contains an invalid
2155 * queue identication number.
2156 */
2157 type = rt2x00_get_field32(reg, STA_CSR4_PID_TYPE);
2158 queue = rt2x00queue_get_queue(rt2x00dev, type);
2159 if (unlikely(!queue))
2160 continue;
2161
2162 /*
2163 * Skip this entry when it contains an invalid
2164 * index number.
2165 */
2166 index = rt2x00_get_field32(reg, STA_CSR4_PID_SUBTYPE);
2167 if (unlikely(index >= queue->limit))
2168 continue;
2169
2170 entry = &queue->entries[index];
2171 entry_priv = entry->priv_data;
2172 rt2x00_desc_read(entry_priv->desc, 0, &word);
2173
2174 if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
2175 !rt2x00_get_field32(word, TXD_W0_VALID))
2176 return;
2177
2178 entry_done = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
2179 while (entry != entry_done) {
2180 /* Catch up.
2181 * Just report any entries we missed as failed.
2182 */
2183 WARNING(rt2x00dev,
2184 "TX status report missed for entry %d\n",
2185 entry_done->entry_idx);
2186
2187 rt2x00lib_txdone_noinfo(entry_done, TXDONE_UNKNOWN);
2188 entry_done = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
2189 }
2190
2191 /*
2192 * Obtain the status about this packet.
2193 */
2194 txdesc.flags = 0;
2195 switch (rt2x00_get_field32(reg, STA_CSR4_TX_RESULT)) {
2196 case 0: /* Success, maybe with retry */
2197 __set_bit(TXDONE_SUCCESS, &txdesc.flags);
2198 break;
2199 case 6: /* Failure, excessive retries */
2200 __set_bit(TXDONE_EXCESSIVE_RETRY, &txdesc.flags);
2201 /* Don't break, this is a failed frame! */
2202 default: /* Failure */
2203 __set_bit(TXDONE_FAILURE, &txdesc.flags);
2204 }
2205 txdesc.retry = rt2x00_get_field32(reg, STA_CSR4_RETRY_COUNT);
2206
2207 /*
2208 * the frame was retried at least once
2209 * -> hw used fallback rates
2210 */
2211 if (txdesc.retry)
2212 __set_bit(TXDONE_FALLBACK, &txdesc.flags);
2213
2214 rt2x00lib_txdone(entry, &txdesc);
2215 }
2216 }
2217
2218 static void rt61pci_wakeup(struct rt2x00_dev *rt2x00dev)
2219 {
2220 struct ieee80211_conf conf = { .flags = 0 };
2221 struct rt2x00lib_conf libconf = { .conf = &conf };
2222
2223 rt61pci_config(rt2x00dev, &libconf, IEEE80211_CONF_CHANGE_PS);
2224 }
2225
2226 static irqreturn_t rt61pci_interrupt_thread(int irq, void *dev_instance)
2227 {
2228 struct rt2x00_dev *rt2x00dev = dev_instance;
2229 u32 reg = rt2x00dev->irqvalue[0];
2230 u32 reg_mcu = rt2x00dev->irqvalue[1];
2231
2232 /*
2233 * Handle interrupts, walk through all bits
2234 * and run the tasks, the bits are checked in order of
2235 * priority.
2236 */
2237
2238 /*
2239 * 1 - Rx ring done interrupt.
2240 */
2241 if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RXDONE))
2242 rt2x00pci_rxdone(rt2x00dev);
2243
2244 /*
2245 * 2 - Tx ring done interrupt.
2246 */
2247 if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TXDONE))
2248 rt61pci_txdone(rt2x00dev);
2249
2250 /*
2251 * 3 - Handle MCU command done.
2252 */
2253 if (reg_mcu)
2254 rt2x00pci_register_write(rt2x00dev,
2255 M2H_CMD_DONE_CSR, 0xffffffff);
2256
2257 /*
2258 * 4 - MCU Autowakeup interrupt.
2259 */
2260 if (rt2x00_get_field32(reg_mcu, MCU_INT_SOURCE_CSR_TWAKEUP))
2261 rt61pci_wakeup(rt2x00dev);
2262
2263 /*
2264 * 5 - Beacon done interrupt.
2265 */
2266 if (rt2x00_get_field32(reg, INT_SOURCE_CSR_BEACON_DONE))
2267 rt2x00lib_beacondone(rt2x00dev);
2268
2269 /* Enable interrupts again. */
2270 rt2x00dev->ops->lib->set_device_state(rt2x00dev,
2271 STATE_RADIO_IRQ_ON_ISR);
2272 return IRQ_HANDLED;
2273 }
2274
2275
2276 static irqreturn_t rt61pci_interrupt(int irq, void *dev_instance)
2277 {
2278 struct rt2x00_dev *rt2x00dev = dev_instance;
2279 u32 reg_mcu;
2280 u32 reg;
2281
2282 /*
2283 * Get the interrupt sources & saved to local variable.
