zd1211rw: enable NL80211_IFTYPE_AP
[deliverable/linux.git] / drivers / net / wireless / zd1211rw / zd_mac.c
1 /* ZD1211 USB-WLAN driver for Linux
2 *
3 * Copyright (C) 2005-2007 Ulrich Kunitz <kune@deine-taler.de>
4 * Copyright (C) 2006-2007 Daniel Drake <dsd@gentoo.org>
5 * Copyright (C) 2006-2007 Michael Wu <flamingice@sourmilk.net>
6 * Copyright (C) 2007-2008 Luis R. Rodriguez <mcgrof@winlab.rutgers.edu>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
21 */
22
23 #include <linux/netdevice.h>
24 #include <linux/etherdevice.h>
25 #include <linux/slab.h>
26 #include <linux/usb.h>
27 #include <linux/jiffies.h>
28 #include <net/ieee80211_radiotap.h>
29
30 #include "zd_def.h"
31 #include "zd_chip.h"
32 #include "zd_mac.h"
33 #include "zd_rf.h"
34
35 struct zd_reg_alpha2_map {
36 u32 reg;
37 char alpha2[2];
38 };
39
40 static struct zd_reg_alpha2_map reg_alpha2_map[] = {
41 { ZD_REGDOMAIN_FCC, "US" },
42 { ZD_REGDOMAIN_IC, "CA" },
43 { ZD_REGDOMAIN_ETSI, "DE" }, /* Generic ETSI, use most restrictive */
44 { ZD_REGDOMAIN_JAPAN, "JP" },
45 { ZD_REGDOMAIN_JAPAN_2, "JP" },
46 { ZD_REGDOMAIN_JAPAN_3, "JP" },
47 { ZD_REGDOMAIN_SPAIN, "ES" },
48 { ZD_REGDOMAIN_FRANCE, "FR" },
49 };
50
51 /* This table contains the hardware specific values for the modulation rates. */
52 static const struct ieee80211_rate zd_rates[] = {
53 { .bitrate = 10,
54 .hw_value = ZD_CCK_RATE_1M, },
55 { .bitrate = 20,
56 .hw_value = ZD_CCK_RATE_2M,
57 .hw_value_short = ZD_CCK_RATE_2M | ZD_CCK_PREA_SHORT,
58 .flags = IEEE80211_RATE_SHORT_PREAMBLE },
59 { .bitrate = 55,
60 .hw_value = ZD_CCK_RATE_5_5M,
61 .hw_value_short = ZD_CCK_RATE_5_5M | ZD_CCK_PREA_SHORT,
62 .flags = IEEE80211_RATE_SHORT_PREAMBLE },
63 { .bitrate = 110,
64 .hw_value = ZD_CCK_RATE_11M,
65 .hw_value_short = ZD_CCK_RATE_11M | ZD_CCK_PREA_SHORT,
66 .flags = IEEE80211_RATE_SHORT_PREAMBLE },
67 { .bitrate = 60,
68 .hw_value = ZD_OFDM_RATE_6M,
69 .flags = 0 },
70 { .bitrate = 90,
71 .hw_value = ZD_OFDM_RATE_9M,
72 .flags = 0 },
73 { .bitrate = 120,
74 .hw_value = ZD_OFDM_RATE_12M,
75 .flags = 0 },
76 { .bitrate = 180,
77 .hw_value = ZD_OFDM_RATE_18M,
78 .flags = 0 },
79 { .bitrate = 240,
80 .hw_value = ZD_OFDM_RATE_24M,
81 .flags = 0 },
82 { .bitrate = 360,
83 .hw_value = ZD_OFDM_RATE_36M,
84 .flags = 0 },
85 { .bitrate = 480,
86 .hw_value = ZD_OFDM_RATE_48M,
87 .flags = 0 },
88 { .bitrate = 540,
89 .hw_value = ZD_OFDM_RATE_54M,
90 .flags = 0 },
91 };
92
93 /*
94 * Zydas retry rates table. Each line is listed in the same order as
95 * in zd_rates[] and contains all the rate used when a packet is sent
96 * starting with a given rates. Let's consider an example :
97 *
98 * "11 Mbits : 4, 3, 2, 1, 0" means :
99 * - packet is sent using 4 different rates
100 * - 1st rate is index 3 (ie 11 Mbits)
101 * - 2nd rate is index 2 (ie 5.5 Mbits)
102 * - 3rd rate is index 1 (ie 2 Mbits)
103 * - 4th rate is index 0 (ie 1 Mbits)
104 */
105
106 static const struct tx_retry_rate zd_retry_rates[] = {
107 { /* 1 Mbits */ 1, { 0 }},
108 { /* 2 Mbits */ 2, { 1, 0 }},
109 { /* 5.5 Mbits */ 3, { 2, 1, 0 }},
110 { /* 11 Mbits */ 4, { 3, 2, 1, 0 }},
111 { /* 6 Mbits */ 5, { 4, 3, 2, 1, 0 }},
112 { /* 9 Mbits */ 6, { 5, 4, 3, 2, 1, 0}},
113 { /* 12 Mbits */ 5, { 6, 3, 2, 1, 0 }},
114 { /* 18 Mbits */ 6, { 7, 6, 3, 2, 1, 0 }},
115 { /* 24 Mbits */ 6, { 8, 6, 3, 2, 1, 0 }},
116 { /* 36 Mbits */ 7, { 9, 8, 6, 3, 2, 1, 0 }},
117 { /* 48 Mbits */ 8, {10, 9, 8, 6, 3, 2, 1, 0 }},
118 { /* 54 Mbits */ 9, {11, 10, 9, 8, 6, 3, 2, 1, 0 }}
119 };
120
121 static const struct ieee80211_channel zd_channels[] = {
122 { .center_freq = 2412, .hw_value = 1 },
123 { .center_freq = 2417, .hw_value = 2 },
124 { .center_freq = 2422, .hw_value = 3 },
125 { .center_freq = 2427, .hw_value = 4 },
126 { .center_freq = 2432, .hw_value = 5 },
127 { .center_freq = 2437, .hw_value = 6 },
128 { .center_freq = 2442, .hw_value = 7 },
129 { .center_freq = 2447, .hw_value = 8 },
130 { .center_freq = 2452, .hw_value = 9 },
131 { .center_freq = 2457, .hw_value = 10 },
132 { .center_freq = 2462, .hw_value = 11 },
133 { .center_freq = 2467, .hw_value = 12 },
134 { .center_freq = 2472, .hw_value = 13 },
135 { .center_freq = 2484, .hw_value = 14 },
136 };
137
138 static void housekeeping_init(struct zd_mac *mac);
139 static void housekeeping_enable(struct zd_mac *mac);
140 static void housekeeping_disable(struct zd_mac *mac);
141 static void beacon_init(struct zd_mac *mac);
142 static void beacon_enable(struct zd_mac *mac);
143 static void beacon_disable(struct zd_mac *mac);
