Merge branch 'master' into 83xx
[deliverable/linux.git] / drivers / net / wireless / zd1211rw / zd_usb.c
1 /* zd_usb.c
2 *
3 * This program is free software; you can redistribute it and/or modify
4 * it under the terms of the GNU General Public License as published by
5 * the Free Software Foundation; either version 2 of the License, or
6 * (at your option) any later version.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public License
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
16 */
17
18 #include <asm/unaligned.h>
19 #include <linux/kernel.h>
20 #include <linux/init.h>
21 #include <linux/module.h>
22 #include <linux/firmware.h>
23 #include <linux/device.h>
24 #include <linux/errno.h>
25 #include <linux/skbuff.h>
26 #include <linux/usb.h>
27 #include <linux/workqueue.h>
28 #include <net/ieee80211.h>
29
30 #include "zd_def.h"
31 #include "zd_netdev.h"
32 #include "zd_mac.h"
33 #include "zd_usb.h"
34 #include "zd_util.h"
35
36 static struct usb_device_id usb_ids[] = {
37 /* ZD1211 */
38 { USB_DEVICE(0x0ace, 0x1211), .driver_info = DEVICE_ZD1211 },
39 { USB_DEVICE(0x07b8, 0x6001), .driver_info = DEVICE_ZD1211 },
40 { USB_DEVICE(0x126f, 0xa006), .driver_info = DEVICE_ZD1211 },
41 { USB_DEVICE(0x6891, 0xa727), .driver_info = DEVICE_ZD1211 },
42 { USB_DEVICE(0x0df6, 0x9071), .driver_info = DEVICE_ZD1211 },
43 { USB_DEVICE(0x157e, 0x300b), .driver_info = DEVICE_ZD1211 },
44 { USB_DEVICE(0x079b, 0x004a), .driver_info = DEVICE_ZD1211 },
45 { USB_DEVICE(0x1740, 0x2000), .driver_info = DEVICE_ZD1211 },
46 { USB_DEVICE(0x157e, 0x3204), .driver_info = DEVICE_ZD1211 },
47 { USB_DEVICE(0x0586, 0x3402), .driver_info = DEVICE_ZD1211 },
48 { USB_DEVICE(0x0b3b, 0x5630), .driver_info = DEVICE_ZD1211 },
49 { USB_DEVICE(0x0b05, 0x170c), .driver_info = DEVICE_ZD1211 },
50 { USB_DEVICE(0x1435, 0x0711), .driver_info = DEVICE_ZD1211 },
51 { USB_DEVICE(0x0586, 0x3409), .driver_info = DEVICE_ZD1211 },
52 { USB_DEVICE(0x0b3b, 0x1630), .driver_info = DEVICE_ZD1211 },
53 { USB_DEVICE(0x0586, 0x3401), .driver_info = DEVICE_ZD1211 },
54 { USB_DEVICE(0x14ea, 0xab13), .driver_info = DEVICE_ZD1211 },
55 /* ZD1211B */
56 { USB_DEVICE(0x0ace, 0x1215), .driver_info = DEVICE_ZD1211B },
57 { USB_DEVICE(0x157e, 0x300d), .driver_info = DEVICE_ZD1211B },
58 { USB_DEVICE(0x079b, 0x0062), .driver_info = DEVICE_ZD1211B },
59 { USB_DEVICE(0x1582, 0x6003), .driver_info = DEVICE_ZD1211B },
60 { USB_DEVICE(0x050d, 0x705c), .driver_info = DEVICE_ZD1211B },
61 { USB_DEVICE(0x083a, 0x4505), .driver_info = DEVICE_ZD1211B },
62 { USB_DEVICE(0x0471, 0x1236), .driver_info = DEVICE_ZD1211B },
63 { USB_DEVICE(0x13b1, 0x0024), .driver_info = DEVICE_ZD1211B },
64 { USB_DEVICE(0x0586, 0x340f), .driver_info = DEVICE_ZD1211B },
65 /* "Driverless" devices that need ejecting */
66 { USB_DEVICE(0x0ace, 0x2011), .driver_info = DEVICE_INSTALLER },
67 {}
68 };
69
70 MODULE_LICENSE("GPL");
71 MODULE_DESCRIPTION("USB driver for devices with the ZD1211 chip.");
72 MODULE_AUTHOR("Ulrich Kunitz");
73 MODULE_AUTHOR("Daniel Drake");
74 MODULE_VERSION("1.0");
75 MODULE_DEVICE_TABLE(usb, usb_ids);
76
77 #define FW_ZD1211_PREFIX "zd1211/zd1211_"
78 #define FW_ZD1211B_PREFIX "zd1211/zd1211b_"
79
80 /* USB device initialization */
81
82 static int request_fw_file(
83 const struct firmware **fw, const char *name, struct device *device)
84 {
85 int r;
86
87 dev_dbg_f(device, "fw name %s\n", name);
88
89 r = request_firmware(fw, name, device);
90 if (r)
91 dev_err(device,
92 "Could not load firmware file %s. Error number %d\n",
93 name, r);
94 return r;
95 }
96
97 static inline u16 get_bcdDevice(const struct usb_device *udev)
98 {
99 return le16_to_cpu(udev->descriptor.bcdDevice);
100 }
101
102 enum upload_code_flags {
103 REBOOT = 1,
104 };
105
106 /* Ensures that MAX_TRANSFER_SIZE is even. */
107 #define MAX_TRANSFER_SIZE (USB_MAX_TRANSFER_SIZE & ~1)
108
109 static int upload_code(struct usb_device *udev,
110 const u8 *data, size_t size, u16 code_offset, int flags)
111 {
112 u8 *p;
113 int r;
114
115 /* USB request blocks need "kmalloced" buffers.