2284 * Write register value back to clear pending interrupts.
2285 */
2286 rt2x00pci_register_read(rt2x00dev, MCU_INT_SOURCE_CSR, &reg_mcu);
2287 rt2x00pci_register_write(rt2x00dev, MCU_INT_SOURCE_CSR, reg_mcu);
2288
2289 rt2x00pci_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
2290 rt2x00pci_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
2291
2292 if (!reg && !reg_mcu)
2293 return IRQ_NONE;
2294
2295 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
2296 return IRQ_HANDLED;
2297
2298 /* Store irqvalues for use in the interrupt thread. */
2299 rt2x00dev->irqvalue[0] = reg;
2300 rt2x00dev->irqvalue[1] = reg_mcu;
2301
2302 /* Disable interrupts, will be enabled again in the interrupt thread. */
2303 rt2x00dev->ops->lib->set_device_state(rt2x00dev,
2304 STATE_RADIO_IRQ_OFF_ISR);
2305 return IRQ_WAKE_THREAD;
2306 }
2307
2308 /*
2309 * Device probe functions.
2310 */
2311 static int rt61pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
2312 {
2313 struct eeprom_93cx6 eeprom;
2314 u32 reg;
2315 u16 word;
2316 u8 *mac;
2317 s8 value;
2318
2319 rt2x00pci_register_read(rt2x00dev, E2PROM_CSR, &reg);
2320
2321 eeprom.data = rt2x00dev;
2322 eeprom.register_read = rt61pci_eepromregister_read;
2323 eeprom.register_write = rt61pci_eepromregister_write;
2324 eeprom.width = rt2x00_get_field32(reg, E2PROM_CSR_TYPE_93C46) ?
2325 PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
2326 eeprom.reg_data_in = 0;
2327 eeprom.reg_data_out = 0;
2328 eeprom.reg_data_clock = 0;
2329 eeprom.reg_chip_select = 0;
2330
2331 eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
2332 EEPROM_SIZE / sizeof(u16));
2333
2334 /*
2335 * Start validation of the data that has been read.
2336 */
2337 mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
2338 if (!is_valid_ether_addr(mac)) {
2339 random_ether_addr(mac);
2340 EEPROM(rt2x00dev, "MAC: %pM\n", mac);
2341 }
2342
2343 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
2344 if (word == 0xffff) {
2345 rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
2346 rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
2347 ANTENNA_B);
2348 rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
2349 ANTENNA_B);
2350 rt2x00_set_field16(&word, EEPROM_ANTENNA_FRAME_TYPE, 0);
2351 rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
2352 rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
2353 rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF5225);
2354 rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
2355 EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
2356 }
2357
2358 rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
2359 if (word == 0xffff) {
2360 rt2x00_set_field16(&word, EEPROM_NIC_ENABLE_DIVERSITY, 0);
2361 rt2x00_set_field16(&word, EEPROM_NIC_TX_DIVERSITY, 0);
2362 rt2x00_set_field16(&word, EEPROM_NIC_RX_FIXED, 0);
2363 rt2x00_set_field16(&word, EEPROM_NIC_TX_FIXED, 0);
2364 rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_BG, 0);
2365 rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
2366 rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_A, 0);
2367 rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
2368 EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
2369 }
2370
2371 rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &word);
2372 if (word == 0xffff) {
2373 rt2x00_set_field16(&word, EEPROM_LED_LED_MODE,
2374 LED_MODE_DEFAULT);
2375 rt2x00_eeprom_write(rt2x00dev, EEPROM_LED, word);
2376 EEPROM(rt2x00dev, "Led: 0x%04x\n", word);
2377 }
2378
2379 rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &word);
2380 if (word == 0xffff) {
2381 rt2x00_set_field16(&word, EEPROM_FREQ_OFFSET, 0);
2382 rt2x00_set_field16(&word, EEPROM_FREQ_SEQ, 0);
2383 rt2x00_eeprom_write(rt2x00dev, EEPROM_FREQ, word);
2384 EEPROM(rt2x00dev, "Freq: 0x%04x\n", word);
2385 }
2386
2387 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &word);
2388 if (word == 0xffff) {
2389 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
2390 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
2391 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
2392 EEPROM(rt2x00dev, "RSSI OFFSET BG: 0x%04x\n", word);
2393 } else {
2394 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_1);
2395 if (value < -10 || value > 10)
2396 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
2397 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_2);
2398 if (value < -10 || value > 10)
2399 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
2400 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
2401 }
2402
2403 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &word);
2404 if (word == 0xffff) {
2405 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
2406 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
2407 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
2408 EEPROM(rt2x00dev, "RSSI OFFSET A: 0x%04x\n", word);
2409 } else {
2410 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_1);
2411 if (value < -10 || value > 10)
2412 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
2413 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_2);
2414 if (value < -10 || value > 10)
2415 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
2416 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
2417 }
2418
2419 return 0;
2420 }
2421
2422 static int rt61pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
2423 {
2424 u32 reg;
2425 u16 value;
2426 u16 eeprom;
2427
2428 /*
2429 * Read EEPROM word for configuration.
