mac80211: move TX info into skb->cb
[deliverable/linux.git] / drivers / net / wireless / zd1211rw / zd_mac.c
1 /* ZD1211 USB-WLAN driver for Linux
2 *
3 * Copyright (C) 2005-2007 Ulrich Kunitz <kune@deine-taler.de>
4 * Copyright (C) 2006-2007 Daniel Drake <dsd@gentoo.org>
5 * Copyright (C) 2006-2007 Michael Wu <flamingice@sourmilk.net>
6 * Copyright (c) 2007 Luis R. Rodriguez <mcgrof@winlab.rutgers.edu>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
21 */
22
23 #include <linux/netdevice.h>
24 #include <linux/etherdevice.h>
25 #include <linux/usb.h>
26 #include <linux/jiffies.h>
27 #include <net/ieee80211_radiotap.h>
28
29 #include "zd_def.h"
30 #include "zd_chip.h"
31 #include "zd_mac.h"
32 #include "zd_ieee80211.h"
33 #include "zd_rf.h"
34
35 /* This table contains the hardware specific values for the modulation rates. */
36 static const struct ieee80211_rate zd_rates[] = {
37 { .bitrate = 10,
38 .hw_value = ZD_CCK_RATE_1M, },
39 { .bitrate = 20,
40 .hw_value = ZD_CCK_RATE_2M,
41 .hw_value_short = ZD_CCK_RATE_2M | ZD_CCK_PREA_SHORT,
42 .flags = IEEE80211_RATE_SHORT_PREAMBLE },
43 { .bitrate = 55,
44 .hw_value = ZD_CCK_RATE_5_5M,
45 .hw_value_short = ZD_CCK_RATE_5_5M | ZD_CCK_PREA_SHORT,
46 .flags = IEEE80211_RATE_SHORT_PREAMBLE },
47 { .bitrate = 110,
48 .hw_value = ZD_CCK_RATE_11M,
49 .hw_value_short = ZD_CCK_RATE_11M | ZD_CCK_PREA_SHORT,
50 .flags = IEEE80211_RATE_SHORT_PREAMBLE },
51 { .bitrate = 60,
52 .hw_value = ZD_OFDM_RATE_6M,
53 .flags = 0 },
54 { .bitrate = 90,
55 .hw_value = ZD_OFDM_RATE_9M,
56 .flags = 0 },
57 { .bitrate = 120,
58 .hw_value = ZD_OFDM_RATE_12M,
59 .flags = 0 },
60 { .bitrate = 180,
61 .hw_value = ZD_OFDM_RATE_18M,
62 .flags = 0 },
63 { .bitrate = 240,
64 .hw_value = ZD_OFDM_RATE_24M,
65 .flags = 0 },
66 { .bitrate = 360,
67 .hw_value = ZD_OFDM_RATE_36M,
68 .flags = 0 },
69 { .bitrate = 480,
70 .hw_value = ZD_OFDM_RATE_48M,
71 .flags = 0 },
72 { .bitrate = 540,
73 .hw_value = ZD_OFDM_RATE_54M,
74 .flags = 0 },
75 };
76
77 static const struct ieee80211_channel zd_channels[] = {
78 { .center_freq = 2412, .hw_value = 1 },
79 { .center_freq = 2417, .hw_value = 2 },
80 { .center_freq = 2422, .hw_value = 3 },
81 { .center_freq = 2427, .hw_value = 4 },
82 { .center_freq = 2432, .hw_value = 5 },
83 { .center_freq = 2437, .hw_value = 6 },
84 { .center_freq = 2442, .hw_value = 7 },
85 { .center_freq = 2447, .hw_value = 8 },
86 { .center_freq = 2452, .hw_value = 9 },
87 { .center_freq = 2457, .hw_value = 10 },
88 { .center_freq = 2462, .hw_value = 11 },
89 { .center_freq = 2467, .hw_value = 12 },
90 { .center_freq = 2472, .hw_value = 13 },
91 { .center_freq = 2484, .hw_value = 14 },
92 };
93
94 static void housekeeping_init(struct zd_mac *mac);
95 static void housekeeping_enable(struct zd_mac *mac);
96 static void housekeeping_disable(struct zd_mac *mac);
97
98 int zd_mac_preinit_hw(struct ieee80211_hw *hw)
99 {
100 int r;
101 u8 addr[ETH_ALEN];
102 struct zd_mac *mac = zd_hw_mac(hw);
103
104 r = zd_chip_read_mac_addr_fw(&mac->chip, addr);
105 if (r)
106 return r;
107
108 SET_IEEE80211_PERM_ADDR(hw, addr);
109
110 return 0;
111 }
112
113 int zd_mac_init_hw(struct ieee80211_hw *hw)
114 {
115 int r;
116 struct zd_mac *mac = zd_hw_mac(hw);
117 struct zd_chip *chip = &mac->chip;
118 u8 default_regdomain;
119
120 r = zd_chip_enable_int(chip);
121 if (r)
122 goto out;
123 r = zd_chip_init_hw(chip);
124 if (r)
125 goto disable_int;
126
127 ZD_ASSERT(!irqs_disabled());
128
129 r = zd_read_regdomain(chip, &default_regdomain);
130 if (r)
