aac8a1c5ba08fb94e7919fc4e6b930e4b55ea595
[deliverable/linux.git] / drivers / net / wireless / zd1211rw / zd_usb.c
1 /* zd_usb.c
2 *
3 * This program is free software; you can redistribute it and/or modify
4 * it under the terms of the GNU General Public License as published by
5 * the Free Software Foundation; either version 2 of the License, or
6 * (at your option) any later version.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public License
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
16 */
17
18 #include <asm/unaligned.h>
19 #include <linux/kernel.h>
20 #include <linux/init.h>
21 #include <linux/module.h>
22 #include <linux/firmware.h>
23 #include <linux/device.h>
24 #include <linux/errno.h>
25 #include <linux/skbuff.h>
26 #include <linux/usb.h>
27 #include <linux/workqueue.h>
28 #include <net/ieee80211.h>
29
30 #include "zd_def.h"
31 #include "zd_netdev.h"
32 #include "zd_mac.h"
33 #include "zd_usb.h"
34 #include "zd_util.h"
35
36 static struct usb_device_id usb_ids[] = {
37 /* ZD1211 */
38 { USB_DEVICE(0x0ace, 0x1211), .driver_info = DEVICE_ZD1211 },
39 { USB_DEVICE(0x07b8, 0x6001), .driver_info = DEVICE_ZD1211 },
40 { USB_DEVICE(0x126f, 0xa006), .driver_info = DEVICE_ZD1211 },
41 { USB_DEVICE(0x6891, 0xa727), .driver_info = DEVICE_ZD1211 },
42 { USB_DEVICE(0x0df6, 0x9071), .driver_info = DEVICE_ZD1211 },
43 { USB_DEVICE(0x157e, 0x300b), .driver_info = DEVICE_ZD1211 },
44 { USB_DEVICE(0x079b, 0x004a), .driver_info = DEVICE_ZD1211 },
45 { USB_DEVICE(0x1740, 0x2000), .driver_info = DEVICE_ZD1211 },
46 { USB_DEVICE(0x157e, 0x3204), .driver_info = DEVICE_ZD1211 },
47 { USB_DEVICE(0x0586, 0x3402), .driver_info = DEVICE_ZD1211 },
48 { USB_DEVICE(0x0b3b, 0x5630), .driver_info = DEVICE_ZD1211 },
49 { USB_DEVICE(0x0b05, 0x170c), .driver_info = DEVICE_ZD1211 },
50 { USB_DEVICE(0x1435, 0x0711), .driver_info = DEVICE_ZD1211 },
51 { USB_DEVICE(0x0586, 0x3409), .driver_info = DEVICE_ZD1211 },
52 { USB_DEVICE(0x0b3b, 0x1630), .driver_info = DEVICE_ZD1211 },
53 { USB_DEVICE(0x0586, 0x3401), .driver_info = DEVICE_ZD1211 },
54 { USB_DEVICE(0x14ea, 0xab13), .driver_info = DEVICE_ZD1211 },
55 /* ZD1211B */
56 { USB_DEVICE(0x0ace, 0x1215), .driver_info = DEVICE_ZD1211B },
57 { USB_DEVICE(0x157e, 0x300d), .driver_info = DEVICE_ZD1211B },
58 { USB_DEVICE(0x079b, 0x0062), .driver_info = DEVICE_ZD1211B },
59 { USB_DEVICE(0x1582, 0x6003), .driver_info = DEVICE_ZD1211B },
60 { USB_DEVICE(0x050d, 0x705c), .driver_info = DEVICE_ZD1211B },
61 { USB_DEVICE(0x083a, 0x4505), .driver_info = DEVICE_ZD1211B },
62 { USB_DEVICE(0x0471, 0x1236), .driver_info = DEVICE_ZD1211B },
63 { USB_DEVICE(0x13b1, 0x0024), .driver_info = DEVICE_ZD1211B },
64 { USB_DEVICE(0x0586, 0x340f), .driver_info = DEVICE_ZD1211B },
65 /* "Driverless" devices that need ejecting */
66 { USB_DEVICE(0x0ace, 0x2011), .driver_info = DEVICE_INSTALLER },
67 {}
68 };
69
70 MODULE_LICENSE("GPL");
71 MODULE_DESCRIPTION("USB driver for devices with the ZD1211 chip.");
72 MODULE_AUTHOR("Ulrich Kunitz");
73 MODULE_AUTHOR("Daniel Drake");
74 MODULE_VERSION("1.0");
75 MODULE_DEVICE_TABLE(usb, usb_ids);
76
77 #define FW_ZD1211_PREFIX "zd1211/zd1211_"
78 #define FW_ZD1211B_PREFIX "zd1211/zd1211b_"
79
80 /* USB device initialization */
81
82 static int request_fw_file(
83 const struct firmware **fw, const char *name, struct device *device)
84 {
85 int r;
86
87 dev_dbg_f(device, "fw name %s\n", name);
88
89 r = request_firmware(fw, name, device);
90 if (r)
91 dev_err(device,
92 "Could not load firmware file %s. Error number %d\n",
93 name, r);
94 return r;
95 }
96
97 static inline u16 get_bcdDevice(const struct usb_device *udev)
98 {
99 return le16_to_cpu(udev->descriptor.bcdDevice);
100 }
101
102 enum upload_code_flags {
103 REBOOT = 1,
104 };
105
106 /* Ensures that MAX_TRANSFER_SIZE is even. */
107 #define MAX_TRANSFER_SIZE (USB_MAX_TRANSFER_SIZE & ~1)
108
109 static int upload_code(struct usb_device *udev,
110 const u8 *data, size_t size, u16 code_offset, int flags)
111 {
112 u8 *p;
113 int r;
114
115 /* USB request blocks need "kmalloced" buffers.
116 */
117 p = kmalloc(MAX_TRANSFER_SIZE, GFP_KERNEL);
118 if (!p) {
119 dev_err(&udev->dev, "out of memory\n");
120 r = -ENOMEM;
121 goto error;
122 }
123
124 size &= ~1;
125 while (size > 0) {
126 size_t transfer_size = size <= MAX_TRANSFER_SIZE ?