116 */
117 p = kmalloc(MAX_TRANSFER_SIZE, GFP_KERNEL);
118 if (!p) {
119 dev_err(&udev->dev, "out of memory\n");
120 r = -ENOMEM;
121 goto error;
122 }
123
124 size &= ~1;
125 while (size > 0) {
126 size_t transfer_size = size <= MAX_TRANSFER_SIZE ?
127 size : MAX_TRANSFER_SIZE;
128
129 dev_dbg_f(&udev->dev, "transfer size %zu\n", transfer_size);
130
131 memcpy(p, data, transfer_size);
132 r = usb_control_msg(udev, usb_sndctrlpipe(udev, 0),
133 USB_REQ_FIRMWARE_DOWNLOAD,
134 USB_DIR_OUT | USB_TYPE_VENDOR,
135 code_offset, 0, p, transfer_size, 1000 /* ms */);
136 if (r < 0) {
137 dev_err(&udev->dev,
138 "USB control request for firmware upload"
139 " failed. Error number %d\n", r);
140 goto error;
141 }
142 transfer_size = r & ~1;
143
144 size -= transfer_size;
145 data += transfer_size;
146 code_offset += transfer_size/sizeof(u16);
147 }
148
149 if (flags & REBOOT) {
150 u8 ret;
151
152 r = usb_control_msg(udev, usb_rcvctrlpipe(udev, 0),
153 USB_REQ_FIRMWARE_CONFIRM,
154 USB_DIR_IN | USB_TYPE_VENDOR,
155 0, 0, &ret, sizeof(ret), 5000 /* ms */);
156 if (r != sizeof(ret)) {
157 dev_err(&udev->dev,
158 "control request firmeware confirmation failed."
159 " Return value %d\n", r);
160 if (r >= 0)
161 r = -ENODEV;
162 goto error;
163 }
164 if (ret & 0x80) {
165 dev_err(&udev->dev,
166 "Internal error while downloading."
167 " Firmware confirm return value %#04x\n",
168 (unsigned int)ret);
169 r = -ENODEV;
170 goto error;
171 }
172 dev_dbg_f(&udev->dev, "firmware confirm return value %#04x\n",
173 (unsigned int)ret);
174 }
175
176 r = 0;
177 error:
178 kfree(p);
179 return r;
180 }
181
182 static u16 get_word(const void *data, u16 offset)
183 {
184 const __le16 *p = data;
185 return le16_to_cpu(p[offset]);
186 }
187
188 static char *get_fw_name(char *buffer, size_t size, u8 device_type,
189 const char* postfix)
190 {
191 scnprintf(buffer, size, "%s%s",
192 device_type == DEVICE_ZD1211B ?