2430 */
2431 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
2432
2433 /*
2434 * Identify RF chipset.
2435 */
2436 value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
2437 rt2x00pci_register_read(rt2x00dev, MAC_CSR0, &reg);
2438 rt2x00_set_chip(rt2x00dev, rt2x00_get_field32(reg, MAC_CSR0_CHIPSET),
2439 value, rt2x00_get_field32(reg, MAC_CSR0_REVISION));
2440
2441 if (!rt2x00_rf(rt2x00dev, RF5225) &&
2442 !rt2x00_rf(rt2x00dev, RF5325) &&
2443 !rt2x00_rf(rt2x00dev, RF2527) &&
2444 !rt2x00_rf(rt2x00dev, RF2529)) {
2445 ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
2446 return -ENODEV;
2447 }
2448
2449 /*
2450 * Determine number of antennas.
2451 */
2452 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_NUM) == 2)
2453 __set_bit(CONFIG_DOUBLE_ANTENNA, &rt2x00dev->flags);
2454
2455 /*
2456 * Identify default antenna configuration.
2457 */
2458 rt2x00dev->default_ant.tx =
2459 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
2460 rt2x00dev->default_ant.rx =
2461 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
2462
2463 /*
2464 * Read the Frame type.
2465 */
2466 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_FRAME_TYPE))
2467 __set_bit(CONFIG_FRAME_TYPE, &rt2x00dev->flags);
2468
2469 /*
2470 * Detect if this device has a hardware controlled radio.
2471 */
2472 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
2473 __set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
2474
2475 /*
2476 * Read frequency offset and RF programming sequence.
2477 */
2478 rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &eeprom);
2479 if (rt2x00_get_field16(eeprom, EEPROM_FREQ_SEQ))
2480 __set_bit(CONFIG_RF_SEQUENCE, &rt2x00dev->flags);
2481
2482 rt2x00dev->freq_offset = rt2x00_get_field16(eeprom, EEPROM_FREQ_OFFSET);
2483
2484 /*
2485 * Read external LNA informations.
2486 */
2487 rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
2488
2489 if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_A))
2490 __set_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags);
2491 if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_BG))
2492 __set_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags);
2493
2494 /*
2495 * When working with a RF2529 chip without double antenna,
2496 * the antenna settings should be gathered from the NIC
2497 * eeprom word.
2498 */
2499 if (rt2x00_rf(rt2x00dev, RF2529) &&
2500 !test_bit(CONFIG_DOUBLE_ANTENNA, &rt2x00dev->flags)) {
2501 rt2x00dev->default_ant.rx =
2502 ANTENNA_A + rt2x00_get_field16(eeprom, EEPROM_NIC_RX_FIXED);
2503 rt2x00dev->default_ant.tx =
2504 ANTENNA_B - rt2x00_get_field16(eeprom, EEPROM_NIC_TX_FIXED);
2505
2506 if (rt2x00_get_field16(eeprom, EEPROM_NIC_TX_DIVERSITY))
2507 rt2x00dev->default_ant.tx = ANTENNA_SW_DIVERSITY;
2508 if (rt2x00_get_field16(eeprom, EEPROM_NIC_ENABLE_DIVERSITY))
2509 rt2x00dev->default_ant.rx = ANTENNA_SW_DIVERSITY;
2510 }
2511
2512 /*
2513 * Store led settings, for correct led behaviour.
2514 * If the eeprom value is invalid,
2515 * switch to default led mode.