127 size : MAX_TRANSFER_SIZE;
128
129 dev_dbg_f(&udev->dev, "transfer size %zu\n", transfer_size);
130
131 memcpy(p, data, transfer_size);
132 r = usb_control_msg(udev, usb_sndctrlpipe(udev, 0),
133 USB_REQ_FIRMWARE_DOWNLOAD,
134 USB_DIR_OUT | USB_TYPE_VENDOR,
135 code_offset, 0, p, transfer_size, 1000 /* ms */);
136 if (r < 0) {
137 dev_err(&udev->dev,
138 "USB control request for firmware upload"
139 " failed. Error number %d\n", r);
140 goto error;
141 }
142 transfer_size = r & ~1;
143
144 size -= transfer_size;
145 data += transfer_size;
146 code_offset += transfer_size/sizeof(u16);
147 }
148
149 if (flags & REBOOT) {
150 u8 ret;
151
152 r = usb_control_msg(udev, usb_rcvctrlpipe(udev, 0),
153 USB_REQ_FIRMWARE_CONFIRM,
154 USB_DIR_IN | USB_TYPE_VENDOR,
155 0, 0, &ret, sizeof(ret), 5000 /* ms */);
156 if (r != sizeof(ret)) {
157 dev_err(&udev->dev,
158 "control request firmeware confirmation failed."
159 " Return value %d\n", r);
160 if (r >= 0)
161 r = -ENODEV;
162 goto error;
163 }
164 if (ret & 0x80) {
165 dev_err(&udev->dev,
166 "Internal error while downloading."
167 " Firmware confirm return value %#04x\n",
168 (unsigned int)ret);
169 r = -ENODEV;
170 goto error;
171 }
172 dev_dbg_f(&udev->dev, "firmware confirm return value %#04x\n",
173 (unsigned int)ret);
174 }
175
176 r = 0;
177 error:
178 kfree(p);
179 return r;
180 }
181
182 static u16 get_word(const void *data, u16 offset)
183 {
184 const __le16 *p = data;
185 return le16_to_cpu(p[offset]);
186 }
187
188 static char *get_fw_name(char *buffer, size_t size, u8 device_type,
189 const char* postfix)
190 {
191 scnprintf(buffer, size, "%s%s",
192 device_type == DEVICE_ZD1211B ?
193 FW_ZD1211B_PREFIX : FW_ZD1211_PREFIX,
194 postfix);
195 return buffer;
196 }
197
198 static int handle_version_mismatch(struct usb_device *udev, u8 device_type,
199 const struct firmware *ub_fw)
200 {
201 const struct firmware *ur_fw = NULL;
202 int offset;
203 int r = 0;
204 char fw_name[128];
205
206 r = request_fw_file(&ur_fw,
207 get_fw_name(fw_name, sizeof(fw_name), device_type, "ur"),
208 &udev->dev);
209 if (r)
210 goto error;
211
212 r = upload_code(udev, ur_fw->data, ur_fw->size, FW_START, REBOOT);
213 if (r)
214 goto error;
215
216 offset = (E2P_BOOT_CODE_OFFSET * sizeof(u16));
217 r = upload_code(udev, ub_fw->data + offset, ub_fw->size - offset,
218 E2P_START + E2P_BOOT_CODE_OFFSET, REBOOT);
219
220 /* At this point, the vendor driver downloads the whole firmware
221 * image, hacks around with version IDs, and uploads it again,
222 * completely overwriting the boot code. We do not do this here as
223 * it is not required on any tested devices, and it is suspected to
224 * cause problems. */
225 error:
226 release_firmware(ur_fw);
227 return r;
228 }
229
230 static int upload_firmware(struct usb_device *udev, u8 device_type)
231 {
232 int r;
233 u16 fw_bcdDevice;
234 u16 bcdDevice;
235 const struct firmware *ub_fw = NULL;
236 const struct firmware *uph_fw = NULL;
237 char fw_name[128];
238
239 bcdDevice = get_bcdDevice(udev);
240
241 r = request_fw_file(&ub_fw,
242 get_fw_name(fw_name, sizeof(fw_name), device_type, "ub"),
243 &udev->dev);
244 if (r)
245 goto error;
246
247 fw_bcdDevice = get_word(ub_fw->data, E2P_DATA_OFFSET);
248
249 if (fw_bcdDevice != bcdDevice) {
250 dev_info(&udev->dev,
251 "firmware version %#06x and device bootcode version "
252 "%#06x differ\n", fw_bcdDevice, bcdDevice);
253 if (bcdDevice <= 0x4313)
254 dev_warn(&udev->dev, "device has old bootcode, please "
255 "report success or failure\n");
256
257 r = handle_version_mismatch(udev, device_type, ub_fw);
258 if (r)
259 goto error;
260 } else {
261 dev_dbg_f(&udev->dev,
262 "firmware device id %#06x is equal to the "
263 "actual device id\n", fw_bcdDevice);
264 }
265
266
267 r = request_fw_file(&uph_fw,
268 get_fw_name(fw_name, sizeof(fw_name), device_type, "uphr"),
269 &udev->dev);
270 if (r)
271 goto error;
272
273 r = upload_code(udev, uph_fw->data, uph_fw->size, FW_START, REBOOT);
274 if (r) {
275 dev_err(&udev->dev,
276 "Could not upload firmware code uph. Error number %d\n",
277 r);
278 }
279
280 /* FALL-THROUGH */
281 error:
282 release_firmware(ub_fw);
283 release_firmware(uph_fw);
284 return r;
285 }
286
287 #define urb_dev(urb) (&(urb)->dev->dev)
288
289 static inline void handle_regs_int(struct urb *urb)
290 {
291 struct zd_usb *usb = urb->context;
292 struct zd_usb_interrupt *intr = &usb->intr;
293 int len;
294
295 ZD_ASSERT(in_interrupt());
296 spin_lock(&intr->lock);
297
298 if (intr->read_regs_enabled) {
299 intr->read_regs.length = len = urb->actual_length;
300
301 if (len > sizeof(intr->read_regs.buffer))
302 len = sizeof(intr->read_regs.buffer);
303 memcpy(intr->read_regs.buffer, urb->transfer_buffer, len);
304 intr->read_regs_enabled = 0;
305 complete(&intr->read_regs.completion);