144 static void set_rts_cts(struct zd_mac *mac, unsigned int short_preamble);
145 static int zd_mac_config_beacon(struct ieee80211_hw *hw,
146 struct sk_buff *beacon);
147
148 static int zd_reg2alpha2(u8 regdomain, char *alpha2)
149 {
150 unsigned int i;
151 struct zd_reg_alpha2_map *reg_map;
152 for (i = 0; i < ARRAY_SIZE(reg_alpha2_map); i++) {
153 reg_map = &reg_alpha2_map[i];
154 if (regdomain == reg_map->reg) {
155 alpha2[0] = reg_map->alpha2[0];
156 alpha2[1] = reg_map->alpha2[1];
157 return 0;
158 }
159 }
160 return 1;
161 }
162
163 int zd_mac_preinit_hw(struct ieee80211_hw *hw)
164 {
165 int r;
166 u8 addr[ETH_ALEN];
167 struct zd_mac *mac = zd_hw_mac(hw);
168
169 r = zd_chip_read_mac_addr_fw(&mac->chip, addr);
170 if (r)
171 return r;
172
173 SET_IEEE80211_PERM_ADDR(hw, addr);
174
175 return 0;
176 }
177
178 int zd_mac_init_hw(struct ieee80211_hw *hw)
179 {
180 int r;
181 struct zd_mac *mac = zd_hw_mac(hw);
182 struct zd_chip *chip = &mac->chip;
183 char alpha2[2];
184 u8 default_regdomain;
185
186 r = zd_chip_enable_int(chip);
187 if (r)
188 goto out;
189 r = zd_chip_init_hw(chip);
190 if (r)
191 goto disable_int;
192
193 ZD_ASSERT(!irqs_disabled());
194
195 r = zd_read_regdomain(chip, &default_regdomain);
196 if (r)
197 goto disable_int;
198 spin_lock_irq(&mac->lock);
199 mac->regdomain = mac->default_regdomain = default_regdomain;
200 spin_unlock_irq(&mac->lock);
201
202 /* We must inform the device that we are doing encryption/decryption in
203 * software at the moment. */
204 r = zd_set_encryption_type(chip, ENC_SNIFFER);
205 if (r)
206 goto disable_int;
207
208 r = zd_reg2alpha2(mac->regdomain, alpha2);
209 if (r)
210 goto disable_int;
211
212 r = regulatory_hint(hw->wiphy, alpha2);
213 disable_int:
214 zd_chip_disable_int(chip);
215 out:
216 return r;
217 }
218
219 void zd_mac_clear(struct zd_mac *mac)
220 {
221 flush_workqueue(zd_workqueue);
222 zd_chip_clear(&mac->chip);
223 ZD_ASSERT(!spin_is_locked(&mac->lock));
224 ZD_MEMCLEAR(mac, sizeof(struct zd_mac));
225 }
226
227 static int set_rx_filter(struct zd_mac *mac)
228 {
229 unsigned long flags;
230 u32 filter = STA_RX_FILTER;
231
232 spin_lock_irqsave(&mac->lock, flags);
233 if (mac->pass_ctrl)
234 filter |= RX_FILTER_CTRL;
235 spin_unlock_irqrestore(&mac->lock, flags);
236
237 return zd_iowrite32(&mac->chip, CR_RX_FILTER, filter);
238 }
239
240 static int set_mac_and_bssid(struct zd_mac *mac)
241 {
242 int r;
243
244 if (!mac->vif)
245 return -1;
246
247 r = zd_write_mac_addr(&mac->chip, mac->vif->addr);
248 if (r)
249 return r;
250
251 /* Vendor driver after setting MAC either sets BSSID for AP or
252 * filter for other modes.
253 */
254 if (mac->type != NL80211_IFTYPE_AP)
255 return set_rx_filter(mac);
256 else
257 return zd_write_bssid(&mac->chip, mac->vif->addr);
258 }
259
260 static int set_mc_hash(struct zd_mac *mac)
261 {
262 struct zd_mc_hash hash;
263 zd_mc_clear(&hash);
264 return zd_chip_set_multicast_hash(&mac->chip, &hash);
265 }
266
267 int zd_op_start(struct ieee80211_hw *hw)
268 {
269 struct zd_mac *mac = zd_hw_mac(hw);
270 struct zd_chip *chip = &mac->chip;
271 struct zd_usb *usb = &chip->usb;
272 int r;
273
274 if (!usb->initialized) {
275 r = zd_usb_init_hw(usb);
276 if (r)
277 goto out;
278 }
279
280 r = zd_chip_enable_int(chip);
281 if (r < 0)
282 goto out;
283
284 r = zd_chip_set_basic_rates(chip, CR_RATES_80211B | CR_RATES_80211G);
285 if (r < 0)
286 goto disable_int;
287 r = set_rx_filter(mac);
288 if (r)
289 goto disable_int;
290 r = set_mc_hash(mac);
291 if (r)
292 goto disable_int;
293 r = zd_chip_switch_radio_on(chip);
294 if (r < 0)
295 goto disable_int;
296 r = zd_chip_enable_rxtx(chip);
297 if (r < 0)
298 goto disable_radio;
299 r = zd_chip_enable_hwint(chip);
300 if (r < 0)
301 goto disable_rxtx;
302
303 housekeeping_enable(mac);
304 beacon_enable(mac);
305 set_bit(ZD_DEVICE_RUNNING, &mac->flags);
306 return 0;
307 disable_rxtx:
308 zd_chip_disable_rxtx(chip);
309 disable_radio:
310 zd_chip_switch_radio_off(chip);
311 disable_int:
312 zd_chip_disable_int(chip);
313 out:
314 return r;
315 }
316
317 void zd_op_stop(struct ieee80211_hw *hw)
318 {
319 struct zd_mac *mac = zd_hw_mac(hw);
320 struct zd_chip *chip = &mac->chip;
321 struct sk_buff *skb;
322 struct sk_buff_head *ack_wait_queue = &mac->ack_wait_queue;
323
324 clear_bit(ZD_DEVICE_RUNNING, &mac->flags);
325
326 /* The order here deliberately is a little different from the open()
327 * method, since we need to make sure there is no opportunity for RX
328 * frames to be processed by mac80211 after we have stopped it.
