Merge tag 'mfd-3.13-1' of git://git.kernel.org/pub/scm/linux/kernel/git/sameo/mfd...
[deliverable/linux.git] / drivers / net / wireless / zd1211rw / zd_rf_uw2453.c
1 /* ZD1211 USB-WLAN driver for Linux
2 *
3 * Copyright (C) 2005-2007 Ulrich Kunitz <kune@deine-taler.de>
4 * Copyright (C) 2006-2007 Daniel Drake <dsd@gentoo.org>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 */
20
21 #include <linux/kernel.h>
22 #include <linux/slab.h>
23
24 #include "zd_rf.h"
25 #include "zd_usb.h"
26 #include "zd_chip.h"
27
28 /* This RF programming code is based upon the code found in v2.16.0.0 of the
29 * ZyDAS vendor driver. Unlike other RF's, Ubec publish full technical specs
30 * for this RF on their website, so we're able to understand more than
31 * usual as to what is going on. Thumbs up for Ubec for doing that. */
32
33 /* The 3-wire serial interface provides access to 8 write-only registers.
34 * The data format is a 4 bit register address followed by a 20 bit value. */
35 #define UW2453_REGWRITE(reg, val) ((((reg) & 0xf) << 20) | ((val) & 0xfffff))
36
37 /* For channel tuning, we have to configure registers 1 (synthesizer), 2 (synth
38 * fractional divide ratio) and 3 (VCO config).
39 *
40 * We configure the RF to produce an interrupt when the PLL is locked onto
41 * the configured frequency. During initialization, we run through a variety
42 * of different VCO configurations on channel 1 until we detect a PLL lock.
43 * When this happens, we remember which VCO configuration produced the lock
44 * and use it later. Actually, we use the configuration *after* the one that
45 * produced the lock, which seems odd, but it works.
46 *
47 * If we do not see a PLL lock on any standard VCO config, we fall back on an
48 * autocal configuration, which has a fixed (as opposed to per-channel) VCO
49 * config and different synth values from the standard set (divide ratio
50 * is still shared with the standard set). */
51
52 /* The per-channel synth values for all standard VCO configurations. These get
53 * written to register 1. */
54 static const u8 uw2453_std_synth[] = {
55 RF_CHANNEL( 1) = 0x47,
56 RF_CHANNEL( 2) = 0x47,
57 RF_CHANNEL( 3) = 0x67,
58 RF_CHANNEL( 4) = 0x67,
59 RF_CHANNEL( 5) = 0x67,
60 RF_CHANNEL( 6) = 0x67,
61 RF_CHANNEL( 7) = 0x57,
62 RF_CHANNEL( 8) = 0x57,
63 RF_CHANNEL( 9) = 0x57,
64 RF_CHANNEL(10) = 0x57,
65 RF_CHANNEL(11) = 0x77,
66 RF_CHANNEL(12) = 0x77,
67 RF_CHANNEL(13) = 0x77,
68 RF_CHANNEL(14) = 0x4f,
69 };
70
71 /* This table stores the synthesizer fractional divide ratio for *all* VCO
72 * configurations (both standard and autocal). These get written to register 2.