131 goto disable_int;
132 spin_lock_irq(&mac->lock);
133 mac->regdomain = mac->default_regdomain = default_regdomain;
134 spin_unlock_irq(&mac->lock);
135
136 /* We must inform the device that we are doing encryption/decryption in
137 * software at the moment. */
138 r = zd_set_encryption_type(chip, ENC_SNIFFER);
139 if (r)
140 goto disable_int;
141
142 zd_geo_init(hw, mac->regdomain);
143
144 r = 0;
145 disable_int:
146 zd_chip_disable_int(chip);
147 out:
148 return r;
149 }
150
151 void zd_mac_clear(struct zd_mac *mac)
152 {
153 flush_workqueue(zd_workqueue);
154 zd_chip_clear(&mac->chip);
155 ZD_ASSERT(!spin_is_locked(&mac->lock));
156 ZD_MEMCLEAR(mac, sizeof(struct zd_mac));
157 }
158
159 static int set_rx_filter(struct zd_mac *mac)
160 {
161 unsigned long flags;
162 u32 filter = STA_RX_FILTER;
163
164 spin_lock_irqsave(&mac->lock, flags);
165 if (mac->pass_ctrl)
166 filter |= RX_FILTER_CTRL;
167 spin_unlock_irqrestore(&mac->lock, flags);
168
169 return zd_iowrite32(&mac->chip, CR_RX_FILTER, filter);
170 }
171
172 static int set_mc_hash(struct zd_mac *mac)
173 {
174 struct zd_mc_hash hash;
175 zd_mc_clear(&hash);
176 return zd_chip_set_multicast_hash(&mac->chip, &hash);
177 }
178
179 static int zd_op_start(struct ieee80211_hw *hw)
180 {
181 struct zd_mac *mac = zd_hw_mac(hw);
182 struct zd_chip *chip = &mac->chip;
183 struct zd_usb *usb = &chip->usb;
184 int r;
185
186 if (!usb->initialized) {
187 r = zd_usb_init_hw(usb);
188 if (r)
189 goto out;
190 }
191
192 r = zd_chip_enable_int(chip);
193 if (r < 0)
194 goto out;
195
196 r = zd_chip_set_basic_rates(chip, CR_RATES_80211B | CR_RATES_80211G);
197 if (r < 0)
198 goto disable_int;
199 r = set_rx_filter(mac);
200 if (r)
201 goto disable_int;
202 r = set_mc_hash(mac);
203 if (r)
204 goto disable_int;
205 r = zd_chip_switch_radio_on(chip);
206 if (r < 0)
207 goto disable_int;
208 r = zd_chip_enable_rxtx(chip);
209 if (r < 0)
210 goto disable_radio;
211 r = zd_chip_enable_hwint(chip);
212 if (r < 0)
213 goto disable_rxtx;
214
215 housekeeping_enable(mac);
216 return 0;
217 disable_rxtx:
218 zd_chip_disable_rxtx(chip);
219 disable_radio:
220 zd_chip_switch_radio_off(chip);
221 disable_int:
222 zd_chip_disable_int(chip);
223 out:
224 return r;
225 }
226
227 static void zd_op_stop(struct ieee80211_hw *hw)
228 {
229 struct zd_mac *mac = zd_hw_mac(hw);
230 struct zd_chip *chip = &mac->chip;
231 struct sk_buff *skb;
232 struct sk_buff_head *ack_wait_queue = &mac->ack_wait_queue;
233
234 /* The order here deliberately is a little different from the open()
235 * method, since we need to make sure there is no opportunity for RX
236 * frames to be processed by mac80211 after we have stopped it.
237 */
238
239 zd_chip_disable_rxtx(chip);
240 housekeeping_disable(mac);
241 flush_workqueue(zd_workqueue);
242
243 zd_chip_disable_hwint(chip);
244 zd_chip_switch_radio_off(chip);
245 zd_chip_disable_int(chip);
246
247
248 while ((skb = skb_dequeue(ack_wait_queue)))
249 dev_kfree_skb_any(skb);
250 }
251
252 /**
253 * tx_status - reports tx status of a packet if required
254 * @hw - a &struct ieee80211_hw pointer
255 * @skb - a sk-buffer
256 * @flags: extra flags to set in the TX status info
257 * @ackssi: ACK signal strength
258 * @success - True for successfull transmission of the frame
259 *
260 * This information calls ieee80211_tx_status_irqsafe() if required by the
261 * control information. It copies the control information into the status
262 * information.
263 *
264 * If no status information has been requested, the skb is freed.