306 goto out;
307 }
308
309 dev_dbg_f(urb_dev(urb), "regs interrupt ignored\n");
310 out:
311 spin_unlock(&intr->lock);
312 }
313
314 static inline void handle_retry_failed_int(struct urb *urb)
315 {
316 struct zd_usb *usb = urb->context;
317 struct zd_mac *mac = zd_usb_to_mac(usb);
318 struct ieee80211_device *ieee = zd_mac_to_ieee80211(mac);
319
320 ieee->stats.tx_errors++;
321 ieee->ieee_stats.tx_retry_limit_exceeded++;
322 dev_dbg_f(urb_dev(urb), "retry failed interrupt\n");
323 }
324
325
326 static void int_urb_complete(struct urb *urb)
327 {
328 int r;
329 struct usb_int_header *hdr;
330
331 switch (urb->status) {
332 case 0:
333 break;
334 case -ESHUTDOWN:
335 case -EINVAL:
336 case -ENODEV:
337 case -ENOENT:
338 case -ECONNRESET:
339 case -EPIPE:
340 goto kfree;
341 default:
342 goto resubmit;
343 }
344
345 if (urb->actual_length < sizeof(hdr)) {
346 dev_dbg_f(urb_dev(urb), "error: urb %p to small\n", urb);
347 goto resubmit;
348 }
349
350 hdr = urb->transfer_buffer;
351 if (hdr->type != USB_INT_TYPE) {
352 dev_dbg_f(urb_dev(urb), "error: urb %p wrong type\n", urb);
353 goto resubmit;
354 }
355
356 switch (hdr->id) {
357 case USB_INT_ID_REGS:
358 handle_regs_int(urb);
359 break;
360 case USB_INT_ID_RETRY_FAILED:
361 handle_retry_failed_int(urb);
362 break;
363 default:
364 dev_dbg_f(urb_dev(urb), "error: urb %p unknown id %x\n", urb,
365 (unsigned int)hdr->id);
366 goto resubmit;
367 }
368
369 resubmit:
370 r = usb_submit_urb(urb, GFP_ATOMIC);
371 if (r) {
372 dev_dbg_f(urb_dev(urb), "resubmit urb %p\n", urb);
373 goto kfree;
374 }
375 return;
376 kfree:
377 kfree(urb->transfer_buffer);
378 }
379
380 static inline int int_urb_interval(struct usb_device *udev)
381 {
382 switch (udev->speed) {
383 case USB_SPEED_HIGH:
384 return 4;
385 case USB_SPEED_LOW:
386 return 10;
387 case USB_SPEED_FULL:
388 default:
389 return 1;
390 }
391 }
392
393 static inline int usb_int_enabled(struct zd_usb *usb)
394 {
395 unsigned long flags;
396 struct zd_usb_interrupt *intr = &usb->intr;
397 struct urb *urb;
398
399 spin_lock_irqsave(&intr->lock, flags);
400 urb = intr->urb;
401 spin_unlock_irqrestore(&intr->lock, flags);
402 return urb != NULL;
403 }
404
405 int zd_usb_enable_int(struct zd_usb *usb)
406 {
407 int r;
408 struct usb_device *udev;
409 struct zd_usb_interrupt *intr = &usb->intr;
410 void *transfer_buffer = NULL;
411 struct urb *urb;
412
413 dev_dbg_f(zd_usb_dev(usb), "\n");
414
415 urb = usb_alloc_urb(0, GFP_NOFS);
416 if (!urb) {
417 r = -ENOMEM;
418 goto out;
419 }
420
421 ZD_ASSERT(!irqs_disabled());
422 spin_lock_irq(&intr->lock);
423 if (intr->urb) {
424 spin_unlock_irq(&intr->lock);
425 r = 0;
426 goto error_free_urb;
427 }
428 intr->urb = urb;
429 spin_unlock_irq(&intr->lock);
430
431 /* TODO: make it a DMA buffer */
432 r = -ENOMEM;
433 transfer_buffer = kmalloc(USB_MAX_EP_INT_BUFFER, GFP_NOFS);
434 if (!transfer_buffer) {
435 dev_dbg_f(zd_usb_dev(usb),
436 "couldn't allocate transfer_buffer\n");
437 goto error_set_urb_null;
438 }
439
440 udev = zd_usb_to_usbdev(usb);
441 usb_fill_int_urb(urb, udev, usb_rcvintpipe(udev, EP_INT_IN),
442 transfer_buffer, USB_MAX_EP_INT_BUFFER,
443 int_urb_complete, usb,
444 intr->interval);
445
446 dev_dbg_f(zd_usb_dev(usb), "submit urb %p\n", intr->urb);
447 r = usb_submit_urb(urb, GFP_NOFS);
448 if (r) {
449 dev_dbg_f(zd_usb_dev(usb),
450 "Couldn't submit urb. Error number %d\n", r);
451 goto error;
452 }
453
454 return 0;
455 error:
456 kfree(transfer_buffer);
457 error_set_urb_null:
458 spin_lock_irq(&intr->lock);
459 intr->urb = NULL;
460 spin_unlock_irq(&intr->lock);
461 error_free_urb:
462 usb_free_urb(urb);
463 out:
464 return r;
465 }
466
467 void zd_usb_disable_int(struct zd_usb *usb)
468 {
469 unsigned long flags;
470 struct zd_usb_interrupt *intr = &usb->intr;
471 struct urb *urb;
472
473 spin_lock_irqsave(&intr->lock, flags);
474 urb = intr->urb;
475 if (!urb) {
476 spin_unlock_irqrestore(&intr->lock, flags);
477 return;
478 }
479 intr->urb = NULL;
480 spin_unlock_irqrestore(&intr->lock, flags);
481
482 usb_kill_urb(urb);
483 dev_dbg_f(zd_usb_dev(usb), "urb %p killed\n", urb);
484 usb_free_urb(urb);
485 }
486
487 static void handle_rx_packet(struct zd_usb *usb, const u8 *buffer,
488 unsigned int length)
489 {
490 int i;
491 struct zd_mac *mac = zd_usb_to_mac(usb);
492 const struct rx_length_info *length_info;
493
494 if (length < sizeof(struct rx_length_info)) {
495 /* It's not a complete packet anyhow. */
496 struct ieee80211_device *ieee = zd_mac_to_ieee80211(mac);
497 ieee->stats.rx_errors++;
498 ieee->stats.rx_length_errors++;
499 return;
500 }
501 length_info = (struct rx_length_info *)
502 (buffer + length - sizeof(struct rx_length_info));
503
504 /* It might be that three frames are merged into a single URB
505 * transaction. We have to check for the length info tag.
