Merge /spare/repo/netdev-2.6 branch 'ieee80211'
[deliverable/linux.git] / drivers / net / wireless / wavelan_cs.c
1 /*
2 * Wavelan Pcmcia driver
3 *
4 * Jean II - HPLB '96
5 *
6 * Reorganisation and extension of the driver.
7 * Original copyright follow. See wavelan_cs.p.h for details.
8 *
9 * This code is derived from Anthony D. Joseph's code and all the changes here
10 * are also under the original copyright below.
11 *
12 * This code supports version 2.00 of WaveLAN/PCMCIA cards (2.4GHz), and
13 * can work on Linux 2.0.36 with support of David Hinds' PCMCIA Card Services
14 *
15 * Joe Finney (joe@comp.lancs.ac.uk) at Lancaster University in UK added
16 * critical code in the routine to initialize the Modem Management Controller.
17 *
18 * Thanks to Alan Cox and Bruce Janson for their advice.
19 *
20 * -- Yunzhou Li (scip4166@nus.sg)
21 *
22 #ifdef WAVELAN_ROAMING
23 * Roaming support added 07/22/98 by Justin Seger (jseger@media.mit.edu)
24 * based on patch by Joe Finney from Lancaster University.
25 #endif
26 *
27 * Lucent (formerly AT&T GIS, formerly NCR) WaveLAN PCMCIA card: An
28 * Ethernet-like radio transceiver controlled by an Intel 82593 coprocessor.
29 *
30 * A non-shared memory PCMCIA ethernet driver for linux
31 *
32 * ISA version modified to support PCMCIA by Anthony Joseph (adj@lcs.mit.edu)
33 *
34 *
35 * Joseph O'Sullivan & John Langford (josullvn@cs.cmu.edu & jcl@cs.cmu.edu)
36 *
37 * Apr 2 '98 made changes to bring the i82593 control/int handling in line
38 * with offical specs...
39 *
40 ****************************************************************************
41 * Copyright 1995
42 * Anthony D. Joseph
43 * Massachusetts Institute of Technology
44 *
45 * Permission to use, copy, modify, and distribute this program
46 * for any purpose and without fee is hereby granted, provided
47 * that this copyright and permission notice appear on all copies
48 * and supporting documentation, the name of M.I.T. not be used
49 * in advertising or publicity pertaining to distribution of the
50 * program without specific prior permission, and notice be given
51 * in supporting documentation that copying and distribution is
52 * by permission of M.I.T. M.I.T. makes no representations about
53 * the suitability of this software for any purpose. It is pro-
54 * vided "as is" without express or implied warranty.
55 ****************************************************************************
56 *
57 */
58
59 /* Do *NOT* add other headers here, you are guaranteed to be wrong - Jean II */
60 #include "wavelan_cs.p.h" /* Private header */
61
62 #ifdef WAVELAN_ROAMING
63 static void wl_cell_expiry(unsigned long data);
64 static void wl_del_wavepoint(wavepoint_history *wavepoint, struct net_local *lp);
65 static void wv_nwid_filter(unsigned char mode, net_local *lp);
66 #endif /* WAVELAN_ROAMING */
67
68 /************************* MISC SUBROUTINES **************************/
69 /*
70 * Subroutines which won't fit in one of the following category
71 * (wavelan modem or i82593)
72 */
73
74 #ifdef STRUCT_CHECK
75 /*------------------------------------------------------------------*/
76 /*
77 * Sanity routine to verify the sizes of the various WaveLAN interface
78 * structures.
79 */
80 static char *
81 wv_structuct_check(void)
82 {
83 #define SC(t,s,n) if (sizeof(t) != s) return(n);
84
85 SC(psa_t, PSA_SIZE, "psa_t");
86 SC(mmw_t, MMW_SIZE, "mmw_t");
87 SC(mmr_t, MMR_SIZE, "mmr_t");
88
89 #undef SC
90
91 return((char *) NULL);
92 } /* wv_structuct_check */
93 #endif /* STRUCT_CHECK */
94
95 /******************* MODEM MANAGEMENT SUBROUTINES *******************/
96 /*
97 * Useful subroutines to manage the modem of the wavelan
98 */
99
100 /*------------------------------------------------------------------*/
101 /*
102 * Read from card's Host Adaptor Status Register.
103 */
104 static inline u_char
105 hasr_read(u_long base)
106 {
107 return(inb(HASR(base)));
108 } /* hasr_read */
109
110 /*------------------------------------------------------------------*/
111 /*
112 * Write to card's Host Adapter Command Register.
113 */
114 static inline void
115 hacr_write(u_long base,
116 u_char hacr)
117 {
118 outb(hacr, HACR(base));
119 } /* hacr_write */
120
121 /*------------------------------------------------------------------*/
122 /*
123 * Write to card's Host Adapter Command Register. Include a delay for
124 * those times when it is needed.
125 */
126 static inline void
127 hacr_write_slow(u_long base,
128 u_char hacr)
129 {
130 hacr_write(base, hacr);
131 /* delay might only be needed sometimes */
132 mdelay(1);
133 } /* hacr_write_slow */
134
135 /*------------------------------------------------------------------*/
136 /*
137 * Read the Parameter Storage Area from the WaveLAN card's memory
138 */
139 static void
140 psa_read(struct net_device * dev,
141 int o, /* offset in PSA */
142 u_char * b, /* buffer to fill */
143 int n) /* size to read */
144 {
145 net_local *lp = netdev_priv(dev);
146 u_char __iomem *ptr = lp->mem + PSA_ADDR + (o << 1);
147
148 while(n-- > 0)
149 {
150 *b++ = readb(ptr);
151 /* Due to a lack of address decode pins, the WaveLAN PCMCIA card
152 * only supports reading even memory addresses. That means the
153 * increment here MUST be two.
154 * Because of that, we can't use memcpy_fromio()...
155 */
156 ptr += 2;
157 }
158 } /* psa_read */
159
160 /*------------------------------------------------------------------*/
161 /*
162 * Write the Paramter Storage Area to the WaveLAN card's memory
163 */
164 static void
165 psa_write(struct net_device * dev,
166 int o, /* Offset in psa */
167 u_char * b, /* Buffer in memory */
168 int n) /* Length of buffer */
169 {
170 net_local *lp = netdev_priv(dev);
171 u_char __iomem *ptr = lp->mem + PSA_ADDR + (o << 1);
172 int count = 0;
173 kio_addr_t base = dev->base_addr;
174 /* As there seem to have no flag PSA_BUSY as in the ISA model, we are
175 * oblige to verify this address to know when the PSA is ready... */
176 volatile u_char __iomem *verify = lp->mem + PSA_ADDR +
177 (psaoff(0, psa_comp_number) << 1);
178
179 /* Authorize writting to PSA */
180 hacr_write(base, HACR_PWR_STAT | HACR_ROM_WEN);
181
182 while(n-- > 0)
183 {
184 /* write to PSA */
185 writeb(*b++, ptr);
186 ptr += 2;
187
188 /* I don't have the spec, so I don't know what the correct
189 * sequence to write is. This hack seem to work for me... */
190 count = 0;
191 while((readb(verify) != PSA_COMP_PCMCIA_915) && (count++ < 100))
192 mdelay(1);
193 }
194
195 /* Put the host interface back in standard state */
196 hacr_write(base, HACR_DEFAULT);
197 } /* psa_write */
198
199 #ifdef SET_PSA_CRC
200 /*------------------------------------------------------------------*/
201 /*
202 * Calculate the PSA CRC
203 * Thanks to Valster, Nico <NVALSTER@wcnd.nl.lucent.com> for the code
204 * NOTE: By specifying a length including the CRC position the
205 * returned value should be zero. (i.e. a correct checksum in the PSA)
206 *
207 * The Windows drivers don't use the CRC, but the AP and the PtP tool
208 * depend on it.
209 */
210 static u_short
211 psa_crc(unsigned char * psa, /* The PSA */
212 int size) /* Number of short for CRC */
213 {
214 int byte_cnt; /* Loop on the PSA */
215 u_short crc_bytes = 0; /* Data in the PSA */
216 int bit_cnt; /* Loop on the bits of the short */
217
218 for(byte_cnt = 0; byte_cnt < size; byte_cnt++ )
219 {
220 crc_bytes ^= psa[byte_cnt]; /* Its an xor */
221
222 for(bit_cnt = 1; bit_cnt < 9; bit_cnt++ )
223 {
224 if(crc_bytes & 0x0001)
225 crc_bytes = (crc_bytes >> 1) ^ 0xA001;
226 else
227 crc_bytes >>= 1 ;
228 }
229 }
230
231 return crc_bytes;
232 } /* psa_crc */
233 #endif /* SET_PSA_CRC */
234
235 /*------------------------------------------------------------------*/
236 /*
237 * update the checksum field in the Wavelan's PSA
238 */
239 static void
240 update_psa_checksum(struct net_device * dev)
241 {
242 #ifdef SET_PSA_CRC
243 psa_t psa;
244 u_short crc;
245
246 /* read the parameter storage area */
247 psa_read(dev, 0, (unsigned char *) &psa, sizeof(psa));
248
249 /* update the checksum */
250 crc = psa_crc((unsigned char *) &psa,
251 sizeof(psa) - sizeof(psa.psa_crc[0]) - sizeof(psa.psa_crc[1])
252 - sizeof(psa.psa_crc_status));
253
254 psa.psa_crc[0] = crc & 0xFF;
255 psa.psa_crc[1] = (crc & 0xFF00) >> 8;
256
257 /* Write it ! */
258 psa_write(dev, (char *)&psa.psa_crc - (char *)&psa,
259 (unsigned char *)&psa.psa_crc, 2);
260
261 #ifdef DEBUG_IOCTL_INFO
262 printk (KERN_DEBUG "%s: update_psa_checksum(): crc = 0x%02x%02x\n",
263 dev->name, psa.psa_crc[0], psa.psa_crc[1]);
264
265 /* Check again (luxury !) */
266 crc = psa_crc((unsigned char *) &psa,
267 sizeof(psa) - sizeof(psa.psa_crc_status));
268
269 if(crc != 0)
270 printk(KERN_WARNING "%s: update_psa_checksum(): CRC does not agree with PSA data (even after recalculating)\n", dev->name);
271 #endif /* DEBUG_IOCTL_INFO */
272 #endif /* SET_PSA_CRC */
273 } /* update_psa_checksum */
274
275 /*------------------------------------------------------------------*/
276 /*
277 * Write 1 byte to the MMC.
278 */
279 static inline void
280 mmc_out(u_long base,
281 u_short o,
282 u_char d)
283 {
284 int count = 0;
285
286 /* Wait for MMC to go idle */
287 while((count++ < 100) && (inb(HASR(base)) & HASR_MMI_BUSY))
288 udelay(10);
289
290 outb((u_char)((o << 1) | MMR_MMI_WR), MMR(base));
291 outb(d, MMD(base));
292 }
293
294 /*------------------------------------------------------------------*/
295 /*
296 * Routine to write bytes to the Modem Management Controller.
297 * We start by the end because it is the way it should be !
298 */
299 static inline void
300 mmc_write(u_long base,
301 u_char o,
302 u_char * b,
303 int n)
304 {
305 o += n;
306 b += n;
307
308 while(n-- > 0 )
309 mmc_out(base, --o, *(--b));
310 } /* mmc_write */
311
312 /*------------------------------------------------------------------*/
313 /*
314 * Read 1 byte from the MMC.
315 * Optimised version for 1 byte, avoid using memory...
316 */
317 static inline u_char
318 mmc_in(u_long base,
319 u_short o)
320 {
321 int count = 0;
322
323 while((count++ < 100) && (inb(HASR(base)) & HASR_MMI_BUSY))
324 udelay(10);
325 outb(o << 1, MMR(base)); /* Set the read address */
326
327 outb(0, MMD(base)); /* Required dummy write */
328
329 while((count++ < 100) && (inb(HASR(base)) & HASR_MMI_BUSY))
330 udelay(10);
331 return (u_char) (inb(MMD(base))); /* Now do the actual read */
332 }
333
334 /*------------------------------------------------------------------*/
335 /*
336 * Routine to read bytes from the Modem Management Controller.
337 * The implementation is complicated by a lack of address lines,
338 * which prevents decoding of the low-order bit.
339 * (code has just been moved in the above function)
340 * We start by the end because it is the way it should be !
341 */
342 static inline void
343 mmc_read(u_long base,
344 u_char o,
345 u_char * b,
346 int n)
347 {
348 o += n;
349 b += n;
350
351 while(n-- > 0)
352 *(--b) = mmc_in(base, --o);
353 } /* mmc_read */
354
355 /*------------------------------------------------------------------*/
356 /*
357 * Get the type of encryption available...
358 */
359 static inline int
360 mmc_encr(u_long base) /* i/o port of the card */
361 {
362 int temp;
363
364 temp = mmc_in(base, mmroff(0, mmr_des_avail));
365 if((temp != MMR_DES_AVAIL_DES) && (temp != MMR_DES_AVAIL_AES))
366 return 0;
367 else
368 return temp;
369 }
370
371 /*------------------------------------------------------------------*/
372 /*
373 * Wait for the frequency EEprom to complete a command...
374 * I hope this one will be optimally inlined...
375 */
376 static inline void
377 fee_wait(u_long base, /* i/o port of the card */
378 int delay, /* Base delay to wait for */
379 int number) /* Number of time to wait */
380 {
381 int count = 0; /* Wait only a limited time */
382
383 while((count++ < number) &&
384 (mmc_in(base, mmroff(0, mmr_fee_status)) & MMR_FEE_STATUS_BUSY))
385 udelay(delay);
386 }
387
388 /*------------------------------------------------------------------*/
389 /*
390 * Read bytes from the Frequency EEprom (frequency select cards).
391 */
392 static void
393 fee_read(u_long base, /* i/o port of the card */
394 u_short o, /* destination offset */
395 u_short * b, /* data buffer */
396 int n) /* number of registers */
397 {
398 b += n; /* Position at the end of the area */
399
400 /* Write the address */
401 mmc_out(base, mmwoff(0, mmw_fee_addr), o + n - 1);
402
403 /* Loop on all buffer */
404 while(n-- > 0)
405 {
406 /* Write the read command */
407 mmc_out(base, mmwoff(0, mmw_fee_ctrl), MMW_FEE_CTRL_READ);
408
409 /* Wait until EEprom is ready (should be quick !) */
410 fee_wait(base, 10, 100);
411
412 /* Read the value */
413 *--b = ((mmc_in(base, mmroff(0, mmr_fee_data_h)) << 8) |
414 mmc_in(base, mmroff(0, mmr_fee_data_l)));
415 }
416 }
417
418 #ifdef WIRELESS_EXT /* If wireless extension exist in the kernel */
419
420 /*------------------------------------------------------------------*/
421 /*
422 * Write bytes from the Frequency EEprom (frequency select cards).
423 * This is a bit complicated, because the frequency eeprom has to
424 * be unprotected and the write enabled.
425 * Jean II
426 */
427 static void
428 fee_write(u_long base, /* i/o port of the card */
429 u_short o, /* destination offset */
430 u_short * b, /* data buffer */
431 int n) /* number of registers */
432 {
433 b += n; /* Position at the end of the area */
434
435 #ifdef EEPROM_IS_PROTECTED /* disabled */
436 #ifdef DOESNT_SEEM_TO_WORK /* disabled */
437 /* Ask to read the protected register */
438 mmc_out(base, mmwoff(0, mmw_fee_ctrl), MMW_FEE_CTRL_PRREAD);
439
440 fee_wait(base, 10, 100);
441
442 /* Read the protected register */
443 printk("Protected 2 : %02X-%02X\n",
444 mmc_in(base, mmroff(0, mmr_fee_data_h)),
445 mmc_in(base, mmroff(0, mmr_fee_data_l)));
446 #endif /* DOESNT_SEEM_TO_WORK */
447
448 /* Enable protected register */
449 mmc_out(base, mmwoff(0, mmw_fee_addr), MMW_FEE_ADDR_EN);
450 mmc_out(base, mmwoff(0, mmw_fee_ctrl), MMW_FEE_CTRL_PREN);
451
452 fee_wait(base, 10, 100);
453
454 /* Unprotect area */
455 mmc_out(base, mmwoff(0, mmw_fee_addr), o + n);
456 mmc_out(base, mmwoff(0, mmw_fee_ctrl), MMW_FEE_CTRL_PRWRITE);
457 #ifdef DOESNT_SEEM_TO_WORK /* disabled */
458 /* Or use : */
459 mmc_out(base, mmwoff(0, mmw_fee_ctrl), MMW_FEE_CTRL_PRCLEAR);
460 #endif /* DOESNT_SEEM_TO_WORK */
461
462 fee_wait(base, 10, 100);
463 #endif /* EEPROM_IS_PROTECTED */
464
465 /* Write enable */
466 mmc_out(base, mmwoff(0, mmw_fee_addr), MMW_FEE_ADDR_EN);
467 mmc_out(base, mmwoff(0, mmw_fee_ctrl), MMW_FEE_CTRL_WREN);
468
469 fee_wait(base, 10, 100);
470
471 /* Write the EEprom address */
472 mmc_out(base, mmwoff(0, mmw_fee_addr), o + n - 1);
473
474 /* Loop on all buffer */
475 while(n-- > 0)
476 {
477 /* Write the value */
478 mmc_out(base, mmwoff(0, mmw_fee_data_h), (*--b) >> 8);
479 mmc_out(base, mmwoff(0, mmw_fee_data_l), *b & 0xFF);
480
481 /* Write the write command */
482 mmc_out(base, mmwoff(0, mmw_fee_ctrl), MMW_FEE_CTRL_WRITE);
483
484 /* Wavelan doc says : wait at least 10 ms for EEBUSY = 0 */
485 mdelay(10);
486 fee_wait(base, 10, 100);
487 }
488
489 /* Write disable */
490 mmc_out(base, mmwoff(0, mmw_fee_addr), MMW_FEE_ADDR_DS);
491 mmc_out(base, mmwoff(0, mmw_fee_ctrl), MMW_FEE_CTRL_WDS);
492
493 fee_wait(base, 10, 100);
494
495 #ifdef EEPROM_IS_PROTECTED /* disabled */
496 /* Reprotect EEprom */
497 mmc_out(base, mmwoff(0, mmw_fee_addr), 0x00);
498 mmc_out(base, mmwoff(0, mmw_fee_ctrl), MMW_FEE_CTRL_PRWRITE);
499
500 fee_wait(base, 10, 100);
501 #endif /* EEPROM_IS_PROTECTED */
502 }
503 #endif /* WIRELESS_EXT */
504
505 /******************* WaveLAN Roaming routines... ********************/
506
507 #ifdef WAVELAN_ROAMING /* Conditional compile, see wavelan_cs.h */
508
509 static unsigned char WAVELAN_BEACON_ADDRESS[] = {0x09,0x00,0x0e,0x20,0x03,0x00};
510
511 static void wv_roam_init(struct net_device *dev)
512 {
513 net_local *lp= netdev_priv(dev);
514
515 /* Do not remove this unless you have a good reason */
516 printk(KERN_NOTICE "%s: Warning, you have enabled roaming on"
517 " device %s !\n", dev->name, dev->name);
518 printk(KERN_NOTICE "Roaming is currently an experimental unsupported feature"
519 " of the Wavelan driver.\n");
520 printk(KERN_NOTICE "It may work, but may also make the driver behave in"
521 " erratic ways or crash.\n");
522
523 lp->wavepoint_table.head=NULL; /* Initialise WavePoint table */
524 lp->wavepoint_table.num_wavepoints=0;
525 lp->wavepoint_table.locked=0;
526 lp->curr_point=NULL; /* No default WavePoint */
527 lp->cell_search=0;
528
529 lp->cell_timer.data=(long)lp; /* Start cell expiry timer */
530 lp->cell_timer.function=wl_cell_expiry;
531 lp->cell_timer.expires=jiffies+CELL_TIMEOUT;
532 add_timer(&lp->cell_timer);
533
534 wv_nwid_filter(NWID_PROMISC,lp) ; /* Enter NWID promiscuous mode */
535 /* to build up a good WavePoint */
536 /* table... */
537 printk(KERN_DEBUG "WaveLAN: Roaming enabled on device %s\n",dev->name);
538 }
539
540 static void wv_roam_cleanup(struct net_device *dev)
541 {
542 wavepoint_history *ptr,*old_ptr;
543 net_local *lp= netdev_priv(dev);
544
545 printk(KERN_DEBUG "WaveLAN: Roaming Disabled on device %s\n",dev->name);
546
547 /* Fixme : maybe we should check that the timer exist before deleting it */
548 del_timer(&lp->cell_timer); /* Remove cell expiry timer */
549 ptr=lp->wavepoint_table.head; /* Clear device's WavePoint table */
550 while(ptr!=NULL)
551 {
552 old_ptr=ptr;
553 ptr=ptr->next;
554 wl_del_wavepoint(old_ptr,lp);
555 }
556 }
557
558 /* Enable/Disable NWID promiscuous mode on a given device */
559 static void wv_nwid_filter(unsigned char mode, net_local *lp)
560 {
561 mm_t m;
562 unsigned long flags;
563
564 #ifdef WAVELAN_ROAMING_DEBUG
565 printk(KERN_DEBUG "WaveLAN: NWID promisc %s, device %s\n",(mode==NWID_PROMISC) ? "on" : "off", lp->dev->name);
566 #endif
567
568 /* Disable interrupts & save flags */
569 spin_lock_irqsave(&lp->spinlock, flags);
570
571 m.w.mmw_loopt_sel = (mode==NWID_PROMISC) ? MMW_LOOPT_SEL_DIS_NWID : 0x00;
572 mmc_write(lp->dev->base_addr, (char *)&m.w.mmw_loopt_sel - (char *)&m, (unsigned char *)&m.w.mmw_loopt_sel, 1);
573
574 if(mode==NWID_PROMISC)
575 lp->cell_search=1;
576 else
577 lp->cell_search=0;
578
579 /* ReEnable interrupts & restore flags */
580 spin_unlock_irqrestore(&lp->spinlock, flags);
581 }
582
583 /* Find a record in the WavePoint table matching a given NWID */
584 static wavepoint_history *wl_roam_check(unsigned short nwid, net_local *lp)
585 {
586 wavepoint_history *ptr=lp->wavepoint_table.head;
587
588 while(ptr!=NULL){
589 if(ptr->nwid==nwid)
590 return ptr;
591 ptr=ptr->next;
592 }
593 return NULL;
594 }
595
596 /* Create a new wavepoint table entry */
597 static wavepoint_history *wl_new_wavepoint(unsigned short nwid, unsigned char seq, net_local* lp)
598 {
599 wavepoint_history *new_wavepoint;
600
601 #ifdef WAVELAN_ROAMING_DEBUG
602 printk(KERN_DEBUG "WaveLAN: New Wavepoint, NWID:%.4X\n",nwid);
603 #endif
604
605 if(lp->wavepoint_table.num_wavepoints==MAX_WAVEPOINTS)
606 return NULL;
607
608 new_wavepoint=(wavepoint_history *) kmalloc(sizeof(wavepoint_history),GFP_ATOMIC);
609 if(new_wavepoint==NULL)
610 return NULL;
611
612 new_wavepoint->nwid=nwid; /* New WavePoints NWID */
613 new_wavepoint->average_fast=0; /* Running Averages..*/
614 new_wavepoint->average_slow=0;
615 new_wavepoint->qualptr=0; /* Start of ringbuffer */
616 new_wavepoint->last_seq=seq-1; /* Last sequence no.seen */
617 memset(new_wavepoint->sigqual,0,WAVEPOINT_HISTORY);/* Empty ringbuffer */
618
619 new_wavepoint->next=lp->wavepoint_table.head;/* Add to wavepoint table */
620 new_wavepoint->prev=NULL;
621
622 if(lp->wavepoint_table.head!=NULL)
623 lp->wavepoint_table.head->prev=new_wavepoint;
624
625 lp->wavepoint_table.head=new_wavepoint;
626
627 lp->wavepoint_table.num_wavepoints++; /* no. of visible wavepoints */
628
629 return new_wavepoint;
630 }
631
632 /* Remove a wavepoint entry from WavePoint table */