329 */
330
331 zd_chip_disable_rxtx(chip);
332 beacon_disable(mac);
333 housekeeping_disable(mac);
334 flush_workqueue(zd_workqueue);
335
336 zd_chip_disable_hwint(chip);
337 zd_chip_switch_radio_off(chip);
338 zd_chip_disable_int(chip);
339
340
341 while ((skb = skb_dequeue(ack_wait_queue)))
342 dev_kfree_skb_any(skb);
343 }
344
345 int zd_restore_settings(struct zd_mac *mac)
346 {
347 struct sk_buff *beacon;
348 struct zd_mc_hash multicast_hash;
349 unsigned int short_preamble;
350 int r, beacon_interval, beacon_period;
351 u8 channel;
352
353 dev_dbg_f(zd_mac_dev(mac), "\n");
354
355 spin_lock_irq(&mac->lock);
356 multicast_hash = mac->multicast_hash;
357 short_preamble = mac->short_preamble;
358 beacon_interval = mac->beacon.interval;
359 beacon_period = mac->beacon.period;
360 channel = mac->channel;
361 spin_unlock_irq(&mac->lock);
362
363 r = set_mac_and_bssid(mac);
364 if (r < 0) {
365 dev_dbg_f(zd_mac_dev(mac), "set_mac_and_bssid failed, %d\n", r);
366 return r;
367 }
368
369 r = zd_chip_set_channel(&mac->chip, channel);
370 if (r < 0) {
371 dev_dbg_f(zd_mac_dev(mac), "zd_chip_set_channel failed, %d\n",
372 r);
373 return r;
374 }
375
376 set_rts_cts(mac, short_preamble);
377
378 r = zd_chip_set_multicast_hash(&mac->chip, &multicast_hash);
379 if (r < 0) {
380 dev_dbg_f(zd_mac_dev(mac),
381 "zd_chip_set_multicast_hash failed, %d\n", r);
382 return r;
383 }
384
385 if (mac->type == NL80211_IFTYPE_MESH_POINT ||
386 mac->type == NL80211_IFTYPE_ADHOC ||
387 mac->type == NL80211_IFTYPE_AP) {
388 if (mac->vif != NULL) {
389 beacon = ieee80211_beacon_get(mac->hw, mac->vif);
390 if (beacon) {
391 zd_mac_config_beacon(mac->hw, beacon);
392 kfree_skb(beacon);
393 }
394 }
395
396 zd_set_beacon_interval(&mac->chip, beacon_interval,
397 beacon_period, mac->type);
398
399 spin_lock_irq(&mac->lock);
400 mac->beacon.last_update = jiffies;
401 spin_unlock_irq(&mac->lock);
402 }
403
404 return 0;
405 }
406
407 /**
408 * zd_mac_tx_status - reports tx status of a packet if required
409 * @hw - a &struct ieee80211_hw pointer
410 * @skb - a sk-buffer
411 * @flags: extra flags to set in the TX status info
412 * @ackssi: ACK signal strength
413 * @success - True for successful transmission of the frame
414 *
415 * This information calls ieee80211_tx_status_irqsafe() if required by the
416 * control information. It copies the control information into the status
417 * information.
418 *
419 * If no status information has been requested, the skb is freed.
420 */
421 static void zd_mac_tx_status(struct ieee80211_hw *hw, struct sk_buff *skb,
422 int ackssi, struct tx_status *tx_status)
423 {
424 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
425 int i;
426 int success = 1, retry = 1;
427 int first_idx;
428 const struct tx_retry_rate *retries;
429
430 ieee80211_tx_info_clear_status(info);
431
432 if (tx_status) {
433 success = !tx_status->failure;
434 retry = tx_status->retry + success;
435 }
436
437 if (success) {
438 /* success */
439 info->flags |= IEEE80211_TX_STAT_ACK;
440 } else {
441 /* failure */
442 info->flags &= ~IEEE80211_TX_STAT_ACK;
443 }
444
445 first_idx = info->status.rates[0].idx;
446 ZD_ASSERT(0<=first_idx && first_idx<ARRAY_SIZE(zd_retry_rates));
447 retries = &zd_retry_rates[first_idx];
448 ZD_ASSERT(1 <= retry && retry <= retries->count);
449
450 info->status.rates[0].idx = retries->rate[0];
451 info->status.rates[0].count = 1; // (retry > 1 ? 2 : 1);
452
453 for (i=1; i<IEEE80211_TX_MAX_RATES-1 && i<retry; i++) {
454 info->status.rates[i].idx = retries->rate[i];
455 info->status.rates[i].count = 1; // ((i==retry-1) && success ? 1:2);
456 }
457 for (; i<IEEE80211_TX_MAX_RATES && i<retry; i++) {
458 info->status.rates[i].idx = retries->rate[retry - 1];
459 info->status.rates[i].count = 1; // (success ? 1:2);
460 }
461 if (i<IEEE80211_TX_MAX_RATES)
462 info->status.rates[i].idx = -1; /* terminate */
463
464 info->status.ack_signal = ackssi;
465 ieee80211_tx_status_irqsafe(hw, skb);
466 }
467
468 /**
469 * zd_mac_tx_failed - callback for failed frames
470 * @dev: the mac80211 wireless device
471 *
472 * This function is called if a frame couldn't be successfully
473 * transferred. The first frame from the tx queue, will be selected and
474 * reported as error to the upper layers.
475 */
476 void zd_mac_tx_failed(struct urb *urb)
477 {
478 struct ieee80211_hw * hw = zd_usb_to_hw(urb->context);
479 struct zd_mac *mac = zd_hw_mac(hw);
480 struct sk_buff_head *q = &mac->ack_wait_queue;
481 struct sk_buff *skb;
482 struct tx_status *tx_status = (struct tx_status *)urb->transfer_buffer;
483 unsigned long flags;
484 int success = !tx_status->failure;
485 int retry = tx_status->retry + success;
486 int found = 0;
487 int i, position = 0;
488
489 q = &mac->ack_wait_queue;
490 spin_lock_irqsave(&q->lock, flags);
491
492 skb_queue_walk(q, skb) {
493 struct ieee80211_hdr *tx_hdr;
494 struct ieee80211_tx_info *info;
495 int first_idx, final_idx;
496 const struct tx_retry_rate *retries;
497 u8 final_rate;
498
499 position ++;
500
501 /* if the hardware reports a failure and we had a 802.11 ACK
502 * pending, then we skip the first skb when searching for a
503 * matching frame */
504 if (tx_status->failure && mac->ack_pending &&
505 skb_queue_is_first(q, skb)) {
506 continue;
507 }
508
509 tx_hdr = (struct ieee80211_hdr *)skb->data;
510
511 /* we skip all frames not matching the reported destination */
512 if (unlikely(memcmp(tx_hdr->addr1, tx_status->mac, ETH_ALEN))) {
513 continue;
514 }
515
516 /* we skip all frames not matching the reported final rate */
517
518 info = IEEE80211_SKB_CB(skb);
519 first_idx = info->status.rates[0].idx;
520 ZD_ASSERT(0<=first_idx && first_idx<ARRAY_SIZE(zd_retry_rates));
521 retries = &zd_retry_rates[first_idx];
522 if (retry <= 0 || retry > retries->count)
523 continue;
524
525 final_idx = retries->rate[retry - 1];
526 final_rate = zd_rates[final_idx].hw_value;
527
528 if (final_rate != tx_status->rate) {
529 continue;
530 }
531
532 found = 1;
533 break;
534 }
535
536 if (found) {
537 for (i=1; i<=position; i++) {
538 skb = __skb_dequeue(q);
539 zd_mac_tx_status(hw, skb,
540 mac->ack_pending ? mac->ack_signal : 0,
541 i == position ? tx_status : NULL);
542 mac->ack_pending = 0;
543 }
544 }
545
546 spin_unlock_irqrestore(&q->lock, flags);
547 }
548
549 /**
550 * zd_mac_tx_to_dev - callback for USB layer
551 * @skb: a &sk_buff pointer
552 * @error: error value, 0 if transmission successful
553 *
554 * Informs the MAC layer that the frame has successfully transferred to the
555 * device. If an ACK is required and the transfer to the device has been
556 * successful, the packets are put on the @ack_wait_queue with
557 * the control set removed.
558 */
559 void zd_mac_tx_to_dev(struct sk_buff *skb, int error)
560 {
561 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
562 struct ieee80211_hw *hw = info->rate_driver_data[0];
563 struct zd_mac *mac = zd_hw_mac(hw);
564
565 ieee80211_tx_info_clear_status(info);
566
567 skb_pull(skb, sizeof(struct zd_ctrlset));
568 if (unlikely(error ||
569 (info->flags & IEEE80211_TX_CTL_NO_ACK))) {
570 /*
571 * FIXME : do we need to fill in anything ?
