0e6e44689cc61f863b9a25f936ab19d4ec943e6d
[deliverable/linux.git] / drivers / net / wireless / zd1211rw / zd_usb.c
1 /* ZD1211 USB-WLAN driver for Linux
2 *
3 * Copyright (C) 2005-2007 Ulrich Kunitz <kune@deine-taler.de>
4 * Copyright (C) 2006-2007 Daniel Drake <dsd@gentoo.org>
5 * Copyright (C) 2006-2007 Michael Wu <flamingice@sourmilk.net>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 */
21
22 #include <linux/kernel.h>
23 #include <linux/init.h>
24 #include <linux/firmware.h>
25 #include <linux/device.h>
26 #include <linux/errno.h>
27 #include <linux/skbuff.h>
28 #include <linux/usb.h>
29 #include <linux/workqueue.h>
30 #include <net/mac80211.h>
31 #include <asm/unaligned.h>
32
33 #include "zd_def.h"
34 #include "zd_mac.h"
35 #include "zd_usb.h"
36
37 static struct usb_device_id usb_ids[] = {
38 /* ZD1211 */
39 { USB_DEVICE(0x0ace, 0x1211), .driver_info = DEVICE_ZD1211 },
40 { USB_DEVICE(0x0ace, 0xa211), .driver_info = DEVICE_ZD1211 },
41 { USB_DEVICE(0x126f, 0xa006), .driver_info = DEVICE_ZD1211 },
42 { USB_DEVICE(0x6891, 0xa727), .driver_info = DEVICE_ZD1211 },
43 { USB_DEVICE(0x0df6, 0x9071), .driver_info = DEVICE_ZD1211 },
44 { USB_DEVICE(0x0df6, 0x9075), .driver_info = DEVICE_ZD1211 },
45 { USB_DEVICE(0x157e, 0x300b), .driver_info = DEVICE_ZD1211 },
46 { USB_DEVICE(0x079b, 0x004a), .driver_info = DEVICE_ZD1211 },
47 { USB_DEVICE(0x1740, 0x2000), .driver_info = DEVICE_ZD1211 },
48 { USB_DEVICE(0x157e, 0x3204), .driver_info = DEVICE_ZD1211 },
49 { USB_DEVICE(0x0586, 0x3402), .driver_info = DEVICE_ZD1211 },
50 { USB_DEVICE(0x0b3b, 0x5630), .driver_info = DEVICE_ZD1211 },
51 { USB_DEVICE(0x0b05, 0x170c), .driver_info = DEVICE_ZD1211 },
52 { USB_DEVICE(0x1435, 0x0711), .driver_info = DEVICE_ZD1211 },
53 { USB_DEVICE(0x0586, 0x3409), .driver_info = DEVICE_ZD1211 },
54 { USB_DEVICE(0x0b3b, 0x1630), .driver_info = DEVICE_ZD1211 },
55 { USB_DEVICE(0x0586, 0x3401), .driver_info = DEVICE_ZD1211 },
56 { USB_DEVICE(0x14ea, 0xab13), .driver_info = DEVICE_ZD1211 },
57 { USB_DEVICE(0x13b1, 0x001e), .driver_info = DEVICE_ZD1211 },
58 { USB_DEVICE(0x0586, 0x3407), .driver_info = DEVICE_ZD1211 },
59 { USB_DEVICE(0x129b, 0x1666), .driver_info = DEVICE_ZD1211 },
60 { USB_DEVICE(0x157e, 0x300a), .driver_info = DEVICE_ZD1211 },
61 { USB_DEVICE(0x0105, 0x145f), .driver_info = DEVICE_ZD1211 },
62 /* ZD1211B */
63 { USB_DEVICE(0x054c, 0x0257), .driver_info = DEVICE_ZD1211B },
64 { USB_DEVICE(0x0ace, 0x1215), .driver_info = DEVICE_ZD1211B },
65 { USB_DEVICE(0x0ace, 0xb215), .driver_info = DEVICE_ZD1211B },
66 { USB_DEVICE(0x157e, 0x300d), .driver_info = DEVICE_ZD1211B },
67 { USB_DEVICE(0x079b, 0x0062), .driver_info = DEVICE_ZD1211B },
68 { USB_DEVICE(0x1582, 0x6003), .driver_info = DEVICE_ZD1211B },
69 { USB_DEVICE(0x050d, 0x705c), .driver_info = DEVICE_ZD1211B },
70 { USB_DEVICE(0x083a, 0xe503), .driver_info = DEVICE_ZD1211B },
71 { USB_DEVICE(0x083a, 0xe506), .driver_info = DEVICE_ZD1211B },
72 { USB_DEVICE(0x083a, 0x4505), .driver_info = DEVICE_ZD1211B },
73 { USB_DEVICE(0x0471, 0x1236), .driver_info = DEVICE_ZD1211B },
74 { USB_DEVICE(0x13b1, 0x0024), .driver_info = DEVICE_ZD1211B },
75 { USB_DEVICE(0x0586, 0x340f), .driver_info = DEVICE_ZD1211B },
76 { USB_DEVICE(0x0b05, 0x171b), .driver_info = DEVICE_ZD1211B },
77 { USB_DEVICE(0x0586, 0x3410), .driver_info = DEVICE_ZD1211B },
78 { USB_DEVICE(0x0baf, 0x0121), .driver_info = DEVICE_ZD1211B },
79 { USB_DEVICE(0x0586, 0x3412), .driver_info = DEVICE_ZD1211B },
80 { USB_DEVICE(0x0586, 0x3413), .driver_info = DEVICE_ZD1211B },
81 { USB_DEVICE(0x0053, 0x5301), .driver_info = DEVICE_ZD1211B },
82 { USB_DEVICE(0x0411, 0x00da), .driver_info = DEVICE_ZD1211B },
83 { USB_DEVICE(0x2019, 0x5303), .driver_info = DEVICE_ZD1211B },
84 { USB_DEVICE(0x129b, 0x1667), .driver_info = DEVICE_ZD1211B },
85 { USB_DEVICE(0x0cde, 0x001a), .driver_info = DEVICE_ZD1211B },
86 { USB_DEVICE(0x0586, 0x340a), .driver_info = DEVICE_ZD1211B },
87 { USB_DEVICE(0x0471, 0x1237), .driver_info = DEVICE_ZD1211B },
88 { USB_DEVICE(0x07fa, 0x1196), .driver_info = DEVICE_ZD1211B },
89 { USB_DEVICE(0x0df6, 0x0036), .driver_info = DEVICE_ZD1211B },
90 { USB_DEVICE(0x07b8, 0x6001), .driver_info = DEVICE_ZD1211B },
91 /* "Driverless" devices that need ejecting */
92 { USB_DEVICE(0x0ace, 0x2011), .driver_info = DEVICE_INSTALLER },
93 { USB_DEVICE(0x0ace, 0x20ff), .driver_info = DEVICE_INSTALLER },
94 {}
95 };
96
97 MODULE_LICENSE("GPL");
98 MODULE_DESCRIPTION("USB driver for devices with the ZD1211 chip.");
99 MODULE_AUTHOR("Ulrich Kunitz");
100 MODULE_AUTHOR("Daniel Drake");
101 MODULE_VERSION("1.0");
102 MODULE_DEVICE_TABLE(usb, usb_ids);
103
104 #define FW_ZD1211_PREFIX "zd1211/zd1211_"
105 #define FW_ZD1211B_PREFIX "zd1211/zd1211b_"
106
107 /* USB device initialization */
108 static void int_urb_complete(struct urb *urb);
109
110 static int request_fw_file(
111 const struct firmware **fw, const char *name, struct device *device)
112 {
113 int r;
114
115 dev_dbg_f(device, "fw name %s\n", name);
116
117 r = request_firmware(fw, name, device);
118 if (r)
119 dev_err(device,
120 "Could not load firmware file %s. Error number %d\n",
121 name, r);
122 return r;
123 }
124
125 static inline u16 get_bcdDevice(const struct usb_device *udev)
126 {
127 return le16_to_cpu(udev->descriptor.bcdDevice);
128 }
129
130 enum upload_code_flags {
131 REBOOT = 1,
132 };
133
134 /* Ensures that MAX_TRANSFER_SIZE is even. */
135 #define MAX_TRANSFER_SIZE (USB_MAX_TRANSFER_SIZE & ~1)
136
137 static int upload_code(struct usb_device *udev,
138 const u8 *data, size_t size, u16 code_offset, int flags)
139 {
140 u8 *p;
141 int r;
142
143 /* USB request blocks need "kmalloced" buffers.