73 */
74 static const u16 uw2453_synth_divide[] = {
75 RF_CHANNEL( 1) = 0x999,
76 RF_CHANNEL( 2) = 0x99b,
77 RF_CHANNEL( 3) = 0x998,
78 RF_CHANNEL( 4) = 0x99a,
79 RF_CHANNEL( 5) = 0x999,
80 RF_CHANNEL( 6) = 0x99b,
81 RF_CHANNEL( 7) = 0x998,
82 RF_CHANNEL( 8) = 0x99a,
83 RF_CHANNEL( 9) = 0x999,
84 RF_CHANNEL(10) = 0x99b,
85 RF_CHANNEL(11) = 0x998,
86 RF_CHANNEL(12) = 0x99a,
87 RF_CHANNEL(13) = 0x999,
88 RF_CHANNEL(14) = 0xccc,
89 };
90
91 /* Here is the data for all the standard VCO configurations. We shrink our
92 * table a little by observing that both channels in a consecutive pair share
93 * the same value. We also observe that the high 4 bits ([0:3] in the specs)
94 * are all 'Reserved' and are always set to 0x4 - we chop them off in the data
95 * below. */
96 #define CHAN_TO_PAIRIDX(a) ((a - 1) / 2)
97 #define RF_CHANPAIR(a,b) [CHAN_TO_PAIRIDX(a)]
98 static const u16 uw2453_std_vco_cfg[][7] = {
99 { /* table 1 */
100 RF_CHANPAIR( 1, 2) = 0x664d,
101 RF_CHANPAIR( 3, 4) = 0x604d,
102 RF_CHANPAIR( 5, 6) = 0x6675,
103 RF_CHANPAIR( 7, 8) = 0x6475,
104 RF_CHANPAIR( 9, 10) = 0x6655,
105 RF_CHANPAIR(11, 12) = 0x6455,
106 RF_CHANPAIR(13, 14) = 0x6665,
107 },
108 { /* table 2 */
109 RF_CHANPAIR( 1, 2) = 0x666d,
110 RF_CHANPAIR( 3, 4) = 0x606d,
111 RF_CHANPAIR( 5, 6) = 0x664d,
112 RF_CHANPAIR( 7, 8) = 0x644d,
113 RF_CHANPAIR( 9, 10) = 0x6675,
114 RF_CHANPAIR(11, 12) = 0x6475,
115 RF_CHANPAIR(13, 14) = 0x6655,
116 },
117 { /* table 3 */
118 RF_CHANPAIR( 1, 2) = 0x665d,
119 RF_CHANPAIR( 3, 4) = 0x605d,
120 RF_CHANPAIR( 5, 6) = 0x666d,
121 RF_CHANPAIR( 7, 8) = 0x646d,
122 RF_CHANPAIR( 9, 10) = 0x664d,
123 RF_CHANPAIR(11, 12) = 0x644d,
124 RF_CHANPAIR(13, 14) = 0x6675,
125 },
126 { /* table 4 */
127 RF_CHANPAIR( 1, 2) = 0x667d,
128 RF_CHANPAIR( 3, 4) = 0x607d,
129 RF_CHANPAIR( 5, 6) = 0x665d,
130 RF_CHANPAIR( 7, 8) = 0x645d,
131 RF_CHANPAIR( 9, 10) = 0x666d,
132 RF_CHANPAIR(11, 12) = 0x646d,
133 RF_CHANPAIR(13, 14) = 0x664d,
134 },
135 { /* table 5 */
136 RF_CHANPAIR( 1, 2) = 0x6643,
137 RF_CHANPAIR( 3, 4) = 0x6043,
138 RF_CHANPAIR( 5, 6) = 0x667d,
139 RF_CHANPAIR( 7, 8) = 0x647d,
140 RF_CHANPAIR( 9, 10) = 0x665d,
141 RF_CHANPAIR(11, 12) = 0x645d,
142 RF_CHANPAIR(13, 14) = 0x666d,
143 },
144 { /* table 6 */
145 RF_CHANPAIR( 1, 2) = 0x6663,
146 RF_CHANPAIR( 3, 4) = 0x6063,
147 RF_CHANPAIR( 5, 6) = 0x6643,
148 RF_CHANPAIR( 7, 8) = 0x6443,
149 RF_CHANPAIR( 9, 10) = 0x667d,
150 RF_CHANPAIR(11, 12) = 0x647d,
151 RF_CHANPAIR(13, 14) = 0x665d,
152 },
153 { /* table 7 */
154 RF_CHANPAIR( 1, 2) = 0x6653,
155 RF_CHANPAIR( 3, 4) = 0x6053,
156 RF_CHANPAIR( 5, 6) = 0x6663,
157 RF_CHANPAIR( 7, 8) = 0x6463,
158 RF_CHANPAIR( 9, 10) = 0x6643,
159 RF_CHANPAIR(11, 12) = 0x6443,
160 RF_CHANPAIR(13, 14) = 0x667d,
161 },
162 { /* table 8 */
163 RF_CHANPAIR( 1, 2) = 0x6673,