572 */
573 ieee80211_tx_status_irqsafe(hw, skb);
574 } else {
575 struct sk_buff_head *q = &mac->ack_wait_queue;
576
577 skb_queue_tail(q, skb);
578 while (skb_queue_len(q) > ZD_MAC_MAX_ACK_WAITERS) {
579 zd_mac_tx_status(hw, skb_dequeue(q),
580 mac->ack_pending ? mac->ack_signal : 0,
581 NULL);
582 mac->ack_pending = 0;
583 }
584 }
585 }
586
587 static int zd_calc_tx_length_us(u8 *service, u8 zd_rate, u16 tx_length)
588 {
589 /* ZD_PURE_RATE() must be used to remove the modulation type flag of
590 * the zd-rate values.
591 */
592 static const u8 rate_divisor[] = {
593 [ZD_PURE_RATE(ZD_CCK_RATE_1M)] = 1,
594 [ZD_PURE_RATE(ZD_CCK_RATE_2M)] = 2,
595 /* Bits must be doubled. */
596 [ZD_PURE_RATE(ZD_CCK_RATE_5_5M)] = 11,
597 [ZD_PURE_RATE(ZD_CCK_RATE_11M)] = 11,
598 [ZD_PURE_RATE(ZD_OFDM_RATE_6M)] = 6,
599 [ZD_PURE_RATE(ZD_OFDM_RATE_9M)] = 9,
600 [ZD_PURE_RATE(ZD_OFDM_RATE_12M)] = 12,
601 [ZD_PURE_RATE(ZD_OFDM_RATE_18M)] = 18,
602 [ZD_PURE_RATE(ZD_OFDM_RATE_24M)] = 24,
603 [ZD_PURE_RATE(ZD_OFDM_RATE_36M)] = 36,
604 [ZD_PURE_RATE(ZD_OFDM_RATE_48M)] = 48,
605 [ZD_PURE_RATE(ZD_OFDM_RATE_54M)] = 54,
606 };
607
608 u32 bits = (u32)tx_length * 8;
609 u32 divisor;
610
611 divisor = rate_divisor[ZD_PURE_RATE(zd_rate)];
612 if (divisor == 0)
613 return -EINVAL;
614
615 switch (zd_rate) {
616 case ZD_CCK_RATE_5_5M:
617 bits = (2*bits) + 10; /* round up to the next integer */
618 break;
619 case ZD_CCK_RATE_11M:
620 if (service) {
621 u32 t = bits % 11;
622 *service &= ~ZD_PLCP_SERVICE_LENGTH_EXTENSION;
623 if (0 < t && t <= 3) {
624 *service |= ZD_PLCP_SERVICE_LENGTH_EXTENSION;
625 }
626 }
627 bits += 10; /* round up to the next integer */
628 break;
629 }
630
631 return bits/divisor;
632 }
633
634 static void cs_set_control(struct zd_mac *mac, struct zd_ctrlset *cs,
635 struct ieee80211_hdr *header,
636 struct ieee80211_tx_info *info)
637 {
638 /*
639 * CONTROL TODO:
640 * - if backoff needed, enable bit 0
641 * - if burst (backoff not needed) disable bit 0
642 */
643
644 cs->control = 0;
645
646 /* First fragment */
647 if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
648 cs->control |= ZD_CS_NEED_RANDOM_BACKOFF;
649
650 /* No ACK expected (multicast, etc.) */
651 if (info->flags & IEEE80211_TX_CTL_NO_ACK)
652 cs->control |= ZD_CS_NO_ACK;
653
654 /* PS-POLL */
655 if (ieee80211_is_pspoll(header->frame_control))
656 cs->control |= ZD_CS_PS_POLL_FRAME;
657
658 if (info->control.rates[0].flags & IEEE80211_TX_RC_USE_RTS_CTS)
659 cs->control |= ZD_CS_RTS;
660
661 if (info->control.rates[0].flags & IEEE80211_TX_RC_USE_CTS_PROTECT)
662 cs->control |= ZD_CS_SELF_CTS;
663
664 /* FIXME: Management frame? */
665 }
666
667 static int zd_mac_config_beacon(struct ieee80211_hw *hw, struct sk_buff *beacon)
668 {
669 struct zd_mac *mac = zd_hw_mac(hw);
670 int r, ret, num_cmds, req_pos = 0;
671 u32 tmp, j = 0;
672 /* 4 more bytes for tail CRC */
673 u32 full_len = beacon->len + 4;
674 unsigned long end_jiffies, message_jiffies;
675 struct zd_ioreq32 *ioreqs;
676
677 /* Alloc memory for full beacon write at once. */
678 num_cmds = 1 + zd_chip_is_zd1211b(&mac->chip) + full_len;
679 ioreqs = kmalloc(num_cmds * sizeof(struct zd_ioreq32), GFP_KERNEL);
680 if (!ioreqs)
681 return -ENOMEM;
682
683 mutex_lock(&mac->chip.mutex);
684
685 r = zd_iowrite32_locked(&mac->chip, 0, CR_BCN_FIFO_SEMAPHORE);
686 if (r < 0)
687 goto out;
688 r = zd_ioread32_locked(&mac->chip, &tmp, CR_BCN_FIFO_SEMAPHORE);
689 if (r < 0)
690 goto release_sema;
691
692 end_jiffies = jiffies + HZ / 2; /*~500ms*/
693 message_jiffies = jiffies + HZ / 10; /*~100ms*/
694 while (tmp & 0x2) {
695 r = zd_ioread32_locked(&mac->chip, &tmp, CR_BCN_FIFO_SEMAPHORE);
696 if (r < 0)
697 goto release_sema;
698 if (time_is_before_eq_jiffies(message_jiffies)) {
699 message_jiffies = jiffies + HZ / 10;
700 dev_err(zd_mac_dev(mac),
701 "CR_BCN_FIFO_SEMAPHORE not ready\n");
702 if (time_is_before_eq_jiffies(end_jiffies)) {
703 dev_err(zd_mac_dev(mac),
704 "Giving up beacon config.\n");
705 r = -ETIMEDOUT;
706 goto reset_device;
707 }
708 }
709 msleep(20);
710 }
711
712 ioreqs[req_pos].addr = CR_BCN_FIFO;
713 ioreqs[req_pos].value = full_len - 1;
714 req_pos++;
715 if (zd_chip_is_zd1211b(&mac->chip)) {
716 ioreqs[req_pos].addr = CR_BCN_LENGTH;
717 ioreqs[req_pos].value = full_len - 1;
718 req_pos++;
719 }
720
721 for (j = 0 ; j < beacon->len; j++) {
722 ioreqs[req_pos].addr = CR_BCN_FIFO;
723 ioreqs[req_pos].value = *((u8 *)(beacon->data + j));
724 req_pos++;
725 }
726
727 for (j = 0; j < 4; j++) {
728 ioreqs[req_pos].addr = CR_BCN_FIFO;
729 ioreqs[req_pos].value = 0x0;
730 req_pos++;
731 }
732
733 BUG_ON(req_pos != num_cmds);
734
735 r = zd_iowrite32a_locked(&mac->chip, ioreqs, num_cmds);
736
737 release_sema:
738 /*
739 * Try very hard to release device beacon semaphore, as otherwise
740 * device/driver can be left in unusable state.