144 */
145 p = kmalloc(MAX_TRANSFER_SIZE, GFP_KERNEL);
146 if (!p) {
147 dev_err(&udev->dev, "out of memory\n");
148 r = -ENOMEM;
149 goto error;
150 }
151
152 size &= ~1;
153 while (size > 0) {
154 size_t transfer_size = size <= MAX_TRANSFER_SIZE ?
155 size : MAX_TRANSFER_SIZE;
156
157 dev_dbg_f(&udev->dev, "transfer size %zu\n", transfer_size);
158
159 memcpy(p, data, transfer_size);
160 r = usb_control_msg(udev, usb_sndctrlpipe(udev, 0),
161 USB_REQ_FIRMWARE_DOWNLOAD,
162 USB_DIR_OUT | USB_TYPE_VENDOR,
163 code_offset, 0, p, transfer_size, 1000 /* ms */);
164 if (r < 0) {
165 dev_err(&udev->dev,
166 "USB control request for firmware upload"
167 " failed. Error number %d\n", r);
168 goto error;
169 }
170 transfer_size = r & ~1;
171
172 size -= transfer_size;
173 data += transfer_size;
174 code_offset += transfer_size/sizeof(u16);
175 }
176
177 if (flags & REBOOT) {
178 u8 ret;
179
180 /* Use "DMA-aware" buffer. */
181 r = usb_control_msg(udev, usb_rcvctrlpipe(udev, 0),
182 USB_REQ_FIRMWARE_CONFIRM,
183 USB_DIR_IN | USB_TYPE_VENDOR,
184 0, 0, p, sizeof(ret), 5000 /* ms */);
185 if (r != sizeof(ret)) {
186 dev_err(&udev->dev,
187 "control request firmeware confirmation failed."
188 " Return value %d\n", r);
189 if (r >= 0)
190 r = -ENODEV;
191 goto error;
192 }
193 ret = p[0];
194 if (ret & 0x80) {
195 dev_err(&udev->dev,
196 "Internal error while downloading."
197 " Firmware confirm return value %#04x\n",
198 (unsigned int)ret);
199 r = -ENODEV;
200 goto error;
201 }
202 dev_dbg_f(&udev->dev, "firmware confirm return value %#04x\n",
203 (unsigned int)ret);
204 }
205
206 r = 0;
207 error:
208 kfree(p);
209 return r;
210 }
211
212 static u16 get_word(const void *data, u16 offset)
213 {
214 const __le16 *p = data;
215 return le16_to_cpu(p[offset]);
216 }
217
218 static char *get_fw_name(struct zd_usb *usb, char *buffer, size_t size,
219 const char* postfix)
220 {
221 scnprintf(buffer, size, "%s%s",
222 usb->is_zd1211b ?
223 FW_ZD1211B_PREFIX : FW_ZD1211_PREFIX,
224 postfix);
225 return buffer;
226 }
227
228 static int handle_version_mismatch(struct zd_usb *usb,
229 const struct firmware *ub_fw)
230 {
231 struct usb_device *udev = zd_usb_to_usbdev(usb);
232 const struct firmware *ur_fw = NULL;
233 int offset;
234 int r = 0;
235 char fw_name[128];
236
237 r = request_fw_file(&ur_fw,
238 get_fw_name(usb, fw_name, sizeof(fw_name), "ur"),
239 &udev->dev);
240 if (r)
241 goto error;
242
243 r = upload_code(udev, ur_fw->data, ur_fw->size, FW_START, REBOOT);
244 if (r)
245 goto error;
246
247 offset = (E2P_BOOT_CODE_OFFSET * sizeof(u16));
248 r = upload_code(udev, ub_fw->data + offset, ub_fw->size - offset,
249 E2P_START + E2P_BOOT_CODE_OFFSET, REBOOT);
250
251 /* At this point, the vendor driver downloads the whole firmware
252 * image, hacks around with version IDs, and uploads it again,
253 * completely overwriting the boot code. We do not do this here as
254 * it is not required on any tested devices, and it is suspected to
255 * cause problems. */
256 error:
257 release_firmware(ur_fw);
258 return r;
259 }
260
261 static int upload_firmware(struct zd_usb *usb)
262 {
263 int r;
264 u16 fw_bcdDevice;
265 u16 bcdDevice;
266 struct usb_device *udev = zd_usb_to_usbdev(usb);
267 const struct firmware *ub_fw = NULL;
268 const struct firmware *uph_fw = NULL;
269 char fw_name[128];
270
271 bcdDevice = get_bcdDevice(udev);
272
273 r = request_fw_file(&ub_fw,
274 get_fw_name(usb, fw_name, sizeof(fw_name), "ub"),
275 &udev->dev);
276 if (r)
277 goto error;
278
279 fw_bcdDevice = get_word(ub_fw->data, E2P_DATA_OFFSET);
280
281 if (fw_bcdDevice != bcdDevice) {
282 dev_info(&udev->dev,
283 "firmware version %#06x and device bootcode version "
284 "%#06x differ\n", fw_bcdDevice, bcdDevice);
285 if (bcdDevice <= 0x4313)
286 dev_warn(&udev->dev, "device has old bootcode, please "
287 "report success or failure\n");
288
289 r = handle_version_mismatch(usb, ub_fw);
290 if (r)
291 goto error;
292 } else {
293 dev_dbg_f(&udev->dev,
294 "firmware device id %#06x is equal to the "
295 "actual device id\n", fw_bcdDevice);
296 }
297
298
299 r = request_fw_file(&uph_fw,
300 get_fw_name(usb, fw_name, sizeof(fw_name), "uphr"),
301 &udev->dev);
302 if (r)
303 goto error;
304
305 r = upload_code(udev, uph_fw->data, uph_fw->size, FW_START, REBOOT);
306 if (r) {
307 dev_err(&udev->dev,
308 "Could not upload firmware code uph. Error number %d\n",
309 r);
310 }
311
312 /* FALL-THROUGH */
313 error:
314 release_firmware(ub_fw);
315 release_firmware(uph_fw);
316 return r;
317 }
318
319 /* Read data from device address space using "firmware interface" which does
320 * not require firmware to be loaded. */
321 int zd_usb_read_fw(struct zd_usb *usb, zd_addr_t addr, u8 *data, u16 len)
322 {
323 int r;
324 struct usb_device *udev = zd_usb_to_usbdev(usb);
325 u8 *buf;
326
327 /* Use "DMA-aware" buffer. */
328 buf = kmalloc(len, GFP_KERNEL);
329 if (!buf)
330 return -ENOMEM;
331 r = usb_control_msg(udev, usb_rcvctrlpipe(udev, 0),
332 USB_REQ_FIRMWARE_READ_DATA, USB_DIR_IN | 0x40, addr, 0,
333 buf, len, 5000);
334 if (r < 0) {
335 dev_err(&udev->dev,
336 "read over firmware interface failed: %d\n", r);
337 goto exit;
338 } else if (r != len) {
339 dev_err(&udev->dev,
340 "incomplete read over firmware interface: %d/%d\n",