265 */
266 static void tx_status(struct ieee80211_hw *hw, struct sk_buff *skb,
267 u32 flags, int ackssi, bool success)
268 {
269 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
270
271 memset(&info->status, 0, sizeof(info->status));
272
273 if (!success)
274 info->status.excessive_retries = 1;
275 info->flags |= flags;
276 info->status.ack_signal = ackssi;
277 ieee80211_tx_status_irqsafe(hw, skb);
278 }
279
280 /**
281 * zd_mac_tx_failed - callback for failed frames
282 * @dev: the mac80211 wireless device
283 *
284 * This function is called if a frame couldn't be succesfully be
285 * transferred. The first frame from the tx queue, will be selected and
286 * reported as error to the upper layers.
287 */
288 void zd_mac_tx_failed(struct ieee80211_hw *hw)
289 {
290 struct sk_buff_head *q = &zd_hw_mac(hw)->ack_wait_queue;
291 struct sk_buff *skb;
292
293 skb = skb_dequeue(q);
294 if (skb == NULL)
295 return;
296
297 tx_status(hw, skb, 0, 0, 0);
298 }
299
300 /**
301 * zd_mac_tx_to_dev - callback for USB layer
302 * @skb: a &sk_buff pointer
303 * @error: error value, 0 if transmission successful
304 *
305 * Informs the MAC layer that the frame has successfully transferred to the
306 * device. If an ACK is required and the transfer to the device has been
307 * successful, the packets are put on the @ack_wait_queue with
308 * the control set removed.
309 */
310 void zd_mac_tx_to_dev(struct sk_buff *skb, int error)
311 {
312 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
313 struct ieee80211_hw *hw = info->driver_data[0];
314
315 skb_pull(skb, sizeof(struct zd_ctrlset));
316 if (unlikely(error ||
317 (info->flags & IEEE80211_TX_CTL_NO_ACK))) {
318 tx_status(hw, skb, 0, 0, !error);
319 } else {
320 struct sk_buff_head *q =
321 &zd_hw_mac(hw)->ack_wait_queue;
322
323 skb_queue_tail(q, skb);
324 while (skb_queue_len(q) > ZD_MAC_MAX_ACK_WAITERS)
325 zd_mac_tx_failed(hw);
326 }
327 }
328
329 static int zd_calc_tx_length_us(u8 *service, u8 zd_rate, u16 tx_length)
330 {
331 /* ZD_PURE_RATE() must be used to remove the modulation type flag of
332 * the zd-rate values.
333 */
334 static const u8 rate_divisor[] = {
335 [ZD_PURE_RATE(ZD_CCK_RATE_1M)] = 1,
336 [ZD_PURE_RATE(ZD_CCK_RATE_2M)] = 2,
337 /* Bits must be doubled. */
338 [ZD_PURE_RATE(ZD_CCK_RATE_5_5M)] = 11,
339 [ZD_PURE_RATE(ZD_CCK_RATE_11M)] = 11,
340 [ZD_PURE_RATE(ZD_OFDM_RATE_6M)] = 6,
341 [ZD_PURE_RATE(ZD_OFDM_RATE_9M)] = 9,
342 [ZD_PURE_RATE(ZD_OFDM_RATE_12M)] = 12,
343 [ZD_PURE_RATE(ZD_OFDM_RATE_18M)] = 18,
344 [ZD_PURE_RATE(ZD_OFDM_RATE_24M)] = 24,
345 [ZD_PURE_RATE(ZD_OFDM_RATE_36M)] = 36,
346 [ZD_PURE_RATE(ZD_OFDM_RATE_48M)] = 48,
347 [ZD_PURE_RATE(ZD_OFDM_RATE_54M)] = 54,
348 };
349
350 u32 bits = (u32)tx_length * 8;
351 u32 divisor;
352
353 divisor = rate_divisor[ZD_PURE_RATE(zd_rate)];
354 if (divisor == 0)
355 return -EINVAL;
356
357 switch (zd_rate) {
358 case ZD_CCK_RATE_5_5M:
359 bits = (2*bits) + 10; /* round up to the next integer */
360 break;
361 case ZD_CCK_RATE_11M:
362 if (service) {
363 u32 t = bits % 11;
364 *service &= ~ZD_PLCP_SERVICE_LENGTH_EXTENSION;
365 if (0 < t && t <= 3) {
366 *service |= ZD_PLCP_SERVICE_LENGTH_EXTENSION;
367 }
368 }
369 bits += 10; /* round up to the next integer */
370 break;
371 }
372
373 return bits/divisor;
374 }
375
376 static void cs_set_control(struct zd_mac *mac, struct zd_ctrlset *cs,
377 struct ieee80211_hdr *header, u32 flags)
378 {
379 u16 fctl = le16_to_cpu(header->frame_control);
380
381 /*
382 * CONTROL TODO:
383 * - if backoff needed, enable bit 0
384 * - if burst (backoff not needed) disable bit 0
385 */
386
387 cs->control = 0;
388
389 /* First fragment */
390 if (flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
391 cs->control |= ZD_CS_NEED_RANDOM_BACKOFF;
392
393 /* Multicast */
394 if (is_multicast_ether_addr(header->addr1))