193 FW_ZD1211B_PREFIX : FW_ZD1211_PREFIX,
194 postfix);
195 return buffer;
196 }
197
198 static int handle_version_mismatch(struct usb_device *udev, u8 device_type,
199 const struct firmware *ub_fw)
200 {
201 const struct firmware *ur_fw = NULL;
202 int offset;
203 int r = 0;
204 char fw_name[128];
205
206 r = request_fw_file(&ur_fw,
207 get_fw_name(fw_name, sizeof(fw_name), device_type, "ur"),
208 &udev->dev);
209 if (r)
210 goto error;
211
212 r = upload_code(udev, ur_fw->data, ur_fw->size, FW_START, REBOOT);
213 if (r)
214 goto error;
215
216 offset = (E2P_BOOT_CODE_OFFSET * sizeof(u16));
217 r = upload_code(udev, ub_fw->data + offset, ub_fw->size - offset,
218 E2P_START + E2P_BOOT_CODE_OFFSET, REBOOT);
219
220 /* At this point, the vendor driver downloads the whole firmware
221 * image, hacks around with version IDs, and uploads it again,
222 * completely overwriting the boot code. We do not do this here as
223 * it is not required on any tested devices, and it is suspected to
224 * cause problems. */
225 error:
226 release_firmware(ur_fw);
227 return r;
228 }
229
230 static int upload_firmware(struct usb_device *udev, u8 device_type)
231 {
232 int r;
233 u16 fw_bcdDevice;
234 u16 bcdDevice;
235 const struct firmware *ub_fw = NULL;
236 const struct firmware *uph_fw = NULL;
237 char fw_name[128];
238
239 bcdDevice = get_bcdDevice(udev);
240
241 r = request_fw_file(&ub_fw,
242 get_fw_name(fw_name, sizeof(fw_name), device_type, "ub"),
243 &udev->dev);
244 if (r)
245 goto error;
246
247 fw_bcdDevice = get_word(ub_fw->data, E2P_DATA_OFFSET);
248
249 if (fw_bcdDevice != bcdDevice) {
250 dev_info(&udev->dev,
251 "firmware version %#06x and device bootcode version "
252 "%#06x differ\n", fw_bcdDevice, bcdDevice);
253 if (bcdDevice <= 0x4313)
254 dev_warn(&udev->dev, "device has old bootcode, please "
255 "report success or failure\n");
256
257 r = handle_version_mismatch(udev, device_type, ub_fw);
258 if (r)
259 goto error;
260 } else {
261 dev_dbg_f(&udev->dev,
262 "firmware device id %#06x is equal to the "
263 "actual device id\n", fw_bcdDevice);
264 }
265
266
267 r = request_fw_file(&uph_fw,
268 get_fw_name(fw_name, sizeof(fw_name), device_type, "uphr"),
269 &udev->dev);
270 if (r)
271 goto error;
272
273 r = upload_code(udev, uph_fw->data, uph_fw->size, FW_START, REBOOT);
274 if (r) {
275 dev_err(&udev->dev,
276 "Could not upload firmware code uph. Error number %d\n",
277 r);
278 }
279
280 /* FALL-THROUGH */
281 error:
282 release_firmware(ub_fw);
283 release_firmware(uph_fw);
284 return r;
285 }
286
287 #define urb_dev(urb) (&(urb)->dev->dev)
288
289 static inline void handle_regs_int(struct urb *urb)
290 {
291 struct zd_usb *usb = urb->context;
292 struct zd_usb_interrupt *intr = &usb->intr;
293 int len;
294
295 ZD_ASSERT(in_interrupt());
296 spin_lock(&intr->lock);
297
298 if (intr->read_regs_enabled) {
299 intr->read_regs.length = len = urb->actual_length;
300
301 if (len > sizeof(intr->read_regs.buffer))
302 len = sizeof(intr->read_regs.buffer);
303 memcpy(intr->read_regs.buffer, urb->transfer_buffer, len);
304 intr->read_regs_enabled = 0;
305 complete(&intr->read_regs.completion);
306 goto out;
307 }
308
309 dev_dbg_f(urb_dev(urb), "regs interrupt ignored\n");
310 out:
311 spin_unlock(&intr->lock);
312 }
313
314 static inline void handle_retry_failed_int(struct urb *urb)
315 {
316 dev_dbg_f(urb_dev(urb), "retry failed interrupt\n");
317 }
318
319
320 static void int_urb_complete(struct urb *urb)
321 {
322 int r;
323 struct usb_int_header *hdr;
324
325 switch (urb->status) {
326 case 0:
327 break;
328 case -ESHUTDOWN:
329 case -EINVAL:
330 case -ENODEV:
331 case -ENOENT:
332 case -ECONNRESET:
333 case -EPIPE:
334 goto kfree;
335 default:
336 goto resubmit;
337 }
338
339 if (urb->actual_length < sizeof(hdr)) {