633 static void wl_del_wavepoint(wavepoint_history *wavepoint, struct net_local *lp)
634 {
635 if(wavepoint==NULL)
636 return;
637
638 if(lp->curr_point==wavepoint)
639 lp->curr_point=NULL;
640
641 if(wavepoint->prev!=NULL)
642 wavepoint->prev->next=wavepoint->next;
643
644 if(wavepoint->next!=NULL)
645 wavepoint->next->prev=wavepoint->prev;
646
647 if(lp->wavepoint_table.head==wavepoint)
648 lp->wavepoint_table.head=wavepoint->next;
649
650 lp->wavepoint_table.num_wavepoints--;
651 kfree(wavepoint);
652 }
653
654 /* Timer callback function - checks WavePoint table for stale entries */
655 static void wl_cell_expiry(unsigned long data)
656 {
657 net_local *lp=(net_local *)data;
658 wavepoint_history *wavepoint=lp->wavepoint_table.head,*old_point;
659
660 #if WAVELAN_ROAMING_DEBUG > 1
661 printk(KERN_DEBUG "WaveLAN: Wavepoint timeout, dev %s\n",lp->dev->name);
662 #endif
663
664 if(lp->wavepoint_table.locked)
665 {
666 #if WAVELAN_ROAMING_DEBUG > 1
667 printk(KERN_DEBUG "WaveLAN: Wavepoint table locked...\n");
668 #endif
669
670 lp->cell_timer.expires=jiffies+1; /* If table in use, come back later */
671 add_timer(&lp->cell_timer);
672 return;
673 }
674
675 while(wavepoint!=NULL)
676 {
677 if(time_after(jiffies, wavepoint->last_seen + CELL_TIMEOUT))
678 {
679 #ifdef WAVELAN_ROAMING_DEBUG
680 printk(KERN_DEBUG "WaveLAN: Bye bye %.4X\n",wavepoint->nwid);
681 #endif
682
683 old_point=wavepoint;
684 wavepoint=wavepoint->next;
685 wl_del_wavepoint(old_point,lp);
686 }
687 else
688 wavepoint=wavepoint->next;
689 }
690 lp->cell_timer.expires=jiffies+CELL_TIMEOUT;
691 add_timer(&lp->cell_timer);
692 }
693
694 /* Update SNR history of a wavepoint */
695 static void wl_update_history(wavepoint_history *wavepoint, unsigned char sigqual, unsigned char seq)
696 {
697 int i=0,num_missed=0,ptr=0;
698 int average_fast=0,average_slow=0;
699
700 num_missed=(seq-wavepoint->last_seq)%WAVEPOINT_HISTORY;/* Have we missed
701 any beacons? */
702 if(num_missed)
703 for(i=0;i<num_missed;i++)
704 {
705 wavepoint->sigqual[wavepoint->qualptr++]=0; /* If so, enter them as 0's */
706 wavepoint->qualptr %=WAVEPOINT_HISTORY; /* in the ringbuffer. */
707 }
708 wavepoint->last_seen=jiffies; /* Add beacon to history */
709 wavepoint->last_seq=seq;
710 wavepoint->sigqual[wavepoint->qualptr++]=sigqual;
711 wavepoint->qualptr %=WAVEPOINT_HISTORY;
712 ptr=(wavepoint->qualptr-WAVEPOINT_FAST_HISTORY+WAVEPOINT_HISTORY)%WAVEPOINT_HISTORY;
713
714 for(i=0;i<WAVEPOINT_FAST_HISTORY;i++) /* Update running averages */
715 {
716 average_fast+=wavepoint->sigqual[ptr++];
717 ptr %=WAVEPOINT_HISTORY;
718 }
719
720 average_slow=average_fast;
721 for(i=WAVEPOINT_FAST_HISTORY;i<WAVEPOINT_HISTORY;i++)
722 {
723 average_slow+=wavepoint->sigqual[ptr++];
724 ptr %=WAVEPOINT_HISTORY;
725 }
726
727 wavepoint->average_fast=average_fast/WAVEPOINT_FAST_HISTORY;
728 wavepoint->average_slow=average_slow/WAVEPOINT_HISTORY;
729 }
730
731 /* Perform a handover to a new WavePoint */
732 static void wv_roam_handover(wavepoint_history *wavepoint, net_local *lp)
733 {
734 kio_addr_t base = lp->dev->base_addr;
735 mm_t m;
736 unsigned long flags;
737
738 if(wavepoint==lp->curr_point) /* Sanity check... */
739 {
740 wv_nwid_filter(!NWID_PROMISC,lp);
741 return;
742 }
743
744 #ifdef WAVELAN_ROAMING_DEBUG
745 printk(KERN_DEBUG "WaveLAN: Doing handover to %.4X, dev %s\n",wavepoint->nwid,lp->dev->name);
746 #endif
747
748 /* Disable interrupts & save flags */
749 spin_lock_irqsave(&lp->spinlock, flags);
750
751 m.w.mmw_netw_id_l = wavepoint->nwid & 0xFF;
752 m.w.mmw_netw_id_h = (wavepoint->nwid & 0xFF00) >> 8;
753
754 mmc_write(base, (char *)&m.w.mmw_netw_id_l - (char *)&m, (unsigned char *)&m.w.mmw_netw_id_l, 2);
755
756 /* ReEnable interrupts & restore flags */
757 spin_unlock_irqrestore(&lp->spinlock, flags);
758
759 wv_nwid_filter(!NWID_PROMISC,lp);
760 lp->curr_point=wavepoint;
761 }
762
763 /* Called when a WavePoint beacon is received */
764 static inline void wl_roam_gather(struct net_device * dev,
765 u_char * hdr, /* Beacon header */
766 u_char * stats) /* SNR, Signal quality
767 of packet */
768 {
769 wavepoint_beacon *beacon= (wavepoint_beacon *)hdr; /* Rcvd. Beacon */
770 unsigned short nwid=ntohs(beacon->nwid);
771 unsigned short sigqual=stats[2] & MMR_SGNL_QUAL; /* SNR of beacon */
772 wavepoint_history *wavepoint=NULL; /* WavePoint table entry */
773 net_local *lp = netdev_priv(dev); /* Device info */
774
775 #ifdef I_NEED_THIS_FEATURE
776 /* Some people don't need this, some other may need it */
777 nwid=nwid^ntohs(beacon->domain_id);
778 #endif
779
780 #if WAVELAN_ROAMING_DEBUG > 1
781 printk(KERN_DEBUG "WaveLAN: beacon, dev %s:\n",dev->name);
782 printk(KERN_DEBUG "Domain: %.4X NWID: %.4X SigQual=%d\n",ntohs(beacon->domain_id),nwid,sigqual);
783 #endif
784
785 lp->wavepoint_table.locked=1; /* <Mutex> */
786
787 wavepoint=wl_roam_check(nwid,lp); /* Find WavePoint table entry */
788 if(wavepoint==NULL) /* If no entry, Create a new one... */
789 {
790 wavepoint=wl_new_wavepoint(nwid,beacon->seq,lp);
791 if(wavepoint==NULL)
792 goto out;
793 }
794 if(lp->curr_point==NULL) /* If this is the only WavePoint, */
795 wv_roam_handover(wavepoint, lp); /* Jump on it! */
796
797 wl_update_history(wavepoint, sigqual, beacon->seq); /* Update SNR history
798 stats. */
799
800 if(lp->curr_point->average_slow < SEARCH_THRESH_LOW) /* If our current */
801 if(!lp->cell_search) /* WavePoint is getting faint, */
802 wv_nwid_filter(NWID_PROMISC,lp); /* start looking for a new one */
803
804 if(wavepoint->average_slow >
805 lp->curr_point->average_slow + WAVELAN_ROAMING_DELTA)
806 wv_roam_handover(wavepoint, lp); /* Handover to a better WavePoint */
807
808 if(lp->curr_point->average_slow > SEARCH_THRESH_HIGH) /* If our SNR is */
809 if(lp->cell_search) /* getting better, drop out of cell search mode */
810 wv_nwid_filter(!NWID_PROMISC,lp);
811
812 out:
813 lp->wavepoint_table.locked=0; /* </MUTEX> :-) */
814 }
815
816 /* Test this MAC frame a WavePoint beacon */
817 static inline int WAVELAN_BEACON(unsigned char *data)
818 {
819 wavepoint_beacon *beacon= (wavepoint_beacon *)data;
820 static wavepoint_beacon beacon_template={0xaa,0xaa,0x03,0x08,0x00,0x0e,0x20,0x03,0x00};
821
822 if(memcmp(beacon,&beacon_template,9)==0)
823 return 1;
824 else
825 return 0;
826 }
827 #endif /* WAVELAN_ROAMING */
828
829 /************************ I82593 SUBROUTINES *************************/
830 /*
831 * Useful subroutines to manage the Ethernet controller
832 */
833
834 /*------------------------------------------------------------------*/
835 /*
836 * Routine to synchronously send a command to the i82593 chip.
837 * Should be called with interrupts disabled.
838 * (called by wv_packet_write(), wv_ru_stop(), wv_ru_start(),
839 * wv_82593_config() & wv_diag())
840 */
841 static int
842 wv_82593_cmd(struct net_device * dev,
843 char * str,
844 int cmd,
845 int result)
846 {
847 kio_addr_t base = dev->base_addr;
848 int status;
849 int wait_completed;
850 long spin;
851
852 /* Spin until the chip finishes executing its current command (if any) */
853 spin = 1000;
854 do
855 {
856 /* Time calibration of the loop */
857 udelay(10);
858
859 /* Read the interrupt register */
860 outb(OP0_NOP | CR0_STATUS_3, LCCR(base));
861 status = inb(LCSR(base));
862 }
863 while(((status & SR3_EXEC_STATE_MASK) != SR3_EXEC_IDLE) && (spin-- > 0));
864
865 /* If the interrupt hasn't be posted */
866 if(spin <= 0)
867 {
868 #ifdef DEBUG_INTERRUPT_ERROR
869 printk(KERN_INFO "wv_82593_cmd: %s timeout (previous command), status 0x%02x\n",
870 str, status);
871 #endif
872 return(FALSE);
873 }
874
875 /* Issue the command to the controller */
876 outb(cmd, LCCR(base));
877
878 /* If we don't have to check the result of the command
879 * Note : this mean that the irq handler will deal with that */
880 if(result == SR0_NO_RESULT)
881 return(TRUE);
882
883 /* We are waiting for command completion */
884 wait_completed = TRUE;
885
886 /* Busy wait while the LAN controller executes the command. */
887 spin = 1000;
888 do
889 {
890 /* Time calibration of the loop */
891 udelay(10);
892
893 /* Read the interrupt register */
894 outb(CR0_STATUS_0 | OP0_NOP, LCCR(base));
895 status = inb(LCSR(base));
896
897 /* Check if there was an interrupt posted */
898 if((status & SR0_INTERRUPT))
899 {
900 /* Acknowledge the interrupt */
901 outb(CR0_INT_ACK | OP0_NOP, LCCR(base));
902
903 /* Check if interrupt is a command completion */
904 if(((status & SR0_BOTH_RX_TX) != SR0_BOTH_RX_TX) &&
905 ((status & SR0_BOTH_RX_TX) != 0x0) &&
906 !(status & SR0_RECEPTION))
907 {
908 /* Signal command completion */
909 wait_completed = FALSE;
910 }
911 else
912 {
913 /* Note : Rx interrupts will be handled later, because we can
914 * handle multiple Rx packets at once */
915 #ifdef DEBUG_INTERRUPT_INFO
916 printk(KERN_INFO "wv_82593_cmd: not our interrupt\n");
917 #endif
918 }
919 }
920 }
921 while(wait_completed && (spin-- > 0));
922
923 /* If the interrupt hasn't be posted */
924 if(wait_completed)
925 {
926 #ifdef DEBUG_INTERRUPT_ERROR
927 printk(KERN_INFO "wv_82593_cmd: %s timeout, status 0x%02x\n",
928 str, status);
929 #endif
930 return(FALSE);
931 }
932
933 /* Check the return code returned by the card (see above) against
934 * the expected return code provided by the caller */
935 if((status & SR0_EVENT_MASK) != result)
936 {
937 #ifdef DEBUG_INTERRUPT_ERROR
938 printk(KERN_INFO "wv_82593_cmd: %s failed, status = 0x%x\n",
939 str, status);
940 #endif
941 return(FALSE);
942 }
943
944 return(TRUE);
945 } /* wv_82593_cmd */
946
947 /*------------------------------------------------------------------*/
948 /*
949 * This routine does a 593 op-code number 7, and obtains the diagnose
950 * status for the WaveLAN.
951 */
952 static inline int
953 wv_diag(struct net_device * dev)
954 {
955 int ret = FALSE;
956
957 if(wv_82593_cmd(dev, "wv_diag(): diagnose",
958 OP0_DIAGNOSE, SR0_DIAGNOSE_PASSED))
959 ret = TRUE;
960
961 #ifdef DEBUG_CONFIG_ERRORS
962 printk(KERN_INFO "wavelan_cs: i82593 Self Test failed!\n");
963 #endif
964 return(ret);
965 } /* wv_diag */
966
967 /*------------------------------------------------------------------*/
968 /*
969 * Routine to read len bytes from the i82593's ring buffer, starting at
970 * chip address addr. The results read from the chip are stored in buf.
971 * The return value is the address to use for next the call.
972 */
973 static int
974 read_ringbuf(struct net_device * dev,
975 int addr,
976 char * buf,
977 int len)
978 {
979 kio_addr_t base = dev->base_addr;
980 int ring_ptr = addr;
981 int chunk_len;
982 char * buf_ptr = buf;
983
984 /* Get all the buffer */
985 while(len > 0)
986 {
987 /* Position the Program I/O Register at the ring buffer pointer */
988 outb(ring_ptr & 0xff, PIORL(base));
989 outb(((ring_ptr >> 8) & PIORH_MASK), PIORH(base));
990
991 /* First, determine how much we can read without wrapping around the
992 ring buffer */
993 if((addr + len) < (RX_BASE + RX_SIZE))
994 chunk_len = len;
995 else
996 chunk_len = RX_BASE + RX_SIZE - addr;
997 insb(PIOP(base), buf_ptr, chunk_len);
998 buf_ptr += chunk_len;
999 len -= chunk_len;
1000 ring_ptr = (ring_ptr - RX_BASE + chunk_len) % RX_SIZE + RX_BASE;
1001 }
1002 return(ring_ptr);
1003 } /* read_ringbuf */
1004
1005 /*------------------------------------------------------------------*/
1006 /*
1007 * Reconfigure the i82593, or at least ask for it...
1008 * Because wv_82593_config use the transmission buffer, we must do it
1009 * when we are sure that there is no transmission, so we do it now
1010 * or in wavelan_packet_xmit() (I can't find any better place,
1011 * wavelan_interrupt is not an option...), so you may experience
1012 * some delay sometime...
1013 */
1014 static inline void
1015 wv_82593_reconfig(struct net_device * dev)
1016 {
1017 net_local * lp = netdev_priv(dev);
1018 dev_link_t * link = lp->link;
1019 unsigned long flags;
1020
1021 /* Arm the flag, will be cleard in wv_82593_config() */
1022 lp->reconfig_82593 = TRUE;
1023
1024 /* Check if we can do it now ! */
1025 if((link->open) && (netif_running(dev)) && !(netif_queue_stopped(dev)))
1026 {
1027 spin_lock_irqsave(&lp->spinlock, flags); /* Disable interrupts */
1028 wv_82593_config(dev);
1029 spin_unlock_irqrestore(&lp->spinlock, flags); /* Re-enable interrupts */
1030 }
1031 else
1032 {
1033 #ifdef DEBUG_IOCTL_INFO
1034 printk(KERN_DEBUG
1035 "%s: wv_82593_reconfig(): delayed (state = %lX, link = %d)\n",
1036 dev->name, dev->state, link->open);
1037 #endif
1038 }
1039 }
1040
1041 /********************* DEBUG & INFO SUBROUTINES *********************/
1042 /*
1043 * This routines are used in the code to show debug informations.
1044 * Most of the time, it dump the content of hardware structures...
1045 */
1046
1047 #ifdef DEBUG_PSA_SHOW
1048 /*------------------------------------------------------------------*/
1049 /*
1050 * Print the formatted contents of the Parameter Storage Area.
1051 */
1052 static void
1053 wv_psa_show(psa_t * p)
1054 {
1055 printk(KERN_DEBUG "##### wavelan psa contents: #####\n");
1056 printk(KERN_DEBUG "psa_io_base_addr_1: 0x%02X %02X %02X %02X\n",
1057 p->psa_io_base_addr_1,
1058 p->psa_io_base_addr_2,
1059 p->psa_io_base_addr_3,
1060 p->psa_io_base_addr_4);
1061 printk(KERN_DEBUG "psa_rem_boot_addr_1: 0x%02X %02X %02X\n",
1062 p->psa_rem_boot_addr_1,
1063 p->psa_rem_boot_addr_2,
1064 p->psa_rem_boot_addr_3);
1065 printk(KERN_DEBUG "psa_holi_params: 0x%02x, ", p->psa_holi_params);
1066 printk("psa_int_req_no: %d\n", p->psa_int_req_no);
1067 #ifdef DEBUG_SHOW_UNUSED
1068 printk(KERN_DEBUG "psa_unused0[]: %02X:%02X:%02X:%02X:%02X:%02X:%02X\n",
1069 p->psa_unused0[0],
1070 p->psa_unused0[1],
1071 p->psa_unused0[2],
1072 p->psa_unused0[3],
1073 p->psa_unused0[4],
1074 p->psa_unused0[5],
1075 p->psa_unused0[6]);
1076 #endif /* DEBUG_SHOW_UNUSED */
1077 printk(KERN_DEBUG "psa_univ_mac_addr[]: %02x:%02x:%02x:%02x:%02x:%02x\n",
1078 p->psa_univ_mac_addr[0],
1079 p->psa_univ_mac_addr[1],
1080 p->psa_univ_mac_addr[2],
1081 p->psa_univ_mac_addr[3],
1082 p->psa_univ_mac_addr[4],
1083 p->psa_univ_mac_addr[5]);
1084 printk(KERN_DEBUG "psa_local_mac_addr[]: %02x:%02x:%02x:%02x:%02x:%02x\n",
1085 p->psa_local_mac_addr[0],
1086 p->psa_local_mac_addr[1],
1087 p->psa_local_mac_addr[2],
1088 p->psa_local_mac_addr[3],
1089 p->psa_local_mac_addr[4],
1090 p->psa_local_mac_addr[5]);
1091 printk(KERN_DEBUG "psa_univ_local_sel: %d, ", p->psa_univ_local_sel);
1092 printk("psa_comp_number: %d, ", p->psa_comp_number);
1093 printk("psa_thr_pre_set: 0x%02x\n", p->psa_thr_pre_set);
1094 printk(KERN_DEBUG "psa_feature_select/decay_prm: 0x%02x, ",
1095 p->psa_feature_select);
1096 printk("psa_subband/decay_update_prm: %d\n", p->psa_subband);
1097 printk(KERN_DEBUG "psa_quality_thr: 0x%02x, ", p->psa_quality_thr);
1098 printk("psa_mod_delay: 0x%02x\n", p->psa_mod_delay);
1099 printk(KERN_DEBUG "psa_nwid: 0x%02x%02x, ", p->psa_nwid[0], p->psa_nwid[1]);
1100 printk("psa_nwid_select: %d\n", p->psa_nwid_select);
1101 printk(KERN_DEBUG "psa_encryption_select: %d, ", p->psa_encryption_select);
1102 printk("psa_encryption_key[]: %02x:%02x:%02x:%02x:%02x:%02x:%02x:%02x\n",
1103 p->psa_encryption_key[0],
1104 p->psa_encryption_key[1],
1105 p->psa_encryption_key[2],
1106 p->psa_encryption_key[3],
1107 p->psa_encryption_key[4],
1108 p->psa_encryption_key[5],
1109 p->psa_encryption_key[6],
1110 p->psa_encryption_key[7]);
1111 printk(KERN_DEBUG "psa_databus_width: %d\n", p->psa_databus_width);
1112 printk(KERN_DEBUG "psa_call_code/auto_squelch: 0x%02x, ",
1113 p->psa_call_code[0]);
1114 printk("psa_call_code[]: %02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n",
1115 p->psa_call_code[0],
1116 p->psa_call_code[1],
1117 p->psa_call_code[2],
1118 p->psa_call_code[3],
1119 p->psa_call_code[4],
1120 p->psa_call_code[5],
1121 p->psa_call_code[6],
1122 p->psa_call_code[7]);
1123 #ifdef DEBUG_SHOW_UNUSED
1124 printk(KERN_DEBUG "psa_reserved[]: %02X:%02X:%02X:%02X\n",
1125 p->psa_reserved[0],
1126 p->psa_reserved[1],
1127 p->psa_reserved[2],
1128 p->psa_reserved[3]);
1129 #endif /* DEBUG_SHOW_UNUSED */
1130 printk(KERN_DEBUG "psa_conf_status: %d, ", p->psa_conf_status);
1131 printk("psa_crc: 0x%02x%02x, ", p->psa_crc[0], p->psa_crc[1]);
1132 printk("psa_crc_status: 0x%02x\n", p->psa_crc_status);
1133 } /* wv_psa_show */
1134 #endif /* DEBUG_PSA_SHOW */
1135
1136 #ifdef DEBUG_MMC_SHOW
1137 /*------------------------------------------------------------------*/
1138 /*
1139 * Print the formatted status of the Modem Management Controller.
1140 * This function need to be completed...
1141 */
1142 static void
1143 wv_mmc_show(struct net_device * dev)
1144 {
1145 kio_addr_t base = dev->base_addr;
1146 net_local * lp = netdev_priv(dev);
1147 mmr_t m;
1148
1149 /* Basic check */
1150 if(hasr_read(base) & HASR_NO_CLK)
1151 {
1152 printk(KERN_WARNING "%s: wv_mmc_show: modem not connected\n",
1153 dev->name);
1154 return;
1155 }
1156
1157 spin_lock_irqsave(&lp->spinlock, flags);
1158
1159 /* Read the mmc */
1160 mmc_out(base, mmwoff(0, mmw_freeze), 1);
1161 mmc_read(base, 0, (u_char *)&m, sizeof(m));
1162 mmc_out(base, mmwoff(0, mmw_freeze), 0);
1163
1164 #ifdef WIRELESS_EXT /* If wireless extension exist in the kernel */
1165 /* Don't forget to update statistics */
1166 lp->wstats.discard.nwid += (m.mmr_wrong_nwid_h << 8) | m.mmr_wrong_nwid_l;
1167 #endif /* WIRELESS_EXT */
1168
1169 spin_unlock_irqrestore(&lp->spinlock, flags);
1170
1171 printk(KERN_DEBUG "##### wavelan modem status registers: #####\n");
1172 #ifdef DEBUG_SHOW_UNUSED
1173 printk(KERN_DEBUG "mmc_unused0[]: %02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n",
1174 m.mmr_unused0[0],
1175 m.mmr_unused0[1],
1176 m.mmr_unused0[2],
1177 m.mmr_unused0[3],
1178 m.mmr_unused0[4],
1179 m.mmr_unused0[5],
1180 m.mmr_unused0[6],
1181 m.mmr_unused0[7]);
1182 #endif /* DEBUG_SHOW_UNUSED */
1183 printk(KERN_DEBUG "Encryption algorythm: %02X - Status: %02X\n",
1184 m.mmr_des_avail, m.mmr_des_status);
1185 #ifdef DEBUG_SHOW_UNUSED
1186 printk(KERN_DEBUG "mmc_unused1[]: %02X:%02X:%02X:%02X:%02X\n",
1187 m.mmr_unused1[0],
1188 m.mmr_unused1[1],
1189 m.mmr_unused1[2],
1190 m.mmr_unused1[3],
1191 m.mmr_unused1[4]);
1192 #endif /* DEBUG_SHOW_UNUSED */
1193 printk(KERN_DEBUG "dce_status: 0x%x [%s%s%s%s]\n",
1194 m.mmr_dce_status,
1195 (m.mmr_dce_status & MMR_DCE_STATUS_RX_BUSY) ? "energy detected,":"",
1196 (m.mmr_dce_status & MMR_DCE_STATUS_LOOPT_IND) ?
1197 "loop test indicated," : "",
1198 (m.mmr_dce_status & MMR_DCE_STATUS_TX_BUSY) ? "transmitter on," : "",
1199 (m.mmr_dce_status & MMR_DCE_STATUS_JBR_EXPIRED) ?
1200 "jabber timer expired," : "");
1201 printk(KERN_DEBUG "Dsp ID: %02X\n",
1202 m.mmr_dsp_id);
1203 #ifdef DEBUG_SHOW_UNUSED
1204 printk(KERN_DEBUG "mmc_unused2[]: %02X:%02X\n",
1205 m.mmr_unused2[0],
1206 m.mmr_unused2[1]);
1207 #endif /* DEBUG_SHOW_UNUSED */
1208 printk(KERN_DEBUG "# correct_nwid: %d, # wrong_nwid: %d\n",
1209 (m.mmr_correct_nwid_h << 8) | m.mmr_correct_nwid_l,
1210 (m.mmr_wrong_nwid_h << 8) | m.mmr_wrong_nwid_l);
1211 printk(KERN_DEBUG "thr_pre_set: 0x%x [current signal %s]\n",
1212 m.mmr_thr_pre_set & MMR_THR_PRE_SET,
1213 (m.mmr_thr_pre_set & MMR_THR_PRE_SET_CUR) ? "above" : "below");
1214 printk(KERN_DEBUG "signal_lvl: %d [%s], ",
1215 m.mmr_signal_lvl & MMR_SIGNAL_LVL,
1216 (m.mmr_signal_lvl & MMR_SIGNAL_LVL_VALID) ? "new msg" : "no new msg");
1217 printk("silence_lvl: %d [%s], ", m.mmr_silence_lvl & MMR_SILENCE_LVL,
1218 (m.mmr_silence_lvl & MMR_SILENCE_LVL_VALID) ? "update done" : "no new update");
1219 printk("sgnl_qual: 0x%x [%s]\n", m.mmr_sgnl_qual & MMR_SGNL_QUAL,
1220 (m.mmr_sgnl_qual & MMR_SGNL_QUAL_ANT) ? "Antenna 1" : "Antenna 0");
1221 #ifdef DEBUG_SHOW_UNUSED
1222 printk(KERN_DEBUG "netw_id_l: %x\n", m.mmr_netw_id_l);
1223 #endif /* DEBUG_SHOW_UNUSED */
1224 } /* wv_mmc_show */
1225 #endif /* DEBUG_MMC_SHOW */
1226
1227 #ifdef DEBUG_I82593_SHOW
1228 /*------------------------------------------------------------------*/
1229 /*
1230 * Print the formatted status of the i82593's receive unit.