2516 */
2517 #ifdef CONFIG_RT2X00_LIB_LEDS
2518 rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &eeprom);
2519 value = rt2x00_get_field16(eeprom, EEPROM_LED_LED_MODE);
2520
2521 rt61pci_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
2522 rt61pci_init_led(rt2x00dev, &rt2x00dev->led_assoc, LED_TYPE_ASSOC);
2523 if (value == LED_MODE_SIGNAL_STRENGTH)
2524 rt61pci_init_led(rt2x00dev, &rt2x00dev->led_qual,
2525 LED_TYPE_QUALITY);
2526
2527 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_LED_MODE, value);
2528 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_0,
2529 rt2x00_get_field16(eeprom,
2530 EEPROM_LED_POLARITY_GPIO_0));
2531 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_1,
2532 rt2x00_get_field16(eeprom,
2533 EEPROM_LED_POLARITY_GPIO_1));
2534 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_2,
2535 rt2x00_get_field16(eeprom,
2536 EEPROM_LED_POLARITY_GPIO_2));
2537 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_3,
2538 rt2x00_get_field16(eeprom,
2539 EEPROM_LED_POLARITY_GPIO_3));
2540 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_4,
2541 rt2x00_get_field16(eeprom,
2542 EEPROM_LED_POLARITY_GPIO_4));
2543 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_ACT,
2544 rt2x00_get_field16(eeprom, EEPROM_LED_POLARITY_ACT));
2545 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_BG,
2546 rt2x00_get_field16(eeprom,
2547 EEPROM_LED_POLARITY_RDY_G));
2548 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_A,
2549 rt2x00_get_field16(eeprom,
2550 EEPROM_LED_POLARITY_RDY_A));
2551 #endif /* CONFIG_RT2X00_LIB_LEDS */
2552
2553 return 0;
2554 }
2555
2556 /*
2557 * RF value list for RF5225 & RF5325
2558 * Supports: 2.4 GHz & 5.2 GHz, rf_sequence disabled
2559 */
2560 static const struct rf_channel rf_vals_noseq[] = {
2561 { 1, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
2562 { 2, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
2563 { 3, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
2564 { 4, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
2565 { 5, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
2566 { 6, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
2567 { 7, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
2568 { 8, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
2569 { 9, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
2570 { 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
2571 { 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
2572 { 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
2573 { 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
2574 { 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
2575
2576 /* 802.11 UNI / HyperLan 2 */
2577 { 36, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa23 },
2578 { 40, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa03 },
2579 { 44, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa0b },
2580 { 48, 0x00002ccc, 0x000049aa, 0x0009be55, 0x000ffa13 },
2581 { 52, 0x00002ccc, 0x000049ae, 0x0009ae55, 0x000ffa1b },
2582 { 56, 0x00002ccc, 0x000049b2, 0x0009ae55, 0x000ffa23 },
2583 { 60, 0x00002ccc, 0x000049ba, 0x0009ae55, 0x000ffa03 },
2584 { 64, 0x00002ccc, 0x000049be, 0x0009ae55, 0x000ffa0b },
2585
2586 /* 802.11 HyperLan 2 */
2587 { 100, 0x00002ccc, 0x00004a2a, 0x000bae55, 0x000ffa03 },
2588 { 104, 0x00002ccc, 0x00004a2e, 0x000bae55, 0x000ffa0b },
2589 { 108, 0x00002ccc, 0x00004a32, 0x000bae55, 0x000ffa13 },
2590 { 112, 0x00002ccc, 0x00004a36, 0x000bae55, 0x000ffa1b },
2591 { 116, 0x00002ccc, 0x00004a3a, 0x000bbe55, 0x000ffa23 },
2592 { 120, 0x00002ccc, 0x00004a82, 0x000bbe55, 0x000ffa03 },
2593 { 124, 0x00002ccc, 0x00004a86, 0x000bbe55, 0x000ffa0b },
2594 { 128, 0x00002ccc, 0x00004a8a, 0x000bbe55, 0x000ffa13 },
2595 { 132, 0x00002ccc, 0x00004a8e, 0x000bbe55, 0x000ffa1b },
2596 { 136, 0x00002ccc, 0x00004a92, 0x000bbe55, 0x000ffa23 },
2597
2598 /* 802.11 UNII */
2599 { 140, 0x00002ccc, 0x00004a9a, 0x000bbe55, 0x000ffa03 },