341 r, len);
342 r = -EIO;
343 goto exit;
344 }
345 r = 0;
346 memcpy(data, buf, len);
347 exit:
348 kfree(buf);
349 return r;
350 }
351
352 #define urb_dev(urb) (&(urb)->dev->dev)
353
354 static inline void handle_regs_int(struct urb *urb)
355 {
356 struct zd_usb *usb = urb->context;
357 struct zd_usb_interrupt *intr = &usb->intr;
358 int len;
359 u16 int_num;
360
361 ZD_ASSERT(in_interrupt());
362 spin_lock(&intr->lock);
363
364 int_num = le16_to_cpu(*(__le16 *)(urb->transfer_buffer+2));
365 if (int_num == CR_INTERRUPT) {
366 struct zd_mac *mac = zd_hw_mac(zd_usb_to_hw(urb->context));
367 memcpy(&mac->intr_buffer, urb->transfer_buffer,
368 USB_MAX_EP_INT_BUFFER);
369 schedule_work(&mac->process_intr);
370 } else if (intr->read_regs_enabled) {
371 intr->read_regs.length = len = urb->actual_length;
372
373 if (len > sizeof(intr->read_regs.buffer))
374 len = sizeof(intr->read_regs.buffer);
375 memcpy(intr->read_regs.buffer, urb->transfer_buffer, len);
376 intr->read_regs_enabled = 0;
377 complete(&intr->read_regs.completion);
378 goto out;
379 }
380
381 out:
382 spin_unlock(&intr->lock);
383 }
384
385 static void int_urb_complete(struct urb *urb)
386 {
387 int r;
388 struct usb_int_header *hdr;
389
390 switch (urb->status) {
391 case 0:
392 break;
393 case -ESHUTDOWN:
394 case -EINVAL:
395 case -ENODEV:
396 case -ENOENT:
397 case -ECONNRESET:
398 case -EPIPE:
399 goto kfree;
400 default:
401 goto resubmit;
402 }
403
404 if (urb->actual_length < sizeof(hdr)) {
405 dev_dbg_f(urb_dev(urb), "error: urb %p to small\n", urb);
406 goto resubmit;
407 }
408
409 hdr = urb->transfer_buffer;
410 if (hdr->type != USB_INT_TYPE) {
411 dev_dbg_f(urb_dev(urb), "error: urb %p wrong type\n", urb);
412 goto resubmit;
413 }
414
415 switch (hdr->id) {
416 case USB_INT_ID_REGS:
417 handle_regs_int(urb);
418 break;
419 case USB_INT_ID_RETRY_FAILED:
420 zd_mac_tx_failed(zd_usb_to_hw(urb->context));
421 break;
422 default:
423 dev_dbg_f(urb_dev(urb), "error: urb %p unknown id %x\n", urb,
424 (unsigned int)hdr->id);
425 goto resubmit;
426 }
427
428 resubmit:
429 r = usb_submit_urb(urb, GFP_ATOMIC);
430 if (r) {
431 dev_dbg_f(urb_dev(urb), "resubmit urb %p\n", urb);
432 goto kfree;
433 }
434 return;
435 kfree:
436 kfree(urb->transfer_buffer);
437 }
438
439 static inline int int_urb_interval(struct usb_device *udev)
440 {
441 switch (udev->speed) {
442 case USB_SPEED_HIGH:
443 return 4;
444 case USB_SPEED_LOW:
445 return 10;
446 case USB_SPEED_FULL:
447 default:
448 return 1;
449 }
450 }
451
452 static inline int usb_int_enabled(struct zd_usb *usb)
453 {
454 unsigned long flags;
455 struct zd_usb_interrupt *intr = &usb->intr;
456 struct urb *urb;
457
458 spin_lock_irqsave(&intr->lock, flags);
459 urb = intr->urb;
460 spin_unlock_irqrestore(&intr->lock, flags);
461 return urb != NULL;
462 }
463
464 int zd_usb_enable_int(struct zd_usb *usb)
465 {
466 int r;
467 struct usb_device *udev;
468 struct zd_usb_interrupt *intr = &usb->intr;
469 void *transfer_buffer = NULL;
470 struct urb *urb;
471
472 dev_dbg_f(zd_usb_dev(usb), "\n");
473
474 urb = usb_alloc_urb(0, GFP_KERNEL);
475 if (!urb) {
476 r = -ENOMEM;
477 goto out;
478 }
479
480 ZD_ASSERT(!irqs_disabled());
481 spin_lock_irq(&intr->lock);
482 if (intr->urb) {
483 spin_unlock_irq(&intr->lock);
484 r = 0;
485 goto error_free_urb;
486 }
487 intr->urb = urb;
488 spin_unlock_irq(&intr->lock);
489
490 /* TODO: make it a DMA buffer */
491 r = -ENOMEM;
492 transfer_buffer = kmalloc(USB_MAX_EP_INT_BUFFER, GFP_KERNEL);
493 if (!transfer_buffer) {
494 dev_dbg_f(zd_usb_dev(usb),
495 "couldn't allocate transfer_buffer\n");
496 goto error_set_urb_null;
497 }
498
499 udev = zd_usb_to_usbdev(usb);
500 usb_fill_int_urb(urb, udev, usb_rcvintpipe(udev, EP_INT_IN),
501 transfer_buffer, USB_MAX_EP_INT_BUFFER,
502 int_urb_complete, usb,
503 intr->interval);
504
505 dev_dbg_f(zd_usb_dev(usb), "submit urb %p\n", intr->urb);
506 r = usb_submit_urb(urb, GFP_KERNEL);
507 if (r) {
508 dev_dbg_f(zd_usb_dev(usb),
509 "Couldn't submit urb. Error number %d\n", r);
510 goto error;
511 }
512
513 return 0;
514 error:
515 kfree(transfer_buffer);
516 error_set_urb_null:
517 spin_lock_irq(&intr->lock);
518 intr->urb = NULL;
519 spin_unlock_irq(&intr->lock);
520 error_free_urb:
521 usb_free_urb(urb);
522 out:
523 return r;
524 }
525
526 void zd_usb_disable_int(struct zd_usb *usb)
527 {
528 unsigned long flags;
529 struct zd_usb_interrupt *intr = &usb->intr;
530 struct urb *urb;
531
532 spin_lock_irqsave(&intr->lock, flags);
533 urb = intr->urb;
534 if (!urb) {
535 spin_unlock_irqrestore(&intr->lock, flags);
536 return;
537 }
538 intr->urb = NULL;
539 spin_unlock_irqrestore(&intr->lock, flags);
540
541 usb_kill_urb(urb);
542 dev_dbg_f(zd_usb_dev(usb), "urb %p killed\n", urb);
543 usb_free_urb(urb);
544 }
545
546 static void handle_rx_packet(struct zd_usb *usb, const u8 *buffer,
547 unsigned int length)
548 {
549 int i;
550 const struct rx_length_info *length_info;
551
552 if (length < sizeof(struct rx_length_info)) {
553 /* It's not a complete packet anyhow. */
554 return;
555 }
556 length_info = (struct rx_length_info *)
557 (buffer + length - sizeof(struct rx_length_info));
558
559 /* It might be that three frames are merged into a single URB
560 * transaction. We have to check for the length info tag.