395 cs->control |= ZD_CS_MULTICAST;
396
397 /* PS-POLL */
398 if ((fctl & (IEEE80211_FCTL_FTYPE|IEEE80211_FCTL_STYPE)) ==
399 (IEEE80211_FTYPE_CTL|IEEE80211_STYPE_PSPOLL))
400 cs->control |= ZD_CS_PS_POLL_FRAME;
401
402 if (flags & IEEE80211_TX_CTL_USE_RTS_CTS)
403 cs->control |= ZD_CS_RTS;
404
405 if (flags & IEEE80211_TX_CTL_USE_CTS_PROTECT)
406 cs->control |= ZD_CS_SELF_CTS;
407
408 /* FIXME: Management frame? */
409 }
410
411 void zd_mac_config_beacon(struct ieee80211_hw *hw, struct sk_buff *beacon)
412 {
413 struct zd_mac *mac = zd_hw_mac(hw);
414 u32 tmp, j = 0;
415 /* 4 more bytes for tail CRC */
416 u32 full_len = beacon->len + 4;
417 zd_iowrite32(&mac->chip, CR_BCN_FIFO_SEMAPHORE, 0);
418 zd_ioread32(&mac->chip, CR_BCN_FIFO_SEMAPHORE, &tmp);
419 while (tmp & 0x2) {
420 zd_ioread32(&mac->chip, CR_BCN_FIFO_SEMAPHORE, &tmp);
421 if ((++j % 100) == 0) {
422 printk(KERN_ERR "CR_BCN_FIFO_SEMAPHORE not ready\n");
423 if (j >= 500) {
424 printk(KERN_ERR "Giving up beacon config.\n");
425 return;
426 }
427 }
428 msleep(1);
429 }
430
431 zd_iowrite32(&mac->chip, CR_BCN_FIFO, full_len - 1);
432 if (zd_chip_is_zd1211b(&mac->chip))
433 zd_iowrite32(&mac->chip, CR_BCN_LENGTH, full_len - 1);
434
435 for (j = 0 ; j < beacon->len; j++)
436 zd_iowrite32(&mac->chip, CR_BCN_FIFO,
437 *((u8 *)(beacon->data + j)));
438
439 for (j = 0; j < 4; j++)
440 zd_iowrite32(&mac->chip, CR_BCN_FIFO, 0x0);
441
442 zd_iowrite32(&mac->chip, CR_BCN_FIFO_SEMAPHORE, 1);
443 /* 802.11b/g 2.4G CCK 1Mb
444 * 802.11a, not yet implemented, uses different values (see GPL vendor
445 * driver)
446 */
447 zd_iowrite32(&mac->chip, CR_BCN_PLCP_CFG, 0x00000400 |
448 (full_len << 19));
449 }
450
451 static int fill_ctrlset(struct zd_mac *mac,
452 struct sk_buff *skb)
453 {
454 int r;
455 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
456 unsigned int frag_len = skb->len + FCS_LEN;
457 unsigned int packet_length;
458 struct ieee80211_rate *txrate;
459 struct zd_ctrlset *cs = (struct zd_ctrlset *)
460 skb_push(skb, sizeof(struct zd_ctrlset));
461 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
462
463 ZD_ASSERT(frag_len <= 0xffff);
464
465 txrate = ieee80211_get_tx_rate(mac->hw, info);
466
467 cs->modulation = txrate->hw_value;
468 if (info->flags & IEEE80211_TX_CTL_SHORT_PREAMBLE)
469 cs->modulation = txrate->hw_value_short;
470
471 cs->tx_length = cpu_to_le16(frag_len);
472
473 cs_set_control(mac, cs, hdr, info->flags);
474
475 packet_length = frag_len + sizeof(struct zd_ctrlset) + 10;
476 ZD_ASSERT(packet_length <= 0xffff);
477 /* ZD1211B: Computing the length difference this way, gives us
478 * flexibility to compute the packet length.
479 */
480 cs->packet_length = cpu_to_le16(zd_chip_is_zd1211b(&mac->chip) ?
481 packet_length - frag_len : packet_length);
482
483 /*
484 * CURRENT LENGTH:
485 * - transmit frame length in microseconds
486 * - seems to be derived from frame length
487 * - see Cal_Us_Service() in zdinlinef.h
488 * - if macp->bTxBurstEnable is enabled, then multiply by 4
489 * - bTxBurstEnable is never set in the vendor driver
490 *
491 * SERVICE:
492 * - "for PLCP configuration"
493 * - always 0 except in some situations at 802.11b 11M
494 * - see line 53 of zdinlinef.h
495 */
496 cs->service = 0;
497 r = zd_calc_tx_length_us(&cs->service, ZD_RATE(cs->modulation),
498 le16_to_cpu(cs->tx_length));
499 if (r < 0)
500 return r;
501 cs->current_length = cpu_to_le16(r);
502 cs->next_frame_length = 0;
503
504 return 0;
505 }
506
507 /**
508 * zd_op_tx - transmits a network frame to the device
509 *
510 * @dev: mac80211 hardware device
511 * @skb: socket buffer
512 * @control: the control structure
513 *
514 * This function transmit an IEEE 802.11 network frame to the device. The
515 * control block of the skbuff will be initialized. If necessary the incoming
516 * mac80211 queues will be stopped.