506 *
507 * While testing we discovered that length_info might be unaligned,
508 * because if USB transactions are merged, the last packet will not
509 * be padded. Unaligned access might also happen if the length_info
510 * structure is not present.
511 */
512 if (get_unaligned(&length_info->tag) == cpu_to_le16(RX_LENGTH_INFO_TAG))
513 {
514 unsigned int l, k, n;
515 for (i = 0, l = 0;; i++) {
516 k = le16_to_cpu(get_unaligned(&length_info->length[i]));
517 if (k == 0)
518 return;
519 n = l+k;
520 if (n > length)
521 return;
522 zd_mac_rx_irq(mac, buffer+l, k);
523 if (i >= 2)
524 return;
525 l = (n+3) & ~3;
526 }
527 } else {
528 zd_mac_rx_irq(mac, buffer, length);
529 }
530 }
531
532 static void rx_urb_complete(struct urb *urb)
533 {
534 struct zd_usb *usb;
535 struct zd_usb_rx *rx;
536 const u8 *buffer;
537 unsigned int length;
538
539 switch (urb->status) {
540 case 0:
541 break;
542 case -ESHUTDOWN:
543 case -EINVAL:
544 case -ENODEV:
545 case -ENOENT:
546 case -ECONNRESET:
547 case -EPIPE:
548 return;
549 default:
550 dev_dbg_f(urb_dev(urb), "urb %p error %d\n", urb, urb->status);
551 goto resubmit;
552 }
553
554 buffer = urb->transfer_buffer;
555 length = urb->actual_length;
556 usb = urb->context;
557 rx = &usb->rx;
558
559 if (length%rx->usb_packet_size > rx->usb_packet_size-4) {
560 /* If there is an old first fragment, we don't care. */
561 dev_dbg_f(urb_dev(urb), "*** first fragment ***\n");
562 ZD_ASSERT(length <= ARRAY_SIZE(rx->fragment));
563 spin_lock(&rx->lock);
564 memcpy(rx->fragment, buffer, length);
565 rx->fragment_length = length;
566 spin_unlock(&rx->lock);
567 goto resubmit;
568 }
569
570 spin_lock(&rx->lock);
571 if (rx->fragment_length > 0) {
572 /* We are on a second fragment, we believe */
573 ZD_ASSERT(length + rx->fragment_length <=
574 ARRAY_SIZE(rx->fragment));
575 dev_dbg_f(urb_dev(urb), "*** second fragment ***\n");
576 memcpy(rx->fragment+rx->fragment_length, buffer, length);
577 handle_rx_packet(usb, rx->fragment,
578 rx->fragment_length + length);
579 rx->fragment_length = 0;
580 spin_unlock(&rx->lock);
581 } else {
582 spin_unlock(&rx->lock);
583 handle_rx_packet(usb, buffer, length);
584 }
585
586 resubmit:
587 usb_submit_urb(urb, GFP_ATOMIC);
588 }
589
590 static struct urb *alloc_urb(struct zd_usb *usb)
591 {
592 struct usb_device *udev = zd_usb_to_usbdev(usb);
593 struct urb *urb;
594 void *buffer;
595
596 urb = usb_alloc_urb(0, GFP_NOFS);
597 if (!urb)
598 return NULL;
599 buffer = usb_buffer_alloc(udev, USB_MAX_RX_SIZE, GFP_NOFS,
600 &urb->transfer_dma);
601 if (!buffer) {
602 usb_free_urb(urb);
603 return NULL;
604 }
605
606 usb_fill_bulk_urb(urb, udev, usb_rcvbulkpipe(udev, EP_DATA_IN),
607 buffer, USB_MAX_RX_SIZE,
608 rx_urb_complete, usb);
609 urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
610
611 return urb;
612 }
613
614 static void free_urb(struct urb *urb)
615 {
616 if (!urb)
617 return;
618 usb_buffer_free(urb->dev, urb->transfer_buffer_length,
619 urb->transfer_buffer, urb->transfer_dma);
620 usb_free_urb(urb);
621 }
622
623 int zd_usb_enable_rx(struct zd_usb *usb)
624 {
625 int i, r;
626 struct zd_usb_rx *rx = &usb->rx;
627 struct urb **urbs;
628
629 dev_dbg_f(zd_usb_dev(usb), "\n");
630
631 r = -ENOMEM;
632 urbs = kcalloc(URBS_COUNT, sizeof(struct urb *), GFP_NOFS);
633 if (!urbs)
634 goto error;
635 for (i = 0; i < URBS_COUNT; i++) {
636 urbs[i] = alloc_urb(usb);
637 if (!urbs[i])
638 goto error;
639 }
640
641 ZD_ASSERT(!irqs_disabled());
642 spin_lock_irq(&rx->lock);
643 if (rx->urbs) {
644 spin_unlock_irq(&rx->lock);
645 r = 0;
646 goto error;
647 }
648 rx->urbs = urbs;
649 rx->urbs_count = URBS_COUNT;
650 spin_unlock_irq(&rx->lock);
651
652 for (i = 0; i < URBS_COUNT; i++) {
653 r = usb_submit_urb(urbs[i], GFP_NOFS);
654 if (r)
655 goto error_submit;
656 }
657
658 return 0;
659 error_submit:
660 for (i = 0; i < URBS_COUNT; i++) {
661 usb_kill_urb(urbs[i]);
662 }
663 spin_lock_irq(&rx->lock);
664 rx->urbs = NULL;
665 rx->urbs_count = 0;
666 spin_unlock_irq(&rx->lock);
667 error:
668 if (urbs) {
669 for (i = 0; i < URBS_COUNT; i++)
670 free_urb(urbs[i]);
671 }
672 return r;
673 }
674
675 void zd_usb_disable_rx(struct zd_usb *usb)
676 {
677 int i;
678 unsigned long flags;
679 struct urb **urbs;
680 unsigned int count;
681 struct zd_usb_rx *rx = &usb->rx;
682
683 spin_lock_irqsave(&rx->lock, flags);
684 urbs = rx->urbs;