340 dev_dbg_f(urb_dev(urb), "error: urb %p to small\n", urb);
341 goto resubmit;
342 }
343
344 hdr = urb->transfer_buffer;
345 if (hdr->type != USB_INT_TYPE) {
346 dev_dbg_f(urb_dev(urb), "error: urb %p wrong type\n", urb);
347 goto resubmit;
348 }
349
350 switch (hdr->id) {
351 case USB_INT_ID_REGS:
352 handle_regs_int(urb);
353 break;
354 case USB_INT_ID_RETRY_FAILED:
355 handle_retry_failed_int(urb);
356 break;
357 default:
358 dev_dbg_f(urb_dev(urb), "error: urb %p unknown id %x\n", urb,
359 (unsigned int)hdr->id);
360 goto resubmit;
361 }
362
363 resubmit:
364 r = usb_submit_urb(urb, GFP_ATOMIC);
365 if (r) {
366 dev_dbg_f(urb_dev(urb), "resubmit urb %p\n", urb);
367 goto kfree;
368 }
369 return;
370 kfree:
371 kfree(urb->transfer_buffer);
372 }
373
374 static inline int int_urb_interval(struct usb_device *udev)
375 {
376 switch (udev->speed) {
377 case USB_SPEED_HIGH:
378 return 4;
379 case USB_SPEED_LOW:
380 return 10;
381 case USB_SPEED_FULL:
382 default:
383 return 1;
384 }
385 }
386
387 static inline int usb_int_enabled(struct zd_usb *usb)
388 {
389 unsigned long flags;
390 struct zd_usb_interrupt *intr = &usb->intr;
391 struct urb *urb;
392
393 spin_lock_irqsave(&intr->lock, flags);
394 urb = intr->urb;
395 spin_unlock_irqrestore(&intr->lock, flags);
396 return urb != NULL;
397 }
398
399 int zd_usb_enable_int(struct zd_usb *usb)
400 {
401 int r;
402 struct usb_device *udev;
403 struct zd_usb_interrupt *intr = &usb->intr;
404 void *transfer_buffer = NULL;
405 struct urb *urb;
406
407 dev_dbg_f(zd_usb_dev(usb), "\n");
408
409 urb = usb_alloc_urb(0, GFP_NOFS);
410 if (!urb) {
411 r = -ENOMEM;
412 goto out;
413 }
414
415 ZD_ASSERT(!irqs_disabled());
416 spin_lock_irq(&intr->lock);
417 if (intr->urb) {
418 spin_unlock_irq(&intr->lock);
419 r = 0;
420 goto error_free_urb;
421 }
422 intr->urb = urb;
423 spin_unlock_irq(&intr->lock);
424
425 /* TODO: make it a DMA buffer */
426 r = -ENOMEM;
427 transfer_buffer = kmalloc(USB_MAX_EP_INT_BUFFER, GFP_NOFS);
428 if (!transfer_buffer) {
429 dev_dbg_f(zd_usb_dev(usb),
430 "couldn't allocate transfer_buffer\n");
431 goto error_set_urb_null;
432 }
433
434 udev = zd_usb_to_usbdev(usb);
435 usb_fill_int_urb(urb, udev, usb_rcvintpipe(udev, EP_INT_IN),
436 transfer_buffer, USB_MAX_EP_INT_BUFFER,
437 int_urb_complete, usb,
438 intr->interval);
439
440 dev_dbg_f(zd_usb_dev(usb), "submit urb %p\n", intr->urb);
441 r = usb_submit_urb(urb, GFP_NOFS);
442 if (r) {
443 dev_dbg_f(zd_usb_dev(usb),
444 "Couldn't submit urb. Error number %d\n", r);
445 goto error;
446 }
447
448 return 0;
449 error:
450 kfree(transfer_buffer);
451 error_set_urb_null:
452 spin_lock_irq(&intr->lock);
453 intr->urb = NULL;
454 spin_unlock_irq(&intr->lock);
455 error_free_urb:
456 usb_free_urb(urb);
457 out:
458 return r;
459 }
460
461 void zd_usb_disable_int(struct zd_usb *usb)
462 {
463 unsigned long flags;
464 struct zd_usb_interrupt *intr = &usb->intr;
465 struct urb *urb;
466
467 spin_lock_irqsave(&intr->lock, flags);
468 urb = intr->urb;
469 if (!urb) {
470 spin_unlock_irqrestore(&intr->lock, flags);
471 return;
472 }
473 intr->urb = NULL;
474 spin_unlock_irqrestore(&intr->lock, flags);
475
476 usb_kill_urb(urb);
477 dev_dbg_f(zd_usb_dev(usb), "urb %p killed\n", urb);
478 usb_free_urb(urb);
479 }
480
481 static void handle_rx_packet(struct zd_usb *usb, const u8 *buffer,
482 unsigned int length)
483 {
484 int i;
485 struct zd_mac *mac = zd_usb_to_mac(usb);
486 const struct rx_length_info *length_info;
487
488 if (length < sizeof(struct rx_length_info)) {
489 /* It's not a complete packet anyhow. */
490 return;
491 }
492 length_info = (struct rx_length_info *)
493 (buffer + length - sizeof(struct rx_length_info));
494
495 /* It might be that three frames are merged into a single URB
496 * transaction. We have to check for the length info tag.