1231 */
1232 static void
1233 wv_ru_show(struct net_device * dev)
1234 {
1235 net_local *lp = netdev_priv(dev);
1236
1237 printk(KERN_DEBUG "##### wavelan i82593 receiver status: #####\n");
1238 printk(KERN_DEBUG "ru: rfp %d stop %d", lp->rfp, lp->stop);
1239 /*
1240 * Not implemented yet...
1241 */
1242 printk("\n");
1243 } /* wv_ru_show */
1244 #endif /* DEBUG_I82593_SHOW */
1245
1246 #ifdef DEBUG_DEVICE_SHOW
1247 /*------------------------------------------------------------------*/
1248 /*
1249 * Print the formatted status of the WaveLAN PCMCIA device driver.
1250 */
1251 static void
1252 wv_dev_show(struct net_device * dev)
1253 {
1254 printk(KERN_DEBUG "dev:");
1255 printk(" state=%lX,", dev->state);
1256 printk(" trans_start=%ld,", dev->trans_start);
1257 printk(" flags=0x%x,", dev->flags);
1258 printk("\n");
1259 } /* wv_dev_show */
1260
1261 /*------------------------------------------------------------------*/
1262 /*
1263 * Print the formatted status of the WaveLAN PCMCIA device driver's
1264 * private information.
1265 */
1266 static void
1267 wv_local_show(struct net_device * dev)
1268 {
1269 net_local *lp = netdev_priv(dev);
1270
1271 printk(KERN_DEBUG "local:");
1272 /*
1273 * Not implemented yet...
1274 */
1275 printk("\n");
1276 } /* wv_local_show */
1277 #endif /* DEBUG_DEVICE_SHOW */
1278
1279 #if defined(DEBUG_RX_INFO) || defined(DEBUG_TX_INFO)
1280 /*------------------------------------------------------------------*/
1281 /*
1282 * Dump packet header (and content if necessary) on the screen
1283 */
1284 static inline void
1285 wv_packet_info(u_char * p, /* Packet to dump */
1286 int length, /* Length of the packet */
1287 char * msg1, /* Name of the device */
1288 char * msg2) /* Name of the function */
1289 {
1290 int i;
1291 int maxi;
1292
1293 printk(KERN_DEBUG "%s: %s(): dest %02X:%02X:%02X:%02X:%02X:%02X, length %d\n",
1294 msg1, msg2, p[0], p[1], p[2], p[3], p[4], p[5], length);
1295 printk(KERN_DEBUG "%s: %s(): src %02X:%02X:%02X:%02X:%02X:%02X, type 0x%02X%02X\n",
1296 msg1, msg2, p[6], p[7], p[8], p[9], p[10], p[11], p[12], p[13]);
1297
1298 #ifdef DEBUG_PACKET_DUMP
1299
1300 printk(KERN_DEBUG "data=\"");
1301
1302 if((maxi = length) > DEBUG_PACKET_DUMP)
1303 maxi = DEBUG_PACKET_DUMP;
1304 for(i = 14; i < maxi; i++)
1305 if(p[i] >= ' ' && p[i] <= '~')
1306 printk(" %c", p[i]);
1307 else
1308 printk("%02X", p[i]);
1309 if(maxi < length)
1310 printk("..");
1311 printk("\"\n");
1312 printk(KERN_DEBUG "\n");
1313 #endif /* DEBUG_PACKET_DUMP */
1314 }
1315 #endif /* defined(DEBUG_RX_INFO) || defined(DEBUG_TX_INFO) */
1316
1317 /*------------------------------------------------------------------*/
1318 /*
1319 * This is the information which is displayed by the driver at startup
1320 * There is a lot of flag to configure it at your will...
1321 */
1322 static inline void
1323 wv_init_info(struct net_device * dev)
1324 {
1325 kio_addr_t base = dev->base_addr;
1326 psa_t psa;
1327 int i;
1328
1329 /* Read the parameter storage area */
1330 psa_read(dev, 0, (unsigned char *) &psa, sizeof(psa));
1331
1332 #ifdef DEBUG_PSA_SHOW
1333 wv_psa_show(&psa);
1334 #endif
1335 #ifdef DEBUG_MMC_SHOW
1336 wv_mmc_show(dev);
1337 #endif
1338 #ifdef DEBUG_I82593_SHOW
1339 wv_ru_show(dev);
1340 #endif
1341
1342 #ifdef DEBUG_BASIC_SHOW
1343 /* Now, let's go for the basic stuff */
1344 printk(KERN_NOTICE "%s: WaveLAN: port %#lx, irq %d, hw_addr",
1345 dev->name, base, dev->irq);
1346 for(i = 0; i < WAVELAN_ADDR_SIZE; i++)
1347 printk("%s%02X", (i == 0) ? " " : ":", dev->dev_addr[i]);
1348
1349 /* Print current network id */
1350 if(psa.psa_nwid_select)
1351 printk(", nwid 0x%02X-%02X", psa.psa_nwid[0], psa.psa_nwid[1]);
1352 else
1353 printk(", nwid off");
1354
1355 /* If 2.00 card */
1356 if(!(mmc_in(base, mmroff(0, mmr_fee_status)) &
1357 (MMR_FEE_STATUS_DWLD | MMR_FEE_STATUS_BUSY)))
1358 {
1359 unsigned short freq;
1360
1361 /* Ask the EEprom to read the frequency from the first area */
1362 fee_read(base, 0x00 /* 1st area - frequency... */,
1363 &freq, 1);
1364
1365 /* Print frequency */
1366 printk(", 2.00, %ld", (freq >> 6) + 2400L);
1367
1368 /* Hack !!! */
1369 if(freq & 0x20)
1370 printk(".5");
1371 }
1372 else
1373 {
1374 printk(", PCMCIA, ");
1375 switch (psa.psa_subband)
1376 {
1377 case PSA_SUBBAND_915:
1378 printk("915");
1379 break;
1380 case PSA_SUBBAND_2425:
1381 printk("2425");
1382 break;
1383 case PSA_SUBBAND_2460:
1384 printk("2460");
1385 break;
1386 case PSA_SUBBAND_2484:
1387 printk("2484");
1388 break;
1389 case PSA_SUBBAND_2430_5:
1390 printk("2430.5");
1391 break;
1392 default:
1393 printk("unknown");
1394 }
1395 }
1396
1397 printk(" MHz\n");
1398 #endif /* DEBUG_BASIC_SHOW */
1399
1400 #ifdef DEBUG_VERSION_SHOW
1401 /* Print version information */
1402 printk(KERN_NOTICE "%s", version);
1403 #endif
1404 } /* wv_init_info */
1405
1406 /********************* IOCTL, STATS & RECONFIG *********************/
1407 /*
1408 * We found here routines that are called by Linux on differents
1409 * occasions after the configuration and not for transmitting data
1410 * These may be called when the user use ifconfig, /proc/net/dev
1411 * or wireless extensions
1412 */
1413
1414 /*------------------------------------------------------------------*/
1415 /*
1416 * Get the current ethernet statistics. This may be called with the
1417 * card open or closed.
1418 * Used when the user read /proc/net/dev
1419 */
1420 static en_stats *
1421 wavelan_get_stats(struct net_device * dev)
1422 {
1423 #ifdef DEBUG_IOCTL_TRACE
1424 printk(KERN_DEBUG "%s: <>wavelan_get_stats()\n", dev->name);
1425 #endif
1426
1427 return(&((net_local *)netdev_priv(dev))->stats);
1428 }
1429
1430 /*------------------------------------------------------------------*/
1431 /*
1432 * Set or clear the multicast filter for this adaptor.
1433 * num_addrs == -1 Promiscuous mode, receive all packets
1434 * num_addrs == 0 Normal mode, clear multicast list
1435 * num_addrs > 0 Multicast mode, receive normal and MC packets,
1436 * and do best-effort filtering.
1437 */
1438
1439 static void
1440 wavelan_set_multicast_list(struct net_device * dev)
1441 {
1442 net_local * lp = netdev_priv(dev);
1443
1444 #ifdef DEBUG_IOCTL_TRACE
1445 printk(KERN_DEBUG "%s: ->wavelan_set_multicast_list()\n", dev->name);
1446 #endif
1447
1448 #ifdef DEBUG_IOCTL_INFO
1449 printk(KERN_DEBUG "%s: wavelan_set_multicast_list(): setting Rx mode %02X to %d addresses.\n",
1450 dev->name, dev->flags, dev->mc_count);
1451 #endif
1452
1453 if(dev->flags & IFF_PROMISC)
1454 {
1455 /*
1456 * Enable promiscuous mode: receive all packets.
1457 */
1458 if(!lp->promiscuous)
1459 {
1460 lp->promiscuous = 1;
1461 lp->allmulticast = 0;
1462 lp->mc_count = 0;
1463
1464 wv_82593_reconfig(dev);
1465
1466 /* Tell the kernel that we are doing a really bad job... */
1467 dev->flags |= IFF_PROMISC;
1468 }
1469 }
1470 else
1471 /* If all multicast addresses
1472 * or too much multicast addresses for the hardware filter */
1473 if((dev->flags & IFF_ALLMULTI) ||
1474 (dev->mc_count > I82593_MAX_MULTICAST_ADDRESSES))
1475 {
1476 /*
1477 * Disable promiscuous mode, but active the all multicast mode
1478 */
1479 if(!lp->allmulticast)
1480 {
1481 lp->promiscuous = 0;
1482 lp->allmulticast = 1;
1483 lp->mc_count = 0;
1484
1485 wv_82593_reconfig(dev);
1486
1487 /* Tell the kernel that we are doing a really bad job... */
1488 dev->flags |= IFF_ALLMULTI;
1489 }
1490 }
1491 else
1492 /* If there is some multicast addresses to send */
1493 if(dev->mc_list != (struct dev_mc_list *) NULL)
1494 {
1495 /*
1496 * Disable promiscuous mode, but receive all packets
1497 * in multicast list
1498 */
1499 #ifdef MULTICAST_AVOID
1500 if(lp->promiscuous || lp->allmulticast ||
1501 (dev->mc_count != lp->mc_count))
1502 #endif
1503 {
1504 lp->promiscuous = 0;
1505 lp->allmulticast = 0;
1506 lp->mc_count = dev->mc_count;
1507
1508 wv_82593_reconfig(dev);
1509 }
1510 }
1511 else
1512 {
1513 /*
1514 * Switch to normal mode: disable promiscuous mode and
1515 * clear the multicast list.
1516 */
1517 if(lp->promiscuous || lp->mc_count == 0)
1518 {
1519 lp->promiscuous = 0;
1520 lp->allmulticast = 0;
1521 lp->mc_count = 0;
1522
1523 wv_82593_reconfig(dev);
1524 }
1525 }
1526 #ifdef DEBUG_IOCTL_TRACE
1527 printk(KERN_DEBUG "%s: <-wavelan_set_multicast_list()\n", dev->name);
1528 #endif
1529 }
1530
1531 /*------------------------------------------------------------------*/
1532 /*
1533 * This function doesn't exist...
1534 * (Note : it was a nice way to test the reconfigure stuff...)
1535 */
1536 #ifdef SET_MAC_ADDRESS
1537 static int
1538 wavelan_set_mac_address(struct net_device * dev,
1539 void * addr)
1540 {
1541 struct sockaddr * mac = addr;
1542
1543 /* Copy the address */
1544 memcpy(dev->dev_addr, mac->sa_data, WAVELAN_ADDR_SIZE);
1545
1546 /* Reconfig the beast */
1547 wv_82593_reconfig(dev);
1548
1549 return 0;
1550 }
1551 #endif /* SET_MAC_ADDRESS */
1552
1553 #ifdef WIRELESS_EXT /* If wireless extension exist in the kernel */
1554
1555 /*------------------------------------------------------------------*/
1556 /*
1557 * Frequency setting (for hardware able of it)
1558 * It's a bit complicated and you don't really want to look into it...
1559 */
1560 static inline int
1561 wv_set_frequency(u_long base, /* i/o port of the card */
1562 iw_freq * frequency)
1563 {
1564 const int BAND_NUM = 10; /* Number of bands */
1565 long freq = 0L; /* offset to 2.4 GHz in .5 MHz */
1566 #ifdef DEBUG_IOCTL_INFO
1567 int i;
1568 #endif
1569
1570 /* Setting by frequency */
1571 /* Theoritically, you may set any frequency between
1572 * the two limits with a 0.5 MHz precision. In practice,
1573 * I don't want you to have trouble with local
1574 * regulations... */
1575 if((frequency->e == 1) &&
1576 (frequency->m >= (int) 2.412e8) && (frequency->m <= (int) 2.487e8))
1577 {
1578 freq = ((frequency->m / 10000) - 24000L) / 5;
1579 }
1580
1581 /* Setting by channel (same as wfreqsel) */
1582 /* Warning : each channel is 22MHz wide, so some of the channels
1583 * will interfere... */
1584 if((frequency->e == 0) &&
1585 (frequency->m >= 0) && (frequency->m < BAND_NUM))
1586 {
1587 /* Get frequency offset. */
1588 freq = channel_bands[frequency->m] >> 1;
1589 }
1590
1591 /* Verify if the frequency is allowed */
1592 if(freq != 0L)
1593 {
1594 u_short table[10]; /* Authorized frequency table */
1595
1596 /* Read the frequency table */
1597 fee_read(base, 0x71 /* frequency table */,
1598 table, 10);
1599
1600 #ifdef DEBUG_IOCTL_INFO
1601 printk(KERN_DEBUG "Frequency table :");
1602 for(i = 0; i < 10; i++)
1603 {
1604 printk(" %04X",
1605 table[i]);
1606 }
1607 printk("\n");
1608 #endif
1609
1610 /* Look in the table if the frequency is allowed */
1611 if(!(table[9 - ((freq - 24) / 16)] &
1612 (1 << ((freq - 24) % 16))))
1613 return -EINVAL; /* not allowed */
1614 }
1615 else
1616 return -EINVAL;
1617
1618 /* If we get a usable frequency */
1619 if(freq != 0L)
1620 {
1621 unsigned short area[16];
1622 unsigned short dac[2];
1623 unsigned short area_verify[16];
1624 unsigned short dac_verify[2];
1625 /* Corresponding gain (in the power adjust value table)
1626 * see AT&T Wavelan Data Manual, REF 407-024689/E, page 3-8
1627 * & WCIN062D.DOC, page 6.2.9 */
1628 unsigned short power_limit[] = { 40, 80, 120, 160, 0 };
1629 int power_band = 0; /* Selected band */
1630 unsigned short power_adjust; /* Correct value */
1631
1632 /* Search for the gain */
1633 power_band = 0;
1634 while((freq > power_limit[power_band]) &&
1635 (power_limit[++power_band] != 0))
1636 ;
1637
1638 /* Read the first area */
1639 fee_read(base, 0x00,
1640 area, 16);
1641
1642 /* Read the DAC */
1643 fee_read(base, 0x60,
1644 dac, 2);
1645
1646 /* Read the new power adjust value */
1647 fee_read(base, 0x6B - (power_band >> 1),
1648 &power_adjust, 1);
1649 if(power_band & 0x1)
1650 power_adjust >>= 8;
1651 else
1652 power_adjust &= 0xFF;
1653
1654 #ifdef DEBUG_IOCTL_INFO
1655 printk(KERN_DEBUG "Wavelan EEprom Area 1 :");
1656 for(i = 0; i < 16; i++)
1657 {
1658 printk(" %04X",
1659 area[i]);
1660 }
1661 printk("\n");
1662
1663 printk(KERN_DEBUG "Wavelan EEprom DAC : %04X %04X\n",
1664 dac[0], dac[1]);
1665 #endif
1666
1667 /* Frequency offset (for info only...) */
1668 area[0] = ((freq << 5) & 0xFFE0) | (area[0] & 0x1F);
1669
1670 /* Receiver Principle main divider coefficient */
1671 area[3] = (freq >> 1) + 2400L - 352L;
1672 area[2] = ((freq & 0x1) << 4) | (area[2] & 0xFFEF);
1673
1674 /* Transmitter Main divider coefficient */
1675 area[13] = (freq >> 1) + 2400L;
1676 area[12] = ((freq & 0x1) << 4) | (area[2] & 0xFFEF);
1677
1678 /* Others part of the area are flags, bit streams or unused... */
1679
1680 /* Set the value in the DAC */
1681 dac[1] = ((power_adjust >> 1) & 0x7F) | (dac[1] & 0xFF80);
1682 dac[0] = ((power_adjust & 0x1) << 4) | (dac[0] & 0xFFEF);
1683
1684 /* Write the first area */
1685 fee_write(base, 0x00,
1686 area, 16);
1687
1688 /* Write the DAC */
1689 fee_write(base, 0x60,
1690 dac, 2);
1691
1692 /* We now should verify here that the EEprom writting was ok */
1693
1694 /* ReRead the first area */
1695 fee_read(base, 0x00,
1696 area_verify, 16);
1697
1698 /* ReRead the DAC */
1699 fee_read(base, 0x60,
1700 dac_verify, 2);
1701
1702 /* Compare */
1703 if(memcmp(area, area_verify, 16 * 2) ||
1704 memcmp(dac, dac_verify, 2 * 2))
1705 {
1706 #ifdef DEBUG_IOCTL_ERROR
1707 printk(KERN_INFO "Wavelan: wv_set_frequency : unable to write new frequency to EEprom (?)\n");
1708 #endif
1709 return -EOPNOTSUPP;
1710 }
1711
1712 /* We must download the frequency parameters to the
1713 * synthetisers (from the EEprom - area 1)
1714 * Note : as the EEprom is auto decremented, we set the end
1715 * if the area... */
1716 mmc_out(base, mmwoff(0, mmw_fee_addr), 0x0F);
1717 mmc_out(base, mmwoff(0, mmw_fee_ctrl),
1718 MMW_FEE_CTRL_READ | MMW_FEE_CTRL_DWLD);
1719
1720 /* Wait until the download is finished */
1721 fee_wait(base, 100, 100);
1722
1723 /* We must now download the power adjust value (gain) to
1724 * the synthetisers (from the EEprom - area 7 - DAC) */
1725 mmc_out(base, mmwoff(0, mmw_fee_addr), 0x61);
1726 mmc_out(base, mmwoff(0, mmw_fee_ctrl),
1727 MMW_FEE_CTRL_READ | MMW_FEE_CTRL_DWLD);
1728
1729 /* Wait until the download is finished */
1730 fee_wait(base, 100, 100);
1731
1732 #ifdef DEBUG_IOCTL_INFO
1733 /* Verification of what we have done... */
1734
1735 printk(KERN_DEBUG "Wavelan EEprom Area 1 :");
1736 for(i = 0; i < 16; i++)
1737 {
1738 printk(" %04X",
1739 area_verify[i]);
1740 }
1741 printk("\n");
1742
1743 printk(KERN_DEBUG "Wavelan EEprom DAC : %04X %04X\n",
1744 dac_verify[0], dac_verify[1]);
1745 #endif
1746
1747 return 0;
1748 }
1749 else
1750 return -EINVAL; /* Bah, never get there... */
1751 }
1752
1753 /*------------------------------------------------------------------*/
1754 /*
1755 * Give the list of available frequencies
1756 */
1757 static inline int
1758 wv_frequency_list(u_long base, /* i/o port of the card */
1759 iw_freq * list, /* List of frequency to fill */
1760 int max) /* Maximum number of frequencies */
1761 {
1762 u_short table[10]; /* Authorized frequency table */
1763 long freq = 0L; /* offset to 2.4 GHz in .5 MHz + 12 MHz */
1764 int i; /* index in the table */
1765 const int BAND_NUM = 10; /* Number of bands */
1766 int c = 0; /* Channel number */
1767
1768 /* Read the frequency table */
1769 fee_read(base, 0x71 /* frequency table */,
1770 table, 10);
1771
1772 /* Look all frequencies */
1773 i = 0;
1774 for(freq = 0; freq < 150; freq++)
1775 /* Look in the table if the frequency is allowed */
1776 if(table[9 - (freq / 16)] & (1 << (freq % 16)))
1777 {
1778 /* Compute approximate channel number */
1779 while((((channel_bands[c] >> 1) - 24) < freq) &&
1780 (c < BAND_NUM))
1781 c++;
1782 list[i].i = c; /* Set the list index */
1783
1784 /* put in the list */
1785 list[i].m = (((freq + 24) * 5) + 24000L) * 10000;
1786 list[i++].e = 1;
1787
1788 /* Check number */
1789 if(i >= max)
1790 return(i);
1791 }
1792
1793 return(i);
1794 }
1795
1796 #ifdef IW_WIRELESS_SPY
1797 /*------------------------------------------------------------------*/
1798 /*
1799 * Gather wireless spy statistics : for each packet, compare the source
1800 * address with out list, and if match, get the stats...
1801 * Sorry, but this function really need wireless extensions...
1802 */
1803 static inline void
1804 wl_spy_gather(struct net_device * dev,
1805 u_char * mac, /* MAC address */
1806 u_char * stats) /* Statistics to gather */
1807 {
1808 struct iw_quality wstats;
1809
1810 wstats.qual = stats[2] & MMR_SGNL_QUAL;
1811 wstats.level = stats[0] & MMR_SIGNAL_LVL;
1812 wstats.noise = stats[1] & MMR_SILENCE_LVL;
1813 wstats.updated = 0x7;
1814
1815 /* Update spy records */
1816 wireless_spy_update(dev, mac, &wstats);
1817 }
1818 #endif /* IW_WIRELESS_SPY */
1819
1820 #ifdef HISTOGRAM
1821 /*------------------------------------------------------------------*/
1822 /*
1823 * This function calculate an histogram on the signal level.
1824 * As the noise is quite constant, it's like doing it on the SNR.
1825 * We have defined a set of interval (lp->his_range), and each time
1826 * the level goes in that interval, we increment the count (lp->his_sum).
1827 * With this histogram you may detect if one wavelan is really weak,
1828 * or you may also calculate the mean and standard deviation of the level...