561 *
562 * While testing we discovered that length_info might be unaligned,
563 * because if USB transactions are merged, the last packet will not
564 * be padded. Unaligned access might also happen if the length_info
565 * structure is not present.
566 */
567 if (get_unaligned_le16(&length_info->tag) == RX_LENGTH_INFO_TAG)
568 {
569 unsigned int l, k, n;
570 for (i = 0, l = 0;; i++) {
571 k = get_unaligned_le16(&length_info->length[i]);
572 if (k == 0)
573 return;
574 n = l+k;
575 if (n > length)
576 return;
577 zd_mac_rx(zd_usb_to_hw(usb), buffer+l, k);
578 if (i >= 2)
579 return;
580 l = (n+3) & ~3;
581 }
582 } else {
583 zd_mac_rx(zd_usb_to_hw(usb), buffer, length);
584 }
585 }
586
587 static void rx_urb_complete(struct urb *urb)
588 {
589 struct zd_usb *usb;
590 struct zd_usb_rx *rx;
591 const u8 *buffer;
592 unsigned int length;
593
594 switch (urb->status) {
595 case 0:
596 break;
597 case -ESHUTDOWN:
598 case -EINVAL:
599 case -ENODEV:
600 case -ENOENT:
601 case -ECONNRESET:
602 case -EPIPE:
603 return;
604 default:
605 dev_dbg_f(urb_dev(urb), "urb %p error %d\n", urb, urb->status);
606 goto resubmit;
607 }
608
609 buffer = urb->transfer_buffer;
610 length = urb->actual_length;
611 usb = urb->context;
612 rx = &usb->rx;
613
614 if (length%rx->usb_packet_size > rx->usb_packet_size-4) {
615 /* If there is an old first fragment, we don't care. */
616 dev_dbg_f(urb_dev(urb), "*** first fragment ***\n");
617 ZD_ASSERT(length <= ARRAY_SIZE(rx->fragment));
618 spin_lock(&rx->lock);
619 memcpy(rx->fragment, buffer, length);
620 rx->fragment_length = length;
621 spin_unlock(&rx->lock);
622 goto resubmit;
623 }
624
625 spin_lock(&rx->lock);
626 if (rx->fragment_length > 0) {
627 /* We are on a second fragment, we believe */
628 ZD_ASSERT(length + rx->fragment_length <=
629 ARRAY_SIZE(rx->fragment));
630 dev_dbg_f(urb_dev(urb), "*** second fragment ***\n");
631 memcpy(rx->fragment+rx->fragment_length, buffer, length);
632 handle_rx_packet(usb, rx->fragment,
633 rx->fragment_length + length);
634 rx->fragment_length = 0;
635 spin_unlock(&rx->lock);
636 } else {
637 spin_unlock(&rx->lock);
638 handle_rx_packet(usb, buffer, length);
639 }
640
641 resubmit:
642 usb_submit_urb(urb, GFP_ATOMIC);
643 }
644
645 static struct urb *alloc_rx_urb(struct zd_usb *usb)
646 {
647 struct usb_device *udev = zd_usb_to_usbdev(usb);
648 struct urb *urb;
649 void *buffer;
650
651 urb = usb_alloc_urb(0, GFP_KERNEL);
652 if (!urb)
653 return NULL;
654 buffer = usb_buffer_alloc(udev, USB_MAX_RX_SIZE, GFP_KERNEL,
655 &urb->transfer_dma);
656 if (!buffer) {
657 usb_free_urb(urb);
658 return NULL;
659 }
660
661 usb_fill_bulk_urb(urb, udev, usb_rcvbulkpipe(udev, EP_DATA_IN),
662 buffer, USB_MAX_RX_SIZE,
663 rx_urb_complete, usb);
664 urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
665
666 return urb;
667 }
668
669 static void free_rx_urb(struct urb *urb)
670 {
671 if (!urb)
672 return;
673 usb_buffer_free(urb->dev, urb->transfer_buffer_length,
674 urb->transfer_buffer, urb->transfer_dma);
675 usb_free_urb(urb);
676 }
677
678 int zd_usb_enable_rx(struct zd_usb *usb)
679 {
680 int i, r;
681 struct zd_usb_rx *rx = &usb->rx;
682 struct urb **urbs;
683
684 dev_dbg_f(zd_usb_dev(usb), "\n");
685
686 r = -ENOMEM;
687 urbs = kcalloc(RX_URBS_COUNT, sizeof(struct urb *), GFP_KERNEL);
688 if (!urbs)
689 goto error;
690 for (i = 0; i < RX_URBS_COUNT; i++) {
691 urbs[i] = alloc_rx_urb(usb);
692 if (!urbs[i])
693 goto error;
694 }
695
696 ZD_ASSERT(!irqs_disabled());
697 spin_lock_irq(&rx->lock);
698 if (rx->urbs) {
699 spin_unlock_irq(&rx->lock);
700 r = 0;
701 goto error;
702 }
703 rx->urbs = urbs;
704 rx->urbs_count = RX_URBS_COUNT;
705 spin_unlock_irq(&rx->lock);
706
707 for (i = 0; i < RX_URBS_COUNT; i++) {
708 r = usb_submit_urb(urbs[i], GFP_KERNEL);
709 if (r)
710 goto error_submit;
711 }
712
713 return 0;
714 error_submit:
715 for (i = 0; i < RX_URBS_COUNT; i++) {
716 usb_kill_urb(urbs[i]);
717 }
718 spin_lock_irq(&rx->lock);
719 rx->urbs = NULL;
720 rx->urbs_count = 0;
721 spin_unlock_irq(&rx->lock);
722 error:
723 if (urbs) {
724 for (i = 0; i < RX_URBS_COUNT; i++)
725 free_rx_urb(urbs[i]);
726 }
727 return r;
728 }
729
730 void zd_usb_disable_rx(struct zd_usb *usb)
731 {
732 int i;
733 unsigned long flags;
734 struct urb **urbs;
735 unsigned int count;
736 struct zd_usb_rx *rx = &usb->rx;
737
738 spin_lock_irqsave(&rx->lock, flags);
739 urbs = rx->urbs;
740 count = rx->urbs_count;
741 spin_unlock_irqrestore(&rx->lock, flags);
742 if (!urbs)
743 return;
744
745 for (i = 0; i < count; i++) {
746 usb_kill_urb(urbs[i]);
747 free_rx_urb(urbs[i]);
748 }
749 kfree(urbs);
750
751 spin_lock_irqsave(&rx->lock, flags);
752 rx->urbs = NULL;
753 rx->urbs_count = 0;
754 spin_unlock_irqrestore(&rx->lock, flags);
755 }
756
757 /**
758 * zd_usb_disable_tx - disable transmission
759 * @usb: the zd1211rw-private USB structure
760 *
761 * Frees all URBs in the free list and marks the transmission as disabled.