2600 { 149, 0x00002ccc, 0x00004aa2, 0x000bbe55, 0x000ffa1f },
2601 { 153, 0x00002ccc, 0x00004aa6, 0x000bbe55, 0x000ffa27 },
2602 { 157, 0x00002ccc, 0x00004aae, 0x000bbe55, 0x000ffa07 },
2603 { 161, 0x00002ccc, 0x00004ab2, 0x000bbe55, 0x000ffa0f },
2604 { 165, 0x00002ccc, 0x00004ab6, 0x000bbe55, 0x000ffa17 },
2605
2606 /* MMAC(Japan)J52 ch 34,38,42,46 */
2607 { 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa0b },
2608 { 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000ffa13 },
2609 { 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa1b },
2610 { 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa23 },
2611 };
2612
2613 /*
2614 * RF value list for RF5225 & RF5325
2615 * Supports: 2.4 GHz & 5.2 GHz, rf_sequence enabled
2616 */
2617 static const struct rf_channel rf_vals_seq[] = {
2618 { 1, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
2619 { 2, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
2620 { 3, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
2621 { 4, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
2622 { 5, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
2623 { 6, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
2624 { 7, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
2625 { 8, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
2626 { 9, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
2627 { 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
2628 { 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
2629 { 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
2630 { 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
2631 { 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
2632
2633 /* 802.11 UNI / HyperLan 2 */
2634 { 36, 0x00002cd4, 0x0004481a, 0x00098455, 0x000c0a03 },
2635 { 40, 0x00002cd0, 0x00044682, 0x00098455, 0x000c0a03 },
2636 { 44, 0x00002cd0, 0x00044686, 0x00098455, 0x000c0a1b },
2637 { 48, 0x00002cd0, 0x0004468e, 0x00098655, 0x000c0a0b },
2638 { 52, 0x00002cd0, 0x00044692, 0x00098855, 0x000c0a23 },
2639 { 56, 0x00002cd0, 0x0004469a, 0x00098c55, 0x000c0a13 },
2640 { 60, 0x00002cd0, 0x000446a2, 0x00098e55, 0x000c0a03 },
2641 { 64, 0x00002cd0, 0x000446a6, 0x00099255, 0x000c0a1b },
2642
2643 /* 802.11 HyperLan 2 */
2644 { 100, 0x00002cd4, 0x0004489a, 0x000b9855, 0x000c0a03 },
2645 { 104, 0x00002cd4, 0x000448a2, 0x000b9855, 0x000c0a03 },
2646 { 108, 0x00002cd4, 0x000448aa, 0x000b9855, 0x000c0a03 },
2647 { 112, 0x00002cd4, 0x000448b2, 0x000b9a55, 0x000c0a03 },
2648 { 116, 0x00002cd4, 0x000448ba, 0x000b9a55, 0x000c0a03 },
2649 { 120, 0x00002cd0, 0x00044702, 0x000b9a55, 0x000c0a03 },
2650 { 124, 0x00002cd0, 0x00044706, 0x000b9a55, 0x000c0a1b },
2651 { 128, 0x00002cd0, 0x0004470e, 0x000b9c55, 0x000c0a0b },
2652 { 132, 0x00002cd0, 0x00044712, 0x000b9c55, 0x000c0a23 },
2653 { 136, 0x00002cd0, 0x0004471a, 0x000b9e55, 0x000c0a13 },
2654
2655 /* 802.11 UNII */
2656 { 140, 0x00002cd0, 0x00044722, 0x000b9e55, 0x000c0a03 },
2657 { 149, 0x00002cd0, 0x0004472e, 0x000ba255, 0x000c0a1b },
2658 { 153, 0x00002cd0, 0x00044736, 0x000ba255, 0x000c0a0b },
2659 { 157, 0x00002cd4, 0x0004490a, 0x000ba255, 0x000c0a17 },
2660 { 161, 0x00002cd4, 0x00044912, 0x000ba255, 0x000c0a17 },
2661 { 165, 0x00002cd4, 0x0004491a, 0x000ba255, 0x000c0a17 },
2662
2663 /* MMAC(Japan)J52 ch 34,38,42,46 */
2664 { 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000c0a0b },
2665 { 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000c0a13 },
2666 { 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000c0a1b },
2667 { 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000c0a23 },
2668 };
2669
2670 static int rt61pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
2671 {
2672 struct hw_mode_spec *spec = &rt2x00dev->spec;
2673 struct channel_info *info;
2674 char *tx_power;
2675 unsigned int i;
2676
2677 /*
2678 * Disable powersaving as default.
2679 */
2680 rt2x00dev->hw->wiphy->flags &= ~WIPHY_FLAG_PS_ON_BY_DEFAULT;
2681
2682 /*
2683 * Initialize all hw fields.