1829 */
1830 static inline void
1831 wl_his_gather(struct net_device * dev,
1832 u_char * stats) /* Statistics to gather */
1833 {
1834 net_local * lp = netdev_priv(dev);
1835 u_char level = stats[0] & MMR_SIGNAL_LVL;
1836 int i;
1837
1838 /* Find the correct interval */
1839 i = 0;
1840 while((i < (lp->his_number - 1)) && (level >= lp->his_range[i++]))
1841 ;
1842
1843 /* Increment interval counter */
1844 (lp->his_sum[i])++;
1845 }
1846 #endif /* HISTOGRAM */
1847
1848 static void wl_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1849 {
1850 strncpy(info->driver, "wavelan_cs", sizeof(info->driver)-1);
1851 }
1852
1853 static struct ethtool_ops ops = {
1854 .get_drvinfo = wl_get_drvinfo
1855 };
1856
1857 /*------------------------------------------------------------------*/
1858 /*
1859 * Wireless Handler : get protocol name
1860 */
1861 static int wavelan_get_name(struct net_device *dev,
1862 struct iw_request_info *info,
1863 union iwreq_data *wrqu,
1864 char *extra)
1865 {
1866 strcpy(wrqu->name, "WaveLAN");
1867 return 0;
1868 }
1869
1870 /*------------------------------------------------------------------*/
1871 /*
1872 * Wireless Handler : set NWID
1873 */
1874 static int wavelan_set_nwid(struct net_device *dev,
1875 struct iw_request_info *info,
1876 union iwreq_data *wrqu,
1877 char *extra)
1878 {
1879 kio_addr_t base = dev->base_addr;
1880 net_local *lp = netdev_priv(dev);
1881 psa_t psa;
1882 mm_t m;
1883 unsigned long flags;
1884 int ret = 0;
1885
1886 /* Disable interrupts and save flags. */
1887 spin_lock_irqsave(&lp->spinlock, flags);
1888
1889 /* Set NWID in WaveLAN. */
1890 if (!wrqu->nwid.disabled) {
1891 /* Set NWID in psa */
1892 psa.psa_nwid[0] = (wrqu->nwid.value & 0xFF00) >> 8;
1893 psa.psa_nwid[1] = wrqu->nwid.value & 0xFF;
1894 psa.psa_nwid_select = 0x01;
1895 psa_write(dev,
1896 (char *) psa.psa_nwid - (char *) &psa,
1897 (unsigned char *) psa.psa_nwid, 3);
1898
1899 /* Set NWID in mmc. */
1900 m.w.mmw_netw_id_l = psa.psa_nwid[1];
1901 m.w.mmw_netw_id_h = psa.psa_nwid[0];
1902 mmc_write(base,
1903 (char *) &m.w.mmw_netw_id_l -
1904 (char *) &m,
1905 (unsigned char *) &m.w.mmw_netw_id_l, 2);
1906 mmc_out(base, mmwoff(0, mmw_loopt_sel), 0x00);
1907 } else {
1908 /* Disable NWID in the psa. */
1909 psa.psa_nwid_select = 0x00;
1910 psa_write(dev,
1911 (char *) &psa.psa_nwid_select -
1912 (char *) &psa,
1913 (unsigned char *) &psa.psa_nwid_select,
1914 1);
1915
1916 /* Disable NWID in the mmc (no filtering). */
1917 mmc_out(base, mmwoff(0, mmw_loopt_sel),
1918 MMW_LOOPT_SEL_DIS_NWID);
1919 }
1920 /* update the Wavelan checksum */
1921 update_psa_checksum(dev);
1922
1923 /* Enable interrupts and restore flags. */
1924 spin_unlock_irqrestore(&lp->spinlock, flags);
1925
1926 return ret;
1927 }
1928
1929 /*------------------------------------------------------------------*/
1930 /*
1931 * Wireless Handler : get NWID
1932 */
1933 static int wavelan_get_nwid(struct net_device *dev,
1934 struct iw_request_info *info,
1935 union iwreq_data *wrqu,
1936 char *extra)
1937 {
1938 net_local *lp = netdev_priv(dev);
1939 psa_t psa;
1940 unsigned long flags;
1941 int ret = 0;
1942
1943 /* Disable interrupts and save flags. */
1944 spin_lock_irqsave(&lp->spinlock, flags);
1945
1946 /* Read the NWID. */
1947 psa_read(dev,
1948 (char *) psa.psa_nwid - (char *) &psa,
1949 (unsigned char *) psa.psa_nwid, 3);
1950 wrqu->nwid.value = (psa.psa_nwid[0] << 8) + psa.psa_nwid[1];
1951 wrqu->nwid.disabled = !(psa.psa_nwid_select);
1952 wrqu->nwid.fixed = 1; /* Superfluous */
1953
1954 /* Enable interrupts and restore flags. */
1955 spin_unlock_irqrestore(&lp->spinlock, flags);
1956
1957 return ret;
1958 }
1959
1960 /*------------------------------------------------------------------*/
1961 /*
1962 * Wireless Handler : set frequency
1963 */
1964 static int wavelan_set_freq(struct net_device *dev,
1965 struct iw_request_info *info,
1966 union iwreq_data *wrqu,
1967 char *extra)
1968 {
1969 kio_addr_t base = dev->base_addr;
1970 net_local *lp = netdev_priv(dev);
1971 unsigned long flags;
1972 int ret;
1973
1974 /* Disable interrupts and save flags. */
1975 spin_lock_irqsave(&lp->spinlock, flags);
1976
1977 /* Attempt to recognise 2.00 cards (2.4 GHz frequency selectable). */
1978 if (!(mmc_in(base, mmroff(0, mmr_fee_status)) &
1979 (MMR_FEE_STATUS_DWLD | MMR_FEE_STATUS_BUSY)))
1980 ret = wv_set_frequency(base, &(wrqu->freq));
1981 else
1982 ret = -EOPNOTSUPP;
1983
1984 /* Enable interrupts and restore flags. */
1985 spin_unlock_irqrestore(&lp->spinlock, flags);
1986
1987 return ret;
1988 }
1989
1990 /*------------------------------------------------------------------*/
1991 /*
1992 * Wireless Handler : get frequency
1993 */
1994 static int wavelan_get_freq(struct net_device *dev,
1995 struct iw_request_info *info,
1996 union iwreq_data *wrqu,
1997 char *extra)
1998 {
1999 kio_addr_t base = dev->base_addr;
2000 net_local *lp = netdev_priv(dev);
2001 psa_t psa;
2002 unsigned long flags;
2003 int ret = 0;
2004
2005 /* Disable interrupts and save flags. */
2006 spin_lock_irqsave(&lp->spinlock, flags);
2007
2008 /* Attempt to recognise 2.00 cards (2.4 GHz frequency selectable).
2009 * Does it work for everybody, especially old cards? */
2010 if (!(mmc_in(base, mmroff(0, mmr_fee_status)) &
2011 (MMR_FEE_STATUS_DWLD | MMR_FEE_STATUS_BUSY))) {
2012 unsigned short freq;
2013
2014 /* Ask the EEPROM to read the frequency from the first area. */
2015 fee_read(base, 0x00, &freq, 1);
2016 wrqu->freq.m = ((freq >> 5) * 5 + 24000L) * 10000;
2017 wrqu->freq.e = 1;
2018 } else {
2019 psa_read(dev,
2020 (char *) &psa.psa_subband - (char *) &psa,
2021 (unsigned char *) &psa.psa_subband, 1);
2022
2023 if (psa.psa_subband <= 4) {
2024 wrqu->freq.m = fixed_bands[psa.psa_subband];
2025 wrqu->freq.e = (psa.psa_subband != 0);
2026 } else
2027 ret = -EOPNOTSUPP;
2028 }
2029
2030 /* Enable interrupts and restore flags. */
2031 spin_unlock_irqrestore(&lp->spinlock, flags);
2032
2033 return ret;
2034 }
2035
2036 /*------------------------------------------------------------------*/
2037 /*
2038 * Wireless Handler : set level threshold
2039 */
2040 static int wavelan_set_sens(struct net_device *dev,
2041 struct iw_request_info *info,
2042 union iwreq_data *wrqu,
2043 char *extra)
2044 {
2045 kio_addr_t base = dev->base_addr;
2046 net_local *lp = netdev_priv(dev);
2047 psa_t psa;
2048 unsigned long flags;
2049 int ret = 0;
2050
2051 /* Disable interrupts and save flags. */
2052 spin_lock_irqsave(&lp->spinlock, flags);
2053
2054 /* Set the level threshold. */
2055 /* We should complain loudly if wrqu->sens.fixed = 0, because we
2056 * can't set auto mode... */
2057 psa.psa_thr_pre_set = wrqu->sens.value & 0x3F;
2058 psa_write(dev,
2059 (char *) &psa.psa_thr_pre_set - (char *) &psa,
2060 (unsigned char *) &psa.psa_thr_pre_set, 1);
2061 /* update the Wavelan checksum */
2062 update_psa_checksum(dev);
2063 mmc_out(base, mmwoff(0, mmw_thr_pre_set),
2064 psa.psa_thr_pre_set);
2065
2066 /* Enable interrupts and restore flags. */
2067 spin_unlock_irqrestore(&lp->spinlock, flags);
2068
2069 return ret;
2070 }
2071
2072 /*------------------------------------------------------------------*/
2073 /*
2074 * Wireless Handler : get level threshold
2075 */
2076 static int wavelan_get_sens(struct net_device *dev,
2077 struct iw_request_info *info,
2078 union iwreq_data *wrqu,
2079 char *extra)
2080 {
2081 net_local *lp = netdev_priv(dev);
2082 psa_t psa;
2083 unsigned long flags;
2084 int ret = 0;
2085
2086 /* Disable interrupts and save flags. */
2087 spin_lock_irqsave(&lp->spinlock, flags);
2088
2089 /* Read the level threshold. */
2090 psa_read(dev,
2091 (char *) &psa.psa_thr_pre_set - (char *) &psa,
2092 (unsigned char *) &psa.psa_thr_pre_set, 1);
2093 wrqu->sens.value = psa.psa_thr_pre_set & 0x3F;
2094 wrqu->sens.fixed = 1;
2095
2096 /* Enable interrupts and restore flags. */
2097 spin_unlock_irqrestore(&lp->spinlock, flags);
2098
2099 return ret;
2100 }
2101
2102 /*------------------------------------------------------------------*/
2103 /*
2104 * Wireless Handler : set encryption key
2105 */
2106 static int wavelan_set_encode(struct net_device *dev,
2107 struct iw_request_info *info,
2108 union iwreq_data *wrqu,
2109 char *extra)
2110 {
2111 kio_addr_t base = dev->base_addr;
2112 net_local *lp = netdev_priv(dev);
2113 unsigned long flags;
2114 psa_t psa;
2115 int ret = 0;
2116
2117 /* Disable interrupts and save flags. */
2118 spin_lock_irqsave(&lp->spinlock, flags);
2119
2120 /* Check if capable of encryption */
2121 if (!mmc_encr(base)) {
2122 ret = -EOPNOTSUPP;
2123 }
2124
2125 /* Check the size of the key */
2126 if((wrqu->encoding.length != 8) && (wrqu->encoding.length != 0)) {
2127 ret = -EINVAL;
2128 }
2129
2130 if(!ret) {
2131 /* Basic checking... */
2132 if (wrqu->encoding.length == 8) {
2133 /* Copy the key in the driver */
2134 memcpy(psa.psa_encryption_key, extra,
2135 wrqu->encoding.length);
2136 psa.psa_encryption_select = 1;
2137
2138 psa_write(dev,
2139 (char *) &psa.psa_encryption_select -
2140 (char *) &psa,
2141 (unsigned char *) &psa.
2142 psa_encryption_select, 8 + 1);
2143
2144 mmc_out(base, mmwoff(0, mmw_encr_enable),
2145 MMW_ENCR_ENABLE_EN | MMW_ENCR_ENABLE_MODE);
2146 mmc_write(base, mmwoff(0, mmw_encr_key),
2147 (unsigned char *) &psa.
2148 psa_encryption_key, 8);
2149 }
2150
2151 /* disable encryption */
2152 if (wrqu->encoding.flags & IW_ENCODE_DISABLED) {
2153 psa.psa_encryption_select = 0;
2154 psa_write(dev,
2155 (char *) &psa.psa_encryption_select -
2156 (char *) &psa,
2157 (unsigned char *) &psa.
2158 psa_encryption_select, 1);
2159
2160 mmc_out(base, mmwoff(0, mmw_encr_enable), 0);
2161 }
2162 /* update the Wavelan checksum */
2163 update_psa_checksum(dev);
2164 }
2165
2166 /* Enable interrupts and restore flags. */
2167 spin_unlock_irqrestore(&lp->spinlock, flags);
2168
2169 return ret;
2170 }
2171
2172 /*------------------------------------------------------------------*/
2173 /*
2174 * Wireless Handler : get encryption key
2175 */
2176 static int wavelan_get_encode(struct net_device *dev,
2177 struct iw_request_info *info,
2178 union iwreq_data *wrqu,
2179 char *extra)
2180 {
2181 kio_addr_t base = dev->base_addr;
2182 net_local *lp = netdev_priv(dev);
2183 psa_t psa;
2184 unsigned long flags;
2185 int ret = 0;
2186
2187 /* Disable interrupts and save flags. */
2188 spin_lock_irqsave(&lp->spinlock, flags);
2189
2190 /* Check if encryption is available */
2191 if (!mmc_encr(base)) {
2192 ret = -EOPNOTSUPP;
2193 } else {
2194 /* Read the encryption key */
2195 psa_read(dev,
2196 (char *) &psa.psa_encryption_select -
2197 (char *) &psa,
2198 (unsigned char *) &psa.
2199 psa_encryption_select, 1 + 8);
2200
2201 /* encryption is enabled ? */
2202 if (psa.psa_encryption_select)
2203 wrqu->encoding.flags = IW_ENCODE_ENABLED;
2204 else
2205 wrqu->encoding.flags = IW_ENCODE_DISABLED;
2206 wrqu->encoding.flags |= mmc_encr(base);
2207
2208 /* Copy the key to the user buffer */
2209 wrqu->encoding.length = 8;
2210 memcpy(extra, psa.psa_encryption_key, wrqu->encoding.length);
2211 }
2212
2213 /* Enable interrupts and restore flags. */
2214 spin_unlock_irqrestore(&lp->spinlock, flags);
2215
2216 return ret;
2217 }
2218
2219 #ifdef WAVELAN_ROAMING_EXT
2220 /*------------------------------------------------------------------*/
2221 /*
2222 * Wireless Handler : set ESSID (domain)
2223 */
2224 static int wavelan_set_essid(struct net_device *dev,
2225 struct iw_request_info *info,
2226 union iwreq_data *wrqu,
2227 char *extra)
2228 {
2229 net_local *lp = netdev_priv(dev);
2230 unsigned long flags;
2231 int ret = 0;
2232
2233 /* Disable interrupts and save flags. */
2234 spin_lock_irqsave(&lp->spinlock, flags);
2235
2236 /* Check if disable */
2237 if(wrqu->data.flags == 0)
2238 lp->filter_domains = 0;
2239 else {
2240 char essid[IW_ESSID_MAX_SIZE + 1];
2241 char * endp;
2242
2243 /* Terminate the string */
2244 memcpy(essid, extra, wrqu->data.length);
2245 essid[IW_ESSID_MAX_SIZE] = '\0';
2246
2247 #ifdef DEBUG_IOCTL_INFO
2248 printk(KERN_DEBUG "SetEssid : ``%s''\n", essid);
2249 #endif /* DEBUG_IOCTL_INFO */
2250
2251 /* Convert to a number (note : Wavelan specific) */
2252 lp->domain_id = simple_strtoul(essid, &endp, 16);
2253 /* Has it worked ? */
2254 if(endp > essid)
2255 lp->filter_domains = 1;
2256 else {
2257 lp->filter_domains = 0;
2258 ret = -EINVAL;
2259 }
2260 }
2261
2262 /* Enable interrupts and restore flags. */
2263 spin_unlock_irqrestore(&lp->spinlock, flags);
2264
2265 return ret;
2266 }
2267
2268 /*------------------------------------------------------------------*/
2269 /*
2270 * Wireless Handler : get ESSID (domain)
2271 */
2272 static int wavelan_get_essid(struct net_device *dev,
2273 struct iw_request_info *info,
2274 union iwreq_data *wrqu,
2275 char *extra)
2276 {
2277 net_local *lp = netdev_priv(dev);
2278
2279 /* Is the domain ID active ? */
2280 wrqu->data.flags = lp->filter_domains;
2281
2282 /* Copy Domain ID into a string (Wavelan specific) */
2283 /* Sound crazy, be we can't have a snprintf in the kernel !!! */
2284 sprintf(extra, "%lX", lp->domain_id);
2285 extra[IW_ESSID_MAX_SIZE] = '\0';
2286
2287 /* Set the length */
2288 wrqu->data.length = strlen(extra) + 1;
2289
2290 return 0;
2291 }
2292
2293 /*------------------------------------------------------------------*/
2294 /*
2295 * Wireless Handler : set AP address
2296 */
2297 static int wavelan_set_wap(struct net_device *dev,
2298 struct iw_request_info *info,
2299 union iwreq_data *wrqu,
2300 char *extra)
2301 {
2302 #ifdef DEBUG_IOCTL_INFO
2303 printk(KERN_DEBUG "Set AP to : %02X:%02X:%02X:%02X:%02X:%02X\n",
2304 wrqu->ap_addr.sa_data[0],
2305 wrqu->ap_addr.sa_data[1],
2306 wrqu->ap_addr.sa_data[2],
2307 wrqu->ap_addr.sa_data[3],
2308 wrqu->ap_addr.sa_data[4],
2309 wrqu->ap_addr.sa_data[5]);
2310 #endif /* DEBUG_IOCTL_INFO */
2311
2312 return -EOPNOTSUPP;
2313 }
2314
2315 /*------------------------------------------------------------------*/
2316 /*
2317 * Wireless Handler : get AP address
2318 */
2319 static int wavelan_get_wap(struct net_device *dev,
2320 struct iw_request_info *info,
2321 union iwreq_data *wrqu,
2322 char *extra)
2323 {
2324 /* Should get the real McCoy instead of own Ethernet address */
2325 memcpy(wrqu->ap_addr.sa_data, dev->dev_addr, WAVELAN_ADDR_SIZE);
2326 wrqu->ap_addr.sa_family = ARPHRD_ETHER;
2327
2328 return -EOPNOTSUPP;
2329 }
2330 #endif /* WAVELAN_ROAMING_EXT */
2331
2332 #ifdef WAVELAN_ROAMING
2333 /*------------------------------------------------------------------*/
2334 /*
2335 * Wireless Handler : set mode
2336 */
2337 static int wavelan_set_mode(struct net_device *dev,
2338 struct iw_request_info *info,
2339 union iwreq_data *wrqu,
2340 char *extra)
2341 {
2342 net_local *lp = netdev_priv(dev);
2343 unsigned long flags;
2344 int ret = 0;
2345
2346 /* Disable interrupts and save flags. */
2347 spin_lock_irqsave(&lp->spinlock, flags);
2348
2349 /* Check mode */
2350 switch(wrqu->mode) {
2351 case IW_MODE_ADHOC:
2352 if(do_roaming) {
2353 wv_roam_cleanup(dev);
2354 do_roaming = 0;
2355 }
2356 break;
2357 case IW_MODE_INFRA:
2358 if(!do_roaming) {
2359 wv_roam_init(dev);
2360 do_roaming = 1;
2361 }
2362 break;
2363 default:
2364 ret = -EINVAL;
2365 }
2366
2367 /* Enable interrupts and restore flags. */
2368 spin_unlock_irqrestore(&lp->spinlock, flags);
2369
2370 return ret;
2371 }
2372
2373 /*------------------------------------------------------------------*/
2374 /*
2375 * Wireless Handler : get mode
2376 */
2377 static int wavelan_get_mode(struct net_device *dev,
2378 struct iw_request_info *info,
2379 union iwreq_data *wrqu,
2380 char *extra)
2381 {
2382 if(do_roaming)
2383 wrqu->mode = IW_MODE_INFRA;
2384 else
2385 wrqu->mode = IW_MODE_ADHOC;
2386
2387 return 0;
2388 }
2389 #endif /* WAVELAN_ROAMING */
2390
2391 /*------------------------------------------------------------------*/
2392 /*
2393 * Wireless Handler : get range info
2394 */
2395 static int wavelan_get_range(struct net_device *dev,
2396 struct iw_request_info *info,
2397 union iwreq_data *wrqu,
2398 char *extra)
2399 {
2400 kio_addr_t base = dev->base_addr;
2401 net_local *lp = netdev_priv(dev);
2402 struct iw_range *range = (struct iw_range *) extra;
2403 unsigned long flags;
2404 int ret = 0;
2405
2406 /* Set the length (very important for backward compatibility) */
2407 wrqu->data.length = sizeof(struct iw_range);
2408
2409 /* Set all the info we don't care or don't know about to zero */
2410 memset(range, 0, sizeof(struct iw_range));
2411
2412 /* Set the Wireless Extension versions */
2413 range->we_version_compiled = WIRELESS_EXT;
2414 range->we_version_source = 9;
2415
2416 /* Set information in the range struct. */
2417 range->throughput = 1.4 * 1000 * 1000; /* don't argue on this ! */
2418 range->min_nwid = 0x0000;
2419 range->max_nwid = 0xFFFF;
2420
2421 range->sensitivity = 0x3F;
2422 range->max_qual.qual = MMR_SGNL_QUAL;
2423 range->max_qual.level = MMR_SIGNAL_LVL;
2424 range->max_qual.noise = MMR_SILENCE_LVL;
2425 range->avg_qual.qual = MMR_SGNL_QUAL; /* Always max */
2426 /* Need to get better values for those two */
2427 range->avg_qual.level = 30;
2428 range->avg_qual.noise = 8;
2429
2430 range->num_bitrates = 1;
2431 range->bitrate[0] = 2000000; /* 2 Mb/s */
2432
2433 /* Event capability (kernel + driver) */
2434 range->event_capa[0] = (IW_EVENT_CAPA_MASK(0x8B02) |
2435 IW_EVENT_CAPA_MASK(0x8B04) |
2436 IW_EVENT_CAPA_MASK(0x8B06));
2437 range->event_capa[1] = IW_EVENT_CAPA_K_1;
2438
2439 /* Disable interrupts and save flags. */
2440 spin_lock_irqsave(&lp->spinlock, flags);
2441
2442 /* Attempt to recognise 2.00 cards (2.4 GHz frequency selectable). */
2443 if (!(mmc_in(base, mmroff(0, mmr_fee_status)) &
2444 (MMR_FEE_STATUS_DWLD | MMR_FEE_STATUS_BUSY))) {
2445 range->num_channels = 10;
2446 range->num_frequency = wv_frequency_list(base, range->freq,
2447 IW_MAX_FREQUENCIES);
2448 } else
2449 range->num_channels = range->num_frequency = 0;
2450
2451 /* Encryption supported ? */
2452 if (mmc_encr(base)) {
2453 range->encoding_size[0] = 8; /* DES = 64 bits key */
2454 range->num_encoding_sizes = 1;
2455 range->max_encoding_tokens = 1; /* Only one key possible */
2456 } else {
2457 range->num_encoding_sizes = 0;
2458 range->max_encoding_tokens = 0;
2459 }
2460
2461 /* Enable interrupts and restore flags. */
2462 spin_unlock_irqrestore(&lp->spinlock, flags);
2463
2464 return ret;
2465 }
2466
2467 /*------------------------------------------------------------------*/
2468 /*
2469 * Wireless Private Handler : set quality threshold
2470 */
2471 static int wavelan_set_qthr(struct net_device *dev,
2472 struct iw_request_info *info,
2473 union iwreq_data *wrqu,
2474 char *extra)
2475 {
2476 kio_addr_t base = dev->base_addr;
2477 net_local *lp = netdev_priv(dev);
2478 psa_t psa;
2479 unsigned long flags;
2480
2481 /* Disable interrupts and save flags. */
2482 spin_lock_irqsave(&lp->spinlock, flags);
2483
2484 psa.psa_quality_thr = *(extra) & 0x0F;
2485 psa_write(dev,
2486 (char *) &psa.psa_quality_thr - (char *) &psa,
2487 (unsigned char *) &psa.psa_quality_thr, 1);
2488 /* update the Wavelan checksum */
2489 update_psa_checksum(dev);
2490 mmc_out(base, mmwoff(0, mmw_quality_thr),
2491 psa.psa_quality_thr);
2492
2493 /* Enable interrupts and restore flags. */
2494 spin_unlock_irqrestore(&lp->spinlock, flags);
2495
2496 return 0;
2497 }
2498
2499 /*------------------------------------------------------------------*/
2500 /*
2501 * Wireless Private Handler : get quality threshold
2502 */
2503 static int wavelan_get_qthr(struct net_device *dev,
2504 struct iw_request_info *info,
2505 union iwreq_data *wrqu,
2506 char *extra)
2507 {
2508 net_local *lp = netdev_priv(dev);
2509 psa_t psa;
2510 unsigned long flags;
2511
2512 /* Disable interrupts and save flags. */
2513 spin_lock_irqsave(&lp->spinlock, flags);
2514
2515 psa_read(dev,
2516 (char *) &psa.psa_quality_thr - (char *) &psa,
2517 (unsigned char *) &psa.psa_quality_thr, 1);
2518 *(extra) = psa.psa_quality_thr & 0x0F;
2519
2520 /* Enable interrupts and restore flags. */
2521 spin_unlock_irqrestore(&lp->spinlock, flags);
2522
2523 return 0;
2524 }
2525
2526 #ifdef WAVELAN_ROAMING
2527 /*------------------------------------------------------------------*/
2528 /*
2529 * Wireless Private Handler : set roaming
2530 */
2531 static int wavelan_set_roam(struct net_device *dev,
2532 struct iw_request_info *info,
2533 union iwreq_data *wrqu,
2534 char *extra)
2535 {
2536 net_local *lp = netdev_priv(dev);
2537 unsigned long flags;
2538
2539 /* Disable interrupts and save flags. */
2540 spin_lock_irqsave(&lp->spinlock, flags);
2541
2542 /* Note : should check if user == root */
2543 if(do_roaming && (*extra)==0)
2544 wv_roam_cleanup(dev);
2545 else if(do_roaming==0 && (*extra)!=0)
2546 wv_roam_init(dev);
2547
2548 do_roaming = (*extra);
2549
2550 /* Enable interrupts and restore flags. */
2551 spin_unlock_irqrestore(&lp->spinlock, flags);
2552
2553 return 0;
2554 }
2555
2556 /*------------------------------------------------------------------*/
2557 /*
2558 * Wireless Private Handler : get quality threshold
2559 */
2560 static int wavelan_get_roam(struct net_device *dev,
2561 struct iw_request_info *info,
2562 union iwreq_data *wrqu,
2563 char *extra)
2564 {
2565 *(extra) = do_roaming;
2566
2567 return 0;
2568 }
2569 #endif /* WAVELAN_ROAMING */
2570
2571 #ifdef HISTOGRAM
2572 /*------------------------------------------------------------------*/
2573 /*
2574 * Wireless Private Handler : set histogram
2575 */
2576 static int wavelan_set_histo(struct net_device *dev,
2577 struct iw_request_info *info,
2578 union iwreq_data *wrqu,
2579 char *extra)
2580 {
2581 net_local *lp = netdev_priv(dev);
2582
2583 /* Check the number of intervals. */
2584 if (wrqu->data.length > 16) {
2585 return(-E2BIG);
2586 }
2587
2588 /* Disable histo while we copy the addresses.