762 */
763 void zd_usb_disable_tx(struct zd_usb *usb)
764 {
765 struct zd_usb_tx *tx = &usb->tx;
766 unsigned long flags;
767 struct list_head *pos, *n;
768
769 spin_lock_irqsave(&tx->lock, flags);
770 list_for_each_safe(pos, n, &tx->free_urb_list) {
771 list_del(pos);
772 usb_free_urb(list_entry(pos, struct urb, urb_list));
773 }
774 tx->enabled = 0;
775 tx->submitted_urbs = 0;
776 /* The stopped state is ignored, relying on ieee80211_wake_queues()
777 * in a potentionally following zd_usb_enable_tx().
778 */
779 spin_unlock_irqrestore(&tx->lock, flags);
780 }
781
782 /**
783 * zd_usb_enable_tx - enables transmission
784 * @usb: a &struct zd_usb pointer
785 *
786 * This function enables transmission and prepares the &zd_usb_tx data
787 * structure.
788 */
789 void zd_usb_enable_tx(struct zd_usb *usb)
790 {
791 unsigned long flags;
792 struct zd_usb_tx *tx = &usb->tx;
793
794 spin_lock_irqsave(&tx->lock, flags);
795 tx->enabled = 1;
796 tx->submitted_urbs = 0;
797 ieee80211_wake_queues(zd_usb_to_hw(usb));
798 tx->stopped = 0;
799 spin_unlock_irqrestore(&tx->lock, flags);
800 }
801
802 /**
803 * alloc_tx_urb - provides an tx URB
804 * @usb: a &struct zd_usb pointer
805 *
806 * Allocates a new URB. If possible takes the urb from the free list in
807 * usb->tx.
808 */
809 static struct urb *alloc_tx_urb(struct zd_usb *usb)
810 {
811 struct zd_usb_tx *tx = &usb->tx;
812 unsigned long flags;
813 struct list_head *entry;
814 struct urb *urb;
815
816 spin_lock_irqsave(&tx->lock, flags);
817 if (list_empty(&tx->free_urb_list)) {
818 urb = usb_alloc_urb(0, GFP_ATOMIC);
819 goto out;
820 }
821 entry = tx->free_urb_list.next;
822 list_del(entry);
823 urb = list_entry(entry, struct urb, urb_list);
824 out:
825 spin_unlock_irqrestore(&tx->lock, flags);
826 return urb;
827 }
828
829 /**
830 * free_tx_urb - frees a used tx URB
831 * @usb: a &struct zd_usb pointer
832 * @urb: URB to be freed
833 *
834 * Frees the the transmission URB, which means to put it on the free URB
835 * list.
836 */
837 static void free_tx_urb(struct zd_usb *usb, struct urb *urb)
838 {
839 struct zd_usb_tx *tx = &usb->tx;
840 unsigned long flags;
841
842 spin_lock_irqsave(&tx->lock, flags);
843 if (!tx->enabled) {
844 usb_free_urb(urb);
845 goto out;
846 }
847 list_add(&urb->urb_list, &tx->free_urb_list);
848 out:
849 spin_unlock_irqrestore(&tx->lock, flags);
850 }
851
852 static void tx_dec_submitted_urbs(struct zd_usb *usb)
853 {
854 struct zd_usb_tx *tx = &usb->tx;
855 unsigned long flags;
856
857 spin_lock_irqsave(&tx->lock, flags);
858 --tx->submitted_urbs;
859 if (tx->stopped && tx->submitted_urbs <= ZD_USB_TX_LOW) {
860 ieee80211_wake_queues(zd_usb_to_hw(usb));
861 tx->stopped = 0;
862 }
863 spin_unlock_irqrestore(&tx->lock, flags);
864 }
865
866 static void tx_inc_submitted_urbs(struct zd_usb *usb)
867 {
868 struct zd_usb_tx *tx = &usb->tx;
869 unsigned long flags;
870
871 spin_lock_irqsave(&tx->lock, flags);
872 ++tx->submitted_urbs;
873 if (!tx->stopped && tx->submitted_urbs > ZD_USB_TX_HIGH) {
874 ieee80211_stop_queues(zd_usb_to_hw(usb));
875 tx->stopped = 1;
876 }
877 spin_unlock_irqrestore(&tx->lock, flags);
878 }
879
880 /**
881 * tx_urb_complete - completes the execution of an URB
882 * @urb: a URB
883 *
884 * This function is called if the URB has been transferred to a device or an
885 * error has happened.
886 */
887 static void tx_urb_complete(struct urb *urb)
888 {
889 int r;
890 struct sk_buff *skb;
891 struct ieee80211_tx_info *info;
892 struct zd_usb *usb;
893
894 switch (urb->status) {
895 case 0:
896 break;
897 case -ESHUTDOWN:
898 case -EINVAL:
899 case -ENODEV:
900 case -ENOENT:
901 case -ECONNRESET:
902 case -EPIPE:
903 dev_dbg_f(urb_dev(urb), "urb %p error %d\n", urb, urb->status);
904 break;
905 default:
906 dev_dbg_f(urb_dev(urb), "urb %p error %d\n", urb, urb->status);
907 goto resubmit;
908 }
909 free_urb:
910 skb = (struct sk_buff *)urb->context;
911 /*
912 * grab 'usb' pointer before handing off the skb (since
913 * it might be freed by zd_mac_tx_to_dev or mac80211)
914 */
915 info = IEEE80211_SKB_CB(skb);
916 usb = &zd_hw_mac(info->rate_driver_data[0])->chip.usb;
917 zd_mac_tx_to_dev(skb, urb->status);
918 free_tx_urb(usb, urb);
919 tx_dec_submitted_urbs(usb);
920 return;
921 resubmit:
922 r = usb_submit_urb(urb, GFP_ATOMIC);
923 if (r) {
924 dev_dbg_f(urb_dev(urb), "error resubmit urb %p %d\n", urb, r);
925 goto free_urb;
926 }
927 }
928
929 /**
930 * zd_usb_tx: initiates transfer of a frame of the device
931 *
932 * @usb: the zd1211rw-private USB structure
933 * @skb: a &struct sk_buff pointer
934 *
935 * This function tranmits a frame to the device. It doesn't wait for
936 * completion. The frame must contain the control set and have all the
937 * control set information available.
938 *
939 * The function returns 0 if the transfer has been successfully initiated.