685 count = rx->urbs_count;
686 spin_unlock_irqrestore(&rx->lock, flags);
687 if (!urbs)
688 return;
689
690 for (i = 0; i < count; i++) {
691 usb_kill_urb(urbs[i]);
692 free_urb(urbs[i]);
693 }
694 kfree(urbs);
695
696 spin_lock_irqsave(&rx->lock, flags);
697 rx->urbs = NULL;
698 rx->urbs_count = 0;
699 spin_unlock_irqrestore(&rx->lock, flags);
700 }
701
702 static void tx_urb_complete(struct urb *urb)
703 {
704 int r;
705
706 switch (urb->status) {
707 case 0:
708 break;
709 case -ESHUTDOWN:
710 case -EINVAL:
711 case -ENODEV:
712 case -ENOENT:
713 case -ECONNRESET:
714 case -EPIPE:
715 dev_dbg_f(urb_dev(urb), "urb %p error %d\n", urb, urb->status);
716 break;
717 default:
718 dev_dbg_f(urb_dev(urb), "urb %p error %d\n", urb, urb->status);
719 goto resubmit;
720 }
721 free_urb:
722 usb_buffer_free(urb->dev, urb->transfer_buffer_length,
723 urb->transfer_buffer, urb->transfer_dma);
724 usb_free_urb(urb);
725 return;
726 resubmit:
727 r = usb_submit_urb(urb, GFP_ATOMIC);
728 if (r) {
729 dev_dbg_f(urb_dev(urb), "error resubmit urb %p %d\n", urb, r);
730 goto free_urb;
731 }
732 }
733
734 /* Puts the frame on the USB endpoint. It doesn't wait for
735 * completion. The frame must contain the control set.
736 */
737 int zd_usb_tx(struct zd_usb *usb, const u8 *frame, unsigned int length)
738 {
739 int r;
740 struct usb_device *udev = zd_usb_to_usbdev(usb);
741 struct urb *urb;
742 void *buffer;
743
744 urb = usb_alloc_urb(0, GFP_ATOMIC);
745 if (!urb) {
746 r = -ENOMEM;
747 goto out;
748 }
749
750 buffer = usb_buffer_alloc(zd_usb_to_usbdev(usb), length, GFP_ATOMIC,
751 &urb->transfer_dma);
752 if (!buffer) {
753 r = -ENOMEM;
754 goto error_free_urb;
755 }
756 memcpy(buffer, frame, length);
757
758 usb_fill_bulk_urb(urb, udev, usb_sndbulkpipe(udev, EP_DATA_OUT),
759 buffer, length, tx_urb_complete, NULL);
760 urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
761
762 r = usb_submit_urb(urb, GFP_ATOMIC);
763 if (r)
764 goto error;
765 return 0;
766 error:
767 usb_buffer_free(zd_usb_to_usbdev(usb), length, buffer,
768 urb->transfer_dma);
769 error_free_urb:
770 usb_free_urb(urb);
771 out:
772 return r;
773 }
774
775 static inline void init_usb_interrupt(struct zd_usb *usb)
776 {
777 struct zd_usb_interrupt *intr = &usb->intr;
778
779 spin_lock_init(&intr->lock);
780 intr->interval = int_urb_interval(zd_usb_to_usbdev(usb));
781 init_completion(&intr->read_regs.completion);
782 intr->read_regs.cr_int_addr = cpu_to_le16((u16)CR_INTERRUPT);
783 }
784
785 static inline void init_usb_rx(struct zd_usb *usb)
786 {
787 struct zd_usb_rx *rx = &usb->rx;
788 spin_lock_init(&rx->lock);
789 if (interface_to_usbdev(usb->intf)->speed == USB_SPEED_HIGH) {
790 rx->usb_packet_size = 512;
791 } else {
792 rx->usb_packet_size = 64;
793 }
794 ZD_ASSERT(rx->fragment_length == 0);
795 }
796
797 static inline void init_usb_tx(struct zd_usb *usb)
798 {
799 /* FIXME: at this point we will allocate a fixed number of urb's for
800 * use in a cyclic scheme */
801 }
802
803 void zd_usb_init(struct zd_usb *usb, struct net_device *netdev,
804 struct usb_interface *intf)
805 {
806 memset(usb, 0, sizeof(*usb));
807 usb->intf = usb_get_intf(intf);
808 usb_set_intfdata(usb->intf, netdev);
809 init_usb_interrupt(usb);
810 init_usb_tx(usb);
811 init_usb_rx(usb);
812 }
813
814 void zd_usb_clear(struct zd_usb *usb)
815 {
816 usb_set_intfdata(usb->intf, NULL);
817 usb_put_intf(usb->intf);
818 ZD_MEMCLEAR(usb, sizeof(*usb));
819 /* FIXME: usb_interrupt, usb_tx, usb_rx? */
820 }
821
822 static const char *speed(enum usb_device_speed speed)
823 {
824 switch (speed) {
825 case USB_SPEED_LOW:
826 return "low";
827 case USB_SPEED_FULL:
828 return "full";
829 case USB_SPEED_HIGH:
830 return "high";
831 default:
832 return "unknown speed";
833 }
834 }
835
836 static int scnprint_id(struct usb_device *udev, char *buffer, size_t size)
837 {
838 return scnprintf(buffer, size, "%04hx:%04hx v%04hx %s",
839 le16_to_cpu(udev->descriptor.idVendor),
840 le16_to_cpu(udev->descriptor.idProduct),
841 get_bcdDevice(udev),
842 speed(udev->speed));
843 }
844
845 int zd_usb_scnprint_id(struct zd_usb *usb, char *buffer, size_t size)
846 {
847 struct usb_device *udev = interface_to_usbdev(usb->intf);
848 return scnprint_id(udev, buffer, size);
849 }
850
851 #ifdef DEBUG
852 static void print_id(struct usb_device *udev)
853 {
854 char buffer[40];