2589 * As we don't disable interrupts, we need to do this */
2590 lp->his_number = 0;
2591
2592 /* Are there ranges to copy? */
2593 if (wrqu->data.length > 0) {
2594 /* Copy interval ranges to the driver */
2595 memcpy(lp->his_range, extra, wrqu->data.length);
2596
2597 {
2598 int i;
2599 printk(KERN_DEBUG "Histo :");
2600 for(i = 0; i < wrqu->data.length; i++)
2601 printk(" %d", lp->his_range[i]);
2602 printk("\n");
2603 }
2604
2605 /* Reset result structure. */
2606 memset(lp->his_sum, 0x00, sizeof(long) * 16);
2607 }
2608
2609 /* Now we can set the number of ranges */
2610 lp->his_number = wrqu->data.length;
2611
2612 return(0);
2613 }
2614
2615 /*------------------------------------------------------------------*/
2616 /*
2617 * Wireless Private Handler : get histogram
2618 */
2619 static int wavelan_get_histo(struct net_device *dev,
2620 struct iw_request_info *info,
2621 union iwreq_data *wrqu,
2622 char *extra)
2623 {
2624 net_local *lp = netdev_priv(dev);
2625
2626 /* Set the number of intervals. */
2627 wrqu->data.length = lp->his_number;
2628
2629 /* Give back the distribution statistics */
2630 if(lp->his_number > 0)
2631 memcpy(extra, lp->his_sum, sizeof(long) * lp->his_number);
2632
2633 return(0);
2634 }
2635 #endif /* HISTOGRAM */
2636
2637 /*------------------------------------------------------------------*/
2638 /*
2639 * Structures to export the Wireless Handlers
2640 */
2641
2642 static const struct iw_priv_args wavelan_private_args[] = {
2643 /*{ cmd, set_args, get_args, name } */
2644 { SIOCSIPQTHR, IW_PRIV_TYPE_BYTE | IW_PRIV_SIZE_FIXED | 1, 0, "setqualthr" },
2645 { SIOCGIPQTHR, 0, IW_PRIV_TYPE_BYTE | IW_PRIV_SIZE_FIXED | 1, "getqualthr" },
2646 { SIOCSIPROAM, IW_PRIV_TYPE_BYTE | IW_PRIV_SIZE_FIXED | 1, 0, "setroam" },
2647 { SIOCGIPROAM, 0, IW_PRIV_TYPE_BYTE | IW_PRIV_SIZE_FIXED | 1, "getroam" },
2648 { SIOCSIPHISTO, IW_PRIV_TYPE_BYTE | 16, 0, "sethisto" },
2649 { SIOCGIPHISTO, 0, IW_PRIV_TYPE_INT | 16, "gethisto" },
2650 };
2651
2652 static const iw_handler wavelan_handler[] =
2653 {
2654 NULL, /* SIOCSIWNAME */
2655 wavelan_get_name, /* SIOCGIWNAME */
2656 wavelan_set_nwid, /* SIOCSIWNWID */
2657 wavelan_get_nwid, /* SIOCGIWNWID */
2658 wavelan_set_freq, /* SIOCSIWFREQ */
2659 wavelan_get_freq, /* SIOCGIWFREQ */
2660 #ifdef WAVELAN_ROAMING
2661 wavelan_set_mode, /* SIOCSIWMODE */
2662 wavelan_get_mode, /* SIOCGIWMODE */
2663 #else /* WAVELAN_ROAMING */
2664 NULL, /* SIOCSIWMODE */
2665 NULL, /* SIOCGIWMODE */
2666 #endif /* WAVELAN_ROAMING */
2667 wavelan_set_sens, /* SIOCSIWSENS */
2668 wavelan_get_sens, /* SIOCGIWSENS */
2669 NULL, /* SIOCSIWRANGE */
2670 wavelan_get_range, /* SIOCGIWRANGE */
2671 NULL, /* SIOCSIWPRIV */
2672 NULL, /* SIOCGIWPRIV */
2673 NULL, /* SIOCSIWSTATS */
2674 NULL, /* SIOCGIWSTATS */
2675 iw_handler_set_spy, /* SIOCSIWSPY */
2676 iw_handler_get_spy, /* SIOCGIWSPY */
2677 iw_handler_set_thrspy, /* SIOCSIWTHRSPY */
2678 iw_handler_get_thrspy, /* SIOCGIWTHRSPY */
2679 #ifdef WAVELAN_ROAMING_EXT
2680 wavelan_set_wap, /* SIOCSIWAP */
2681 wavelan_get_wap, /* SIOCGIWAP */
2682 NULL, /* -- hole -- */
2683 NULL, /* SIOCGIWAPLIST */
2684 NULL, /* -- hole -- */
2685 NULL, /* -- hole -- */
2686 wavelan_set_essid, /* SIOCSIWESSID */
2687 wavelan_get_essid, /* SIOCGIWESSID */
2688 #else /* WAVELAN_ROAMING_EXT */
2689 NULL, /* SIOCSIWAP */
2690 NULL, /* SIOCGIWAP */
2691 NULL, /* -- hole -- */
2692 NULL, /* SIOCGIWAPLIST */
2693 NULL, /* -- hole -- */
2694 NULL, /* -- hole -- */
2695 NULL, /* SIOCSIWESSID */
2696 NULL, /* SIOCGIWESSID */
2697 #endif /* WAVELAN_ROAMING_EXT */
2698 NULL, /* SIOCSIWNICKN */
2699 NULL, /* SIOCGIWNICKN */
2700 NULL, /* -- hole -- */
2701 NULL, /* -- hole -- */
2702 NULL, /* SIOCSIWRATE */
2703 NULL, /* SIOCGIWRATE */
2704 NULL, /* SIOCSIWRTS */
2705 NULL, /* SIOCGIWRTS */
2706 NULL, /* SIOCSIWFRAG */
2707 NULL, /* SIOCGIWFRAG */
2708 NULL, /* SIOCSIWTXPOW */
2709 NULL, /* SIOCGIWTXPOW */
2710 NULL, /* SIOCSIWRETRY */
2711 NULL, /* SIOCGIWRETRY */
2712 wavelan_set_encode, /* SIOCSIWENCODE */
2713 wavelan_get_encode, /* SIOCGIWENCODE */
2714 };
2715
2716 static const iw_handler wavelan_private_handler[] =
2717 {
2718 wavelan_set_qthr, /* SIOCIWFIRSTPRIV */
2719 wavelan_get_qthr, /* SIOCIWFIRSTPRIV + 1 */
2720 #ifdef WAVELAN_ROAMING
2721 wavelan_set_roam, /* SIOCIWFIRSTPRIV + 2 */
2722 wavelan_get_roam, /* SIOCIWFIRSTPRIV + 3 */
2723 #else /* WAVELAN_ROAMING */
2724 NULL, /* SIOCIWFIRSTPRIV + 2 */
2725 NULL, /* SIOCIWFIRSTPRIV + 3 */
2726 #endif /* WAVELAN_ROAMING */
2727 #ifdef HISTOGRAM
2728 wavelan_set_histo, /* SIOCIWFIRSTPRIV + 4 */
2729 wavelan_get_histo, /* SIOCIWFIRSTPRIV + 5 */
2730 #endif /* HISTOGRAM */
2731 };
2732
2733 static const struct iw_handler_def wavelan_handler_def =
2734 {
2735 .num_standard = sizeof(wavelan_handler)/sizeof(iw_handler),
2736 .num_private = sizeof(wavelan_private_handler)/sizeof(iw_handler),
2737 .num_private_args = sizeof(wavelan_private_args)/sizeof(struct iw_priv_args),
2738 .standard = wavelan_handler,
2739 .private = wavelan_private_handler,
2740 .private_args = wavelan_private_args,
2741 .get_wireless_stats = wavelan_get_wireless_stats,
2742 };
2743
2744 /*------------------------------------------------------------------*/
2745 /*
2746 * Get wireless statistics
2747 * Called by /proc/net/wireless...
2748 */
2749 static iw_stats *
2750 wavelan_get_wireless_stats(struct net_device * dev)
2751 {
2752 kio_addr_t base = dev->base_addr;
2753 net_local * lp = netdev_priv(dev);
2754 mmr_t m;
2755 iw_stats * wstats;
2756 unsigned long flags;
2757
2758 #ifdef DEBUG_IOCTL_TRACE
2759 printk(KERN_DEBUG "%s: ->wavelan_get_wireless_stats()\n", dev->name);
2760 #endif
2761
2762 /* Disable interrupts & save flags */
2763 spin_lock_irqsave(&lp->spinlock, flags);
2764
2765 wstats = &lp->wstats;
2766
2767 /* Get data from the mmc */
2768 mmc_out(base, mmwoff(0, mmw_freeze), 1);
2769
2770 mmc_read(base, mmroff(0, mmr_dce_status), &m.mmr_dce_status, 1);
2771 mmc_read(base, mmroff(0, mmr_wrong_nwid_l), &m.mmr_wrong_nwid_l, 2);
2772 mmc_read(base, mmroff(0, mmr_thr_pre_set), &m.mmr_thr_pre_set, 4);
2773
2774 mmc_out(base, mmwoff(0, mmw_freeze), 0);
2775
2776 /* Copy data to wireless stuff */
2777 wstats->status = m.mmr_dce_status & MMR_DCE_STATUS;
2778 wstats->qual.qual = m.mmr_sgnl_qual & MMR_SGNL_QUAL;
2779 wstats->qual.level = m.mmr_signal_lvl & MMR_SIGNAL_LVL;
2780 wstats->qual.noise = m.mmr_silence_lvl & MMR_SILENCE_LVL;
2781 wstats->qual.updated = (((m.mmr_signal_lvl & MMR_SIGNAL_LVL_VALID) >> 7) |
2782 ((m.mmr_signal_lvl & MMR_SIGNAL_LVL_VALID) >> 6) |
2783 ((m.mmr_silence_lvl & MMR_SILENCE_LVL_VALID) >> 5));
2784 wstats->discard.nwid += (m.mmr_wrong_nwid_h << 8) | m.mmr_wrong_nwid_l;
2785 wstats->discard.code = 0L;
2786 wstats->discard.misc = 0L;
2787
2788 /* ReEnable interrupts & restore flags */
2789 spin_unlock_irqrestore(&lp->spinlock, flags);
2790
2791 #ifdef DEBUG_IOCTL_TRACE
2792 printk(KERN_DEBUG "%s: <-wavelan_get_wireless_stats()\n", dev->name);
2793 #endif
2794 return &lp->wstats;
2795 }
2796 #endif /* WIRELESS_EXT */
2797
2798 /************************* PACKET RECEPTION *************************/
2799 /*
2800 * This part deal with receiving the packets.
2801 * The interrupt handler get an interrupt when a packet has been
2802 * successfully received and called this part...
2803 */
2804
2805 /*------------------------------------------------------------------*/
2806 /*
2807 * Calculate the starting address of the frame pointed to by the receive
2808 * frame pointer and verify that the frame seem correct
2809 * (called by wv_packet_rcv())
2810 */
2811 static inline int
2812 wv_start_of_frame(struct net_device * dev,
2813 int rfp, /* end of frame */
2814 int wrap) /* start of buffer */
2815 {
2816 kio_addr_t base = dev->base_addr;
2817 int rp;
2818 int len;
2819
2820 rp = (rfp - 5 + RX_SIZE) % RX_SIZE;
2821 outb(rp & 0xff, PIORL(base));
2822 outb(((rp >> 8) & PIORH_MASK), PIORH(base));
2823 len = inb(PIOP(base));
2824 len |= inb(PIOP(base)) << 8;
2825
2826 /* Sanity checks on size */
2827 /* Frame too big */
2828 if(len > MAXDATAZ + 100)
2829 {
2830 #ifdef DEBUG_RX_ERROR
2831 printk(KERN_INFO "%s: wv_start_of_frame: Received frame too large, rfp %d len 0x%x\n",
2832 dev->name, rfp, len);
2833 #endif
2834 return(-1);
2835 }
2836
2837 /* Frame too short */
2838 if(len < 7)
2839 {
2840 #ifdef DEBUG_RX_ERROR
2841 printk(KERN_INFO "%s: wv_start_of_frame: Received null frame, rfp %d len 0x%x\n",
2842 dev->name, rfp, len);
2843 #endif
2844 return(-1);
2845 }
2846
2847 /* Wrap around buffer */
2848 if(len > ((wrap - (rfp - len) + RX_SIZE) % RX_SIZE)) /* magic formula ! */
2849 {
2850 #ifdef DEBUG_RX_ERROR
2851 printk(KERN_INFO "%s: wv_start_of_frame: wrap around buffer, wrap %d rfp %d len 0x%x\n",
2852 dev->name, wrap, rfp, len);
2853 #endif
2854 return(-1);
2855 }
2856
2857 return((rp - len + RX_SIZE) % RX_SIZE);
2858 } /* wv_start_of_frame */
2859
2860 /*------------------------------------------------------------------*/
2861 /*
2862 * This routine does the actual copy of data (including the ethernet
2863 * header structure) from the WaveLAN card to an sk_buff chain that
2864 * will be passed up to the network interface layer. NOTE: We
2865 * currently don't handle trailer protocols (neither does the rest of
2866 * the network interface), so if that is needed, it will (at least in
2867 * part) be added here. The contents of the receive ring buffer are
2868 * copied to a message chain that is then passed to the kernel.
2869 *
2870 * Note: if any errors occur, the packet is "dropped on the floor"
2871 * (called by wv_packet_rcv())
2872 */
2873 static inline void
2874 wv_packet_read(struct net_device * dev,
2875 int fd_p,
2876 int sksize)
2877 {
2878 net_local * lp = netdev_priv(dev);
2879 struct sk_buff * skb;
2880
2881 #ifdef DEBUG_RX_TRACE
2882 printk(KERN_DEBUG "%s: ->wv_packet_read(0x%X, %d)\n",
2883 dev->name, fd_p, sksize);
2884 #endif
2885
2886 /* Allocate some buffer for the new packet */
2887 if((skb = dev_alloc_skb(sksize+2)) == (struct sk_buff *) NULL)
2888 {
2889 #ifdef DEBUG_RX_ERROR
2890 printk(KERN_INFO "%s: wv_packet_read(): could not alloc_skb(%d, GFP_ATOMIC)\n",
2891 dev->name, sksize);
2892 #endif
2893 lp->stats.rx_dropped++;
2894 /*
2895 * Not only do we want to return here, but we also need to drop the
2896 * packet on the floor to clear the interrupt.
2897 */
2898 return;
2899 }
2900
2901 skb->dev = dev;
2902
2903 skb_reserve(skb, 2);
2904 fd_p = read_ringbuf(dev, fd_p, (char *) skb_put(skb, sksize), sksize);
2905 skb->protocol = eth_type_trans(skb, dev);
2906
2907 #ifdef DEBUG_RX_INFO
2908 wv_packet_info(skb->mac.raw, sksize, dev->name, "wv_packet_read");
2909 #endif /* DEBUG_RX_INFO */
2910
2911 /* Statistics gathering & stuff associated.
2912 * It seem a bit messy with all the define, but it's really simple... */
2913 if(
2914 #ifdef IW_WIRELESS_SPY
2915 (lp->spy_data.spy_number > 0) ||
2916 #endif /* IW_WIRELESS_SPY */
2917 #ifdef HISTOGRAM
2918 (lp->his_number > 0) ||
2919 #endif /* HISTOGRAM */
2920 #ifdef WAVELAN_ROAMING
2921 (do_roaming) ||
2922 #endif /* WAVELAN_ROAMING */
2923 0)
2924 {
2925 u_char stats[3]; /* Signal level, Noise level, Signal quality */
2926
2927 /* read signal level, silence level and signal quality bytes */
2928 fd_p = read_ringbuf(dev, (fd_p + 4) % RX_SIZE + RX_BASE,
2929 stats, 3);
2930 #ifdef DEBUG_RX_INFO
2931 printk(KERN_DEBUG "%s: wv_packet_read(): Signal level %d/63, Silence level %d/63, signal quality %d/16\n",
2932 dev->name, stats[0] & 0x3F, stats[1] & 0x3F, stats[2] & 0x0F);
2933 #endif
2934
2935 #ifdef WAVELAN_ROAMING
2936 if(do_roaming)
2937 if(WAVELAN_BEACON(skb->data))
2938 wl_roam_gather(dev, skb->data, stats);
2939 #endif /* WAVELAN_ROAMING */
2940
2941 #ifdef WIRELESS_SPY
2942 wl_spy_gather(dev, skb->mac.raw + WAVELAN_ADDR_SIZE, stats);
2943 #endif /* WIRELESS_SPY */
2944 #ifdef HISTOGRAM
2945 wl_his_gather(dev, stats);
2946 #endif /* HISTOGRAM */
2947 }
2948
2949 /*
2950 * Hand the packet to the Network Module
2951 */
2952 netif_rx(skb);
2953
2954 /* Keep stats up to date */
2955 dev->last_rx = jiffies;
2956 lp->stats.rx_packets++;
2957 lp->stats.rx_bytes += sksize;
2958
2959 #ifdef DEBUG_RX_TRACE
2960 printk(KERN_DEBUG "%s: <-wv_packet_read()\n", dev->name);
2961 #endif
2962 return;
2963 }
2964
2965 /*------------------------------------------------------------------*/
2966 /*
2967 * This routine is called by the interrupt handler to initiate a
2968 * packet transfer from the card to the network interface layer above
2969 * this driver. This routine checks if a buffer has been successfully
2970 * received by the WaveLAN card. If so, the routine wv_packet_read is
2971 * called to do the actual transfer of the card's data including the
2972 * ethernet header into a packet consisting of an sk_buff chain.
2973 * (called by wavelan_interrupt())
2974 * Note : the spinlock is already grabbed for us and irq are disabled.
2975 */
2976 static inline void
2977 wv_packet_rcv(struct net_device * dev)
2978 {
2979 kio_addr_t base = dev->base_addr;
2980 net_local * lp = netdev_priv(dev);
2981 int newrfp;
2982 int rp;
2983 int len;
2984 int f_start;
2985 int status;
2986 int i593_rfp;
2987 int stat_ptr;
2988 u_char c[4];
2989
2990 #ifdef DEBUG_RX_TRACE
2991 printk(KERN_DEBUG "%s: ->wv_packet_rcv()\n", dev->name);
2992 #endif
2993
2994 /* Get the new receive frame pointer from the i82593 chip */
2995 outb(CR0_STATUS_2 | OP0_NOP, LCCR(base));
2996 i593_rfp = inb(LCSR(base));
2997 i593_rfp |= inb(LCSR(base)) << 8;
2998 i593_rfp %= RX_SIZE;
2999
3000 /* Get the new receive frame pointer from the WaveLAN card.
3001 * It is 3 bytes more than the increment of the i82593 receive
3002 * frame pointer, for each packet. This is because it includes the
3003 * 3 roaming bytes added by the mmc.
3004 */
3005 newrfp = inb(RPLL(base));
3006 newrfp |= inb(RPLH(base)) << 8;
3007 newrfp %= RX_SIZE;
3008
3009 #ifdef DEBUG_RX_INFO
3010 printk(KERN_DEBUG "%s: wv_packet_rcv(): i593_rfp %d stop %d newrfp %d lp->rfp %d\n",
3011 dev->name, i593_rfp, lp->stop, newrfp, lp->rfp);
3012 #endif
3013
3014 #ifdef DEBUG_RX_ERROR
3015 /* If no new frame pointer... */
3016 if(lp->overrunning || newrfp == lp->rfp)
3017 printk(KERN_INFO "%s: wv_packet_rcv(): no new frame: i593_rfp %d stop %d newrfp %d lp->rfp %d\n",
3018 dev->name, i593_rfp, lp->stop, newrfp, lp->rfp);
3019 #endif
3020
3021 /* Read all frames (packets) received */
3022 while(newrfp != lp->rfp)
3023 {
3024 /* A frame is composed of the packet, followed by a status word,
3025 * the length of the frame (word) and the mmc info (SNR & qual).
3026 * It's because the length is at the end that we can only scan
3027 * frames backward. */
3028
3029 /* Find the first frame by skipping backwards over the frames */
3030 rp = newrfp; /* End of last frame */
3031 while(((f_start = wv_start_of_frame(dev, rp, newrfp)) != lp->rfp) &&
3032 (f_start != -1))
3033 rp = f_start;
3034
3035 /* If we had a problem */
3036 if(f_start == -1)
3037 {
3038 #ifdef DEBUG_RX_ERROR
3039 printk(KERN_INFO "wavelan_cs: cannot find start of frame ");
3040 printk(" i593_rfp %d stop %d newrfp %d lp->rfp %d\n",
3041 i593_rfp, lp->stop, newrfp, lp->rfp);
3042 #endif
3043 lp->rfp = rp; /* Get to the last usable frame */
3044 continue;
3045 }
3046
3047 /* f_start point to the beggining of the first frame received
3048 * and rp to the beggining of the next one */
3049
3050 /* Read status & length of the frame */
3051 stat_ptr = (rp - 7 + RX_SIZE) % RX_SIZE;
3052 stat_ptr = read_ringbuf(dev, stat_ptr, c, 4);
3053 status = c[0] | (c[1] << 8);
3054 len = c[2] | (c[3] << 8);
3055
3056 /* Check status */
3057 if((status & RX_RCV_OK) != RX_RCV_OK)
3058 {
3059 lp->stats.rx_errors++;
3060 if(status & RX_NO_SFD)
3061 lp->stats.rx_frame_errors++;
3062 if(status & RX_CRC_ERR)
3063 lp->stats.rx_crc_errors++;
3064 if(status & RX_OVRRUN)
3065 lp->stats.rx_over_errors++;
3066
3067 #ifdef DEBUG_RX_FAIL
3068 printk(KERN_DEBUG "%s: wv_packet_rcv(): packet not received ok, status = 0x%x\n",
3069 dev->name, status);
3070 #endif
3071 }
3072 else
3073 /* Read the packet and transmit to Linux */
3074 wv_packet_read(dev, f_start, len - 2);
3075
3076 /* One frame has been processed, skip it */
3077 lp->rfp = rp;
3078 }
3079
3080 /*
3081 * Update the frame stop register, but set it to less than
3082 * the full 8K to allow space for 3 bytes of signal strength
3083 * per packet.
3084 */
3085 lp->stop = (i593_rfp + RX_SIZE - ((RX_SIZE / 64) * 3)) % RX_SIZE;
3086 outb(OP0_SWIT_TO_PORT_1 | CR0_CHNL, LCCR(base));
3087 outb(CR1_STOP_REG_UPDATE | (lp->stop >> RX_SIZE_SHIFT), LCCR(base));
3088 outb(OP1_SWIT_TO_PORT_0, LCCR(base));
3089
3090 #ifdef DEBUG_RX_TRACE
3091 printk(KERN_DEBUG "%s: <-wv_packet_rcv()\n", dev->name);
3092 #endif
3093 }
3094
3095 /*********************** PACKET TRANSMISSION ***********************/
3096 /*
3097 * This part deal with sending packet through the wavelan
3098 * We copy the packet to the send buffer and then issue the send
3099 * command to the i82593. The result of this operation will be
3100 * checked in wavelan_interrupt()
3101 */
3102
3103 /*------------------------------------------------------------------*/
3104 /*
3105 * This routine fills in the appropriate registers and memory
3106 * locations on the WaveLAN card and starts the card off on
3107 * the transmit.