940 */
941 int zd_usb_tx(struct zd_usb *usb, struct sk_buff *skb)
942 {
943 int r;
944 struct usb_device *udev = zd_usb_to_usbdev(usb);
945 struct urb *urb;
946
947 urb = alloc_tx_urb(usb);
948 if (!urb) {
949 r = -ENOMEM;
950 goto out;
951 }
952
953 usb_fill_bulk_urb(urb, udev, usb_sndbulkpipe(udev, EP_DATA_OUT),
954 skb->data, skb->len, tx_urb_complete, skb);
955
956 r = usb_submit_urb(urb, GFP_ATOMIC);
957 if (r)
958 goto error;
959 tx_inc_submitted_urbs(usb);
960 return 0;
961 error:
962 free_tx_urb(usb, urb);
963 out:
964 return r;
965 }
966
967 static inline void init_usb_interrupt(struct zd_usb *usb)
968 {
969 struct zd_usb_interrupt *intr = &usb->intr;
970
971 spin_lock_init(&intr->lock);
972 intr->interval = int_urb_interval(zd_usb_to_usbdev(usb));
973 init_completion(&intr->read_regs.completion);
974 intr->read_regs.cr_int_addr = cpu_to_le16((u16)CR_INTERRUPT);
975 }
976
977 static inline void init_usb_rx(struct zd_usb *usb)
978 {
979 struct zd_usb_rx *rx = &usb->rx;
980 spin_lock_init(&rx->lock);
981 if (interface_to_usbdev(usb->intf)->speed == USB_SPEED_HIGH) {
982 rx->usb_packet_size = 512;
983 } else {
984 rx->usb_packet_size = 64;
985 }
986 ZD_ASSERT(rx->fragment_length == 0);
987 }
988
989 static inline void init_usb_tx(struct zd_usb *usb)
990 {
991 struct zd_usb_tx *tx = &usb->tx;
992 spin_lock_init(&tx->lock);
993 tx->enabled = 0;
994 tx->stopped = 0;
995 INIT_LIST_HEAD(&tx->free_urb_list);
996 tx->submitted_urbs = 0;
997 }
998
999 void zd_usb_init(struct zd_usb *usb, struct ieee80211_hw *hw,
1000 struct usb_interface *intf)
1001 {
1002 memset(usb, 0, sizeof(*usb));
1003 usb->intf = usb_get_intf(intf);
1004 usb_set_intfdata(usb->intf, hw);
1005 init_usb_interrupt(usb);
1006 init_usb_tx(usb);
1007 init_usb_rx(usb);
1008 }
1009
1010 void zd_usb_clear(struct zd_usb *usb)
1011 {
1012 usb_set_intfdata(usb->intf, NULL);
1013 usb_put_intf(usb->intf);
1014 ZD_MEMCLEAR(usb, sizeof(*usb));
1015 /* FIXME: usb_interrupt, usb_tx, usb_rx? */
1016 }
1017
1018 static const char *speed(enum usb_device_speed speed)
1019 {
1020 switch (speed) {
1021 case USB_SPEED_LOW:
1022 return "low";
1023 case USB_SPEED_FULL:
1024 return "full";
1025 case USB_SPEED_HIGH:
1026 return "high";
1027 default:
1028 return "unknown speed";
1029 }
1030 }
1031
1032 static int scnprint_id(struct usb_device *udev, char *buffer, size_t size)
1033 {
1034 return scnprintf(buffer, size, "%04hx:%04hx v%04hx %s",
1035 le16_to_cpu(udev->descriptor.idVendor),
1036 le16_to_cpu(udev->descriptor.idProduct),
1037 get_bcdDevice(udev),
1038 speed(udev->speed));
1039 }
1040
1041 int zd_usb_scnprint_id(struct zd_usb *usb, char *buffer, size_t size)
1042 {
1043 struct usb_device *udev = interface_to_usbdev(usb->intf);
1044 return scnprint_id(udev, buffer, size);
1045 }
1046
1047 #ifdef DEBUG
1048 static void print_id(struct usb_device *udev)
1049 {
1050 char buffer[40];
1051
1052 scnprint_id(udev, buffer, sizeof(buffer));
1053 buffer[sizeof(buffer)-1] = 0;
1054 dev_dbg_f(&udev->dev, "%s\n", buffer);
1055 }
1056 #else
1057 #define print_id(udev) do { } while (0)
1058 #endif
1059
1060 static int eject_installer(struct usb_interface *intf)
1061 {
1062 struct usb_device *udev = interface_to_usbdev(intf);
1063 struct usb_host_interface *iface_desc = &intf->altsetting[0];
1064 struct usb_endpoint_descriptor *endpoint;
1065 unsigned char *cmd;
1066 u8 bulk_out_ep;
1067 int r;
1068
1069 /* Find bulk out endpoint */
1070 endpoint = &iface_desc->endpoint[1].desc;
1071 if ((endpoint->bEndpointAddress & USB_TYPE_MASK) == USB_DIR_OUT &&
1072 usb_endpoint_xfer_bulk(endpoint)) {
1073 bulk_out_ep = endpoint->bEndpointAddress;
1074 } else {
1075 dev_err(&udev->dev,
1076 "zd1211rw: Could not find bulk out endpoint\n");
1077 return -ENODEV;
1078 }
1079
1080 cmd = kzalloc(31, GFP_KERNEL);
1081 if (cmd == NULL)
1082 return -ENODEV;
1083
1084 /* USB bulk command block */
1085 cmd[0] = 0x55; /* bulk command signature */
1086 cmd[1] = 0x53; /* bulk command signature */
1087 cmd[2] = 0x42; /* bulk command signature */
1088 cmd[3] = 0x43; /* bulk command signature */
1089 cmd[14] = 6; /* command length */
1090
1091 cmd[15] = 0x1b; /* SCSI command: START STOP UNIT */
1092 cmd[19] = 0x2; /* eject disc */
1093
1094 dev_info(&udev->dev, "Ejecting virtual installer media...\n");
1095 r = usb_bulk_msg(udev, usb_sndbulkpipe(udev, bulk_out_ep),
1096 cmd, 31, NULL, 2000);
1097 kfree(cmd);
1098 if (r)
1099 return r;
1100
1101 /* At this point, the device disconnects and reconnects with the real
1102 * ID numbers. */
1103
1104 usb_set_intfdata(intf, NULL);
1105 return 0;
1106 }
1107
1108 int zd_usb_init_hw(struct zd_usb *usb)
1109 {
1110 int r;
1111 struct zd_mac *mac = zd_usb_to_mac(usb);
1112
1113 dev_dbg_f(zd_usb_dev(usb), "\n");
1114
1115 r = upload_firmware(usb);
1116 if (r) {
1117 dev_err(zd_usb_dev(usb),
1118 "couldn't load firmware. Error number %d\n", r);
1119 return r;
1120 }
1121
1122 r = usb_reset_configuration(zd_usb_to_usbdev(usb));
1123 if (r) {
1124 dev_dbg_f(zd_usb_dev(usb),
1125 "couldn't reset configuration. Error number %d\n", r);
1126 return r;
1127 }
1128
1129 r = zd_mac_init_hw(mac->hw);
1130 if (r) {
1131 dev_dbg_f(zd_usb_dev(usb),
1132 "couldn't initialize mac. Error number %d\n", r);
1133 return r;
1134 }
1135
1136 usb->initialized = 1;
1137 return 0;
1138 }
1139
1140 static int probe(struct usb_interface *intf, const struct usb_device_id *id)
1141 {
1142 int r;
1143 struct usb_device *udev = interface_to_usbdev(intf);
1144 struct zd_usb *usb;
1145 struct ieee80211_hw *hw = NULL;
1146
1147 print_id(udev);
1148
1149 if (id->driver_info & DEVICE_INSTALLER)
1150 return eject_installer(intf);
1151
1152 switch (udev->speed) {
1153 case USB_SPEED_LOW:
1154 case USB_SPEED_FULL:
1155 case USB_SPEED_HIGH:
1156 break;
1157 default:
1158 dev_dbg_f(&intf->dev, "Unknown USB speed\n");
1159 r = -ENODEV;
1160 goto error;
1161 }
1162
1163 r = usb_reset_device(udev);
1164 if (r) {
1165 dev_err(&intf->dev,
1166 "couldn't reset usb device. Error number %d\n", r);
1167 goto error;
1168 }
1169
1170 hw = zd_mac_alloc_hw(intf);
1171 if (hw == NULL) {
1172 r = -ENOMEM;
1173 goto error;
1174 }
1175
1176 usb = &zd_hw_mac(hw)->chip.usb;
1177 usb->is_zd1211b = (id->driver_info == DEVICE_ZD1211B) != 0;
1178
1179 r = zd_mac_preinit_hw(hw);
1180 if (r) {
1181 dev_dbg_f(&intf->dev,
1182 "couldn't initialize mac. Error number %d\n", r);
1183 goto error;
1184 }
1185
1186 r = ieee80211_register_hw(hw);
1187 if (r) {
1188 dev_dbg_f(&intf->dev,
1189 "couldn't register device. Error number %d\n", r);
1190 goto error;
1191 }
1192
1193 dev_dbg_f(&intf->dev, "successful\n");
1194 dev_info(&intf->dev, "%s\n", wiphy_name(hw->wiphy));
1195 return 0;
1196 error:
1197 usb_reset_device(interface_to_usbdev(intf));
1198 if (hw) {
1199 zd_mac_clear(zd_hw_mac(hw));
1200 ieee80211_free_hw(hw);
1201 }
1202 return r;
1203 }
1204
1205 static void disconnect(struct usb_interface *intf)
1206 {
1207 struct ieee80211_hw *hw = zd_intf_to_hw(intf);
1208 struct zd_mac *mac;
1209 struct zd_usb *usb;
1210
1211 /* Either something really bad happened, or we're just dealing with
1212 * a DEVICE_INSTALLER. */
1213 if (hw == NULL)
1214 return;
1215
1216 mac = zd_hw_mac(hw);
1217 usb = &mac->chip.usb;
1218
1219 dev_dbg_f(zd_usb_dev(usb), "\n");
1220
1221 ieee80211_unregister_hw(hw);
1222
1223 /* Just in case something has gone wrong! */
1224 zd_usb_disable_rx(usb);
1225 zd_usb_disable_int(usb);
1226
1227 /* If the disconnect has been caused by a removal of the
1228 * driver module, the reset allows reloading of the driver. If the
1229 * reset will not be executed here, the upload of the firmware in the
1230 * probe function caused by the reloading of the driver will fail.