497 *
498 * While testing we discovered that length_info might be unaligned,
499 * because if USB transactions are merged, the last packet will not
500 * be padded. Unaligned access might also happen if the length_info
501 * structure is not present.
502 */
503 if (get_unaligned(&length_info->tag) == cpu_to_le16(RX_LENGTH_INFO_TAG))
504 {
505 unsigned int l, k, n;
506 for (i = 0, l = 0;; i++) {
507 k = le16_to_cpu(get_unaligned(&length_info->length[i]));
508 if (k == 0)
509 return;
510 n = l+k;
511 if (n > length)
512 return;
513 zd_mac_rx_irq(mac, buffer+l, k);
514 if (i >= 2)
515 return;
516 l = (n+3) & ~3;
517 }
518 } else {
519 zd_mac_rx_irq(mac, buffer, length);
520 }
521 }
522
523 static void rx_urb_complete(struct urb *urb)
524 {
525 struct zd_usb *usb;
526 struct zd_usb_rx *rx;
527 const u8 *buffer;
528 unsigned int length;
529
530 switch (urb->status) {
531 case 0:
532 break;
533 case -ESHUTDOWN:
534 case -EINVAL:
535 case -ENODEV:
536 case -ENOENT:
537 case -ECONNRESET:
538 case -EPIPE:
539 return;
540 default:
541 dev_dbg_f(urb_dev(urb), "urb %p error %d\n", urb, urb->status);
542 goto resubmit;
543 }
544
545 buffer = urb->transfer_buffer;
546 length = urb->actual_length;
547 usb = urb->context;
548 rx = &usb->rx;
549
550 if (length%rx->usb_packet_size > rx->usb_packet_size-4) {
551 /* If there is an old first fragment, we don't care. */
552 dev_dbg_f(urb_dev(urb), "*** first fragment ***\n");
553 ZD_ASSERT(length <= ARRAY_SIZE(rx->fragment));
554 spin_lock(&rx->lock);
555 memcpy(rx->fragment, buffer, length);
556 rx->fragment_length = length;
557 spin_unlock(&rx->lock);
558 goto resubmit;
559 }
560
561 spin_lock(&rx->lock);
562 if (rx->fragment_length > 0) {
563 /* We are on a second fragment, we believe */
564 ZD_ASSERT(length + rx->fragment_length <=
565 ARRAY_SIZE(rx->fragment));
566 dev_dbg_f(urb_dev(urb), "*** second fragment ***\n");
567 memcpy(rx->fragment+rx->fragment_length, buffer, length);
568 handle_rx_packet(usb, rx->fragment,
569 rx->fragment_length + length);
570 rx->fragment_length = 0;
571 spin_unlock(&rx->lock);
572 } else {
573 spin_unlock(&rx->lock);
574 handle_rx_packet(usb, buffer, length);
575 }
576
577 resubmit:
578 usb_submit_urb(urb, GFP_ATOMIC);
579 }
580
581 static struct urb *alloc_urb(struct zd_usb *usb)
582 {
583 struct usb_device *udev = zd_usb_to_usbdev(usb);
584 struct urb *urb;
585 void *buffer;
586
587 urb = usb_alloc_urb(0, GFP_NOFS);
588 if (!urb)
589 return NULL;
590 buffer = usb_buffer_alloc(udev, USB_MAX_RX_SIZE, GFP_NOFS,
591 &urb->transfer_dma);
592 if (!buffer) {
593 usb_free_urb(urb);
594 return NULL;
595 }
596
597 usb_fill_bulk_urb(urb, udev, usb_rcvbulkpipe(udev, EP_DATA_IN),
598 buffer, USB_MAX_RX_SIZE,
599 rx_urb_complete, usb);
600 urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