3108 * (called in wavelan_packet_xmit())
3109 */
3110 static inline void
3111 wv_packet_write(struct net_device * dev,
3112 void * buf,
3113 short length)
3114 {
3115 net_local * lp = netdev_priv(dev);
3116 kio_addr_t base = dev->base_addr;
3117 unsigned long flags;
3118 int clen = length;
3119 register u_short xmtdata_base = TX_BASE;
3120
3121 #ifdef DEBUG_TX_TRACE
3122 printk(KERN_DEBUG "%s: ->wv_packet_write(%d)\n", dev->name, length);
3123 #endif
3124
3125 spin_lock_irqsave(&lp->spinlock, flags);
3126
3127 /* Write the length of data buffer followed by the buffer */
3128 outb(xmtdata_base & 0xff, PIORL(base));
3129 outb(((xmtdata_base >> 8) & PIORH_MASK) | PIORH_SEL_TX, PIORH(base));
3130 outb(clen & 0xff, PIOP(base)); /* lsb */
3131 outb(clen >> 8, PIOP(base)); /* msb */
3132
3133 /* Send the data */
3134 outsb(PIOP(base), buf, clen);
3135
3136 /* Indicate end of transmit chain */
3137 outb(OP0_NOP, PIOP(base));
3138 /* josullvn@cs.cmu.edu: need to send a second NOP for alignment... */
3139 outb(OP0_NOP, PIOP(base));
3140
3141 /* Reset the transmit DMA pointer */
3142 hacr_write_slow(base, HACR_PWR_STAT | HACR_TX_DMA_RESET);
3143 hacr_write(base, HACR_DEFAULT);
3144 /* Send the transmit command */
3145 wv_82593_cmd(dev, "wv_packet_write(): transmit",
3146 OP0_TRANSMIT, SR0_NO_RESULT);
3147
3148 /* Make sure the watchdog will keep quiet for a while */
3149 dev->trans_start = jiffies;
3150
3151 /* Keep stats up to date */
3152 lp->stats.tx_bytes += length;
3153
3154 spin_unlock_irqrestore(&lp->spinlock, flags);
3155
3156 #ifdef DEBUG_TX_INFO
3157 wv_packet_info((u_char *) buf, length, dev->name, "wv_packet_write");
3158 #endif /* DEBUG_TX_INFO */
3159
3160 #ifdef DEBUG_TX_TRACE
3161 printk(KERN_DEBUG "%s: <-wv_packet_write()\n", dev->name);
3162 #endif
3163 }
3164
3165 /*------------------------------------------------------------------*/
3166 /*
3167 * This routine is called when we want to send a packet (NET3 callback)
3168 * In this routine, we check if the harware is ready to accept
3169 * the packet. We also prevent reentrance. Then, we call the function
3170 * to send the packet...
3171 */
3172 static int
3173 wavelan_packet_xmit(struct sk_buff * skb,
3174 struct net_device * dev)
3175 {
3176 net_local * lp = netdev_priv(dev);
3177 unsigned long flags;
3178
3179 #ifdef DEBUG_TX_TRACE
3180 printk(KERN_DEBUG "%s: ->wavelan_packet_xmit(0x%X)\n", dev->name,
3181 (unsigned) skb);
3182 #endif
3183
3184 /*
3185 * Block a timer-based transmit from overlapping a previous transmit.
3186 * In other words, prevent reentering this routine.
3187 */
3188 netif_stop_queue(dev);
3189
3190 /* If somebody has asked to reconfigure the controller,
3191 * we can do it now */
3192 if(lp->reconfig_82593)
3193 {
3194 spin_lock_irqsave(&lp->spinlock, flags); /* Disable interrupts */
3195 wv_82593_config(dev);
3196 spin_unlock_irqrestore(&lp->spinlock, flags); /* Re-enable interrupts */
3197 /* Note : the configure procedure was totally synchronous,
3198 * so the Tx buffer is now free */
3199 }
3200
3201 #ifdef DEBUG_TX_ERROR
3202 if (skb->next)
3203 printk(KERN_INFO "skb has next\n");
3204 #endif
3205
3206 /* Check if we need some padding */
3207 /* Note : on wireless the propagation time is in the order of 1us,
3208 * and we don't have the Ethernet specific requirement of beeing
3209 * able to detect collisions, therefore in theory we don't really
3210 * need to pad. Jean II */
3211 if (skb->len < ETH_ZLEN) {
3212 skb = skb_padto(skb, ETH_ZLEN);
3213 if (skb == NULL)
3214 return 0;
3215 }
3216
3217 wv_packet_write(dev, skb->data, skb->len);
3218
3219 dev_kfree_skb(skb);
3220
3221 #ifdef DEBUG_TX_TRACE
3222 printk(KERN_DEBUG "%s: <-wavelan_packet_xmit()\n", dev->name);
3223 #endif
3224 return(0);
3225 }
3226
3227 /********************** HARDWARE CONFIGURATION **********************/
3228 /*
3229 * This part do the real job of starting and configuring the hardware.
3230 */
3231
3232 /*------------------------------------------------------------------*/
3233 /*
3234 * Routine to initialize the Modem Management Controller.
3235 * (called by wv_hw_config())
3236 */
3237 static inline int
3238 wv_mmc_init(struct net_device * dev)
3239 {
3240 kio_addr_t base = dev->base_addr;
3241 psa_t psa;
3242 mmw_t m;
3243 int configured;
3244 int i; /* Loop counter */
3245
3246 #ifdef DEBUG_CONFIG_TRACE
3247 printk(KERN_DEBUG "%s: ->wv_mmc_init()\n", dev->name);
3248 #endif
3249
3250 /* Read the parameter storage area */
3251 psa_read(dev, 0, (unsigned char *) &psa, sizeof(psa));
3252
3253 /*
3254 * Check the first three octets of the MAC addr for the manufacturer's code.
3255 * Note: If you get the error message below, you've got a
3256 * non-NCR/AT&T/Lucent PCMCIA cards, see wavelan_cs.h for detail on
3257 * how to configure your card...
3258 */
3259 for(i = 0; i < (sizeof(MAC_ADDRESSES) / sizeof(char) / 3); i++)
3260 if((psa.psa_univ_mac_addr[0] == MAC_ADDRESSES[i][0]) &&
3261 (psa.psa_univ_mac_addr[1] == MAC_ADDRESSES[i][1]) &&
3262 (psa.psa_univ_mac_addr[2] == MAC_ADDRESSES[i][2]))
3263 break;
3264
3265 /* If we have not found it... */
3266 if(i == (sizeof(MAC_ADDRESSES) / sizeof(char) / 3))
3267 {
3268 #ifdef DEBUG_CONFIG_ERRORS
3269 printk(KERN_WARNING "%s: wv_mmc_init(): Invalid MAC address: %02X:%02X:%02X:...\n",
3270 dev->name, psa.psa_univ_mac_addr[0],
3271 psa.psa_univ_mac_addr[1], psa.psa_univ_mac_addr[2]);
3272 #endif
3273 return FALSE;
3274 }
3275
3276 /* Get the MAC address */
3277 memcpy(&dev->dev_addr[0], &psa.psa_univ_mac_addr[0], WAVELAN_ADDR_SIZE);
3278
3279 #ifdef USE_PSA_CONFIG
3280 configured = psa.psa_conf_status & 1;
3281 #else
3282 configured = 0;
3283 #endif
3284
3285 /* Is the PSA is not configured */
3286 if(!configured)
3287 {
3288 /* User will be able to configure NWID after (with iwconfig) */
3289 psa.psa_nwid[0] = 0;
3290 psa.psa_nwid[1] = 0;
3291
3292 /* As NWID is not set : no NWID checking */
3293 psa.psa_nwid_select = 0;
3294
3295 /* Disable encryption */
3296 psa.psa_encryption_select = 0;
3297
3298 /* Set to standard values
3299 * 0x04 for AT,
3300 * 0x01 for MCA,
3301 * 0x04 for PCMCIA and 2.00 card (AT&T 407-024689/E document)
3302 */
3303 if (psa.psa_comp_number & 1)
3304 psa.psa_thr_pre_set = 0x01;
3305 else
3306 psa.psa_thr_pre_set = 0x04;
3307 psa.psa_quality_thr = 0x03;
3308
3309 /* It is configured */
3310 psa.psa_conf_status |= 1;
3311
3312 #ifdef USE_PSA_CONFIG
3313 /* Write the psa */
3314 psa_write(dev, (char *)psa.psa_nwid - (char *)&psa,
3315 (unsigned char *)psa.psa_nwid, 4);
3316 psa_write(dev, (char *)&psa.psa_thr_pre_set - (char *)&psa,
3317 (unsigned char *)&psa.psa_thr_pre_set, 1);
3318 psa_write(dev, (char *)&psa.psa_quality_thr - (char *)&psa,
3319 (unsigned char *)&psa.psa_quality_thr, 1);
3320 psa_write(dev, (char *)&psa.psa_conf_status - (char *)&psa,
3321 (unsigned char *)&psa.psa_conf_status, 1);
3322 /* update the Wavelan checksum */
3323 update_psa_checksum(dev);
3324 #endif /* USE_PSA_CONFIG */
3325 }
3326
3327 /* Zero the mmc structure */
3328 memset(&m, 0x00, sizeof(m));
3329
3330 /* Copy PSA info to the mmc */
3331 m.mmw_netw_id_l = psa.psa_nwid[1];
3332 m.mmw_netw_id_h = psa.psa_nwid[0];
3333
3334 if(psa.psa_nwid_select & 1)
3335 m.mmw_loopt_sel = 0x00;
3336 else
3337 m.mmw_loopt_sel = MMW_LOOPT_SEL_DIS_NWID;
3338
3339 memcpy(&m.mmw_encr_key, &psa.psa_encryption_key,
3340 sizeof(m.mmw_encr_key));
3341
3342 if(psa.psa_encryption_select)
3343 m.mmw_encr_enable = MMW_ENCR_ENABLE_EN | MMW_ENCR_ENABLE_MODE;
3344 else
3345 m.mmw_encr_enable = 0;
3346
3347 m.mmw_thr_pre_set = psa.psa_thr_pre_set & 0x3F;
3348 m.mmw_quality_thr = psa.psa_quality_thr & 0x0F;
3349
3350 /*
3351 * Set default modem control parameters.
3352 * See NCR document 407-0024326 Rev. A.
3353 */
3354 m.mmw_jabber_enable = 0x01;
3355 m.mmw_anten_sel = MMW_ANTEN_SEL_ALG_EN;
3356 m.mmw_ifs = 0x20;
3357 m.mmw_mod_delay = 0x04;
3358 m.mmw_jam_time = 0x38;
3359
3360 m.mmw_des_io_invert = 0;
3361 m.mmw_freeze = 0;
3362 m.mmw_decay_prm = 0;
3363 m.mmw_decay_updat_prm = 0;
3364
3365 /* Write all info to mmc */
3366 mmc_write(base, 0, (u_char *)&m, sizeof(m));
3367
3368 /* The following code start the modem of the 2.00 frequency
3369 * selectable cards at power on. It's not strictly needed for the
3370 * following boots...
3371 * The original patch was by Joe Finney for the PCMCIA driver, but
3372 * I've cleaned it a bit and add documentation.
3373 * Thanks to Loeke Brederveld from Lucent for the info.
3374 */
3375
3376 /* Attempt to recognise 2.00 cards (2.4 GHz frequency selectable)
3377 * (does it work for everybody ? - especially old cards...) */
3378 /* Note : WFREQSEL verify that it is able to read from EEprom
3379 * a sensible frequency (address 0x00) + that MMR_FEE_STATUS_ID
3380 * is 0xA (Xilinx version) or 0xB (Ariadne version).
3381 * My test is more crude but do work... */
3382 if(!(mmc_in(base, mmroff(0, mmr_fee_status)) &
3383 (MMR_FEE_STATUS_DWLD | MMR_FEE_STATUS_BUSY)))
3384 {
3385 /* We must download the frequency parameters to the
3386 * synthetisers (from the EEprom - area 1)
3387 * Note : as the EEprom is auto decremented, we set the end
3388 * if the area... */
3389 m.mmw_fee_addr = 0x0F;
3390 m.mmw_fee_ctrl = MMW_FEE_CTRL_READ | MMW_FEE_CTRL_DWLD;
3391 mmc_write(base, (char *)&m.mmw_fee_ctrl - (char *)&m,
3392 (unsigned char *)&m.mmw_fee_ctrl, 2);
3393
3394 /* Wait until the download is finished */
3395 fee_wait(base, 100, 100);
3396
3397 #ifdef DEBUG_CONFIG_INFO
3398 /* The frequency was in the last word downloaded... */
3399 mmc_read(base, (char *)&m.mmw_fee_data_l - (char *)&m,
3400 (unsigned char *)&m.mmw_fee_data_l, 2);
3401
3402 /* Print some info for the user */
3403 printk(KERN_DEBUG "%s: Wavelan 2.00 recognised (frequency select) : Current frequency = %ld\n",
3404 dev->name,
3405 ((m.mmw_fee_data_h << 4) |
3406 (m.mmw_fee_data_l >> 4)) * 5 / 2 + 24000L);
3407 #endif
3408
3409 /* We must now download the power adjust value (gain) to
3410 * the synthetisers (from the EEprom - area 7 - DAC) */
3411 m.mmw_fee_addr = 0x61;
3412 m.mmw_fee_ctrl = MMW_FEE_CTRL_READ | MMW_FEE_CTRL_DWLD;
3413 mmc_write(base, (char *)&m.mmw_fee_ctrl - (char *)&m,
3414 (unsigned char *)&m.mmw_fee_ctrl, 2);
3415
3416 /* Wait until the download is finished */
3417 } /* if 2.00 card */
3418
3419 #ifdef DEBUG_CONFIG_TRACE
3420 printk(KERN_DEBUG "%s: <-wv_mmc_init()\n", dev->name);
3421 #endif
3422 return TRUE;
3423 }
3424
3425 /*------------------------------------------------------------------*/
3426 /*
3427 * Routine to gracefully turn off reception, and wait for any commands
3428 * to complete.
3429 * (called in wv_ru_start() and wavelan_close() and wavelan_event())
3430 */
3431 static int
3432 wv_ru_stop(struct net_device * dev)
3433 {
3434 kio_addr_t base = dev->base_addr;
3435 net_local * lp = netdev_priv(dev);
3436 unsigned long flags;
3437 int status;
3438 int spin;
3439
3440 #ifdef DEBUG_CONFIG_TRACE
3441 printk(KERN_DEBUG "%s: ->wv_ru_stop()\n", dev->name);
3442 #endif
3443
3444 spin_lock_irqsave(&lp->spinlock, flags);
3445
3446 /* First, send the LAN controller a stop receive command */
3447 wv_82593_cmd(dev, "wv_graceful_shutdown(): stop-rcv",
3448 OP0_STOP_RCV, SR0_NO_RESULT);
3449
3450 /* Then, spin until the receive unit goes idle */
3451 spin = 300;
3452 do
3453 {
3454 udelay(10);
3455 outb(OP0_NOP | CR0_STATUS_3, LCCR(base));
3456 status = inb(LCSR(base));
3457 }
3458 while(((status & SR3_RCV_STATE_MASK) != SR3_RCV_IDLE) && (spin-- > 0));
3459
3460 /* Now, spin until the chip finishes executing its current command */
3461 do
3462 {
3463 udelay(10);
3464 outb(OP0_NOP | CR0_STATUS_3, LCCR(base));
3465 status = inb(LCSR(base));
3466 }
3467 while(((status & SR3_EXEC_STATE_MASK) != SR3_EXEC_IDLE) && (spin-- > 0));
3468
3469 spin_unlock_irqrestore(&lp->spinlock, flags);
3470
3471 /* If there was a problem */
3472 if(spin <= 0)
3473 {
3474 #ifdef DEBUG_CONFIG_ERRORS
3475 printk(KERN_INFO "%s: wv_ru_stop(): The chip doesn't want to stop...\n",
3476 dev->name);
3477 #endif
3478 return FALSE;
3479 }
3480
3481 #ifdef DEBUG_CONFIG_TRACE
3482 printk(KERN_DEBUG "%s: <-wv_ru_stop()\n", dev->name);
3483 #endif
3484 return TRUE;
3485 } /* wv_ru_stop */
3486
3487 /*------------------------------------------------------------------*/
3488 /*
3489 * This routine starts the receive unit running. First, it checks if
3490 * the card is actually ready. Then the card is instructed to receive
3491 * packets again.
3492 * (called in wv_hw_reset() & wavelan_open())
3493 */
3494 static int
3495 wv_ru_start(struct net_device * dev)
3496 {
3497 kio_addr_t base = dev->base_addr;
3498 net_local * lp = netdev_priv(dev);
3499 unsigned long flags;
3500
3501 #ifdef DEBUG_CONFIG_TRACE
3502 printk(KERN_DEBUG "%s: ->wv_ru_start()\n", dev->name);
3503 #endif
3504
3505 /*
3506 * We need to start from a quiescent state. To do so, we could check
3507 * if the card is already running, but instead we just try to shut
3508 * it down. First, we disable reception (in case it was already enabled).
3509 */
3510 if(!wv_ru_stop(dev))
3511 return FALSE;
3512
3513 spin_lock_irqsave(&lp->spinlock, flags);
3514
3515 /* Now we know that no command is being executed. */
3516
3517 /* Set the receive frame pointer and stop pointer */
3518 lp->rfp = 0;
3519 outb(OP0_SWIT_TO_PORT_1 | CR0_CHNL, LCCR(base));
3520
3521 /* Reset ring management. This sets the receive frame pointer to 1 */
3522 outb(OP1_RESET_RING_MNGMT, LCCR(base));
3523
3524 #if 0
3525 /* XXX the i82593 manual page 6-4 seems to indicate that the stop register
3526 should be set as below */
3527 /* outb(CR1_STOP_REG_UPDATE|((RX_SIZE - 0x40)>> RX_SIZE_SHIFT),LCCR(base));*/
3528 #elif 0
3529 /* but I set it 0 instead */
3530 lp->stop = 0;
3531 #else
3532 /* but I set it to 3 bytes per packet less than 8K */
3533 lp->stop = (0 + RX_SIZE - ((RX_SIZE / 64) * 3)) % RX_SIZE;
3534 #endif
3535 outb(CR1_STOP_REG_UPDATE | (lp->stop >> RX_SIZE_SHIFT), LCCR(base));
3536 outb(OP1_INT_ENABLE, LCCR(base));
3537 outb(OP1_SWIT_TO_PORT_0, LCCR(base));
3538
3539 /* Reset receive DMA pointer */
3540 hacr_write_slow(base, HACR_PWR_STAT | HACR_TX_DMA_RESET);
3541 hacr_write_slow(base, HACR_DEFAULT);
3542
3543 /* Receive DMA on channel 1 */
3544 wv_82593_cmd(dev, "wv_ru_start(): rcv-enable",
3545 CR0_CHNL | OP0_RCV_ENABLE, SR0_NO_RESULT);
3546
3547 #ifdef DEBUG_I82593_SHOW
3548 {
3549 int status;
3550 int opri;
3551 int spin = 10000;
3552
3553 /* spin until the chip starts receiving */
3554 do
3555 {
3556 outb(OP0_NOP | CR0_STATUS_3, LCCR(base));
3557 status = inb(LCSR(base));
3558 if(spin-- <= 0)
3559 break;
3560 }
3561 while(((status & SR3_RCV_STATE_MASK) != SR3_RCV_ACTIVE) &&
3562 ((status & SR3_RCV_STATE_MASK) != SR3_RCV_READY));
3563 printk(KERN_DEBUG "rcv status is 0x%x [i:%d]\n",
3564 (status & SR3_RCV_STATE_MASK), i);
3565 }
3566 #endif
3567
3568 spin_unlock_irqrestore(&lp->spinlock, flags);
3569
3570 #ifdef DEBUG_CONFIG_TRACE
3571 printk(KERN_DEBUG "%s: <-wv_ru_start()\n", dev->name);
3572 #endif
3573 return TRUE;
3574 }
3575
3576 /*------------------------------------------------------------------*/
3577 /*
3578 * This routine does a standard config of the WaveLAN controller (i82593).
3579 * In the ISA driver, this is integrated in wavelan_hardware_reset()
3580 * (called by wv_hw_config(), wv_82593_reconfig() & wavelan_packet_xmit())
3581 */
3582 static int
3583 wv_82593_config(struct net_device * dev)
3584 {
3585 kio_addr_t base = dev->base_addr;
3586 net_local * lp = netdev_priv(dev);
3587 struct i82593_conf_block cfblk;
3588 int ret = TRUE;
3589
3590 #ifdef DEBUG_CONFIG_TRACE
3591 printk(KERN_DEBUG "%s: ->wv_82593_config()\n", dev->name);
3592 #endif
3593
3594 /* Create & fill i82593 config block
3595 *
3596 * Now conform to Wavelan document WCIN085B
3597 */
3598 memset(&cfblk, 0x00, sizeof(struct i82593_conf_block));
3599 cfblk.d6mod = FALSE; /* Run in i82593 advanced mode */
3600 cfblk.fifo_limit = 5; /* = 56 B rx and 40 B tx fifo thresholds */
3601 cfblk.forgnesi = FALSE; /* 0=82C501, 1=AMD7992B compatibility */
3602 cfblk.fifo_32 = 1;
3603 cfblk.throttle_enb = FALSE;
3604 cfblk.contin = TRUE; /* enable continuous mode */
3605 cfblk.cntrxint = FALSE; /* enable continuous mode receive interrupts */
3606 cfblk.addr_len = WAVELAN_ADDR_SIZE;
3607 cfblk.acloc = TRUE; /* Disable source addr insertion by i82593 */
3608 cfblk.preamb_len = 0; /* 2 bytes preamble (SFD) */
3609 cfblk.loopback = FALSE;
3610 cfblk.lin_prio = 0; /* conform to 802.3 backoff algoritm */
3611 cfblk.exp_prio = 5; /* conform to 802.3 backoff algoritm */
3612 cfblk.bof_met = 1; /* conform to 802.3 backoff algoritm */
3613 cfblk.ifrm_spc = 0x20; /* 32 bit times interframe spacing */
3614 cfblk.slottim_low = 0x20; /* 32 bit times slot time */
3615 cfblk.slottim_hi = 0x0;
3616 cfblk.max_retr = 15;
3617 cfblk.prmisc = ((lp->promiscuous) ? TRUE: FALSE); /* Promiscuous mode */
3618 cfblk.bc_dis = FALSE; /* Enable broadcast reception */
3619 cfblk.crs_1 = TRUE; /* Transmit without carrier sense */
3620 cfblk.nocrc_ins = FALSE; /* i82593 generates CRC */
3621 cfblk.crc_1632 = FALSE; /* 32-bit Autodin-II CRC */
3622 cfblk.crs_cdt = FALSE; /* CD not to be interpreted as CS */
3623 cfblk.cs_filter = 0; /* CS is recognized immediately */
3624 cfblk.crs_src = FALSE; /* External carrier sense */
3625 cfblk.cd_filter = 0; /* CD is recognized immediately */
3626 cfblk.min_fr_len = ETH_ZLEN >> 2; /* Minimum frame length 64 bytes */
3627 cfblk.lng_typ = FALSE; /* Length field > 1500 = type field */
3628 cfblk.lng_fld = TRUE; /* Disable 802.3 length field check */
3629 cfblk.rxcrc_xf = TRUE; /* Don't transfer CRC to memory */
3630 cfblk.artx = TRUE; /* Disable automatic retransmission */
3631 cfblk.sarec = TRUE; /* Disable source addr trig of CD */
3632 cfblk.tx_jabber = TRUE; /* Disable jabber jam sequence */
3633 cfblk.hash_1 = FALSE; /* Use bits 0-5 in mc address hash */
3634 cfblk.lbpkpol = TRUE; /* Loopback pin active high */
3635 cfblk.fdx = FALSE; /* Disable full duplex operation */
3636 cfblk.dummy_6 = 0x3f; /* all ones */
3637 cfblk.mult_ia = FALSE; /* No multiple individual addresses */
3638 cfblk.dis_bof = FALSE; /* Disable the backoff algorithm ?! */
3639 cfblk.dummy_1 = TRUE; /* set to 1 */
3640 cfblk.tx_ifs_retrig = 3; /* Hmm... Disabled */
3641 #ifdef MULTICAST_ALL
3642 cfblk.mc_all = (lp->allmulticast ? TRUE: FALSE); /* Allow all multicasts */
3643 #else
3644 cfblk.mc_all = FALSE; /* No multicast all mode */
3645 #endif
3646 cfblk.rcv_mon = 0; /* Monitor mode disabled */
3647 cfblk.frag_acpt = TRUE; /* Do not accept fragments */
3648 cfblk.tstrttrs = FALSE; /* No start transmission threshold */
3649 cfblk.fretx = TRUE; /* FIFO automatic retransmission */
3650 cfblk.syncrqs = FALSE; /* Synchronous DRQ deassertion... */
3651 cfblk.sttlen = TRUE; /* 6 byte status registers */
3652 cfblk.rx_eop = TRUE; /* Signal EOP on packet reception */
3653 cfblk.tx_eop = TRUE; /* Signal EOP on packet transmission */
3654 cfblk.rbuf_size = RX_SIZE>>11; /* Set receive buffer size */
3655 cfblk.rcvstop = TRUE; /* Enable Receive Stop Register */
3656
3657 #ifdef DEBUG_I82593_SHOW
3658 {
3659 u_char *c = (u_char *) &cfblk;
3660 int i;
3661 printk(KERN_DEBUG "wavelan_cs: config block:");
3662 for(i = 0; i < sizeof(struct i82593_conf_block); i++,c++)
3663 {
3664 if((i % 16) == 0) printk("\n" KERN_DEBUG);
3665 printk("%02x ", *c);
3666 }
3667 printk("\n");
3668 }
3669 #endif
3670
3671 /* Copy the config block to the i82593 */
3672 outb(TX_BASE & 0xff, PIORL(base));
3673 outb(((TX_BASE >> 8) & PIORH_MASK) | PIORH_SEL_TX, PIORH(base));
3674 outb(sizeof(struct i82593_conf_block) & 0xff, PIOP(base)); /* lsb */
3675 outb(sizeof(struct i82593_conf_block) >> 8, PIOP(base)); /* msb */
3676 outsb(PIOP(base), (char *) &cfblk, sizeof(struct i82593_conf_block));
3677
3678 /* reset transmit DMA pointer */
3679 hacr_write_slow(base, HACR_PWR_STAT | HACR_TX_DMA_RESET);
3680 hacr_write(base, HACR_DEFAULT);
3681 if(!wv_82593_cmd(dev, "wv_82593_config(): configure",
3682 OP0_CONFIGURE, SR0_CONFIGURE_DONE))
3683 ret = FALSE;
3684
3685 /* Initialize adapter's ethernet MAC address */
3686 outb(TX_BASE & 0xff, PIORL(base));
3687 outb(((TX_BASE >> 8) & PIORH_MASK) | PIORH_SEL_TX, PIORH(base));
3688 outb(WAVELAN_ADDR_SIZE, PIOP(base)); /* byte count lsb */
3689 outb(0, PIOP(base)); /* byte count msb */
3690 outsb(PIOP(base), &dev->dev_addr[0], WAVELAN_ADDR_SIZE);
3691
3692 /* reset transmit DMA pointer */
3693 hacr_write_slow(base, HACR_PWR_STAT | HACR_TX_DMA_RESET);
3694 hacr_write(base, HACR_DEFAULT);
3695 if(!wv_82593_cmd(dev, "wv_82593_config(): ia-setup",
3696 OP0_IA_SETUP, SR0_IA_SETUP_DONE))
3697 ret = FALSE;
3698
3699 #ifdef WAVELAN_ROAMING
3700 /* If roaming is enabled, join the "Beacon Request" multicast group... */
3701 /* But only if it's not in there already! */
3702 if(do_roaming)
3703 dev_mc_add(dev,WAVELAN_BEACON_ADDRESS, WAVELAN_ADDR_SIZE, 1);
3704 #endif /* WAVELAN_ROAMING */
3705
3706 /* If any multicast address to set */
3707 if(lp->mc_count)
3708 {
3709 struct dev_mc_list * dmi;
3710 int addrs_len = WAVELAN_ADDR_SIZE * lp->mc_count;
3711
3712 #ifdef DEBUG_CONFIG_INFO
3713 printk(KERN_DEBUG "%s: wv_hw_config(): set %d multicast addresses:\n",
3714 dev->name, lp->mc_count);
3715 for(dmi=dev->mc_list; dmi; dmi=dmi->next)
3716 printk(KERN_DEBUG " %02x:%02x:%02x:%02x:%02x:%02x\n",
3717 dmi->dmi_addr[0], dmi->dmi_addr[1], dmi->dmi_addr[2],
3718 dmi->dmi_addr[3], dmi->dmi_addr[4], dmi->dmi_addr[5] );
3719 #endif
3720
3721 /* Initialize adapter's ethernet multicast addresses */
3722 outb(TX_BASE & 0xff, PIORL(base));
3723 outb(((TX_BASE >> 8) & PIORH_MASK) | PIORH_SEL_TX, PIORH(base));
3724 outb(addrs_len & 0xff, PIOP(base)); /* byte count lsb */
3725 outb((addrs_len >> 8), PIOP(base)); /* byte count msb */
3726 for(dmi=dev->mc_list; dmi; dmi=dmi->next)
3727 outsb(PIOP(base), dmi->dmi_addr, dmi->dmi_addrlen);
3728
3729 /* reset transmit DMA pointer */
3730 hacr_write_slow(base, HACR_PWR_STAT | HACR_TX_DMA_RESET);
3731 hacr_write(base, HACR_DEFAULT);
3732 if(!wv_82593_cmd(dev, "wv_82593_config(): mc-setup",
3733 OP0_MC_SETUP, SR0_MC_SETUP_DONE))
3734 ret = FALSE;
3735 lp->mc_count = dev->mc_count; /* remember to avoid repeated reset */
3736 }
3737
3738 /* Job done, clear the flag */
3739 lp->reconfig_82593 = FALSE;
3740
3741 #ifdef DEBUG_CONFIG_TRACE
3742 printk(KERN_DEBUG "%s: <-wv_82593_config()\n", dev->name);
3743 #endif
3744 return(ret);
3745 }
3746
3747 /*------------------------------------------------------------------*/
3748 /*
3749 * Read the Access Configuration Register, perform a software reset,
3750 * and then re-enable the card's software.