164 RF_CHANPAIR( 3, 4) = 0x6073,
165 RF_CHANPAIR( 5, 6) = 0x6653,
166 RF_CHANPAIR( 7, 8) = 0x6453,
167 RF_CHANPAIR( 9, 10) = 0x6663,
168 RF_CHANPAIR(11, 12) = 0x6463,
169 RF_CHANPAIR(13, 14) = 0x6643,
170 },
171 { /* table 9 */
172 RF_CHANPAIR( 1, 2) = 0x664b,
173 RF_CHANPAIR( 3, 4) = 0x604b,
174 RF_CHANPAIR( 5, 6) = 0x6673,
175 RF_CHANPAIR( 7, 8) = 0x6473,
176 RF_CHANPAIR( 9, 10) = 0x6653,
177 RF_CHANPAIR(11, 12) = 0x6453,
178 RF_CHANPAIR(13, 14) = 0x6663,
179 },
180 { /* table 10 */
181 RF_CHANPAIR( 1, 2) = 0x666b,
182 RF_CHANPAIR( 3, 4) = 0x606b,
183 RF_CHANPAIR( 5, 6) = 0x664b,
184 RF_CHANPAIR( 7, 8) = 0x644b,
185 RF_CHANPAIR( 9, 10) = 0x6673,
186 RF_CHANPAIR(11, 12) = 0x6473,
187 RF_CHANPAIR(13, 14) = 0x6653,
188 },
189 { /* table 11 */
190 RF_CHANPAIR( 1, 2) = 0x665b,
191 RF_CHANPAIR( 3, 4) = 0x605b,
192 RF_CHANPAIR( 5, 6) = 0x666b,
193 RF_CHANPAIR( 7, 8) = 0x646b,
194 RF_CHANPAIR( 9, 10) = 0x664b,
195 RF_CHANPAIR(11, 12) = 0x644b,
196 RF_CHANPAIR(13, 14) = 0x6673,
197 },
198
199 };
200
201 /* The per-channel synth values for autocal. These get written to register 1. */
202 static const u16 uw2453_autocal_synth[] = {
203 RF_CHANNEL( 1) = 0x6847,
204 RF_CHANNEL( 2) = 0x6847,
205 RF_CHANNEL( 3) = 0x6867,
206 RF_CHANNEL( 4) = 0x6867,
207 RF_CHANNEL( 5) = 0x6867,
208 RF_CHANNEL( 6) = 0x6867,
209 RF_CHANNEL( 7) = 0x6857,
210 RF_CHANNEL( 8) = 0x6857,
211 RF_CHANNEL( 9) = 0x6857,
212 RF_CHANNEL(10) = 0x6857,
213 RF_CHANNEL(11) = 0x6877,
214 RF_CHANNEL(12) = 0x6877,
215 RF_CHANNEL(13) = 0x6877,
216 RF_CHANNEL(14) = 0x684f,
217 };
218
219 /* The VCO configuration for autocal (all channels) */
220 static const u16 UW2453_AUTOCAL_VCO_CFG = 0x6662;
221
222 /* TX gain settings. The array index corresponds to the TX power integration
223 * values found in the EEPROM. The values get written to register 7. */
224 static u32 uw2453_txgain[] = {
225 [0x00] = 0x0e313,
226 [0x01] = 0x0fb13,
227 [0x02] = 0x0e093,
228 [0x03] = 0x0f893,
229 [0x04] = 0x0ea93,
230 [0x05] = 0x1f093,
231 [0x06] = 0x1f493,
232 [0x07] = 0x1f693,
233 [0x08] = 0x1f393,
234 [0x09] = 0x1f35b,
235 [0x0a] = 0x1e6db,
236 [0x0b] = 0x1ff3f,
237 [0x0c] = 0x1ffff,
238 [0x0d] = 0x361d7,
239 [0x0e] = 0x37fbf,
240 [0x0f] = 0x3ff8b,
241 [0x10] = 0x3ff33,
242 [0x11] = 0x3fb3f,
243 [0x12] = 0x3ffff,
244 };
245
246 /* RF-specific structure */
247 struct uw2453_priv {
248 /* index into synth/VCO config tables where PLL lock was found
249 * -1 means autocal */
250 int config;
251 };
252
253 #define UW2453_PRIV(rf) ((struct uw2453_priv *) (rf)->priv)
254
255 static int uw2453_synth_set_channel(struct zd_chip *chip, int channel,
256 bool autocal)
257 {
258 int r;
259 int idx = channel - 1;
260 u32 val;
261
262 if (autocal)
263 val = UW2453_REGWRITE(1, uw2453_autocal_synth[idx]);
264 else