1231 */
1232 usb_reset_device(interface_to_usbdev(intf));
1233
1234 zd_mac_clear(mac);
1235 ieee80211_free_hw(hw);
1236 dev_dbg(&intf->dev, "disconnected\n");
1237 }
1238
1239 static struct usb_driver driver = {
1240 .name = KBUILD_MODNAME,
1241 .id_table = usb_ids,
1242 .probe = probe,
1243 .disconnect = disconnect,
1244 };
1245
1246 struct workqueue_struct *zd_workqueue;
1247
1248 static int __init usb_init(void)
1249 {
1250 int r;
1251
1252 pr_debug("%s usb_init()\n", driver.name);
1253
1254 zd_workqueue = create_singlethread_workqueue(driver.name);
1255 if (zd_workqueue == NULL) {
1256 printk(KERN_ERR "%s couldn't create workqueue\n", driver.name);
1257 return -ENOMEM;
1258 }
1259
1260 r = usb_register(&driver);
1261 if (r) {
1262 destroy_workqueue(zd_workqueue);
1263 printk(KERN_ERR "%s usb_register() failed. Error number %d\n",
1264 driver.name, r);
1265 return r;
1266 }
1267
1268 pr_debug("%s initialized\n", driver.name);
1269 return 0;
1270 }
1271
1272 static void __exit usb_exit(void)
1273 {
1274 pr_debug("%s usb_exit()\n", driver.name);
1275 usb_deregister(&driver);
1276 destroy_workqueue(zd_workqueue);
1277 }
1278
1279 module_init(usb_init);
1280 module_exit(usb_exit);
1281
1282 static int usb_int_regs_length(unsigned int count)
1283 {
1284 return sizeof(struct usb_int_regs) + count * sizeof(struct reg_data);
1285 }
1286
1287 static void prepare_read_regs_int(struct zd_usb *usb)
1288 {
1289 struct zd_usb_interrupt *intr = &usb->intr;
1290
1291 spin_lock_irq(&intr->lock);
1292 intr->read_regs_enabled = 1;
1293 INIT_COMPLETION(intr->read_regs.completion);
1294 spin_unlock_irq(&intr->lock);
1295 }
1296
1297 static void disable_read_regs_int(struct zd_usb *usb)
1298 {
1299 struct zd_usb_interrupt *intr = &usb->intr;
1300
1301 spin_lock_irq(&intr->lock);
1302 intr->read_regs_enabled = 0;
1303 spin_unlock_irq(&intr->lock);
1304 }
1305
1306 static int get_results(struct zd_usb *usb, u16 *values,
1307 struct usb_req_read_regs *req, unsigned int count)
1308 {
1309 int r;
1310 int i;
1311 struct zd_usb_interrupt *intr = &usb->intr;
1312 struct read_regs_int *rr = &intr->read_regs;
1313 struct usb_int_regs *regs = (struct usb_int_regs *)rr->buffer;
1314
1315 spin_lock_irq(&intr->lock);
1316
1317 r = -EIO;
1318 /* The created block size seems to be larger than expected.
1319 * However results appear to be correct.
1320 */
1321 if (rr->length < usb_int_regs_length(count)) {
1322 dev_dbg_f(zd_usb_dev(usb),
1323 "error: actual length %d less than expected %d\n",
1324 rr->length, usb_int_regs_length(count));
1325 goto error_unlock;
1326 }
1327 if (rr->length > sizeof(rr->buffer)) {
1328 dev_dbg_f(zd_usb_dev(usb),
1329 "error: actual length %d exceeds buffer size %zu\n",
1330 rr->length, sizeof(rr->buffer));
1331 goto error_unlock;
1332 }
1333
1334 for (i = 0; i < count; i++) {
1335 struct reg_data *rd = &regs->regs[i];
1336 if (rd->addr != req->addr[i]) {
1337 dev_dbg_f(zd_usb_dev(usb),
1338 "rd[%d] addr %#06hx expected %#06hx\n", i,
1339 le16_to_cpu(rd->addr),
1340 le16_to_cpu(req->addr[i]));
1341 goto error_unlock;
1342 }
1343 values[i] = le16_to_cpu(rd->value);
1344 }
1345
1346 r = 0;
1347 error_unlock:
1348 spin_unlock_irq(&intr->lock);
1349 return r;
1350 }
1351
1352 int zd_usb_ioread16v(struct zd_usb *usb, u16 *values,
1353 const zd_addr_t *addresses, unsigned int count)
1354 {
1355 int r;
1356 int i, req_len, actual_req_len;
1357 struct usb_device *udev;
1358 struct usb_req_read_regs *req = NULL;
1359 unsigned long timeout;
1360
1361 if (count < 1) {
1362 dev_dbg_f(zd_usb_dev(usb), "error: count is zero\n");
1363 return -EINVAL;
1364 }
1365 if (count > USB_MAX_IOREAD16_COUNT) {
1366 dev_dbg_f(zd_usb_dev(usb),
1367 "error: count %u exceeds possible max %u\n",
1368 count, USB_MAX_IOREAD16_COUNT);
1369 return -EINVAL;
1370 }
1371 if (in_atomic()) {
1372 dev_dbg_f(zd_usb_dev(usb),
1373 "error: io in atomic context not supported\n");
1374 return -EWOULDBLOCK;
1375 }
1376 if (!usb_int_enabled(usb)) {
1377 dev_dbg_f(zd_usb_dev(usb),
1378 "error: usb interrupt not enabled\n");
1379 return -EWOULDBLOCK;
1380 }
1381
1382 req_len = sizeof(struct usb_req_read_regs) + count * sizeof(__le16);
1383 req = kmalloc(req_len, GFP_KERNEL);
1384 if (!req)
1385 return -ENOMEM;
1386 req->id = cpu_to_le16(USB_REQ_READ_REGS);
1387 for (i = 0; i < count; i++)
1388 req->addr[i] = cpu_to_le16((u16)addresses[i]);
1389
1390 udev = zd_usb_to_usbdev(usb);
1391 prepare_read_regs_int(usb);
1392 r = usb_bulk_msg(udev, usb_sndbulkpipe(udev, EP_REGS_OUT),
1393 req, req_len, &actual_req_len, 1000 /* ms */);
1394 if (r) {
1395 dev_dbg_f(zd_usb_dev(usb),
1396 "error in usb_bulk_msg(). Error number %d\n", r);