3751 *
3752 * If I understand correctly : reset the pcmcia interface of the
3753 * wavelan.
3754 * (called by wv_config())
3755 */
3756 static inline int
3757 wv_pcmcia_reset(struct net_device * dev)
3758 {
3759 int i;
3760 conf_reg_t reg = { 0, CS_READ, CISREG_COR, 0 };
3761 dev_link_t * link = ((net_local *)netdev_priv(dev))->link;
3762
3763 #ifdef DEBUG_CONFIG_TRACE
3764 printk(KERN_DEBUG "%s: ->wv_pcmcia_reset()\n", dev->name);
3765 #endif
3766
3767 i = pcmcia_access_configuration_register(link->handle, &reg);
3768 if(i != CS_SUCCESS)
3769 {
3770 cs_error(link->handle, AccessConfigurationRegister, i);
3771 return FALSE;
3772 }
3773
3774 #ifdef DEBUG_CONFIG_INFO
3775 printk(KERN_DEBUG "%s: wavelan_pcmcia_reset(): Config reg is 0x%x\n",
3776 dev->name, (u_int) reg.Value);
3777 #endif
3778
3779 reg.Action = CS_WRITE;
3780 reg.Value = reg.Value | COR_SW_RESET;
3781 i = pcmcia_access_configuration_register(link->handle, &reg);
3782 if(i != CS_SUCCESS)
3783 {
3784 cs_error(link->handle, AccessConfigurationRegister, i);
3785 return FALSE;
3786 }
3787
3788 reg.Action = CS_WRITE;
3789 reg.Value = COR_LEVEL_IRQ | COR_CONFIG;
3790 i = pcmcia_access_configuration_register(link->handle, &reg);
3791 if(i != CS_SUCCESS)
3792 {
3793 cs_error(link->handle, AccessConfigurationRegister, i);
3794 return FALSE;
3795 }
3796
3797 #ifdef DEBUG_CONFIG_TRACE
3798 printk(KERN_DEBUG "%s: <-wv_pcmcia_reset()\n", dev->name);
3799 #endif
3800 return TRUE;
3801 }
3802
3803 /*------------------------------------------------------------------*/
3804 /*
3805 * wavelan_hw_config() is called after a CARD_INSERTION event is
3806 * received, to configure the wavelan hardware.
3807 * Note that the reception will be enabled in wavelan->open(), so the
3808 * device is configured but idle...
3809 * Performs the following actions:
3810 * 1. A pcmcia software reset (using wv_pcmcia_reset())
3811 * 2. A power reset (reset DMA)
3812 * 3. Reset the LAN controller
3813 * 4. Initialize the radio modem (using wv_mmc_init)
3814 * 5. Configure LAN controller (using wv_82593_config)
3815 * 6. Perform a diagnostic on the LAN controller
3816 * (called by wavelan_event() & wv_hw_reset())
3817 */
3818 static int
3819 wv_hw_config(struct net_device * dev)
3820 {
3821 net_local * lp = netdev_priv(dev);
3822 kio_addr_t base = dev->base_addr;
3823 unsigned long flags;
3824 int ret = FALSE;
3825
3826 #ifdef DEBUG_CONFIG_TRACE
3827 printk(KERN_DEBUG "%s: ->wv_hw_config()\n", dev->name);
3828 #endif
3829
3830 #ifdef STRUCT_CHECK
3831 if(wv_structuct_check() != (char *) NULL)
3832 {
3833 printk(KERN_WARNING "%s: wv_hw_config: structure/compiler botch: \"%s\"\n",
3834 dev->name, wv_structuct_check());
3835 return FALSE;
3836 }
3837 #endif /* STRUCT_CHECK == 1 */
3838
3839 /* Reset the pcmcia interface */
3840 if(wv_pcmcia_reset(dev) == FALSE)
3841 return FALSE;
3842
3843 /* Disable interrupts */
3844 spin_lock_irqsave(&lp->spinlock, flags);
3845
3846 /* Disguised goto ;-) */
3847 do
3848 {
3849 /* Power UP the module + reset the modem + reset host adapter
3850 * (in fact, reset DMA channels) */
3851 hacr_write_slow(base, HACR_RESET);
3852 hacr_write(base, HACR_DEFAULT);
3853
3854 /* Check if the module has been powered up... */
3855 if(hasr_read(base) & HASR_NO_CLK)
3856 {
3857 #ifdef DEBUG_CONFIG_ERRORS
3858 printk(KERN_WARNING "%s: wv_hw_config(): modem not connected or not a wavelan card\n",
3859 dev->name);
3860 #endif
3861 break;
3862 }
3863
3864 /* initialize the modem */
3865 if(wv_mmc_init(dev) == FALSE)
3866 {
3867 #ifdef DEBUG_CONFIG_ERRORS
3868 printk(KERN_WARNING "%s: wv_hw_config(): Can't configure the modem\n",
3869 dev->name);
3870 #endif
3871 break;
3872 }
3873
3874 /* reset the LAN controller (i82593) */
3875 outb(OP0_RESET, LCCR(base));
3876 mdelay(1); /* A bit crude ! */
3877
3878 /* Initialize the LAN controller */
3879 if(wv_82593_config(dev) == FALSE)
3880 {
3881 #ifdef DEBUG_CONFIG_ERRORS
3882 printk(KERN_INFO "%s: wv_hw_config(): i82593 init failed\n",
3883 dev->name);
3884 #endif
3885 break;
3886 }
3887
3888 /* Diagnostic */
3889 if(wv_diag(dev) == FALSE)
3890 {
3891 #ifdef DEBUG_CONFIG_ERRORS
3892 printk(KERN_INFO "%s: wv_hw_config(): i82593 diagnostic failed\n",
3893 dev->name);
3894 #endif
3895 break;
3896 }
3897
3898 /*
3899 * insert code for loopback test here
3900 */
3901
3902 /* The device is now configured */
3903 lp->configured = 1;
3904 ret = TRUE;
3905 }
3906 while(0);
3907
3908 /* Re-enable interrupts */
3909 spin_unlock_irqrestore(&lp->spinlock, flags);
3910
3911 #ifdef DEBUG_CONFIG_TRACE
3912 printk(KERN_DEBUG "%s: <-wv_hw_config()\n", dev->name);
3913 #endif
3914 return(ret);
3915 }
3916
3917 /*------------------------------------------------------------------*/
3918 /*
3919 * Totally reset the wavelan and restart it.
3920 * Performs the following actions:
3921 * 1. Call wv_hw_config()
3922 * 2. Start the LAN controller's receive unit
3923 * (called by wavelan_event(), wavelan_watchdog() and wavelan_open())
3924 */
3925 static inline void
3926 wv_hw_reset(struct net_device * dev)
3927 {
3928 net_local * lp = netdev_priv(dev);
3929
3930 #ifdef DEBUG_CONFIG_TRACE
3931 printk(KERN_DEBUG "%s: ->wv_hw_reset()\n", dev->name);
3932 #endif
3933
3934 lp->nresets++;
3935 lp->configured = 0;
3936
3937 /* Call wv_hw_config() for most of the reset & init stuff */
3938 if(wv_hw_config(dev) == FALSE)
3939 return;
3940
3941 /* start receive unit */
3942 wv_ru_start(dev);
3943
3944 #ifdef DEBUG_CONFIG_TRACE
3945 printk(KERN_DEBUG "%s: <-wv_hw_reset()\n", dev->name);
3946 #endif
3947 }
3948
3949 /*------------------------------------------------------------------*/
3950 /*
3951 * wv_pcmcia_config() is called after a CARD_INSERTION event is
3952 * received, to configure the PCMCIA socket, and to make the ethernet
3953 * device available to the system.
3954 * (called by wavelan_event())
3955 */
3956 static inline int
3957 wv_pcmcia_config(dev_link_t * link)
3958 {
3959 client_handle_t handle = link->handle;
3960 tuple_t tuple;
3961 cisparse_t parse;
3962 struct net_device * dev = (struct net_device *) link->priv;
3963 int i;
3964 u_char buf[64];
3965 win_req_t req;
3966 memreq_t mem;
3967 net_local * lp = netdev_priv(dev);
3968
3969
3970 #ifdef DEBUG_CONFIG_TRACE
3971 printk(KERN_DEBUG "->wv_pcmcia_config(0x%p)\n", link);
3972 #endif
3973
3974 /*
3975 * This reads the card's CONFIG tuple to find its configuration
3976 * registers.
3977 */
3978 do
3979 {
3980 tuple.Attributes = 0;
3981 tuple.DesiredTuple = CISTPL_CONFIG;
3982 i = pcmcia_get_first_tuple(handle, &tuple);
3983 if(i != CS_SUCCESS)
3984 break;
3985 tuple.TupleData = (cisdata_t *)buf;
3986 tuple.TupleDataMax = 64;
3987 tuple.TupleOffset = 0;
3988 i = pcmcia_get_tuple_data(handle, &tuple);
3989 if(i != CS_SUCCESS)
3990 break;
3991 i = pcmcia_parse_tuple(handle, &tuple, &parse);
3992 if(i != CS_SUCCESS)
3993 break;
3994 link->conf.ConfigBase = parse.config.base;
3995 link->conf.Present = parse.config.rmask[0];
3996 }
3997 while(0);
3998 if(i != CS_SUCCESS)
3999 {
4000 cs_error(link->handle, ParseTuple, i);
4001 link->state &= ~DEV_CONFIG_PENDING;
4002 return FALSE;
4003 }
4004
4005 /* Configure card */
4006 link->state |= DEV_CONFIG;
4007 do
4008 {
4009 i = pcmcia_request_io(link->handle, &link->io);
4010 if(i != CS_SUCCESS)
4011 {
4012 cs_error(link->handle, RequestIO, i);
4013 break;
4014 }
4015
4016 /*
4017 * Now allocate an interrupt line. Note that this does not
4018 * actually assign a handler to the interrupt.
4019 */
4020 i = pcmcia_request_irq(link->handle, &link->irq);
4021 if(i != CS_SUCCESS)
4022 {
4023 cs_error(link->handle, RequestIRQ, i);
4024 break;
4025 }
4026
4027 /*
4028 * This actually configures the PCMCIA socket -- setting up
4029 * the I/O windows and the interrupt mapping.
4030 */
4031 link->conf.ConfigIndex = 1;
4032 i = pcmcia_request_configuration(link->handle, &link->conf);
4033 if(i != CS_SUCCESS)
4034 {
4035 cs_error(link->handle, RequestConfiguration, i);
4036 break;
4037 }
4038
4039 /*
4040 * Allocate a small memory window. Note that the dev_link_t
4041 * structure provides space for one window handle -- if your
4042 * device needs several windows, you'll need to keep track of
4043 * the handles in your private data structure, link->priv.
4044 */
4045 req.Attributes = WIN_DATA_WIDTH_8|WIN_MEMORY_TYPE_AM|WIN_ENABLE;
4046 req.Base = req.Size = 0;
4047 req.AccessSpeed = mem_speed;
4048 i = pcmcia_request_window(&link->handle, &req, &link->win);
4049 if(i != CS_SUCCESS)
4050 {
4051 cs_error(link->handle, RequestWindow, i);
4052 break;
4053 }
4054
4055 lp->mem = ioremap(req.Base, req.Size);
4056 dev->mem_start = (u_long)lp->mem;
4057 dev->mem_end = dev->mem_start + req.Size;
4058
4059 mem.CardOffset = 0; mem.Page = 0;
4060 i = pcmcia_map_mem_page(link->win, &mem);
4061 if(i != CS_SUCCESS)
4062 {
4063 cs_error(link->handle, MapMemPage, i);
4064 break;
4065 }
4066
4067 /* Feed device with this info... */
4068 dev->irq = link->irq.AssignedIRQ;
4069 dev->base_addr = link->io.BasePort1;
4070 netif_start_queue(dev);
4071
4072 #ifdef DEBUG_CONFIG_INFO
4073 printk(KERN_DEBUG "wv_pcmcia_config: MEMSTART %p IRQ %d IOPORT 0x%x\n",
4074 lp->mem, dev->irq, (u_int) dev->base_addr);
4075 #endif
4076
4077 SET_NETDEV_DEV(dev, &handle_to_dev(handle));
4078 i = register_netdev(dev);
4079 if(i != 0)
4080 {
4081 #ifdef DEBUG_CONFIG_ERRORS
4082 printk(KERN_INFO "wv_pcmcia_config(): register_netdev() failed\n");
4083 #endif
4084 break;
4085 }
4086 }
4087 while(0); /* Humm... Disguised goto !!! */
4088
4089 link->state &= ~DEV_CONFIG_PENDING;
4090 /* If any step failed, release any partially configured state */
4091 if(i != 0)
4092 {
4093 wv_pcmcia_release(link);
4094 return FALSE;
4095 }
4096
4097 strcpy(((net_local *) netdev_priv(dev))->node.dev_name, dev->name);
4098 link->dev = &((net_local *) netdev_priv(dev))->node;
4099
4100 #ifdef DEBUG_CONFIG_TRACE
4101 printk(KERN_DEBUG "<-wv_pcmcia_config()\n");
4102 #endif
4103 return TRUE;
4104 }
4105
4106 /*------------------------------------------------------------------*/
4107 /*
4108 * After a card is removed, wv_pcmcia_release() will unregister the net
4109 * device, and release the PCMCIA configuration. If the device is
4110 * still open, this will be postponed until it is closed.
4111 */
4112 static void
4113 wv_pcmcia_release(dev_link_t *link)
4114 {
4115 struct net_device * dev = (struct net_device *) link->priv;
4116 net_local * lp = netdev_priv(dev);
4117
4118 #ifdef DEBUG_CONFIG_TRACE
4119 printk(KERN_DEBUG "%s: -> wv_pcmcia_release(0x%p)\n", dev->name, link);
4120 #endif
4121
4122 /* Don't bother checking to see if these succeed or not */
4123 iounmap(lp->mem);
4124 pcmcia_release_window(link->win);
4125 pcmcia_release_configuration(link->handle);
4126 pcmcia_release_io(link->handle, &link->io);
4127 pcmcia_release_irq(link->handle, &link->irq);
4128
4129 link->state &= ~DEV_CONFIG;
4130
4131 #ifdef DEBUG_CONFIG_TRACE
4132 printk(KERN_DEBUG "%s: <- wv_pcmcia_release()\n", dev->name);
4133 #endif
4134 }
4135
4136 /************************ INTERRUPT HANDLING ************************/
4137
4138 /*
4139 * This function is the interrupt handler for the WaveLAN card. This
4140 * routine will be called whenever:
4141 * 1. A packet is received.
4142 * 2. A packet has successfully been transferred and the unit is
4143 * ready to transmit another packet.
4144 * 3. A command has completed execution.
4145 */
4146 static irqreturn_t
4147 wavelan_interrupt(int irq,
4148 void * dev_id,
4149 struct pt_regs * regs)
4150 {
4151 struct net_device * dev;
4152 net_local * lp;
4153 kio_addr_t base;
4154 int status0;
4155 u_int tx_status;
4156
4157 if ((dev = dev_id) == NULL)
4158 {
4159 #ifdef DEBUG_INTERRUPT_ERROR
4160 printk(KERN_WARNING "wavelan_interrupt(): irq %d for unknown device.\n",
4161 irq);
4162 #endif
4163 return IRQ_NONE;
4164 }
4165
4166 #ifdef DEBUG_INTERRUPT_TRACE
4167 printk(KERN_DEBUG "%s: ->wavelan_interrupt()\n", dev->name);
4168 #endif
4169
4170 lp = netdev_priv(dev);
4171 base = dev->base_addr;
4172
4173 #ifdef DEBUG_INTERRUPT_INFO
4174 /* Check state of our spinlock (it should be cleared) */
4175 if(spin_is_locked(&lp->spinlock))
4176 printk(KERN_DEBUG
4177 "%s: wavelan_interrupt(): spinlock is already locked !!!\n",
4178 dev->name);
4179 #endif
4180
4181 /* Prevent reentrancy. We need to do that because we may have
4182 * multiple interrupt handler running concurently.
4183 * It is safe because interrupts are disabled before aquiring
4184 * the spinlock. */
4185 spin_lock(&lp->spinlock);
4186
4187 /* Treat all pending interrupts */
4188 while(1)
4189 {
4190 /* ---------------- INTERRUPT CHECKING ---------------- */
4191 /*
4192 * Look for the interrupt and verify the validity
4193 */
4194 outb(CR0_STATUS_0 | OP0_NOP, LCCR(base));
4195 status0 = inb(LCSR(base));
4196
4197 #ifdef DEBUG_INTERRUPT_INFO
4198 printk(KERN_DEBUG "status0 0x%x [%s => 0x%x]", status0,
4199 (status0&SR0_INTERRUPT)?"int":"no int",status0&~SR0_INTERRUPT);
4200 if(status0&SR0_INTERRUPT)
4201 {
4202 printk(" [%s => %d]\n", (status0 & SR0_CHNL) ? "chnl" :
4203 ((status0 & SR0_EXECUTION) ? "cmd" :
4204 ((status0 & SR0_RECEPTION) ? "recv" : "unknown")),
4205 (status0 & SR0_EVENT_MASK));
4206 }
4207 else
4208 printk("\n");
4209 #endif
4210
4211 /* Return if no actual interrupt from i82593 (normal exit) */
4212 if(!(status0 & SR0_INTERRUPT))
4213 break;
4214
4215 /* If interrupt is both Rx and Tx or none...
4216 * This code in fact is there to catch the spurious interrupt
4217 * when you remove the wavelan pcmcia card from the socket */
4218 if(((status0 & SR0_BOTH_RX_TX) == SR0_BOTH_RX_TX) ||
4219 ((status0 & SR0_BOTH_RX_TX) == 0x0))
4220 {
4221 #ifdef DEBUG_INTERRUPT_INFO
4222 printk(KERN_INFO "%s: wv_interrupt(): bogus interrupt (or from dead card) : %X\n",
4223 dev->name, status0);
4224 #endif
4225 /* Acknowledge the interrupt */
4226 outb(CR0_INT_ACK | OP0_NOP, LCCR(base));
4227 break;
4228 }
4229
4230 /* ----------------- RECEIVING PACKET ----------------- */
4231 /*
4232 * When the wavelan signal the reception of a new packet,
4233 * we call wv_packet_rcv() to copy if from the buffer and
4234 * send it to NET3
4235 */
4236 if(status0 & SR0_RECEPTION)
4237 {
4238 #ifdef DEBUG_INTERRUPT_INFO
4239 printk(KERN_DEBUG "%s: wv_interrupt(): receive\n", dev->name);
4240 #endif
4241
4242 if((status0 & SR0_EVENT_MASK) == SR0_STOP_REG_HIT)
4243 {
4244 #ifdef DEBUG_INTERRUPT_ERROR
4245 printk(KERN_INFO "%s: wv_interrupt(): receive buffer overflow\n",
4246 dev->name);
4247 #endif
4248 lp->stats.rx_over_errors++;
4249 lp->overrunning = 1;
4250 }
4251
4252 /* Get the packet */
4253 wv_packet_rcv(dev);
4254 lp->overrunning = 0;
4255
4256 /* Acknowledge the interrupt */
4257 outb(CR0_INT_ACK | OP0_NOP, LCCR(base));
4258 continue;
4259 }
4260
4261 /* ---------------- COMMAND COMPLETION ---------------- */
4262 /*
4263 * Interrupts issued when the i82593 has completed a command.