741 */
742 end_jiffies = jiffies + HZ / 2; /*~500ms*/
743 ret = zd_iowrite32_locked(&mac->chip, 1, CR_BCN_FIFO_SEMAPHORE);
744 while (ret < 0) {
745 if (time_is_before_eq_jiffies(end_jiffies)) {
746 ret = -ETIMEDOUT;
747 break;
748 }
749
750 msleep(20);
751 ret = zd_iowrite32_locked(&mac->chip, 1, CR_BCN_FIFO_SEMAPHORE);
752 }
753
754 if (ret < 0)
755 dev_err(zd_mac_dev(mac), "Could not release "
756 "CR_BCN_FIFO_SEMAPHORE!\n");
757 if (r < 0 || ret < 0) {
758 if (r >= 0)
759 r = ret;
760 goto out;
761 }
762
763 /* 802.11b/g 2.4G CCK 1Mb
764 * 802.11a, not yet implemented, uses different values (see GPL vendor
765 * driver)
766 */
767 r = zd_iowrite32_locked(&mac->chip, 0x00000400 | (full_len << 19),
768 CR_BCN_PLCP_CFG);
769 out:
770 mutex_unlock(&mac->chip.mutex);
771 kfree(ioreqs);
772 return r;
773
774 reset_device:
775 mutex_unlock(&mac->chip.mutex);
776 kfree(ioreqs);
777
778 /* semaphore stuck, reset device to avoid fw freeze later */
779 dev_warn(zd_mac_dev(mac), "CR_BCN_FIFO_SEMAPHORE stuck, "
780 "reseting device...");
781 usb_queue_reset_device(mac->chip.usb.intf);
782
783 return r;
784 }
785
786 static int fill_ctrlset(struct zd_mac *mac,
787 struct sk_buff *skb)
788 {
789 int r;
790 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
791 unsigned int frag_len = skb->len + FCS_LEN;
792 unsigned int packet_length;
793 struct ieee80211_rate *txrate;
794 struct zd_ctrlset *cs = (struct zd_ctrlset *)
795 skb_push(skb, sizeof(struct zd_ctrlset));
796 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
797
798 ZD_ASSERT(frag_len <= 0xffff);
799
800 txrate = ieee80211_get_tx_rate(mac->hw, info);
801
802 cs->modulation = txrate->hw_value;
803 if (info->control.rates[0].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
804 cs->modulation = txrate->hw_value_short;
805
806 cs->tx_length = cpu_to_le16(frag_len);
807
808 cs_set_control(mac, cs, hdr, info);
809
810 packet_length = frag_len + sizeof(struct zd_ctrlset) + 10;
811 ZD_ASSERT(packet_length <= 0xffff);
812 /* ZD1211B: Computing the length difference this way, gives us
813 * flexibility to compute the packet length.
814 */
815 cs->packet_length = cpu_to_le16(zd_chip_is_zd1211b(&mac->chip) ?
816 packet_length - frag_len : packet_length);
817
818 /*
819 * CURRENT LENGTH:
820 * - transmit frame length in microseconds
821 * - seems to be derived from frame length
822 * - see Cal_Us_Service() in zdinlinef.h
823 * - if macp->bTxBurstEnable is enabled, then multiply by 4
824 * - bTxBurstEnable is never set in the vendor driver
825 *
826 * SERVICE:
827 * - "for PLCP configuration"
828 * - always 0 except in some situations at 802.11b 11M
829 * - see line 53 of zdinlinef.h
830 */
831 cs->service = 0;
832 r = zd_calc_tx_length_us(&cs->service, ZD_RATE(cs->modulation),
833 le16_to_cpu(cs->tx_length));
834 if (r < 0)
835 return r;
836 cs->current_length = cpu_to_le16(r);
837 cs->next_frame_length = 0;
838
839 return 0;
840 }
841
842 /**
843 * zd_op_tx - transmits a network frame to the device
844 *
845 * @dev: mac80211 hardware device
846 * @skb: socket buffer
847 * @control: the control structure
848 *
849 * This function transmit an IEEE 802.11 network frame to the device. The
850 * control block of the skbuff will be initialized. If necessary the incoming
851 * mac80211 queues will be stopped.
852 */
853 static int zd_op_tx(struct ieee80211_hw *hw, struct sk_buff *skb)
854 {
855 struct zd_mac *mac = zd_hw_mac(hw);
856 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
857 int r;
858
859 r = fill_ctrlset(mac, skb);
860 if (r)
861 goto fail;
862
863 info->rate_driver_data[0] = hw;
864
865 r = zd_usb_tx(&mac->chip.usb, skb);
866 if (r)
867 goto fail;
868 return 0;
869
870 fail:
871 dev_kfree_skb(skb);
872 return 0;
873 }
874
875 /**
876 * filter_ack - filters incoming packets for acknowledgements
877 * @dev: the mac80211 device
878 * @rx_hdr: received header
879 * @stats: the status for the received packet
880 *
881 * This functions looks for ACK packets and tries to match them with the
882 * frames in the tx queue. If a match is found the frame will be dequeued and
883 * the upper layers is informed about the successful transmission. If
884 * mac80211 queues have been stopped and the number of frames still to be
885 * transmitted is low the queues will be opened again.
886 *
887 * Returns 1 if the frame was an ACK, 0 if it was ignored.
888 */
889 static int filter_ack(struct ieee80211_hw *hw, struct ieee80211_hdr *rx_hdr,
890 struct ieee80211_rx_status *stats)
891 {
892 struct zd_mac *mac = zd_hw_mac(hw);
893 struct sk_buff *skb;
894 struct sk_buff_head *q;
895 unsigned long flags;
896 int found = 0;
897 int i, position = 0;
898
899 if (!ieee80211_is_ack(rx_hdr->frame_control))
900 return 0;
901
902 q = &mac->ack_wait_queue;
903 spin_lock_irqsave(&q->lock, flags);
904 skb_queue_walk(q, skb) {
905 struct ieee80211_hdr *tx_hdr;
906
907 position ++;
908
909 if (mac->ack_pending && skb_queue_is_first(q, skb))
910 continue;
911
912 tx_hdr = (struct ieee80211_hdr *)skb->data;
913 if (likely(!memcmp(tx_hdr->addr2, rx_hdr->addr1, ETH_ALEN)))
914 {
915 found = 1;
916 break;
917 }
918 }
919
920 if (found) {
921 for (i=1; i<position; i++) {
922 skb = __skb_dequeue(q);
923 zd_mac_tx_status(hw, skb,
924 mac->ack_pending ? mac->ack_signal : 0,
925 NULL);
926 mac->ack_pending = 0;
927 }
928
929 mac->ack_pending = 1;
930 mac->ack_signal = stats->signal;
931
932 /* Prevent pending tx-packet on AP-mode */
933 if (mac->type == NL80211_IFTYPE_AP) {
934 skb = __skb_dequeue(q);
935 zd_mac_tx_status(hw, skb, mac->ack_signal, NULL);
936 mac->ack_pending = 0;
937 }
938 }
939
940 spin_unlock_irqrestore(&q->lock, flags);
941 return 1;
942 }
943
944 int zd_mac_rx(struct ieee80211_hw *hw, const u8 *buffer, unsigned int length)
945 {
946 struct zd_mac *mac = zd_hw_mac(hw);
947 struct ieee80211_rx_status stats;
948 const struct rx_status *status;
949 struct sk_buff *skb;
950 int bad_frame = 0;
951 __le16 fc;
952 int need_padding;
953 int i;
954 u8 rate;
955
956 if (length < ZD_PLCP_HEADER_SIZE + 10 /* IEEE80211_1ADDR_LEN */ +
957 FCS_LEN + sizeof(struct rx_status))
958 return -EINVAL;
959
960 memset(&stats, 0, sizeof(stats));
961
962 /* Note about pass_failed_fcs and pass_ctrl access below:
963 * mac locking intentionally omitted here, as this is the only unlocked
964 * reader and the only writer is configure_filter. Plus, if there were
965 * any races accessing these variables, it wouldn't really matter.