2684 */
2685 rt2x00dev->hw->flags =
2686 IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
2687 IEEE80211_HW_SIGNAL_DBM |
2688 IEEE80211_HW_SUPPORTS_PS |
2689 IEEE80211_HW_PS_NULLFUNC_STACK;
2690
2691 SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
2692 SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
2693 rt2x00_eeprom_addr(rt2x00dev,
2694 EEPROM_MAC_ADDR_0));
2695
2696 /*
2697 * As rt61 has a global fallback table we cannot specify
2698 * more then one tx rate per frame but since the hw will
2699 * try several rates (based on the fallback table) we should
2700 * initialize max_report_rates to the maximum number of rates
2701 * we are going to try. Otherwise mac80211 will truncate our
2702 * reported tx rates and the rc algortihm will end up with
2703 * incorrect data.
2704 */
2705 rt2x00dev->hw->max_rates = 1;
2706 rt2x00dev->hw->max_report_rates = 7;
2707 rt2x00dev->hw->max_rate_tries = 1;
2708
2709 /*
2710 * Initialize hw_mode information.
2711 */
2712 spec->supported_bands = SUPPORT_BAND_2GHZ;
2713 spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
2714
2715 if (!test_bit(CONFIG_RF_SEQUENCE, &rt2x00dev->flags)) {
2716 spec->num_channels = 14;
2717 spec->channels = rf_vals_noseq;
2718 } else {
2719 spec->num_channels = 14;
2720 spec->channels = rf_vals_seq;
2721 }
2722
2723 if (rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF5325)) {
2724 spec->supported_bands |= SUPPORT_BAND_5GHZ;
2725 spec->num_channels = ARRAY_SIZE(rf_vals_seq);
2726 }
2727
2728 /*
2729 * Create channel information array
2730 */
2731 info = kcalloc(spec->num_channels, sizeof(*info), GFP_KERNEL);
2732 if (!info)
2733 return -ENOMEM;
2734
2735 spec->channels_info = info;
2736
2737 tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_G_START);
2738 for (i = 0; i < 14; i++) {
2739 info[i].max_power = MAX_TXPOWER;
2740 info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]);
2741 }
2742
2743 if (spec->num_channels > 14) {
2744 tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_A_START);
2745 for (i = 14; i < spec->num_channels; i++) {
2746 info[i].max_power = MAX_TXPOWER;
2747 info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]);
2748 }
2749 }
2750
2751 return 0;
2752 }
2753
2754 static int rt61pci_probe_hw(struct rt2x00_dev *rt2x00dev)
2755 {
2756 int retval;
2757
2758 /*
2759 * Disable power saving.
2760 */
2761 rt2x00pci_register_write(rt2x00dev, SOFT_RESET_CSR, 0x00000007);
2762
2763 /*
2764 * Allocate eeprom data.
2765 */
2766 retval = rt61pci_validate_eeprom(rt2x00dev);
2767 if (retval)
2768 return retval;
2769
2770 retval = rt61pci_init_eeprom(rt2x00dev);
2771 if (retval)
2772 return retval;
2773
2774 /*
2775 * Initialize hw specifications.
2776 */
2777 retval = rt61pci_probe_hw_mode(rt2x00dev);
2778 if (retval)
2779 return retval;
2780
2781 /*
2782 * This device has multiple filters for control frames,
2783 * but has no a separate filter for PS Poll frames.
2784 */
2785 __set_bit(DRIVER_SUPPORT_CONTROL_FILTERS, &rt2x00dev->flags);
2786
2787 /*
2788 * This device requires firmware and DMA mapped skbs.
2789 */
2790 __set_bit(DRIVER_REQUIRE_FIRMWARE, &rt2x00dev->flags);
2791 __set_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags);
2792 if (!modparam_nohwcrypt)
2793 __set_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags);
2794 __set_bit(DRIVER_SUPPORT_LINK_TUNING, &rt2x00dev->flags);
2795
2796 /*
2797 * Set the rssi offset.
2798 */
2799 rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
2800
2801 return 0;
2802 }
2803
2804 /*
2805 * IEEE80211 stack callback functions.
2806 */
2807 static int rt61pci_conf_tx(struct ieee80211_hw *hw, u16 queue_idx,
2808 const struct ieee80211_tx_queue_params *params)
2809 {
2810 struct rt2x00_dev *rt2x00dev = hw->priv;
2811 struct data_queue *queue;
2812 struct rt2x00_field32 field;
2813 int retval;
2814 u32 reg;
2815 u32 offset;
2816
2817 /*
2818 * First pass the configuration through rt2x00lib, that will
2819 * update the queue settings and validate the input. After that
2820 * we are free to update the registers based on the value
2821 * in the queue parameter.
2822 */
2823 retval = rt2x00mac_conf_tx(hw, queue_idx, params);
2824 if (retval)
2825 return retval;
2826
2827 /*
2828 * We only need to perform additional register initialization
2829 * for WMM queues.