4264 * Most likely : transmission done
4265 */
4266
4267 /* If a transmission has been done */
4268 if((status0 & SR0_EVENT_MASK) == SR0_TRANSMIT_DONE ||
4269 (status0 & SR0_EVENT_MASK) == SR0_RETRANSMIT_DONE ||
4270 (status0 & SR0_EVENT_MASK) == SR0_TRANSMIT_NO_CRC_DONE)
4271 {
4272 #ifdef DEBUG_TX_ERROR
4273 if((status0 & SR0_EVENT_MASK) == SR0_TRANSMIT_NO_CRC_DONE)
4274 printk(KERN_INFO "%s: wv_interrupt(): packet transmitted without CRC.\n",
4275 dev->name);
4276 #endif
4277
4278 /* Get transmission status */
4279 tx_status = inb(LCSR(base));
4280 tx_status |= (inb(LCSR(base)) << 8);
4281 #ifdef DEBUG_INTERRUPT_INFO
4282 printk(KERN_DEBUG "%s: wv_interrupt(): transmission done\n",
4283 dev->name);
4284 {
4285 u_int rcv_bytes;
4286 u_char status3;
4287 rcv_bytes = inb(LCSR(base));
4288 rcv_bytes |= (inb(LCSR(base)) << 8);
4289 status3 = inb(LCSR(base));
4290 printk(KERN_DEBUG "tx_status 0x%02x rcv_bytes 0x%02x status3 0x%x\n",
4291 tx_status, rcv_bytes, (u_int) status3);
4292 }
4293 #endif
4294 /* Check for possible errors */
4295 if((tx_status & TX_OK) != TX_OK)
4296 {
4297 lp->stats.tx_errors++;
4298
4299 if(tx_status & TX_FRTL)
4300 {
4301 #ifdef DEBUG_TX_ERROR
4302 printk(KERN_INFO "%s: wv_interrupt(): frame too long\n",
4303 dev->name);
4304 #endif
4305 }
4306 if(tx_status & TX_UND_RUN)
4307 {
4308 #ifdef DEBUG_TX_FAIL
4309 printk(KERN_DEBUG "%s: wv_interrupt(): DMA underrun\n",
4310 dev->name);
4311 #endif
4312 lp->stats.tx_aborted_errors++;
4313 }
4314 if(tx_status & TX_LOST_CTS)
4315 {
4316 #ifdef DEBUG_TX_FAIL
4317 printk(KERN_DEBUG "%s: wv_interrupt(): no CTS\n", dev->name);
4318 #endif
4319 lp->stats.tx_carrier_errors++;
4320 }
4321 if(tx_status & TX_LOST_CRS)
4322 {
4323 #ifdef DEBUG_TX_FAIL
4324 printk(KERN_DEBUG "%s: wv_interrupt(): no carrier\n",
4325 dev->name);
4326 #endif
4327 lp->stats.tx_carrier_errors++;
4328 }
4329 if(tx_status & TX_HRT_BEAT)
4330 {
4331 #ifdef DEBUG_TX_FAIL
4332 printk(KERN_DEBUG "%s: wv_interrupt(): heart beat\n", dev->name);
4333 #endif
4334 lp->stats.tx_heartbeat_errors++;
4335 }
4336 if(tx_status & TX_DEFER)
4337 {
4338 #ifdef DEBUG_TX_FAIL
4339 printk(KERN_DEBUG "%s: wv_interrupt(): channel jammed\n",
4340 dev->name);
4341 #endif
4342 }
4343 /* Ignore late collisions since they're more likely to happen
4344 * here (the WaveLAN design prevents the LAN controller from
4345 * receiving while it is transmitting). We take action only when
4346 * the maximum retransmit attempts is exceeded.
4347 */
4348 if(tx_status & TX_COLL)
4349 {
4350 if(tx_status & TX_MAX_COL)
4351 {
4352 #ifdef DEBUG_TX_FAIL
4353 printk(KERN_DEBUG "%s: wv_interrupt(): channel congestion\n",
4354 dev->name);
4355 #endif
4356 if(!(tx_status & TX_NCOL_MASK))
4357 {
4358 lp->stats.collisions += 0x10;
4359 }
4360 }
4361 }
4362 } /* if(!(tx_status & TX_OK)) */
4363
4364 lp->stats.collisions += (tx_status & TX_NCOL_MASK);
4365 lp->stats.tx_packets++;
4366
4367 netif_wake_queue(dev);
4368 outb(CR0_INT_ACK | OP0_NOP, LCCR(base)); /* Acknowledge the interrupt */
4369 }
4370 else /* if interrupt = transmit done or retransmit done */
4371 {
4372 #ifdef DEBUG_INTERRUPT_ERROR
4373 printk(KERN_INFO "wavelan_cs: unknown interrupt, status0 = %02x\n",
4374 status0);
4375 #endif
4376 outb(CR0_INT_ACK | OP0_NOP, LCCR(base)); /* Acknowledge the interrupt */
4377 }
4378 } /* while(1) */
4379
4380 spin_unlock(&lp->spinlock);
4381
4382 #ifdef DEBUG_INTERRUPT_TRACE
4383 printk(KERN_DEBUG "%s: <-wavelan_interrupt()\n", dev->name);
4384 #endif
4385
4386 /* We always return IRQ_HANDLED, because we will receive empty
4387 * interrupts under normal operations. Anyway, it doesn't matter
4388 * as we are dealing with an ISA interrupt that can't be shared.
4389 *
4390 * Explanation : under heavy receive, the following happens :
4391 * ->wavelan_interrupt()
4392 * (status0 & SR0_INTERRUPT) != 0
4393 * ->wv_packet_rcv()
4394 * (status0 & SR0_INTERRUPT) != 0
4395 * ->wv_packet_rcv()
4396 * (status0 & SR0_INTERRUPT) == 0 // i.e. no more event
4397 * <-wavelan_interrupt()
4398 * ->wavelan_interrupt()
4399 * (status0 & SR0_INTERRUPT) == 0 // i.e. empty interrupt
4400 * <-wavelan_interrupt()
4401 * Jean II */
4402 return IRQ_HANDLED;
4403 } /* wv_interrupt */
4404
4405 /*------------------------------------------------------------------*/
4406 /*
4407 * Watchdog: when we start a transmission, a timer is set for us in the
4408 * kernel. If the transmission completes, this timer is disabled. If
4409 * the timer expires, we are called and we try to unlock the hardware.
4410 *
4411 * Note : This watchdog is move clever than the one in the ISA driver,
4412 * because it try to abort the current command before reseting
4413 * everything...
4414 * On the other hand, it's a bit simpler, because we don't have to
4415 * deal with the multiple Tx buffers...
4416 */
4417 static void
4418 wavelan_watchdog(struct net_device * dev)
4419 {
4420 net_local * lp = netdev_priv(dev);
4421 kio_addr_t base = dev->base_addr;
4422 unsigned long flags;
4423 int aborted = FALSE;
4424
4425 #ifdef DEBUG_INTERRUPT_TRACE
4426 printk(KERN_DEBUG "%s: ->wavelan_watchdog()\n", dev->name);
4427 #endif
4428
4429 #ifdef DEBUG_INTERRUPT_ERROR
4430 printk(KERN_INFO "%s: wavelan_watchdog: watchdog timer expired\n",
4431 dev->name);
4432 #endif
4433
4434 spin_lock_irqsave(&lp->spinlock, flags);
4435
4436 /* Ask to abort the current command */
4437 outb(OP0_ABORT, LCCR(base));
4438
4439 /* Wait for the end of the command (a bit hackish) */
4440 if(wv_82593_cmd(dev, "wavelan_watchdog(): abort",
4441 OP0_NOP | CR0_STATUS_3, SR0_EXECUTION_ABORTED))
4442 aborted = TRUE;
4443
4444 /* Release spinlock here so that wv_hw_reset() can grab it */
4445 spin_unlock_irqrestore(&lp->spinlock, flags);
4446
4447 /* Check if we were successful in aborting it */
4448 if(!aborted)
4449 {
4450 /* It seem that it wasn't enough */
4451 #ifdef DEBUG_INTERRUPT_ERROR
4452 printk(KERN_INFO "%s: wavelan_watchdog: abort failed, trying reset\n",
4453 dev->name);
4454 #endif
4455 wv_hw_reset(dev);
4456 }
4457
4458 #ifdef DEBUG_PSA_SHOW
4459 {
4460 psa_t psa;
4461 psa_read(dev, 0, (unsigned char *) &psa, sizeof(psa));
4462 wv_psa_show(&psa);
4463 }
4464 #endif
4465 #ifdef DEBUG_MMC_SHOW
4466 wv_mmc_show(dev);
4467 #endif
4468 #ifdef DEBUG_I82593_SHOW
4469 wv_ru_show(dev);
4470 #endif
4471
4472 /* We are no more waiting for something... */
4473 netif_wake_queue(dev);
4474
4475 #ifdef DEBUG_INTERRUPT_TRACE
4476 printk(KERN_DEBUG "%s: <-wavelan_watchdog()\n", dev->name);
4477 #endif
4478 }
4479
4480 /********************* CONFIGURATION CALLBACKS *********************/
4481 /*
4482 * Here are the functions called by the pcmcia package (cardmgr) and
4483 * linux networking (NET3) for initialization, configuration and
4484 * deinstallations of the Wavelan Pcmcia Hardware.
4485 */
4486
4487 /*------------------------------------------------------------------*/
4488 /*
4489 * Configure and start up the WaveLAN PCMCIA adaptor.
4490 * Called by NET3 when it "open" the device.
4491 */
4492 static int
4493 wavelan_open(struct net_device * dev)
4494 {
4495 net_local * lp = netdev_priv(dev);
4496 dev_link_t * link = lp->link;
4497 kio_addr_t base = dev->base_addr;
4498
4499 #ifdef DEBUG_CALLBACK_TRACE
4500 printk(KERN_DEBUG "%s: ->wavelan_open(dev=0x%x)\n", dev->name,
4501 (unsigned int) dev);
4502 #endif
4503
4504 /* Check if the modem is powered up (wavelan_close() power it down */
4505 if(hasr_read(base) & HASR_NO_CLK)
4506 {
4507 /* Power up (power up time is 250us) */
4508 hacr_write(base, HACR_DEFAULT);
4509
4510 /* Check if the module has been powered up... */
4511 if(hasr_read(base) & HASR_NO_CLK)
4512 {
4513 #ifdef DEBUG_CONFIG_ERRORS
4514 printk(KERN_WARNING "%s: wavelan_open(): modem not connected\n",
4515 dev->name);
4516 #endif
4517 return FALSE;
4518 }
4519 }
4520
4521 /* Start reception and declare the driver ready */
4522 if(!lp->configured)
4523 return FALSE;
4524 if(!wv_ru_start(dev))
4525 wv_hw_reset(dev); /* If problem : reset */
4526 netif_start_queue(dev);
4527
4528 /* Mark the device as used */
4529 link->open++;
4530
4531 #ifdef WAVELAN_ROAMING
4532 if(do_roaming)
4533 wv_roam_init(dev);
4534 #endif /* WAVELAN_ROAMING */
4535
4536 #ifdef DEBUG_CALLBACK_TRACE
4537 printk(KERN_DEBUG "%s: <-wavelan_open()\n", dev->name);
4538 #endif
4539 return 0;
4540 }
4541
4542 /*------------------------------------------------------------------*/
4543 /*
4544 * Shutdown the WaveLAN PCMCIA adaptor.
4545 * Called by NET3 when it "close" the device.
4546 */
4547 static int
4548 wavelan_close(struct net_device * dev)
4549 {
4550 dev_link_t * link = ((net_local *)netdev_priv(dev))->link;
4551 kio_addr_t base = dev->base_addr;
4552
4553 #ifdef DEBUG_CALLBACK_TRACE
4554 printk(KERN_DEBUG "%s: ->wavelan_close(dev=0x%x)\n", dev->name,
4555 (unsigned int) dev);
4556 #endif
4557
4558 /* If the device isn't open, then nothing to do */
4559 if(!link->open)
4560 {
4561 #ifdef DEBUG_CONFIG_INFO
4562 printk(KERN_DEBUG "%s: wavelan_close(): device not open\n", dev->name);
4563 #endif
4564 return 0;
4565 }
4566
4567 #ifdef WAVELAN_ROAMING
4568 /* Cleanup of roaming stuff... */
4569 if(do_roaming)
4570 wv_roam_cleanup(dev);
4571 #endif /* WAVELAN_ROAMING */
4572
4573 link->open--;
4574
4575 /* If the card is still present */
4576 if(netif_running(dev))
4577 {
4578 netif_stop_queue(dev);
4579
4580 /* Stop receiving new messages and wait end of transmission */
4581 wv_ru_stop(dev);
4582
4583 /* Power down the module */
4584 hacr_write(base, HACR_DEFAULT & (~HACR_PWR_STAT));
4585 }
4586
4587 #ifdef DEBUG_CALLBACK_TRACE
4588 printk(KERN_DEBUG "%s: <-wavelan_close()\n", dev->name);
4589 #endif
4590 return 0;
4591 }
4592
4593 /*------------------------------------------------------------------*/
4594 /*
4595 * wavelan_attach() creates an "instance" of the driver, allocating
4596 * local data structures for one device (one interface). The device
4597 * is registered with Card Services.
4598 *
4599 * The dev_link structure is initialized, but we don't actually
4600 * configure the card at this point -- we wait until we receive a
4601 * card insertion event.
4602 */
4603 static dev_link_t *
4604 wavelan_attach(void)
4605 {
4606 client_reg_t client_reg; /* Register with cardmgr */
4607 dev_link_t * link; /* Info for cardmgr */
4608 struct net_device * dev; /* Interface generic data */
4609 net_local * lp; /* Interface specific data */
4610 int ret;
4611
4612 #ifdef DEBUG_CALLBACK_TRACE
4613 printk(KERN_DEBUG "-> wavelan_attach()\n");
4614 #endif
4615
4616 /* Initialize the dev_link_t structure */
4617 link = kmalloc(sizeof(struct dev_link_t), GFP_KERNEL);
4618 if (!link) return NULL;
4619 memset(link, 0, sizeof(struct dev_link_t));
4620
4621 /* The io structure describes IO port mapping */
4622 link->io.NumPorts1 = 8;
4623 link->io.Attributes1 = IO_DATA_PATH_WIDTH_8;
4624 link->io.IOAddrLines = 3;
4625
4626 /* Interrupt setup */
4627 link->irq.Attributes = IRQ_TYPE_EXCLUSIVE | IRQ_HANDLE_PRESENT;
4628 link->irq.IRQInfo1 = IRQ_LEVEL_ID;
4629 link->irq.Handler = wavelan_interrupt;
4630
4631 /* General socket configuration */
4632 link->conf.Attributes = CONF_ENABLE_IRQ;
4633 link->conf.Vcc = 50;
4634 link->conf.IntType = INT_MEMORY_AND_IO;
4635
4636 /* Chain drivers */
4637 link->next = dev_list;
4638 dev_list = link;
4639
4640 /* Allocate the generic data structure */
4641 dev = alloc_etherdev(sizeof(net_local));
4642 if (!dev) {
4643 kfree(link);
4644 return NULL;
4645 }
4646 link->priv = link->irq.Instance = dev;
4647
4648 lp = netdev_priv(dev);
4649
4650 /* Init specific data */
4651 lp->configured = 0;
4652 lp->reconfig_82593 = FALSE;
4653 lp->nresets = 0;
4654 /* Multicast stuff */
4655 lp->promiscuous = 0;
4656 lp->allmulticast = 0;
4657 lp->mc_count = 0;
4658
4659 /* Init spinlock */
4660 spin_lock_init(&lp->spinlock);
4661
4662 /* back links */
4663 lp->link = link;
4664 lp->dev = dev;
4665
4666 /* wavelan NET3 callbacks */
4667 SET_MODULE_OWNER(dev);
4668 dev->open = &wavelan_open;
4669 dev->stop = &wavelan_close;
4670 dev->hard_start_xmit = &wavelan_packet_xmit;
4671 dev->get_stats = &wavelan_get_stats;
4672 dev->set_multicast_list = &wavelan_set_multicast_list;
4673 #ifdef SET_MAC_ADDRESS
4674 dev->set_mac_address = &wavelan_set_mac_address;
4675 #endif /* SET_MAC_ADDRESS */
4676
4677 /* Set the watchdog timer */
4678 dev->tx_timeout = &wavelan_watchdog;
4679 dev->watchdog_timeo = WATCHDOG_JIFFIES;
4680 SET_ETHTOOL_OPS(dev, &ops);
4681
4682 #ifdef WIRELESS_EXT /* If wireless extension exist in the kernel */
4683 dev->wireless_handlers = &wavelan_handler_def;
4684 lp->wireless_data.spy_data = &lp->spy_data;
4685 dev->wireless_data = &lp->wireless_data;
4686 #endif
4687
4688 /* Other specific data */
4689 dev->mtu = WAVELAN_MTU;
4690
4691 /* Register with Card Services */
4692 client_reg.dev_info = &dev_info;
4693 client_reg.Version = 0x0210;
4694 client_reg.event_callback_args.client_data = link;
4695
4696 #ifdef DEBUG_CONFIG_INFO
4697 printk(KERN_DEBUG "wavelan_attach(): almost done, calling pcmcia_register_client\n");
4698 #endif
4699
4700 ret = pcmcia_register_client(&link->handle, &client_reg);
4701 if(ret != 0)
4702 {
4703 cs_error(link->handle, RegisterClient, ret);
4704 wavelan_detach(link);
4705 return NULL;
4706 }
4707
4708 #ifdef DEBUG_CALLBACK_TRACE
4709 printk(KERN_DEBUG "<- wavelan_attach()\n");
4710 #endif
4711
4712 return link;
4713 }
4714
4715 /*------------------------------------------------------------------*/
4716 /*
4717 * This deletes a driver "instance". The device is de-registered with
4718 * Card Services. If it has been released, all local data structures
4719 * are freed. Otherwise, the structures will be freed when the device
4720 * is released.
4721 */
4722 static void
4723 wavelan_detach(dev_link_t * link)
4724 {
4725 #ifdef DEBUG_CALLBACK_TRACE
4726 printk(KERN_DEBUG "-> wavelan_detach(0x%p)\n", link);
4727 #endif
4728
4729 /*
4730 * If the device is currently configured and active, we won't
4731 * actually delete it yet. Instead, it is marked so that when the
4732 * release() function is called, that will trigger a proper
4733 * detach().
4734 */
4735 if(link->state & DEV_CONFIG)
4736 {
4737 /* Some others haven't done their job : give them another chance */
4738 wv_pcmcia_release(link);
4739 }
4740
4741 /* Break the link with Card Services */
4742 if(link->handle)
4743 pcmcia_deregister_client(link->handle);
4744
4745 /* Remove the interface data from the linked list */
4746 if(dev_list == link)
4747 dev_list = link->next;
4748 else
4749 {
4750 dev_link_t * prev = dev_list;
4751
4752 while((prev != (dev_link_t *) NULL) && (prev->next != link))
4753 prev = prev->next;
4754
4755 if(prev == (dev_link_t *) NULL)
4756 {
4757 #ifdef DEBUG_CONFIG_ERRORS
4758 printk(KERN_WARNING "wavelan_detach : Attempting to remove a nonexistent device.\n");
4759 #endif
4760 return;
4761 }
4762
4763 prev->next = link->next;
4764 }
4765
4766 /* Free pieces */
4767 if(link->priv)
4768 {
4769 struct net_device * dev = (struct net_device *) link->priv;
4770
4771 /* Remove ourselves from the kernel list of ethernet devices */
4772 /* Warning : can't be called from interrupt, timer or wavelan_close() */
4773 if (link->dev)
4774 unregister_netdev(dev);
4775 link->dev = NULL;
4776 ((net_local *)netdev_priv(dev))->link = NULL;
4777 ((net_local *)netdev_priv(dev))->dev = NULL;
4778 free_netdev(dev);
4779 }
4780 kfree(link);
4781
4782 #ifdef DEBUG_CALLBACK_TRACE
4783 printk(KERN_DEBUG "<- wavelan_detach()\n");
4784 #endif
4785 }
4786
4787 /*------------------------------------------------------------------*/
4788 /*
4789 * The card status event handler. Mostly, this schedules other stuff
4790 * to run after an event is received. A CARD_REMOVAL event also sets
4791 * some flags to discourage the net drivers from trying to talk to the
4792 * card any more.
4793 */
4794 static int
4795 wavelan_event(event_t event, /* The event received */
4796 int priority,
4797 event_callback_args_t * args)
4798 {
4799 dev_link_t * link = (dev_link_t *) args->client_data;
4800 struct net_device * dev = (struct net_device *) link->priv;
4801
4802 #ifdef DEBUG_CALLBACK_TRACE
4803 printk(KERN_DEBUG "->wavelan_event(): %s\n",
4804 ((event == CS_EVENT_REGISTRATION_COMPLETE)?"registration complete" :
4805 ((event == CS_EVENT_CARD_REMOVAL) ? "card removal" :
4806 ((event == CS_EVENT_CARD_INSERTION) ? "card insertion" :
4807 ((event == CS_EVENT_PM_SUSPEND) ? "pm suspend" :
4808 ((event == CS_EVENT_RESET_PHYSICAL) ? "physical reset" :
4809 ((event == CS_EVENT_PM_RESUME) ? "pm resume" :
4810 ((event == CS_EVENT_CARD_RESET) ? "card reset" :
4811 "unknown"))))))));
4812 #endif
4813
4814 switch(event)
4815 {
4816 case CS_EVENT_REGISTRATION_COMPLETE:
4817 #ifdef DEBUG_CONFIG_INFO
4818 printk(KERN_DEBUG "wavelan_cs: registration complete\n");
4819 #endif
4820 break;
4821
4822 case CS_EVENT_CARD_REMOVAL:
4823 /* Oups ! The card is no more there */
4824 link->state &= ~DEV_PRESENT;
4825 if(link->state & DEV_CONFIG)
4826 {
4827 /* Accept no more transmissions */
4828 netif_device_detach(dev);
4829
4830 /* Release the card */
4831 wv_pcmcia_release(link);
4832 }
4833 break;
4834
4835 case CS_EVENT_CARD_INSERTION:
4836 /* Reset and configure the card */
4837 link->state |= DEV_PRESENT | DEV_CONFIG_PENDING;
4838 if(wv_pcmcia_config(link) &&
4839 wv_hw_config(dev))
4840 wv_init_info(dev);
4841 else
4842 dev->irq = 0;
4843 break;
4844
4845 case CS_EVENT_PM_SUSPEND:
4846 /* NB: wavelan_close will be called, but too late, so we are
4847 * obliged to close nicely the wavelan here. David, could you
4848 * close the device before suspending them ? And, by the way,
4849 * could you, on resume, add a "route add -net ..." after the
4850 * ifconfig up ? Thanks... */
4851
4852 /* Stop receiving new messages and wait end of transmission */
4853 wv_ru_stop(dev);
4854
4855 /* Power down the module */
4856 hacr_write(dev->base_addr, HACR_DEFAULT & (~HACR_PWR_STAT));
4857
4858 /* The card is now suspended */
4859 link->state |= DEV_SUSPEND;
4860 /* Fall through... */
4861 case CS_EVENT_RESET_PHYSICAL:
4862 if(link->state & DEV_CONFIG)
4863 {
4864 if(link->open)
4865 netif_device_detach(dev);
4866 pcmcia_release_configuration(link->handle);
4867 }
4868 break;
4869
4870 case CS_EVENT_PM_RESUME:
4871 link->state &= ~DEV_SUSPEND;
4872 /* Fall through... */
4873 case CS_EVENT_CARD_RESET:
4874 if(link->state & DEV_CONFIG)
4875 {
4876 pcmcia_request_configuration(link->handle, &link->conf);
4877 if(link->open) /* If RESET -> True, If RESUME -> False ? */
4878 {
4879 wv_hw_reset(dev);
4880 netif_device_attach(dev);
4881 }
4882 }
4883 break;
4884 }
4885
4886 #ifdef DEBUG_CALLBACK_TRACE
4887 printk(KERN_DEBUG "<-wavelan_event()\n");
4888 #endif
4889 return 0;
4890 }
4891
4892 static struct pcmcia_device_id wavelan_ids[] = {
4893 PCMCIA_DEVICE_PROD_ID12("AT&T","WaveLAN/PCMCIA", 0xe7c5affd, 0x1bc50975),
4894 PCMCIA_DEVICE_PROD_ID12("Digital", "RoamAbout/DS", 0x9999ab35, 0x00d05e06),
4895 PCMCIA_DEVICE_PROD_ID12("Lucent Technologies", "WaveLAN/PCMCIA", 0x23eb9949, 0x1bc50975),
4896 PCMCIA_DEVICE_PROD_ID12("NCR", "WaveLAN/PCMCIA", 0x24358cd4, 0x1bc50975),
4897 PCMCIA_DEVICE_NULL,
4898 };
4899 MODULE_DEVICE_TABLE(pcmcia, wavelan_ids);
4900
4901 static struct pcmcia_driver wavelan_driver = {
4902 .owner = THIS_MODULE,
4903 .drv = {
4904 .name = "wavelan_cs",
4905 },
4906 .attach = wavelan_attach,
4907 .event = wavelan_event,
4908 .detach = wavelan_detach,
4909 .id_table = wavelan_ids,
4910 };
4911
4912 static int __init
4913 init_wavelan_cs(void)
4914 {
4915 return pcmcia_register_driver(&wavelan_driver);
4916 }
4917
4918 static void __exit
4919 exit_wavelan_cs(void)
4920 {
4921 pcmcia_unregister_driver(&wavelan_driver);
4922 }
4923
4924 module_init(init_wavelan_cs);
4925 module_exit(exit_wavelan_cs);
This page took 0.145579 seconds and 5 git commands to generate.