855
856 scnprint_id(udev, buffer, sizeof(buffer));
857 buffer[sizeof(buffer)-1] = 0;
858 dev_dbg_f(&udev->dev, "%s\n", buffer);
859 }
860 #else
861 #define print_id(udev) do { } while (0)
862 #endif
863
864 static int eject_installer(struct usb_interface *intf)
865 {
866 struct usb_device *udev = interface_to_usbdev(intf);
867 struct usb_host_interface *iface_desc = &intf->altsetting[0];
868 struct usb_endpoint_descriptor *endpoint;
869 unsigned char *cmd;
870 u8 bulk_out_ep;
871 int r;
872
873 /* Find bulk out endpoint */
874 endpoint = &iface_desc->endpoint[1].desc;
875 if ((endpoint->bEndpointAddress & USB_TYPE_MASK) == USB_DIR_OUT &&
876 (endpoint->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
877 USB_ENDPOINT_XFER_BULK) {
878 bulk_out_ep = endpoint->bEndpointAddress;
879 } else {
880 dev_err(&udev->dev,
881 "zd1211rw: Could not find bulk out endpoint\n");
882 return -ENODEV;
883 }
884
885 cmd = kzalloc(31, GFP_KERNEL);
886 if (cmd == NULL)
887 return -ENODEV;
888
889 /* USB bulk command block */
890 cmd[0] = 0x55; /* bulk command signature */
891 cmd[1] = 0x53; /* bulk command signature */
892 cmd[2] = 0x42; /* bulk command signature */
893 cmd[3] = 0x43; /* bulk command signature */
894 cmd[14] = 6; /* command length */
895
896 cmd[15] = 0x1b; /* SCSI command: START STOP UNIT */
897 cmd[19] = 0x2; /* eject disc */
898
899 dev_info(&udev->dev, "Ejecting virtual installer media...\n");
900 r = usb_bulk_msg(udev, usb_sndbulkpipe(udev, bulk_out_ep),
901 cmd, 31, NULL, 2000);
902 kfree(cmd);
903 if (r)
904 return r;
905
906 /* At this point, the device disconnects and reconnects with the real
907 * ID numbers. */
908
909 usb_set_intfdata(intf, NULL);
910 return 0;
911 }
912
913 static int probe(struct usb_interface *intf, const struct usb_device_id *id)
914 {
915 int r;
916 struct usb_device *udev = interface_to_usbdev(intf);
917 struct net_device *netdev = NULL;
918
919 print_id(udev);
920
921 if (id->driver_info & DEVICE_INSTALLER)
922 return eject_installer(intf);
923
924 switch (udev->speed) {
925 case USB_SPEED_LOW:
926 case USB_SPEED_FULL:
927 case USB_SPEED_HIGH:
928 break;
929 default:
930 dev_dbg_f(&intf->dev, "Unknown USB speed\n");
931 r = -ENODEV;
932 goto error;
933 }
934
935 usb_reset_device(interface_to_usbdev(intf));
936
937 netdev = zd_netdev_alloc(intf);
938 if (netdev == NULL) {
939 r = -ENOMEM;
940 goto error;
941 }
942
943 r = upload_firmware(udev, id->driver_info);
944 if (r) {
945 dev_err(&intf->dev,
946 "couldn't load firmware. Error number %d\n", r);
947 goto error;
948 }
949
950 r = usb_reset_configuration(udev);
951 if (r) {
952 dev_dbg_f(&intf->dev,
953 "couldn't reset configuration. Error number %d\n", r);
954 goto error;
955 }
956
957 /* At this point the interrupt endpoint is not generally enabled. We
958 * save the USB bandwidth until the network device is opened. But
959 * notify that the initialization of the MAC will require the
960 * interrupts to be temporary enabled.
961 */
962 r = zd_mac_init_hw(zd_netdev_mac(netdev), id->driver_info);
963 if (r) {
964 dev_dbg_f(&intf->dev,
965 "couldn't initialize mac. Error number %d\n", r);
966 goto error;
967 }
968
969 r = register_netdev(netdev);
970 if (r) {
971 dev_dbg_f(&intf->dev,
972 "couldn't register netdev. Error number %d\n", r);
973 goto error;
974 }
975
976 dev_dbg_f(&intf->dev, "successful\n");
977 dev_info(&intf->dev,"%s\n", netdev->name);
978 return 0;
979 error:
980 usb_reset_device(interface_to_usbdev(intf));
981 zd_netdev_free(netdev);
982 return r;
983 }
984
985 static void disconnect(struct usb_interface *intf)
986 {
987 struct net_device *netdev = zd_intf_to_netdev(intf);
988 struct zd_mac *mac = zd_netdev_mac(netdev);
989 struct zd_usb *usb = &mac->chip.usb;
990
991 /* Either something really bad happened, or we're just dealing with
992 * a DEVICE_INSTALLER. */
993 if (netdev == NULL)
994 return;
995
996 dev_dbg_f(zd_usb_dev(usb), "\n");
997
998 zd_netdev_disconnect(netdev);
999
1000 /* Just in case something has gone wrong! */
1001 zd_usb_disable_rx(usb);
1002 zd_usb_disable_int(usb);
1003
1004 /* If the disconnect has been caused by a removal of the
1005 * driver module, the reset allows reloading of the driver. If the
1006 * reset will not be executed here, the upload of the firmware in the
1007 * probe function caused by the reloading of the driver will fail.