966 * If mac80211 ever provides a way for us to access filter flags
967 * from outside configure_filter, we could improve on this. Also, this
968 * situation may change once we implement some kind of DMA-into-skb
969 * RX path. */
970
971 /* Caller has to ensure that length >= sizeof(struct rx_status). */
972 status = (struct rx_status *)
973 (buffer + (length - sizeof(struct rx_status)));
974 if (status->frame_status & ZD_RX_ERROR) {
975 if (mac->pass_failed_fcs &&
976 (status->frame_status & ZD_RX_CRC32_ERROR)) {
977 stats.flag |= RX_FLAG_FAILED_FCS_CRC;
978 bad_frame = 1;
979 } else {
980 return -EINVAL;
981 }
982 }
983
984 stats.freq = zd_channels[_zd_chip_get_channel(&mac->chip) - 1].center_freq;
985 stats.band = IEEE80211_BAND_2GHZ;
986 stats.signal = status->signal_strength;
987
988 rate = zd_rx_rate(buffer, status);
989
990 /* todo: return index in the big switches in zd_rx_rate instead */
991 for (i = 0; i < mac->band.n_bitrates; i++)
992 if (rate == mac->band.bitrates[i].hw_value)
993 stats.rate_idx = i;
994
995 length -= ZD_PLCP_HEADER_SIZE + sizeof(struct rx_status);
996 buffer += ZD_PLCP_HEADER_SIZE;
997
998 /* Except for bad frames, filter each frame to see if it is an ACK, in
999 * which case our internal TX tracking is updated. Normally we then
1000 * bail here as there's no need to pass ACKs on up to the stack, but
1001 * there is also the case where the stack has requested us to pass
1002 * control frames on up (pass_ctrl) which we must consider. */
1003 if (!bad_frame &&
1004 filter_ack(hw, (struct ieee80211_hdr *)buffer, &stats)
1005 && !mac->pass_ctrl)
1006 return 0;
1007
1008 fc = get_unaligned((__le16*)buffer);
1009 need_padding = ieee80211_is_data_qos(fc) ^ ieee80211_has_a4(fc);
1010
1011 skb = dev_alloc_skb(length + (need_padding ? 2 : 0));
1012 if (skb == NULL)
1013 return -ENOMEM;
1014 if (need_padding) {
1015 /* Make sure the payload data is 4 byte aligned. */
1016 skb_reserve(skb, 2);
1017 }
1018
1019 /* FIXME : could we avoid this big memcpy ? */
1020 memcpy(skb_put(skb, length), buffer, length);
1021
1022 memcpy(IEEE80211_SKB_RXCB(skb), &stats, sizeof(stats));
1023 ieee80211_rx_irqsafe(hw, skb);
1024 return 0;
1025 }
1026
1027 static int zd_op_add_interface(struct ieee80211_hw *hw,
1028 struct ieee80211_vif *vif)
1029 {
1030 struct zd_mac *mac = zd_hw_mac(hw);
1031
1032 /* using NL80211_IFTYPE_UNSPECIFIED to indicate no mode selected */
1033 if (mac->type != NL80211_IFTYPE_UNSPECIFIED)
1034 return -EOPNOTSUPP;
1035
1036 switch (vif->type) {
1037 case NL80211_IFTYPE_MONITOR:
1038 case NL80211_IFTYPE_MESH_POINT:
1039 case NL80211_IFTYPE_STATION:
1040 case NL80211_IFTYPE_ADHOC:
1041 case NL80211_IFTYPE_AP:
1042 mac->type = vif->type;
1043 break;
1044 default:
1045 return -EOPNOTSUPP;
1046 }
1047
1048 mac->vif = vif;
1049
1050 return set_mac_and_bssid(mac);
1051 }
1052
1053 static void zd_op_remove_interface(struct ieee80211_hw *hw,
1054 struct ieee80211_vif *vif)
1055 {
1056 struct zd_mac *mac = zd_hw_mac(hw);
1057 mac->type = NL80211_IFTYPE_UNSPECIFIED;
1058 mac->vif = NULL;
1059 zd_set_beacon_interval(&mac->chip, 0, 0, NL80211_IFTYPE_UNSPECIFIED);
1060 zd_write_mac_addr(&mac->chip, NULL);
1061 }
1062
1063 static int zd_op_config(struct ieee80211_hw *hw, u32 changed)
1064 {
1065 struct zd_mac *mac = zd_hw_mac(hw);
1066 struct ieee80211_conf *conf = &hw->conf;
1067
1068 spin_lock_irq(&mac->lock);
1069 mac->channel = conf->channel->hw_value;
1070 spin_unlock_irq(&mac->lock);
1071
1072 return zd_chip_set_channel(&mac->chip, conf->channel->hw_value);
1073 }
1074
1075 static void zd_beacon_done(struct zd_mac *mac)
1076 {
1077 struct sk_buff *skb, *beacon;
1078
1079 if (!test_bit(ZD_DEVICE_RUNNING, &mac->flags))
1080 return;
1081 if (!mac->vif || mac->vif->type != NL80211_IFTYPE_AP)
1082 return;
1083
1084 /*
1085 * Send out buffered broad- and multicast frames.
1086 */
1087 while (!ieee80211_queue_stopped(mac->hw, 0)) {
1088 skb = ieee80211_get_buffered_bc(mac->hw, mac->vif);
1089 if (!skb)
1090 break;
1091 zd_op_tx(mac->hw, skb);
1092 }
1093
1094 /*
1095 * Fetch next beacon so that tim_count is updated.