2830 */
2831 if (queue_idx >= 4)
2832 return 0;
2833
2834 queue = rt2x00queue_get_queue(rt2x00dev, queue_idx);
2835
2836 /* Update WMM TXOP register */
2837 offset = AC_TXOP_CSR0 + (sizeof(u32) * (!!(queue_idx & 2)));
2838 field.bit_offset = (queue_idx & 1) * 16;
2839 field.bit_mask = 0xffff << field.bit_offset;
2840
2841 rt2x00pci_register_read(rt2x00dev, offset, &reg);
2842 rt2x00_set_field32(&reg, field, queue->txop);
2843 rt2x00pci_register_write(rt2x00dev, offset, reg);
2844
2845 /* Update WMM registers */
2846 field.bit_offset = queue_idx * 4;
2847 field.bit_mask = 0xf << field.bit_offset;
2848
2849 rt2x00pci_register_read(rt2x00dev, AIFSN_CSR, &reg);
2850 rt2x00_set_field32(&reg, field, queue->aifs);
2851 rt2x00pci_register_write(rt2x00dev, AIFSN_CSR, reg);
2852
2853 rt2x00pci_register_read(rt2x00dev, CWMIN_CSR, &reg);
2854 rt2x00_set_field32(&reg, field, queue->cw_min);
2855 rt2x00pci_register_write(rt2x00dev, CWMIN_CSR, reg);
2856
2857 rt2x00pci_register_read(rt2x00dev, CWMAX_CSR, &reg);
2858 rt2x00_set_field32(&reg, field, queue->cw_max);
2859 rt2x00pci_register_write(rt2x00dev, CWMAX_CSR, reg);
2860
2861 return 0;
2862 }
2863
2864 static u64 rt61pci_get_tsf(struct ieee80211_hw *hw)
2865 {
2866 struct rt2x00_dev *rt2x00dev = hw->priv;
2867 u64 tsf;
2868 u32 reg;
2869
2870 rt2x00pci_register_read(rt2x00dev, TXRX_CSR13, &reg);
2871 tsf = (u64) rt2x00_get_field32(reg, TXRX_CSR13_HIGH_TSFTIMER) << 32;
2872 rt2x00pci_register_read(rt2x00dev, TXRX_CSR12, &reg);
2873 tsf |= rt2x00_get_field32(reg, TXRX_CSR12_LOW_TSFTIMER);
2874
2875 return tsf;
2876 }
2877
2878 static const struct ieee80211_ops rt61pci_mac80211_ops = {
2879 .tx = rt2x00mac_tx,
2880 .start = rt2x00mac_start,
2881 .stop = rt2x00mac_stop,
2882 .add_interface = rt2x00mac_add_interface,
2883 .remove_interface = rt2x00mac_remove_interface,
2884 .config = rt2x00mac_config,
2885 .configure_filter = rt2x00mac_configure_filter,
2886 .set_key = rt2x00mac_set_key,
2887 .sw_scan_start = rt2x00mac_sw_scan_start,
2888 .sw_scan_complete = rt2x00mac_sw_scan_complete,
2889 .get_stats = rt2x00mac_get_stats,
2890 .bss_info_changed = rt2x00mac_bss_info_changed,
2891 .conf_tx = rt61pci_conf_tx,
2892 .get_tsf = rt61pci_get_tsf,
2893 .rfkill_poll = rt2x00mac_rfkill_poll,
2894 .flush = rt2x00mac_flush,
2895 };
2896
2897 static const struct rt2x00lib_ops rt61pci_rt2x00_ops = {
2898 .irq_handler = rt61pci_interrupt,
2899 .irq_handler_thread = rt61pci_interrupt_thread,
2900 .probe_hw = rt61pci_probe_hw,
2901 .get_firmware_name = rt61pci_get_firmware_name,
2902 .check_firmware = rt61pci_check_firmware,
2903 .load_firmware = rt61pci_load_firmware,
2904 .initialize = rt2x00pci_initialize,
2905 .uninitialize = rt2x00pci_uninitialize,
2906 .get_entry_state = rt61pci_get_entry_state,
2907 .clear_entry = rt61pci_clear_entry,
2908 .set_device_state = rt61pci_set_device_state,
2909 .rfkill_poll = rt61pci_rfkill_poll,
2910 .link_stats = rt61pci_link_stats,
2911 .reset_tuner = rt61pci_reset_tuner,
2912 .link_tuner = rt61pci_link_tuner,
2913 .start_queue = rt61pci_start_queue,
2914 .kick_queue = rt61pci_kick_queue,
2915 .stop_queue = rt61pci_stop_queue,
2916 .write_tx_desc = rt61pci_write_tx_desc,