265 val = UW2453_REGWRITE(1, uw2453_std_synth[idx]);
266
267 r = zd_rfwrite_locked(chip, val, RF_RV_BITS);
268 if (r)
269 return r;
270
271 return zd_rfwrite_locked(chip,
272 UW2453_REGWRITE(2, uw2453_synth_divide[idx]), RF_RV_BITS);
273 }
274
275 static int uw2453_write_vco_cfg(struct zd_chip *chip, u16 value)
276 {
277 /* vendor driver always sets these upper bits even though the specs say
278 * they are reserved */
279 u32 val = 0x40000 | value;
280 return zd_rfwrite_locked(chip, UW2453_REGWRITE(3, val), RF_RV_BITS);
281 }
282
283 static int uw2453_init_mode(struct zd_chip *chip)
284 {
285 static const u32 rv[] = {
286 UW2453_REGWRITE(0, 0x25f98), /* enter IDLE mode */
287 UW2453_REGWRITE(0, 0x25f9a), /* enter CAL_VCO mode */
288 UW2453_REGWRITE(0, 0x25f94), /* enter RX/TX mode */
289 UW2453_REGWRITE(0, 0x27fd4), /* power down RSSI circuit */
290 };
291
292 return zd_rfwritev_locked(chip, rv, ARRAY_SIZE(rv), RF_RV_BITS);
293 }
294
295 static int uw2453_set_tx_gain_level(struct zd_chip *chip, int channel)
296 {
297 u8 int_value = chip->pwr_int_values[channel - 1];
298
299 if (int_value >= ARRAY_SIZE(uw2453_txgain)) {
300 dev_dbg_f(zd_chip_dev(chip), "can't configure TX gain for "
301 "int value %x on channel %d\n", int_value, channel);
302 return 0;
303 }
304
305 return zd_rfwrite_locked(chip,
306 UW2453_REGWRITE(7, uw2453_txgain[int_value]), RF_RV_BITS);
307 }
308
309 static int uw2453_init_hw(struct zd_rf *rf)
310 {
311 int i, r;
312 int found_config = -1;
313 u16 intr_status;
314 struct zd_chip *chip = zd_rf_to_chip(rf);
315
316 static const struct zd_ioreq16 ioreqs[] = {
317 { ZD_CR10, 0x89 }, { ZD_CR15, 0x20 },
318 { ZD_CR17, 0x28 }, /* 6112 no change */
319 { ZD_CR23, 0x38 }, { ZD_CR24, 0x20 }, { ZD_CR26, 0x93 },
320 { ZD_CR27, 0x15 }, { ZD_CR28, 0x3e }, { ZD_CR29, 0x00 },
321 { ZD_CR33, 0x28 }, { ZD_CR34, 0x30 },
322 { ZD_CR35, 0x43 }, /* 6112 3e->43 */
323 { ZD_CR41, 0x24 }, { ZD_CR44, 0x32 },
324 { ZD_CR46, 0x92 }, /* 6112 96->92 */
325 { ZD_CR47, 0x1e },
326 { ZD_CR48, 0x04 }, /* 5602 Roger */
327 { ZD_CR49, 0xfa }, { ZD_CR79, 0x58 }, { ZD_CR80, 0x30 },
328 { ZD_CR81, 0x30 }, { ZD_CR87, 0x0a }, { ZD_CR89, 0x04 },
329 { ZD_CR91, 0x00 }, { ZD_CR92, 0x0a }, { ZD_CR98, 0x8d },
330 { ZD_CR99, 0x28 }, { ZD_CR100, 0x02 },
331 { ZD_CR101, 0x09 }, /* 6112 13->1f 6220 1f->13 6407 13->9 */
332 { ZD_CR102, 0x27 },
333 { ZD_CR106, 0x1c }, /* 5d07 5112 1f->1c 6220 1c->1f
334 * 6221 1f->1c
335 */
336 { ZD_CR107, 0x1c }, /* 6220 1c->1a 5221 1a->1c */
337 { ZD_CR109, 0x13 },
338 { ZD_CR110, 0x1f }, /* 6112 13->1f 6221 1f->13 6407 13->0x09 */
339 { ZD_CR111, 0x13 }, { ZD_CR112, 0x1f }, { ZD_CR113, 0x27 },
340 { ZD_CR114, 0x23 }, /* 6221 27->23 */
341 { ZD_CR115, 0x24 }, /* 6112 24->1c 6220 1c->24 */
342 { ZD_CR116, 0x24 }, /* 6220 1c->24 */