517 */
518 static int zd_op_tx(struct ieee80211_hw *hw, struct sk_buff *skb)
519 {
520 struct zd_mac *mac = zd_hw_mac(hw);
521 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
522 int r;
523
524 r = fill_ctrlset(mac, skb);
525 if (r)
526 return r;
527
528 info->driver_data[0] = hw;
529
530 r = zd_usb_tx(&mac->chip.usb, skb);
531 if (r)
532 return r;
533 return 0;
534 }
535
536 /**
537 * filter_ack - filters incoming packets for acknowledgements
538 * @dev: the mac80211 device
539 * @rx_hdr: received header
540 * @stats: the status for the received packet
541 *
542 * This functions looks for ACK packets and tries to match them with the
543 * frames in the tx queue. If a match is found the frame will be dequeued and
544 * the upper layers is informed about the successful transmission. If
545 * mac80211 queues have been stopped and the number of frames still to be
546 * transmitted is low the queues will be opened again.
547 *
548 * Returns 1 if the frame was an ACK, 0 if it was ignored.
549 */
550 static int filter_ack(struct ieee80211_hw *hw, struct ieee80211_hdr *rx_hdr,
551 struct ieee80211_rx_status *stats)
552 {
553 u16 fc = le16_to_cpu(rx_hdr->frame_control);
554 struct sk_buff *skb;
555 struct sk_buff_head *q;
556 unsigned long flags;
557
558 if ((fc & (IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) !=
559 (IEEE80211_FTYPE_CTL | IEEE80211_STYPE_ACK))
560 return 0;
561
562 q = &zd_hw_mac(hw)->ack_wait_queue;
563 spin_lock_irqsave(&q->lock, flags);
564 for (skb = q->next; skb != (struct sk_buff *)q; skb = skb->next) {
565 struct ieee80211_hdr *tx_hdr;
566
567 tx_hdr = (struct ieee80211_hdr *)skb->data;
568 if (likely(!compare_ether_addr(tx_hdr->addr2, rx_hdr->addr1)))
569 {
570 __skb_unlink(skb, q);
571 tx_status(hw, skb, IEEE80211_TX_STAT_ACK, stats->signal, 1);
572 goto out;
573 }
574 }
575 out:
576 spin_unlock_irqrestore(&q->lock, flags);
577 return 1;
578 }
579
580 int zd_mac_rx(struct ieee80211_hw *hw, const u8 *buffer, unsigned int length)
581 {
582 struct zd_mac *mac = zd_hw_mac(hw);
583 struct ieee80211_rx_status stats;
584 const struct rx_status *status;
585 struct sk_buff *skb;
586 int bad_frame = 0;
587 u16 fc;
588 bool is_qos, is_4addr, need_padding;
589 int i;
590 u8 rate;
591
592 if (length < ZD_PLCP_HEADER_SIZE + 10 /* IEEE80211_1ADDR_LEN */ +
593 FCS_LEN + sizeof(struct rx_status))
594 return -EINVAL;
595
596 memset(&stats, 0, sizeof(stats));
597
598 /* Note about pass_failed_fcs and pass_ctrl access below:
599 * mac locking intentionally omitted here, as this is the only unlocked
600 * reader and the only writer is configure_filter. Plus, if there were
601 * any races accessing these variables, it wouldn't really matter.