1008 */
1009 usb_reset_device(interface_to_usbdev(intf));
1010
1011 zd_netdev_free(netdev);
1012 dev_dbg(&intf->dev, "disconnected\n");
1013 }
1014
1015 static struct usb_driver driver = {
1016 .name = "zd1211rw",
1017 .id_table = usb_ids,
1018 .probe = probe,
1019 .disconnect = disconnect,
1020 };
1021
1022 struct workqueue_struct *zd_workqueue;
1023
1024 static int __init usb_init(void)
1025 {
1026 int r;
1027
1028 pr_debug("%s usb_init()\n", driver.name);
1029
1030 zd_workqueue = create_singlethread_workqueue(driver.name);
1031 if (zd_workqueue == NULL) {
1032 printk(KERN_ERR "%s couldn't create workqueue\n", driver.name);
1033 return -ENOMEM;
1034 }
1035
1036 r = usb_register(&driver);
1037 if (r) {
1038 destroy_workqueue(zd_workqueue);
1039 printk(KERN_ERR "%s usb_register() failed. Error number %d\n",
1040 driver.name, r);
1041 return r;
1042 }
1043
1044 pr_debug("%s initialized\n", driver.name);
1045 return 0;
1046 }
1047
1048 static void __exit usb_exit(void)
1049 {
1050 pr_debug("%s usb_exit()\n", driver.name);
1051 usb_deregister(&driver);
1052 destroy_workqueue(zd_workqueue);
1053 }
1054
1055 module_init(usb_init);
1056 module_exit(usb_exit);
1057
1058 static int usb_int_regs_length(unsigned int count)
1059 {
1060 return sizeof(struct usb_int_regs) + count * sizeof(struct reg_data);
1061 }
1062
1063 static void prepare_read_regs_int(struct zd_usb *usb)
1064 {
1065 struct zd_usb_interrupt *intr = &usb->intr;
1066
1067 spin_lock_irq(&intr->lock);
1068 intr->read_regs_enabled = 1;
1069 INIT_COMPLETION(intr->read_regs.completion);
1070 spin_unlock_irq(&intr->lock);
1071 }
1072
1073 static void disable_read_regs_int(struct zd_usb *usb)
1074 {
1075 struct zd_usb_interrupt *intr = &usb->intr;
1076
1077 spin_lock_irq(&intr->lock);
1078 intr->read_regs_enabled = 0;
1079 spin_unlock_irq(&intr->lock);
1080 }
1081
1082 static int get_results(struct zd_usb *usb, u16 *values,
1083 struct usb_req_read_regs *req, unsigned int count)
1084 {
1085 int r;
1086 int i;
1087 struct zd_usb_interrupt *intr = &usb->intr;
1088 struct read_regs_int *rr = &intr->read_regs;
1089 struct usb_int_regs *regs = (struct usb_int_regs *)rr->buffer;
1090
1091 spin_lock_irq(&intr->lock);
1092
1093 r = -EIO;
1094 /* The created block size seems to be larger than expected.
1095 * However results appear to be correct.
1096 */
1097 if (rr->length < usb_int_regs_length(count)) {
1098 dev_dbg_f(zd_usb_dev(usb),
1099 "error: actual length %d less than expected %d\n",
1100 rr->length, usb_int_regs_length(count));
1101 goto error_unlock;
1102 }
1103 if (rr->length > sizeof(rr->buffer)) {
1104 dev_dbg_f(zd_usb_dev(usb),
1105 "error: actual length %d exceeds buffer size %zu\n",
1106 rr->length, sizeof(rr->buffer));
1107 goto error_unlock;
1108 }
1109
1110 for (i = 0; i < count; i++) {
1111 struct reg_data *rd = &regs->regs[i];
1112 if (rd->addr != req->addr[i]) {
1113 dev_dbg_f(zd_usb_dev(usb),
1114 "rd[%d] addr %#06hx expected %#06hx\n", i,
1115 le16_to_cpu(rd->addr),
1116 le16_to_cpu(req->addr[i]));
1117 goto error_unlock;
1118 }
1119 values[i] = le16_to_cpu(rd->value);
1120 }
1121
1122 r = 0;
1123 error_unlock:
1124 spin_unlock_irq(&intr->lock);
1125 return r;
1126 }
1127
1128 int zd_usb_ioread16v(struct zd_usb *usb, u16 *values,
1129 const zd_addr_t *addresses, unsigned int count)
1130 {
1131 int r;
1132 int i, req_len, actual_req_len;
1133 struct usb_device *udev;
1134 struct usb_req_read_regs *req = NULL;
1135 unsigned long timeout;
1136
1137 if (count < 1) {
1138 dev_dbg_f(zd_usb_dev(usb), "error: count is zero\n");
1139 return -EINVAL;
1140 }
1141 if (count > USB_MAX_IOREAD16_COUNT) {
1142 dev_dbg_f(zd_usb_dev(usb),
1143 "error: count %u exceeds possible max %u\n",
1144 count, USB_MAX_IOREAD16_COUNT);
1145 return -EINVAL;
1146 }
1147 if (in_atomic()) {
1148 dev_dbg_f(zd_usb_dev(usb),
1149 "error: io in atomic context not supported\n");
1150 return -EWOULDBLOCK;
1151 }
1152 if (!usb_int_enabled(usb)) {
1153 dev_dbg_f(zd_usb_dev(usb),
1154 "error: usb interrupt not enabled\n");
1155 return -EWOULDBLOCK;
1156 }
1157
1158 req_len = sizeof(struct usb_req_read_regs) + count * sizeof(__le16);
1159 req = kmalloc(req_len, GFP_NOFS);
1160 if (!req)
1161 return -ENOMEM;
1162 req->id = cpu_to_le16(USB_REQ_READ_REGS);
1163 for (i = 0; i < count; i++)
1164 req->addr[i] = cpu_to_le16((u16)addresses[i]);
1165
1166 udev = zd_usb_to_usbdev(usb);
1167 prepare_read_regs_int(usb);
1168 r = usb_bulk_msg(udev, usb_sndbulkpipe(udev, EP_REGS_OUT),
1169 req, req_len, &actual_req_len, 1000 /* ms */);
1170 if (r) {
1171 dev_dbg_f(zd_usb_dev(usb),
1172 "error in usb_bulk_msg(). Error number %d\n", r);
1173 goto error;