2917 .write_beacon = rt61pci_write_beacon,
2918 .clear_beacon = rt61pci_clear_beacon,
2919 .fill_rxdone = rt61pci_fill_rxdone,
2920 .config_shared_key = rt61pci_config_shared_key,
2921 .config_pairwise_key = rt61pci_config_pairwise_key,
2922 .config_filter = rt61pci_config_filter,
2923 .config_intf = rt61pci_config_intf,
2924 .config_erp = rt61pci_config_erp,
2925 .config_ant = rt61pci_config_ant,
2926 .config = rt61pci_config,
2927 };
2928
2929 static const struct data_queue_desc rt61pci_queue_rx = {
2930 .entry_num = 32,
2931 .data_size = DATA_FRAME_SIZE,
2932 .desc_size = RXD_DESC_SIZE,
2933 .priv_size = sizeof(struct queue_entry_priv_pci),
2934 };
2935
2936 static const struct data_queue_desc rt61pci_queue_tx = {
2937 .entry_num = 32,
2938 .data_size = DATA_FRAME_SIZE,
2939 .desc_size = TXD_DESC_SIZE,
2940 .priv_size = sizeof(struct queue_entry_priv_pci),
2941 };
2942
2943 static const struct data_queue_desc rt61pci_queue_bcn = {
2944 .entry_num = 4,
2945 .data_size = 0, /* No DMA required for beacons */
2946 .desc_size = TXINFO_SIZE,
2947 .priv_size = sizeof(struct queue_entry_priv_pci),
2948 };
2949
2950 static const struct rt2x00_ops rt61pci_ops = {
2951 .name = KBUILD_MODNAME,
2952 .max_sta_intf = 1,
2953 .max_ap_intf = 4,
2954 .eeprom_size = EEPROM_SIZE,
2955 .rf_size = RF_SIZE,
2956 .tx_queues = NUM_TX_QUEUES,
2957 .extra_tx_headroom = 0,
2958 .rx = &rt61pci_queue_rx,
2959 .tx = &rt61pci_queue_tx,
2960 .bcn = &rt61pci_queue_bcn,
2961 .lib = &rt61pci_rt2x00_ops,
2962 .hw = &rt61pci_mac80211_ops,
2963 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
2964 .debugfs = &rt61pci_rt2x00debug,
2965 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
2966 };
2967
2968 /*
2969 * RT61pci module information.
2970 */
2971 static DEFINE_PCI_DEVICE_TABLE(rt61pci_device_table) = {
2972 /* RT2561s */
2973 { PCI_DEVICE(0x1814, 0x0301), PCI_DEVICE_DATA(&rt61pci_ops) },
2974 /* RT2561 v2 */
2975 { PCI_DEVICE(0x1814, 0x0302), PCI_DEVICE_DATA(&rt61pci_ops) },
2976 /* RT2661 */
2977 { PCI_DEVICE(0x1814, 0x0401), PCI_DEVICE_DATA(&rt61pci_ops) },
2978 { 0, }
2979 };
2980
2981 MODULE_AUTHOR(DRV_PROJECT);
2982 MODULE_VERSION(DRV_VERSION);
2983 MODULE_DESCRIPTION("Ralink RT61 PCI & PCMCIA Wireless LAN driver.");
2984 MODULE_SUPPORTED_DEVICE("Ralink RT2561, RT2561s & RT2661 "
2985 "PCI & PCMCIA chipset based cards");
2986 MODULE_DEVICE_TABLE(pci, rt61pci_device_table);
2987 MODULE_FIRMWARE(FIRMWARE_RT2561);
2988 MODULE_FIRMWARE(FIRMWARE_RT2561s);
2989 MODULE_FIRMWARE(FIRMWARE_RT2661);
2990 MODULE_LICENSE("GPL");
2991
2992 static struct pci_driver rt61pci_driver = {
2993 .name = KBUILD_MODNAME,
2994 .id_table = rt61pci_device_table,
2995 .probe = rt2x00pci_probe,
2996 .remove = __devexit_p(rt2x00pci_remove),
2997 .suspend = rt2x00pci_suspend,
2998 .resume = rt2x00pci_resume,
2999 };
3000
3001 static int __init rt61pci_init(void)
3002 {
3003 return pci_register_driver(&rt61pci_driver);
3004 }
3005
3006 static void __exit rt61pci_exit(void)
3007 {
3008 pci_unregister_driver(&rt61pci_driver);
3009 }
3010
3011 module_init(rt61pci_init);
3012 module_exit(rt61pci_exit);
This page took 0.161722 seconds and 5 git commands to generate.