602 * If mac80211 ever provides a way for us to access filter flags
603 * from outside configure_filter, we could improve on this. Also, this
604 * situation may change once we implement some kind of DMA-into-skb
605 * RX path. */
606
607 /* Caller has to ensure that length >= sizeof(struct rx_status). */
608 status = (struct rx_status *)
609 (buffer + (length - sizeof(struct rx_status)));
610 if (status->frame_status & ZD_RX_ERROR) {
611 if (mac->pass_failed_fcs &&
612 (status->frame_status & ZD_RX_CRC32_ERROR)) {
613 stats.flag |= RX_FLAG_FAILED_FCS_CRC;
614 bad_frame = 1;
615 } else {
616 return -EINVAL;
617 }
618 }
619
620 stats.freq = zd_channels[_zd_chip_get_channel(&mac->chip) - 1].center_freq;
621 stats.band = IEEE80211_BAND_2GHZ;
622 stats.signal = status->signal_strength;
623 stats.qual = zd_rx_qual_percent(buffer,
624 length - sizeof(struct rx_status),
625 status);
626
627 rate = zd_rx_rate(buffer, status);
628
629 /* todo: return index in the big switches in zd_rx_rate instead */
630 for (i = 0; i < mac->band.n_bitrates; i++)
631 if (rate == mac->band.bitrates[i].hw_value)
632 stats.rate_idx = i;
633
634 length -= ZD_PLCP_HEADER_SIZE + sizeof(struct rx_status);
635 buffer += ZD_PLCP_HEADER_SIZE;
636
637 /* Except for bad frames, filter each frame to see if it is an ACK, in
638 * which case our internal TX tracking is updated. Normally we then
639 * bail here as there's no need to pass ACKs on up to the stack, but
640 * there is also the case where the stack has requested us to pass
641 * control frames on up (pass_ctrl) which we must consider. */
642 if (!bad_frame &&
643 filter_ack(hw, (struct ieee80211_hdr *)buffer, &stats)
644 && !mac->pass_ctrl)
645 return 0;
646
647 fc = le16_to_cpu(*((__le16 *) buffer));
648
649 is_qos = ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA) &&
650 ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_QOS_DATA);
651 is_4addr = (fc & (IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) ==
652 (IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS);
653 need_padding = is_qos ^ is_4addr;
654
655 skb = dev_alloc_skb(length + (need_padding ? 2 : 0));
656 if (skb == NULL)
657 return -ENOMEM;
658 if (need_padding) {
659 /* Make sure the the payload data is 4 byte aligned. */
660 skb_reserve(skb, 2);
661 }
662
663 memcpy(skb_put(skb, length), buffer, length);
664
665 ieee80211_rx_irqsafe(hw, skb, &stats);
666 return 0;
667 }
668
669 static int zd_op_add_interface(struct ieee80211_hw *hw,
670 struct ieee80211_if_init_conf *conf)
671 {
672 struct zd_mac *mac = zd_hw_mac(hw);
673
674 /* using IEEE80211_IF_TYPE_INVALID to indicate no mode selected */
675 if (mac->type != IEEE80211_IF_TYPE_INVALID)
676 return -EOPNOTSUPP;
677
678 switch (conf->type) {
679 case IEEE80211_IF_TYPE_MNTR:
680 case IEEE80211_IF_TYPE_MESH_POINT:
681 case IEEE80211_IF_TYPE_STA:
682 case IEEE80211_IF_TYPE_IBSS:
683 mac->type = conf->type;
684 break;
685 default:
686 return -EOPNOTSUPP;
687 }
688
689 return zd_write_mac_addr(&mac->chip, conf->mac_addr);
690 }
691
692 static void zd_op_remove_interface(struct ieee80211_hw *hw,
693 struct ieee80211_if_init_conf *conf)
694 {
695 struct zd_mac *mac = zd_hw_mac(hw);
696 mac->type = IEEE80211_IF_TYPE_INVALID;
697 zd_write_mac_addr(&mac->chip, NULL);
698 }
699
700 static int zd_op_config(struct ieee80211_hw *hw, struct ieee80211_conf *conf)
701 {
702 struct zd_mac *mac = zd_hw_mac(hw);
703 return zd_chip_set_channel(&mac->chip, conf->channel->hw_value);
704 }
705
706 static int zd_op_config_interface(struct ieee80211_hw *hw,
707 struct ieee80211_vif *vif,
708 struct ieee80211_if_conf *conf)
709 {
710 struct zd_mac *mac = zd_hw_mac(hw);
711 int associated;
712
713 if (mac->type == IEEE80211_IF_TYPE_MESH_POINT ||
714 mac->type == IEEE80211_IF_TYPE_IBSS) {
715 associated = true;
716 if (conf->beacon) {
717 zd_mac_config_beacon(hw, conf->beacon);
718 kfree_skb(conf->beacon);
719 zd_set_beacon_interval(&mac->chip, BCN_MODE_IBSS |
720 hw->conf.beacon_int);
721 }
722 } else
723 associated = is_valid_ether_addr(conf->bssid);