343 { ZD_CR117, 0xfa }, /* 6112 fa->f8 6220 f8->f4 6220 f4->fa */
344 { ZD_CR118, 0xf0 }, /* 5d07 6112 f0->f2 6220 f2->f0 */
345 { ZD_CR119, 0x1a }, /* 6112 1a->10 6220 10->14 6220 14->1a */
346 { ZD_CR120, 0x4f },
347 { ZD_CR121, 0x1f }, /* 6220 4f->1f */
348 { ZD_CR122, 0xf0 }, { ZD_CR123, 0x57 }, { ZD_CR125, 0xad },
349 { ZD_CR126, 0x6c }, { ZD_CR127, 0x03 },
350 { ZD_CR128, 0x14 }, /* 6302 12->11 */
351 { ZD_CR129, 0x12 }, /* 6301 10->0f */
352 { ZD_CR130, 0x10 }, { ZD_CR137, 0x50 }, { ZD_CR138, 0xa8 },
353 { ZD_CR144, 0xac }, { ZD_CR146, 0x20 }, { ZD_CR252, 0xff },
354 { ZD_CR253, 0xff },
355 };
356
357 static const u32 rv[] = {
358 UW2453_REGWRITE(4, 0x2b), /* configure receiver gain */
359 UW2453_REGWRITE(5, 0x19e4f), /* configure transmitter gain */
360 UW2453_REGWRITE(6, 0xf81ad), /* enable RX/TX filter tuning */
361 UW2453_REGWRITE(7, 0x3fffe), /* disable TX gain in test mode */
362
363 /* enter CAL_FIL mode, TX gain set by registers, RX gain set by pins,
364 * RSSI circuit powered down, reduced RSSI range */
365 UW2453_REGWRITE(0, 0x25f9c), /* 5d01 cal_fil */
366
367 /* synthesizer configuration for channel 1 */
368 UW2453_REGWRITE(1, 0x47),
369 UW2453_REGWRITE(2, 0x999),
370
371 /* disable manual VCO band selection */
372 UW2453_REGWRITE(3, 0x7602),
373
374 /* enable manual VCO band selection, configure current level */
375 UW2453_REGWRITE(3, 0x46063),
376 };
377
378 r = zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
379 if (r)
380 return r;
381
382 r = zd_rfwritev_locked(chip, rv, ARRAY_SIZE(rv), RF_RV_BITS);
383 if (r)
384 return r;
385
386 r = uw2453_init_mode(chip);
387 if (r)
388 return r;
389
390 /* Try all standard VCO configuration settings on channel 1 */
391 for (i = 0; i < ARRAY_SIZE(uw2453_std_vco_cfg) - 1; i++) {
392 /* Configure synthesizer for channel 1 */
393 r = uw2453_synth_set_channel(chip, 1, false);
394 if (r)
395 return r;
396
397 /* Write VCO config */
398 r = uw2453_write_vco_cfg(chip, uw2453_std_vco_cfg[i][0]);
399 if (r)
400 return r;
401
402 /* ack interrupt event */
403 r = zd_iowrite16_locked(chip, 0x0f, UW2453_INTR_REG);
404 if (r)
405 return r;
406
407 /* check interrupt status */
408 r = zd_ioread16_locked(chip, &intr_status, UW2453_INTR_REG);
409 if (r)
410 return r;
411
412 if (!(intr_status & 0xf)) {
413 dev_dbg_f(zd_chip_dev(chip),
414 "PLL locked on configuration %d\n", i);
415 found_config = i;
416 break;
417 }
418 }
419
420 if (found_config == -1) {
421 /* autocal */
422 dev_dbg_f(zd_chip_dev(chip),
423 "PLL did not lock, using autocal\n");
424
425 r = uw2453_synth_set_channel(chip, 1, true);
426 if (r)
427 return r;
428
429 r = uw2453_write_vco_cfg(chip, UW2453_AUTOCAL_VCO_CFG);
430 if (r)
431 return r;
432 }
433
434 /* To match the vendor driver behaviour, we use the configuration after