1096 */
1097 beacon = ieee80211_beacon_get(mac->hw, mac->vif);
1098 if (beacon) {
1099 zd_mac_config_beacon(mac->hw, beacon);
1100 kfree_skb(beacon);
1101 }
1102
1103 spin_lock_irq(&mac->lock);
1104 mac->beacon.last_update = jiffies;
1105 spin_unlock_irq(&mac->lock);
1106 }
1107
1108 static void zd_process_intr(struct work_struct *work)
1109 {
1110 u16 int_status;
1111 unsigned long flags;
1112 struct zd_mac *mac = container_of(work, struct zd_mac, process_intr);
1113
1114 spin_lock_irqsave(&mac->lock, flags);
1115 int_status = le16_to_cpu(*(__le16 *)(mac->intr_buffer + 4));
1116 spin_unlock_irqrestore(&mac->lock, flags);
1117
1118 if (int_status & INT_CFG_NEXT_BCN) {
1119 /*dev_dbg_f_limit(zd_mac_dev(mac), "INT_CFG_NEXT_BCN\n");*/
1120 zd_beacon_done(mac);
1121 } else {
1122 dev_dbg_f(zd_mac_dev(mac), "Unsupported interrupt\n");
1123 }
1124
1125 zd_chip_enable_hwint(&mac->chip);
1126 }
1127
1128
1129 static u64 zd_op_prepare_multicast(struct ieee80211_hw *hw,
1130 struct netdev_hw_addr_list *mc_list)
1131 {
1132 struct zd_mac *mac = zd_hw_mac(hw);
1133 struct zd_mc_hash hash;
1134 struct netdev_hw_addr *ha;
1135
1136 zd_mc_clear(&hash);
1137
1138 netdev_hw_addr_list_for_each(ha, mc_list) {
1139 dev_dbg_f(zd_mac_dev(mac), "mc addr %pM\n", ha->addr);
1140 zd_mc_add_addr(&hash, ha->addr);
1141 }
1142
1143 return hash.low | ((u64)hash.high << 32);
1144 }
1145
1146 #define SUPPORTED_FIF_FLAGS \
1147 (FIF_PROMISC_IN_BSS | FIF_ALLMULTI | FIF_FCSFAIL | FIF_CONTROL | \
1148 FIF_OTHER_BSS | FIF_BCN_PRBRESP_PROMISC)
1149 static void zd_op_configure_filter(struct ieee80211_hw *hw,
1150 unsigned int changed_flags,
1151 unsigned int *new_flags,
1152 u64 multicast)
1153 {
1154 struct zd_mc_hash hash = {
1155 .low = multicast,
1156 .high = multicast >> 32,
1157 };
1158 struct zd_mac *mac = zd_hw_mac(hw);
1159 unsigned long flags;
1160 int r;
1161
1162 /* Only deal with supported flags */
1163 changed_flags &= SUPPORTED_FIF_FLAGS;
1164 *new_flags &= SUPPORTED_FIF_FLAGS;
1165
1166 /*
1167 * If multicast parameter (as returned by zd_op_prepare_multicast)
1168 * has changed, no bit in changed_flags is set. To handle this
1169 * situation, we do not return if changed_flags is 0. If we do so,
1170 * we will have some issue with IPv6 which uses multicast for link
1171 * layer address resolution.
1172 */
1173 if (*new_flags & (FIF_PROMISC_IN_BSS | FIF_ALLMULTI))
1174 zd_mc_add_all(&hash);
1175
1176 spin_lock_irqsave(&mac->lock, flags);
1177 mac->pass_failed_fcs = !!(*new_flags & FIF_FCSFAIL);
1178 mac->pass_ctrl = !!(*new_flags & FIF_CONTROL);
1179 mac->multicast_hash = hash;
1180 spin_unlock_irqrestore(&mac->lock, flags);
1181
1182 zd_chip_set_multicast_hash(&mac->chip, &hash);
1183
1184 if (changed_flags & FIF_CONTROL) {
1185 r = set_rx_filter(mac);
1186 if (r)
1187 dev_err(zd_mac_dev(mac), "set_rx_filter error %d\n", r);
1188 }
1189
1190 /* no handling required for FIF_OTHER_BSS as we don't currently
1191 * do BSSID filtering */
1192 /* FIXME: in future it would be nice to enable the probe response
1193 * filter (so that the driver doesn't see them) until
1194 * FIF_BCN_PRBRESP_PROMISC is set. however due to atomicity here, we'd
1195 * have to schedule work to enable prbresp reception, which might
1196 * happen too late. For now we'll just listen and forward them all the
1197 * time. */
1198 }
1199
1200 static void set_rts_cts(struct zd_mac *mac, unsigned int short_preamble)
1201 {
1202 mutex_lock(&mac->chip.mutex);
1203 zd_chip_set_rts_cts_rate_locked(&mac->chip, short_preamble);
1204 mutex_unlock(&mac->chip.mutex);
1205 }
1206
1207 static void zd_op_bss_info_changed(struct ieee80211_hw *hw,
1208 struct ieee80211_vif *vif,
1209 struct ieee80211_bss_conf *bss_conf,
1210 u32 changes)
1211 {
1212 struct zd_mac *mac = zd_hw_mac(hw);
1213 int associated;
1214
1215 dev_dbg_f(zd_mac_dev(mac), "changes: %x\n", changes);
1216
1217 if (mac->type == NL80211_IFTYPE_MESH_POINT ||
1218 mac->type == NL80211_IFTYPE_ADHOC ||
1219 mac->type == NL80211_IFTYPE_AP) {
1220 associated = true;
1221 if (changes & BSS_CHANGED_BEACON) {
1222 struct sk_buff *beacon = ieee80211_beacon_get(hw, vif);
1223
1224 if (beacon) {
1225 zd_chip_disable_hwint(&mac->chip);
1226 zd_mac_config_beacon(hw, beacon);
1227 zd_chip_enable_hwint(&mac->chip);
1228 kfree_skb(beacon);
1229 }
1230 }
1231
1232 if (changes & BSS_CHANGED_BEACON_ENABLED) {
1233 u16 interval = 0;
1234 u8 period = 0;
1235
1236 if (bss_conf->enable_beacon) {
1237 period = bss_conf->dtim_period;
1238 interval = bss_conf->beacon_int;
1239 }
1240
1241 spin_lock_irq(&mac->lock);
1242 mac->beacon.period = period;
1243 mac->beacon.interval = interval;
1244 mac->beacon.last_update = jiffies;
1245 spin_unlock_irq(&mac->lock);
1246
1247 zd_set_beacon_interval(&mac->chip, interval, period,
1248 mac->type);
1249 }
1250 } else
1251 associated = is_valid_ether_addr(bss_conf->bssid);
1252
1253 spin_lock_irq(&mac->lock);
1254 mac->associated = associated;
1255 spin_unlock_irq(&mac->lock);
1256
1257 /* TODO: do hardware bssid filtering */
1258
1259 if (changes & BSS_CHANGED_ERP_PREAMBLE) {
1260 spin_lock_irq(&mac->lock);
1261 mac->short_preamble = bss_conf->use_short_preamble;
1262 spin_unlock_irq(&mac->lock);
1263
1264 set_rts_cts(mac, bss_conf->use_short_preamble);
1265 }
1266 }
1267
1268 static u64 zd_op_get_tsf(struct ieee80211_hw *hw)
1269 {
1270 struct zd_mac *mac = zd_hw_mac(hw);
1271 return zd_chip_get_tsf(&mac->chip);
1272 }
1273
1274 static const struct ieee80211_ops zd_ops = {
1275 .tx = zd_op_tx,
1276 .start = zd_op_start,