601
602 return urb;
603 }
604
605 static void free_urb(struct urb *urb)
606 {
607 if (!urb)
608 return;
609 usb_buffer_free(urb->dev, urb->transfer_buffer_length,
610 urb->transfer_buffer, urb->transfer_dma);
611 usb_free_urb(urb);
612 }
613
614 int zd_usb_enable_rx(struct zd_usb *usb)
615 {
616 int i, r;
617 struct zd_usb_rx *rx = &usb->rx;
618 struct urb **urbs;
619
620 dev_dbg_f(zd_usb_dev(usb), "\n");
621
622 r = -ENOMEM;
623 urbs = kcalloc(URBS_COUNT, sizeof(struct urb *), GFP_NOFS);
624 if (!urbs)
625 goto error;
626 for (i = 0; i < URBS_COUNT; i++) {
627 urbs[i] = alloc_urb(usb);
628 if (!urbs[i])
629 goto error;
630 }
631
632 ZD_ASSERT(!irqs_disabled());
633 spin_lock_irq(&rx->lock);
634 if (rx->urbs) {
635 spin_unlock_irq(&rx->lock);
636 r = 0;
637 goto error;
638 }
639 rx->urbs = urbs;
640 rx->urbs_count = URBS_COUNT;
641 spin_unlock_irq(&rx->lock);
642
643 for (i = 0; i < URBS_COUNT; i++) {
644 r = usb_submit_urb(urbs[i], GFP_NOFS);
645 if (r)
646 goto error_submit;
647 }
648
649 return 0;
650 error_submit:
651 for (i = 0; i < URBS_COUNT; i++) {
652 usb_kill_urb(urbs[i]);
653 }
654 spin_lock_irq(&rx->lock);
655 rx->urbs = NULL;
656 rx->urbs_count = 0;
657 spin_unlock_irq(&rx->lock);
658 error:
659 if (urbs) {
660 for (i = 0; i < URBS_COUNT; i++)
661 free_urb(urbs[i]);
662 }
663 return r;
664 }
665
666 void zd_usb_disable_rx(struct zd_usb *usb)
667 {
668 int i;
669 unsigned long flags;
670 struct urb **urbs;
671 unsigned int count;
672 struct zd_usb_rx *rx = &usb->rx;
673
674 spin_lock_irqsave(&rx->lock, flags);
675 urbs = rx->urbs;
676 count = rx->urbs_count;
677 spin_unlock_irqrestore(&rx->lock, flags);
678 if (!urbs)
679 return;
680
681 for (i = 0; i < count; i++) {
682 usb_kill_urb(urbs[i]);
683 free_urb(urbs[i]);
684 }
685 kfree(urbs);
686
687 spin_lock_irqsave(&rx->lock, flags);
688 rx->urbs = NULL;
689 rx->urbs_count = 0;
690 spin_unlock_irqrestore(&rx->lock, flags);
691 }
692
693 static void tx_urb_complete(struct urb *urb)
694 {
695 int r;
696
697 switch (urb->status) {
698 case 0:
699 break;
700 case -ESHUTDOWN:
701 case -EINVAL:
702 case -ENODEV:
703 case -ENOENT:
704 case -ECONNRESET:
705 case -EPIPE:
706 dev_dbg_f(urb_dev(urb), "urb %p error %d\n", urb, urb->status);
707 break;
708 default:
709 dev_dbg_f(urb_dev(urb), "urb %p error %d\n", urb, urb->status);
710 goto resubmit;
711 }
712 free_urb:
713 usb_buffer_free(urb->dev, urb->transfer_buffer_length,
714 urb->transfer_buffer, urb->transfer_dma);
715 usb_free_urb(urb);
716 return;
717 resubmit:
718 r = usb_submit_urb(urb, GFP_ATOMIC);
719 if (r) {
720 dev_dbg_f(urb_dev(urb), "error resubmit urb %p %d\n", urb, r);
721 goto free_urb;
722 }
723 }
724
725 /* Puts the frame on the USB endpoint. It doesn't wait for
726 * completion. The frame must contain the control set.