1174 }
1175 if (req_len != actual_req_len) {
1176 dev_dbg_f(zd_usb_dev(usb), "error in usb_bulk_msg()\n"
1177 " req_len %d != actual_req_len %d\n",
1178 req_len, actual_req_len);
1179 r = -EIO;
1180 goto error;
1181 }
1182
1183 timeout = wait_for_completion_timeout(&usb->intr.read_regs.completion,
1184 msecs_to_jiffies(1000));
1185 if (!timeout) {
1186 disable_read_regs_int(usb);
1187 dev_dbg_f(zd_usb_dev(usb), "read timed out\n");
1188 r = -ETIMEDOUT;
1189 goto error;
1190 }
1191
1192 r = get_results(usb, values, req, count);
1193 error:
1194 kfree(req);
1195 return r;
1196 }
1197
1198 int zd_usb_iowrite16v(struct zd_usb *usb, const struct zd_ioreq16 *ioreqs,
1199 unsigned int count)
1200 {
1201 int r;
1202 struct usb_device *udev;
1203 struct usb_req_write_regs *req = NULL;
1204 int i, req_len, actual_req_len;
1205
1206 if (count == 0)
1207 return 0;
1208 if (count > USB_MAX_IOWRITE16_COUNT) {
1209 dev_dbg_f(zd_usb_dev(usb),
1210 "error: count %u exceeds possible max %u\n",
1211 count, USB_MAX_IOWRITE16_COUNT);
1212 return -EINVAL;
1213 }
1214 if (in_atomic()) {
1215 dev_dbg_f(zd_usb_dev(usb),
1216 "error: io in atomic context not supported\n");
1217 return -EWOULDBLOCK;
1218 }
1219
1220 req_len = sizeof(struct usb_req_write_regs) +
1221 count * sizeof(struct reg_data);
1222 req = kmalloc(req_len, GFP_NOFS);
1223 if (!req)
1224 return -ENOMEM;
1225
1226 req->id = cpu_to_le16(USB_REQ_WRITE_REGS);
1227 for (i = 0; i < count; i++) {
1228 struct reg_data *rw = &req->reg_writes[i];
1229 rw->addr = cpu_to_le16((u16)ioreqs[i].addr);
1230 rw->value = cpu_to_le16(ioreqs[i].value);
1231 }
1232
1233 udev = zd_usb_to_usbdev(usb);
1234 r = usb_bulk_msg(udev, usb_sndbulkpipe(udev, EP_REGS_OUT),
1235 req, req_len, &actual_req_len, 1000 /* ms */);
1236 if (r) {
1237 dev_dbg_f(zd_usb_dev(usb),
1238 "error in usb_bulk_msg(). Error number %d\n", r);
1239 goto error;
1240 }
1241 if (req_len != actual_req_len) {
1242 dev_dbg_f(zd_usb_dev(usb),
1243 "error in usb_bulk_msg()"
1244 " req_len %d != actual_req_len %d\n",
1245 req_len, actual_req_len);
1246 r = -EIO;
1247 goto error;
1248 }
1249
1250 /* FALL-THROUGH with r == 0 */
1251 error:
1252 kfree(req);
1253 return r;
1254 }
1255
1256 int zd_usb_rfwrite(struct zd_usb *usb, u32 value, u8 bits)
1257 {
1258 int r;
1259 struct usb_device *udev;
1260 struct usb_req_rfwrite *req = NULL;
1261 int i, req_len, actual_req_len;
1262 u16 bit_value_template;
1263
1264 if (in_atomic()) {
1265 dev_dbg_f(zd_usb_dev(usb),
1266 "error: io in atomic context not supported\n");
1267 return -EWOULDBLOCK;
1268 }
1269 if (bits < USB_MIN_RFWRITE_BIT_COUNT) {
1270 dev_dbg_f(zd_usb_dev(usb),
1271 "error: bits %d are smaller than"
1272 " USB_MIN_RFWRITE_BIT_COUNT %d\n",
1273 bits, USB_MIN_RFWRITE_BIT_COUNT);
1274 return -EINVAL;
1275 }
1276 if (bits > USB_MAX_RFWRITE_BIT_COUNT) {
1277 dev_dbg_f(zd_usb_dev(usb),
1278 "error: bits %d exceed USB_MAX_RFWRITE_BIT_COUNT %d\n",
1279 bits, USB_MAX_RFWRITE_BIT_COUNT);
1280 return -EINVAL;
1281 }
1282 #ifdef DEBUG
1283 if (value & (~0UL << bits)) {
1284 dev_dbg_f(zd_usb_dev(usb),
1285 "error: value %#09x has bits >= %d set\n",
1286 value, bits);
1287 return -EINVAL;
1288 }
1289 #endif /* DEBUG */
1290
1291 dev_dbg_f(zd_usb_dev(usb), "value %#09x bits %d\n", value, bits);
1292
1293 r = zd_usb_ioread16(usb, &bit_value_template, CR203);
1294 if (r) {
1295 dev_dbg_f(zd_usb_dev(usb),
1296 "error %d: Couldn't read CR203\n", r);
1297 goto out;
1298 }
1299 bit_value_template &= ~(RF_IF_LE|RF_CLK|RF_DATA);
1300
1301 req_len = sizeof(struct usb_req_rfwrite) + bits * sizeof(__le16);
1302 req = kmalloc(req_len, GFP_NOFS);
1303 if (!req)
1304 return -ENOMEM;
1305
1306 req->id = cpu_to_le16(USB_REQ_WRITE_RF);
1307 /* 1: 3683a, but not used in ZYDAS driver */
1308 req->value = cpu_to_le16(2);
1309 req->bits = cpu_to_le16(bits);
1310
1311 for (i = 0; i < bits; i++) {
1312 u16 bv = bit_value_template;
1313 if (value & (1 << (bits-1-i)))
1314 bv |= RF_DATA;
1315 req->bit_values[i] = cpu_to_le16(bv);
1316 }
1317
1318 udev = zd_usb_to_usbdev(usb);
1319 r = usb_bulk_msg(udev, usb_sndbulkpipe(udev, EP_REGS_OUT),
1320 req, req_len, &actual_req_len, 1000 /* ms */);
1321 if (r) {
1322 dev_dbg_f(zd_usb_dev(usb),
1323 "error in usb_bulk_msg(). Error number %d\n", r);
1324 goto out;
1325 }
1326 if (req_len != actual_req_len) {
1327 dev_dbg_f(zd_usb_dev(usb), "error in usb_bulk_msg()"
1328 " req_len %d != actual_req_len %d\n",
1329 req_len, actual_req_len);
1330 r = -EIO;
1331 goto out;
1332 }
1333
1334 /* FALL-THROUGH with r == 0 */
1335 out:
1336 kfree(req);
1337 return r;
1338 }
This page took 0.070084 seconds and 4 git commands to generate.