1277 .stop = zd_op_stop,
1278 .add_interface = zd_op_add_interface,
1279 .remove_interface = zd_op_remove_interface,
1280 .config = zd_op_config,
1281 .prepare_multicast = zd_op_prepare_multicast,
1282 .configure_filter = zd_op_configure_filter,
1283 .bss_info_changed = zd_op_bss_info_changed,
1284 .get_tsf = zd_op_get_tsf,
1285 };
1286
1287 struct ieee80211_hw *zd_mac_alloc_hw(struct usb_interface *intf)
1288 {
1289 struct zd_mac *mac;
1290 struct ieee80211_hw *hw;
1291
1292 hw = ieee80211_alloc_hw(sizeof(struct zd_mac), &zd_ops);
1293 if (!hw) {
1294 dev_dbg_f(&intf->dev, "out of memory\n");
1295 return NULL;
1296 }
1297
1298 mac = zd_hw_mac(hw);
1299
1300 memset(mac, 0, sizeof(*mac));
1301 spin_lock_init(&mac->lock);
1302 mac->hw = hw;
1303
1304 mac->type = NL80211_IFTYPE_UNSPECIFIED;
1305
1306 memcpy(mac->channels, zd_channels, sizeof(zd_channels));
1307 memcpy(mac->rates, zd_rates, sizeof(zd_rates));
1308 mac->band.n_bitrates = ARRAY_SIZE(zd_rates);
1309 mac->band.bitrates = mac->rates;
1310 mac->band.n_channels = ARRAY_SIZE(zd_channels);
1311 mac->band.channels = mac->channels;
1312
1313 hw->wiphy->bands[IEEE80211_BAND_2GHZ] = &mac->band;
1314
1315 hw->flags = IEEE80211_HW_RX_INCLUDES_FCS |
1316 IEEE80211_HW_SIGNAL_UNSPEC |
1317 IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING;
1318
1319 hw->wiphy->interface_modes =
1320 BIT(NL80211_IFTYPE_MESH_POINT) |
1321 BIT(NL80211_IFTYPE_STATION) |
1322 BIT(NL80211_IFTYPE_ADHOC) |
1323 BIT(NL80211_IFTYPE_AP);
1324
1325 hw->max_signal = 100;
1326 hw->queues = 1;
1327 hw->extra_tx_headroom = sizeof(struct zd_ctrlset);
1328
1329 /*
1330 * Tell mac80211 that we support multi rate retries
1331 */
1332 hw->max_rates = IEEE80211_TX_MAX_RATES;
1333 hw->max_rate_tries = 18; /* 9 rates * 2 retries/rate */
1334
1335 skb_queue_head_init(&mac->ack_wait_queue);
1336 mac->ack_pending = 0;
1337
1338 zd_chip_init(&mac->chip, hw, intf);
1339 housekeeping_init(mac);
1340 beacon_init(mac);
1341 INIT_WORK(&mac->process_intr, zd_process_intr);
1342
1343 SET_IEEE80211_DEV(hw, &intf->dev);
1344 return hw;
1345 }
1346
1347 #define BEACON_WATCHDOG_DELAY round_jiffies_relative(HZ)
1348
1349 static void beacon_watchdog_handler(struct work_struct *work)
1350 {
1351 struct zd_mac *mac =
1352 container_of(work, struct zd_mac, beacon.watchdog_work.work);
1353 struct sk_buff *beacon;
1354 unsigned long timeout;
1355 int interval, period;
1356
1357 if (!test_bit(ZD_DEVICE_RUNNING, &mac->flags))
1358 goto rearm;
1359 if (mac->type != NL80211_IFTYPE_AP || !mac->vif)
1360 goto rearm;
1361
1362 spin_lock_irq(&mac->lock);
1363 interval = mac->beacon.interval;
1364 period = mac->beacon.period;
1365 timeout = mac->beacon.last_update + msecs_to_jiffies(interval) + HZ;
1366 spin_unlock_irq(&mac->lock);
1367
1368 if (interval > 0 && time_is_before_jiffies(timeout)) {
1369 dev_dbg_f(zd_mac_dev(mac), "beacon interrupt stalled, "
1370 "restarting. "
1371 "(interval: %d, dtim: %d)\n",
1372 interval, period);
1373
1374 zd_chip_disable_hwint(&mac->chip);
1375
1376 beacon = ieee80211_beacon_get(mac->hw, mac->vif);
1377 if (beacon) {
1378 zd_mac_config_beacon(mac->hw, beacon);
1379 kfree_skb(beacon);
1380 }
1381
1382 zd_set_beacon_interval(&mac->chip, interval, period, mac->type);
1383
1384 zd_chip_enable_hwint(&mac->chip);
1385
1386 spin_lock_irq(&mac->lock);
1387 mac->beacon.last_update = jiffies;
1388 spin_unlock_irq(&mac->lock);
1389 }
1390
1391 rearm:
1392 queue_delayed_work(zd_workqueue, &mac->beacon.watchdog_work,
1393 BEACON_WATCHDOG_DELAY);
1394 }
1395
1396 static void beacon_init(struct zd_mac *mac)
1397 {
1398 INIT_DELAYED_WORK(&mac->beacon.watchdog_work, beacon_watchdog_handler);
1399 }
1400
1401 static void beacon_enable(struct zd_mac *mac)
1402 {
1403 dev_dbg_f(zd_mac_dev(mac), "\n");
1404
1405 mac->beacon.last_update = jiffies;
1406 queue_delayed_work(zd_workqueue, &mac->beacon.watchdog_work,
1407 BEACON_WATCHDOG_DELAY);
1408 }
1409
1410 static void beacon_disable(struct zd_mac *mac)
1411 {
1412 dev_dbg_f(zd_mac_dev(mac), "\n");
1413 cancel_delayed_work_sync(&mac->beacon.watchdog_work);
1414 }
1415
1416 #define LINK_LED_WORK_DELAY HZ
1417
1418 static void link_led_handler(struct work_struct *work)
1419 {
1420 struct zd_mac *mac =
1421 container_of(work, struct zd_mac, housekeeping.link_led_work.work);
1422 struct zd_chip *chip = &mac->chip;
1423 int is_associated;
1424 int r;
1425
1426 if (!test_bit(ZD_DEVICE_RUNNING, &mac->flags))
1427 goto requeue;
1428
1429 spin_lock_irq(&mac->lock);
1430 is_associated = mac->associated;
1431 spin_unlock_irq(&mac->lock);
1432
1433 r = zd_chip_control_leds(chip,
1434 is_associated ? ZD_LED_ASSOCIATED : ZD_LED_SCANNING);
1435 if (r)
1436 dev_dbg_f(zd_mac_dev(mac), "zd_chip_control_leds error %d\n", r);
1437
1438 requeue:
1439 queue_delayed_work(zd_workqueue, &mac->housekeeping.link_led_work,
1440 LINK_LED_WORK_DELAY);
1441 }
1442
1443 static void housekeeping_init(struct zd_mac *mac)
1444 {
1445 INIT_DELAYED_WORK(&mac->housekeeping.link_led_work, link_led_handler);
1446 }
1447
1448 static void housekeeping_enable(struct zd_mac *mac)
1449 {
1450 dev_dbg_f(zd_mac_dev(mac), "\n");
1451 queue_delayed_work(zd_workqueue, &mac->housekeeping.link_led_work,
1452 0);
1453 }
1454
1455 static void housekeeping_disable(struct zd_mac *mac)
1456 {
1457 dev_dbg_f(zd_mac_dev(mac), "\n");
1458 cancel_delayed_work_sync(&mac->housekeeping.link_led_work);
1459 zd_chip_control_leds(&mac->chip, ZD_LED_OFF);
1460 }
This page took 0.077802 seconds and 5 git commands to generate.