727 */
728 int zd_usb_tx(struct zd_usb *usb, const u8 *frame, unsigned int length)
729 {
730 int r;
731 struct usb_device *udev = zd_usb_to_usbdev(usb);
732 struct urb *urb;
733 void *buffer;
734
735 urb = usb_alloc_urb(0, GFP_ATOMIC);
736 if (!urb) {
737 r = -ENOMEM;
738 goto out;
739 }
740
741 buffer = usb_buffer_alloc(zd_usb_to_usbdev(usb), length, GFP_ATOMIC,
742 &urb->transfer_dma);
743 if (!buffer) {
744 r = -ENOMEM;
745 goto error_free_urb;
746 }
747 memcpy(buffer, frame, length);
748
749 usb_fill_bulk_urb(urb, udev, usb_sndbulkpipe(udev, EP_DATA_OUT),
750 buffer, length, tx_urb_complete, NULL);
751 urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
752
753 r = usb_submit_urb(urb, GFP_ATOMIC);
754 if (r)
755 goto error;
756 return 0;
757 error:
758 usb_buffer_free(zd_usb_to_usbdev(usb), length, buffer,
759 urb->transfer_dma);
760 error_free_urb:
761 usb_free_urb(urb);
762 out:
763 return r;
764 }
765
766 static inline void init_usb_interrupt(struct zd_usb *usb)
767 {
768 struct zd_usb_interrupt *intr = &usb->intr;
769
770 spin_lock_init(&intr->lock);
771 intr->interval = int_urb_interval(zd_usb_to_usbdev(usb));
772 init_completion(&intr->read_regs.completion);
773 intr->read_regs.cr_int_addr = cpu_to_le16((u16)CR_INTERRUPT);
774 }
775
776 static inline void init_usb_rx(struct zd_usb *usb)
777 {
778 struct zd_usb_rx *rx = &usb->rx;
779 spin_lock_init(&rx->lock);
780 if (interface_to_usbdev(usb->intf)->speed == USB_SPEED_HIGH) {
781 rx->usb_packet_size = 512;
782 } else {
783 rx->usb_packet_size = 64;
784 }
785 ZD_ASSERT(rx->fragment_length == 0);
786 }
787
788 static inline void init_usb_tx(struct zd_usb *usb)
789 {
790 /* FIXME: at this point we will allocate a fixed number of urb's for
791 * use in a cyclic scheme */
792 }
793
794 void zd_usb_init(struct zd_usb *usb, struct net_device *netdev,
795 struct usb_interface *intf)
796 {
797 memset(usb, 0, sizeof(*usb));
798 usb->intf = usb_get_intf(intf);
799 usb_set_intfdata(usb->intf, netdev);
800 init_usb_interrupt(usb);
801 init_usb_tx(usb);
802 init_usb_rx(usb);
803 }
804
805 void zd_usb_clear(struct zd_usb *usb)
806 {
807 usb_set_intfdata(usb->intf, NULL);
808 usb_put_intf(usb->intf);
809 ZD_MEMCLEAR(usb, sizeof(*usb));
810 /* FIXME: usb_interrupt, usb_tx, usb_rx? */
811 }
812
813 static const char *speed(enum usb_device_speed speed)
814 {
815 switch (speed) {
816 case USB_SPEED_LOW:
817 return "low";
818 case USB_SPEED_FULL:
819 return "full";
820 case USB_SPEED_HIGH:
821 return "high";
822 default:
823 return "unknown speed";
824 }
825 }
826
827 static int scnprint_id(struct usb_device *udev, char *buffer, size_t size)
828 {
829 return scnprintf(buffer, size, "%04hx:%04hx v%04hx %s",
830 le16_to_cpu(udev->descriptor.idVendor),
831 le16_to_cpu(udev->descriptor.idProduct),
832 get_bcdDevice(udev),
833 speed(udev->speed));
834 }
835
836 int zd_usb_scnprint_id(struct zd_usb *usb, char *buffer, size_t size)
837 {
838 struct usb_device *udev = interface_to_usbdev(usb->intf);
839 return scnprint_id(udev, buffer, size);
840 }
841
842 #ifdef DEBUG
843 static void print_id(struct usb_device *udev)
844 {
845 char buffer[40];
846
847 scnprint_id(udev, buffer, sizeof(buffer));
848 buffer[sizeof(buffer)-1] = 0;
849 dev_dbg_f(&udev->dev, "%s\n", buffer);
850 }
851 #else
852 #define print_id(udev) do { } while (0)
853 #endif
854
855 static int eject_installer(struct usb_interface *intf)
856 {
857 struct usb_device *udev = interface_to_usbdev(intf);
858 struct usb_host_interface *iface_desc = &intf->altsetting[0];
859 struct usb_endpoint_descriptor *endpoint;
860 unsigned char *cmd;
861 u8 bulk_out_ep;
862 int r;
863
864 /* Find bulk out endpoint */
865 endpoint = &iface_desc->endpoint[1].desc;