724
725 spin_lock_irq(&mac->lock);
726 mac->associated = associated;
727 spin_unlock_irq(&mac->lock);
728
729 /* TODO: do hardware bssid filtering */
730 return 0;
731 }
732
733 void zd_process_intr(struct work_struct *work)
734 {
735 u16 int_status;
736 struct zd_mac *mac = container_of(work, struct zd_mac, process_intr);
737
738 int_status = le16_to_cpu(*(u16 *)(mac->intr_buffer+4));
739 if (int_status & INT_CFG_NEXT_BCN) {
740 if (net_ratelimit())
741 dev_dbg_f(zd_mac_dev(mac), "INT_CFG_NEXT_BCN\n");
742 } else
743 dev_dbg_f(zd_mac_dev(mac), "Unsupported interrupt\n");
744
745 zd_chip_enable_hwint(&mac->chip);
746 }
747
748
749 static void set_multicast_hash_handler(struct work_struct *work)
750 {
751 struct zd_mac *mac =
752 container_of(work, struct zd_mac, set_multicast_hash_work);
753 struct zd_mc_hash hash;
754
755 spin_lock_irq(&mac->lock);
756 hash = mac->multicast_hash;
757 spin_unlock_irq(&mac->lock);
758
759 zd_chip_set_multicast_hash(&mac->chip, &hash);
760 }
761
762 static void set_rx_filter_handler(struct work_struct *work)
763 {
764 struct zd_mac *mac =
765 container_of(work, struct zd_mac, set_rx_filter_work);
766 int r;
767
768 dev_dbg_f(zd_mac_dev(mac), "\n");
769 r = set_rx_filter(mac);
770 if (r)
771 dev_err(zd_mac_dev(mac), "set_rx_filter_handler error %d\n", r);
772 }
773
774 #define SUPPORTED_FIF_FLAGS \
775 (FIF_PROMISC_IN_BSS | FIF_ALLMULTI | FIF_FCSFAIL | FIF_CONTROL | \
776 FIF_OTHER_BSS | FIF_BCN_PRBRESP_PROMISC)
777 static void zd_op_configure_filter(struct ieee80211_hw *hw,
778 unsigned int changed_flags,
779 unsigned int *new_flags,
780 int mc_count, struct dev_mc_list *mclist)
781 {
782 struct zd_mc_hash hash;
783 struct zd_mac *mac = zd_hw_mac(hw);
784 unsigned long flags;
785 int i;
786
787 /* Only deal with supported flags */
788 changed_flags &= SUPPORTED_FIF_FLAGS;
789 *new_flags &= SUPPORTED_FIF_FLAGS;
790
791 /* changed_flags is always populated but this driver
792 * doesn't support all FIF flags so its possible we don't
793 * need to do anything */
794 if (!changed_flags)
795 return;
796
797 if (*new_flags & (FIF_PROMISC_IN_BSS | FIF_ALLMULTI)) {
798 zd_mc_add_all(&hash);
799 } else {
800 DECLARE_MAC_BUF(macbuf);
801
802 zd_mc_clear(&hash);
803 for (i = 0; i < mc_count; i++) {
804 if (!mclist)
805 break;
806 dev_dbg_f(zd_mac_dev(mac), "mc addr %s\n",
807 print_mac(macbuf, mclist->dmi_addr));
808 zd_mc_add_addr(&hash, mclist->dmi_addr);
809 mclist = mclist->next;
810 }
811 }
812
813 spin_lock_irqsave(&mac->lock, flags);
814 mac->pass_failed_fcs = !!(*new_flags & FIF_FCSFAIL);
815 mac->pass_ctrl = !!(*new_flags & FIF_CONTROL);
816 mac->multicast_hash = hash;
817 spin_unlock_irqrestore(&mac->lock, flags);
818 queue_work(zd_workqueue, &mac->set_multicast_hash_work);
819
820 if (changed_flags & FIF_CONTROL)
821 queue_work(zd_workqueue, &mac->set_rx_filter_work);
822
823 /* no handling required for FIF_OTHER_BSS as we don't currently
824 * do BSSID filtering */
825 /* FIXME: in future it would be nice to enable the probe response
826 * filter (so that the driver doesn't see them) until
827 * FIF_BCN_PRBRESP_PROMISC is set. however due to atomicity here, we'd
828 * have to schedule work to enable prbresp reception, which might
829 * happen too late. For now we'll just listen and forward them all the
830 * time. */
831 }
832
833 static void set_rts_cts_work(struct work_struct *work)
834 {
835 struct zd_mac *mac =
836 container_of(work, struct zd_mac, set_rts_cts_work);
837 unsigned long flags;
838 unsigned int short_preamble;
839
840 mutex_lock(&mac->chip.mutex);
841
842 spin_lock_irqsave(&mac->lock, flags);
843 mac->updating_rts_rate = 0;
844 short_preamble = mac->short_preamble;
845 spin_unlock_irqrestore(&mac->lock, flags);
846
847 zd_chip_set_rts_cts_rate_locked(&mac->chip, short_preamble);
848 mutex_unlock(&mac->chip.mutex);
849 }
850
851 static void zd_op_bss_info_changed(struct ieee80211_hw *hw,
852 struct ieee80211_vif *vif,
853 struct ieee80211_bss_conf *bss_conf,
854 u32 changes)
855 {