1397 goto error;
1398 }
1399 if (req_len != actual_req_len) {
1400 dev_dbg_f(zd_usb_dev(usb), "error in usb_bulk_msg()\n"
1401 " req_len %d != actual_req_len %d\n",
1402 req_len, actual_req_len);
1403 r = -EIO;
1404 goto error;
1405 }
1406
1407 timeout = wait_for_completion_timeout(&usb->intr.read_regs.completion,
1408 msecs_to_jiffies(1000));
1409 if (!timeout) {
1410 disable_read_regs_int(usb);
1411 dev_dbg_f(zd_usb_dev(usb), "read timed out\n");
1412 r = -ETIMEDOUT;
1413 goto error;
1414 }
1415
1416 r = get_results(usb, values, req, count);
1417 error:
1418 kfree(req);
1419 return r;
1420 }
1421
1422 int zd_usb_iowrite16v(struct zd_usb *usb, const struct zd_ioreq16 *ioreqs,
1423 unsigned int count)
1424 {
1425 int r;
1426 struct usb_device *udev;
1427 struct usb_req_write_regs *req = NULL;
1428 int i, req_len, actual_req_len;
1429
1430 if (count == 0)
1431 return 0;
1432 if (count > USB_MAX_IOWRITE16_COUNT) {
1433 dev_dbg_f(zd_usb_dev(usb),
1434 "error: count %u exceeds possible max %u\n",
1435 count, USB_MAX_IOWRITE16_COUNT);
1436 return -EINVAL;
1437 }
1438 if (in_atomic()) {
1439 dev_dbg_f(zd_usb_dev(usb),
1440 "error: io in atomic context not supported\n");
1441 return -EWOULDBLOCK;
1442 }
1443
1444 req_len = sizeof(struct usb_req_write_regs) +
1445 count * sizeof(struct reg_data);
1446 req = kmalloc(req_len, GFP_KERNEL);
1447 if (!req)
1448 return -ENOMEM;
1449
1450 req->id = cpu_to_le16(USB_REQ_WRITE_REGS);
1451 for (i = 0; i < count; i++) {
1452 struct reg_data *rw = &req->reg_writes[i];
1453 rw->addr = cpu_to_le16((u16)ioreqs[i].addr);
1454 rw->value = cpu_to_le16(ioreqs[i].value);
1455 }
1456
1457 udev = zd_usb_to_usbdev(usb);
1458 r = usb_bulk_msg(udev, usb_sndbulkpipe(udev, EP_REGS_OUT),
1459 req, req_len, &actual_req_len, 1000 /* ms */);
1460 if (r) {
1461 dev_dbg_f(zd_usb_dev(usb),
1462 "error in usb_bulk_msg(). Error number %d\n", r);
1463 goto error;
1464 }
1465 if (req_len != actual_req_len) {
1466 dev_dbg_f(zd_usb_dev(usb),
1467 "error in usb_bulk_msg()"
1468 " req_len %d != actual_req_len %d\n",
1469 req_len, actual_req_len);
1470 r = -EIO;
1471 goto error;
1472 }
1473
1474 /* FALL-THROUGH with r == 0 */
1475 error:
1476 kfree(req);
1477 return r;
1478 }
1479
1480 int zd_usb_rfwrite(struct zd_usb *usb, u32 value, u8 bits)
1481 {
1482 int r;
1483 struct usb_device *udev;
1484 struct usb_req_rfwrite *req = NULL;
1485 int i, req_len, actual_req_len;
1486 u16 bit_value_template;
1487
1488 if (in_atomic()) {
1489 dev_dbg_f(zd_usb_dev(usb),
1490 "error: io in atomic context not supported\n");
1491 return -EWOULDBLOCK;
1492 }
1493 if (bits < USB_MIN_RFWRITE_BIT_COUNT) {
1494 dev_dbg_f(zd_usb_dev(usb),
1495 "error: bits %d are smaller than"
1496 " USB_MIN_RFWRITE_BIT_COUNT %d\n",
1497 bits, USB_MIN_RFWRITE_BIT_COUNT);
1498 return -EINVAL;
1499 }
1500 if (bits > USB_MAX_RFWRITE_BIT_COUNT) {
1501 dev_dbg_f(zd_usb_dev(usb),
1502 "error: bits %d exceed USB_MAX_RFWRITE_BIT_COUNT %d\n",
1503 bits, USB_MAX_RFWRITE_BIT_COUNT);
1504 return -EINVAL;
1505 }
1506 #ifdef DEBUG
1507 if (value & (~0UL << bits)) {
1508 dev_dbg_f(zd_usb_dev(usb),
1509 "error: value %#09x has bits >= %d set\n",
1510 value, bits);
1511 return -EINVAL;
1512 }
1513 #endif /* DEBUG */
1514
1515 dev_dbg_f(zd_usb_dev(usb), "value %#09x bits %d\n", value, bits);
1516
1517 r = zd_usb_ioread16(usb, &bit_value_template, CR203);
1518 if (r) {
1519 dev_dbg_f(zd_usb_dev(usb),
1520 "error %d: Couldn't read CR203\n", r);
1521 goto out;
1522 }
1523 bit_value_template &= ~(RF_IF_LE|RF_CLK|RF_DATA);
1524
1525 req_len = sizeof(struct usb_req_rfwrite) + bits * sizeof(__le16);
1526 req = kmalloc(req_len, GFP_KERNEL);
1527 if (!req)
1528 return -ENOMEM;
1529
1530 req->id = cpu_to_le16(USB_REQ_WRITE_RF);
1531 /* 1: 3683a, but not used in ZYDAS driver */
1532 req->value = cpu_to_le16(2);
1533 req->bits = cpu_to_le16(bits);
1534
1535 for (i = 0; i < bits; i++) {
1536 u16 bv = bit_value_template;
1537 if (value & (1 << (bits-1-i)))
1538 bv |= RF_DATA;
1539 req->bit_values[i] = cpu_to_le16(bv);
1540 }
1541
1542 udev = zd_usb_to_usbdev(usb);
1543 r = usb_bulk_msg(udev, usb_sndbulkpipe(udev, EP_REGS_OUT),
1544 req, req_len, &actual_req_len, 1000 /* ms */);
1545 if (r) {
1546 dev_dbg_f(zd_usb_dev(usb),
1547 "error in usb_bulk_msg(). Error number %d\n", r);
1548 goto out;
1549 }
1550 if (req_len != actual_req_len) {
1551 dev_dbg_f(zd_usb_dev(usb), "error in usb_bulk_msg()"
1552 " req_len %d != actual_req_len %d\n",
1553 req_len, actual_req_len);
1554 r = -EIO;
1555 goto out;
1556 }
1557
1558 /* FALL-THROUGH with r == 0 */
1559 out:
1560 kfree(req);
1561 return r;
1562 }
This page took 0.063289 seconds and 4 git commands to generate.