435 * the one that produced a lock. */
436 UW2453_PRIV(rf)->config = found_config + 1;
437
438 return zd_iowrite16_locked(chip, 0x06, ZD_CR203);
439 }
440
441 static int uw2453_set_channel(struct zd_rf *rf, u8 channel)
442 {
443 int r;
444 u16 vco_cfg;
445 int config = UW2453_PRIV(rf)->config;
446 bool autocal = (config == -1);
447 struct zd_chip *chip = zd_rf_to_chip(rf);
448
449 static const struct zd_ioreq16 ioreqs[] = {
450 { ZD_CR80, 0x30 }, { ZD_CR81, 0x30 }, { ZD_CR79, 0x58 },
451 { ZD_CR12, 0xf0 }, { ZD_CR77, 0x1b }, { ZD_CR78, 0x58 },
452 };
453
454 r = uw2453_synth_set_channel(chip, channel, autocal);
455 if (r)
456 return r;
457
458 if (autocal)
459 vco_cfg = UW2453_AUTOCAL_VCO_CFG;
460 else
461 vco_cfg = uw2453_std_vco_cfg[config][CHAN_TO_PAIRIDX(channel)];
462
463 r = uw2453_write_vco_cfg(chip, vco_cfg);
464 if (r)
465 return r;
466
467 r = uw2453_init_mode(chip);
468 if (r)
469 return r;
470
471 r = zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
472 if (r)
473 return r;
474
475 r = uw2453_set_tx_gain_level(chip, channel);
476 if (r)
477 return r;
478
479 return zd_iowrite16_locked(chip, 0x06, ZD_CR203);
480 }
481
482 static int uw2453_switch_radio_on(struct zd_rf *rf)
483 {
484 int r;
485 struct zd_chip *chip = zd_rf_to_chip(rf);
486 struct zd_ioreq16 ioreqs[] = {
487 { ZD_CR11, 0x00 }, { ZD_CR251, 0x3f },
488 };
489
490 /* enter RXTX mode */
491 r = zd_rfwrite_locked(chip, UW2453_REGWRITE(0, 0x25f94), RF_RV_BITS);
492 if (r)
493 return r;
494
495 if (zd_chip_is_zd1211b(chip))
496 ioreqs[1].value = 0x7f;
497
498 return zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
499 }
500
501 static int uw2453_switch_radio_off(struct zd_rf *rf)
502 {
503 int r;
504 struct zd_chip *chip = zd_rf_to_chip(rf);
505 static const struct zd_ioreq16 ioreqs[] = {
506 { ZD_CR11, 0x04 }, { ZD_CR251, 0x2f },
507 };
508
509 /* enter IDLE mode */
510 /* FIXME: shouldn't we go to SLEEP? sent email to zydas */
511 r = zd_rfwrite_locked(chip, UW2453_REGWRITE(0, 0x25f90), RF_RV_BITS);
512 if (r)
513 return r;
514
515 return zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
516 }
517
518 static void uw2453_clear(struct zd_rf *rf)
519 {
520 kfree(rf->priv);
521 }
522
523 int zd_rf_init_uw2453(struct zd_rf *rf)
524 {
525 rf->init_hw = uw2453_init_hw;
526 rf->set_channel = uw2453_set_channel;
527 rf->switch_radio_on = uw2453_switch_radio_on;
528 rf->switch_radio_off = uw2453_switch_radio_off;
529 rf->patch_6m_band_edge = zd_rf_generic_patch_6m;
530 rf->clear = uw2453_clear;
531 /* we have our own TX integration code */
532 rf->update_channel_int = 0;
533
534 rf->priv = kmalloc(sizeof(struct uw2453_priv), GFP_KERNEL);
535 if (rf->priv == NULL)
536 return -ENOMEM;
537
538 return 0;
539 }
540
This page took 0.070901 seconds and 5 git commands to generate.