856 struct zd_mac *mac = zd_hw_mac(hw);
857 unsigned long flags;
858
859 dev_dbg_f(zd_mac_dev(mac), "changes: %x\n", changes);
860
861 if (changes & BSS_CHANGED_ERP_PREAMBLE) {
862 spin_lock_irqsave(&mac->lock, flags);
863 mac->short_preamble = bss_conf->use_short_preamble;
864 if (!mac->updating_rts_rate) {
865 mac->updating_rts_rate = 1;
866 /* FIXME: should disable TX here, until work has
867 * completed and RTS_CTS reg is updated */
868 queue_work(zd_workqueue, &mac->set_rts_cts_work);
869 }
870 spin_unlock_irqrestore(&mac->lock, flags);
871 }
872 }
873
874 static int zd_op_beacon_update(struct ieee80211_hw *hw,
875 struct sk_buff *skb)
876 {
877 struct zd_mac *mac = zd_hw_mac(hw);
878 zd_mac_config_beacon(hw, skb);
879 kfree_skb(skb);
880 zd_set_beacon_interval(&mac->chip, BCN_MODE_IBSS |
881 hw->conf.beacon_int);
882 return 0;
883 }
884
885 static const struct ieee80211_ops zd_ops = {
886 .tx = zd_op_tx,
887 .start = zd_op_start,
888 .stop = zd_op_stop,
889 .add_interface = zd_op_add_interface,
890 .remove_interface = zd_op_remove_interface,
891 .config = zd_op_config,
892 .config_interface = zd_op_config_interface,
893 .configure_filter = zd_op_configure_filter,
894 .bss_info_changed = zd_op_bss_info_changed,
895 .beacon_update = zd_op_beacon_update,
896 };
897
898 struct ieee80211_hw *zd_mac_alloc_hw(struct usb_interface *intf)
899 {
900 struct zd_mac *mac;
901 struct ieee80211_hw *hw;
902
903 hw = ieee80211_alloc_hw(sizeof(struct zd_mac), &zd_ops);
904 if (!hw) {
905 dev_dbg_f(&intf->dev, "out of memory\n");
906 return NULL;
907 }
908
909 mac = zd_hw_mac(hw);
910
911 memset(mac, 0, sizeof(*mac));
912 spin_lock_init(&mac->lock);
913 mac->hw = hw;
914
915 mac->type = IEEE80211_IF_TYPE_INVALID;
916
917 memcpy(mac->channels, zd_channels, sizeof(zd_channels));
918 memcpy(mac->rates, zd_rates, sizeof(zd_rates));
919 mac->band.n_bitrates = ARRAY_SIZE(zd_rates);
920 mac->band.bitrates = mac->rates;
921 mac->band.n_channels = ARRAY_SIZE(zd_channels);
922 mac->band.channels = mac->channels;
923
924 hw->wiphy->bands[IEEE80211_BAND_2GHZ] = &mac->band;
925
926 hw->flags = IEEE80211_HW_RX_INCLUDES_FCS |
927 IEEE80211_HW_HOST_GEN_BEACON_TEMPLATE |
928 IEEE80211_HW_SIGNAL_DB;
929
930 hw->max_signal = 100;
931 hw->queues = 1;
932 hw->extra_tx_headroom = sizeof(struct zd_ctrlset);
933
934 skb_queue_head_init(&mac->ack_wait_queue);
935
936 zd_chip_init(&mac->chip, hw, intf);
937 housekeeping_init(mac);
938 INIT_WORK(&mac->set_multicast_hash_work, set_multicast_hash_handler);
939 INIT_WORK(&mac->set_rts_cts_work, set_rts_cts_work);
940 INIT_WORK(&mac->set_rx_filter_work, set_rx_filter_handler);
941 INIT_WORK(&mac->process_intr, zd_process_intr);
942
943 SET_IEEE80211_DEV(hw, &intf->dev);
944 return hw;
945 }
946
947 #define LINK_LED_WORK_DELAY HZ
948
949 static void link_led_handler(struct work_struct *work)
950 {
951 struct zd_mac *mac =
952 container_of(work, struct zd_mac, housekeeping.link_led_work.work);
953 struct zd_chip *chip = &mac->chip;
954 int is_associated;
955 int r;
956
957 spin_lock_irq(&mac->lock);
958 is_associated = mac->associated;
959 spin_unlock_irq(&mac->lock);
960
961 r = zd_chip_control_leds(chip,
962 is_associated ? LED_ASSOCIATED : LED_SCANNING);
963 if (r)
964 dev_dbg_f(zd_mac_dev(mac), "zd_chip_control_leds error %d\n", r);
965
966 queue_delayed_work(zd_workqueue, &mac->housekeeping.link_led_work,
967 LINK_LED_WORK_DELAY);
968 }
969
970 static void housekeeping_init(struct zd_mac *mac)
971 {
972 INIT_DELAYED_WORK(&mac->housekeeping.link_led_work, link_led_handler);
973 }
974
975 static void housekeeping_enable(struct zd_mac *mac)
976 {
977 dev_dbg_f(zd_mac_dev(mac), "\n");
978 queue_delayed_work(zd_workqueue, &mac->housekeeping.link_led_work,
979 0);
980 }
981
982 static void housekeeping_disable(struct zd_mac *mac)
983 {
984 dev_dbg_f(zd_mac_dev(mac), "\n");
985 cancel_rearming_delayed_workqueue(zd_workqueue,
986 &mac->housekeeping.link_led_work);
987 zd_chip_control_leds(&mac->chip, LED_OFF);
988 }
This page took 0.092779 seconds and 5 git commands to generate.