866 if ((endpoint->bEndpointAddress & USB_TYPE_MASK) == USB_DIR_OUT &&
867 (endpoint->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
868 USB_ENDPOINT_XFER_BULK) {
869 bulk_out_ep = endpoint->bEndpointAddress;
870 } else {
871 dev_err(&udev->dev,
872 "zd1211rw: Could not find bulk out endpoint\n");
873 return -ENODEV;
874 }
875
876 cmd = kzalloc(31, GFP_KERNEL);
877 if (cmd == NULL)
878 return -ENODEV;
879
880 /* USB bulk command block */
881 cmd[0] = 0x55; /* bulk command signature */
882 cmd[1] = 0x53; /* bulk command signature */
883 cmd[2] = 0x42; /* bulk command signature */
884 cmd[3] = 0x43; /* bulk command signature */
885 cmd[14] = 6; /* command length */
886
887 cmd[15] = 0x1b; /* SCSI command: START STOP UNIT */
888 cmd[19] = 0x2; /* eject disc */
889
890 dev_info(&udev->dev, "Ejecting virtual installer media...\n");
891 r = usb_bulk_msg(udev, usb_sndbulkpipe(udev, bulk_out_ep),
892 cmd, 31, NULL, 2000);
893 kfree(cmd);
894 if (r)
895 return r;
896
897 /* At this point, the device disconnects and reconnects with the real
898 * ID numbers. */
899
900 usb_set_intfdata(intf, NULL);
901 return 0;
902 }
903
904 static int probe(struct usb_interface *intf, const struct usb_device_id *id)
905 {
906 int r;
907 struct usb_device *udev = interface_to_usbdev(intf);
908 struct net_device *netdev = NULL;
909
910 print_id(udev);
911
912 if (id->driver_info & DEVICE_INSTALLER)
913 return eject_installer(intf);
914
915 switch (udev->speed) {
916 case USB_SPEED_LOW:
917 case USB_SPEED_FULL:
918 case USB_SPEED_HIGH:
919 break;
920 default:
921 dev_dbg_f(&intf->dev, "Unknown USB speed\n");
922 r = -ENODEV;
923 goto error;
924 }
925
926 netdev = zd_netdev_alloc(intf);
927 if (netdev == NULL) {
928 r = -ENOMEM;
929 goto error;
930 }
931
932 r = upload_firmware(udev, id->driver_info);
933 if (r) {
934 dev_err(&intf->dev,
935 "couldn't load firmware. Error number %d\n", r);
936 goto error;
937 }
938
939 r = usb_reset_configuration(udev);
940 if (r) {
941 dev_dbg_f(&intf->dev,
942 "couldn't reset configuration. Error number %d\n", r);
943 goto error;
944 }
945
946 /* At this point the interrupt endpoint is not generally enabled. We
947 * save the USB bandwidth until the network device is opened. But
948 * notify that the initialization of the MAC will require the
949 * interrupts to be temporary enabled.
950 */
951 r = zd_mac_init_hw(zd_netdev_mac(netdev), id->driver_info);
952 if (r) {
953 dev_dbg_f(&intf->dev,
954 "couldn't initialize mac. Error number %d\n", r);
955 goto error;
956 }
957
958 r = register_netdev(netdev);
959 if (r) {
960 dev_dbg_f(&intf->dev,
961 "couldn't register netdev. Error number %d\n", r);
962 goto error;
963 }
964
965 dev_dbg_f(&intf->dev, "successful\n");
966 dev_info(&intf->dev,"%s\n", netdev->name);
967 return 0;
968 error:
969 usb_reset_device(interface_to_usbdev(intf));
970 zd_netdev_free(netdev);
971 return r;
972 }
973
974 static void disconnect(struct usb_interface *intf)
975 {
976 struct net_device *netdev = zd_intf_to_netdev(intf);
977 struct zd_mac *mac = zd_netdev_mac(netdev);
978 struct zd_usb *usb = &mac->chip.usb;
979
980 /* Either something really bad happened, or we're just dealing with
981 * a DEVICE_INSTALLER. */
982 if (netdev == NULL)
983 return;
984
985 dev_dbg_f(zd_usb_dev(usb), "\n");
986
987 zd_netdev_disconnect(netdev);
988
989 /* Just in case something has gone wrong! */
990 zd_usb_disable_rx(usb);
991 zd_usb_disable_int(usb);
992
993 /* If the disconnect has been caused by a removal of the
994 * driver module, the reset allows reloading of the driver. If the
995 * reset will not be executed here, the upload of the firmware in the
996 * probe function caused by the reloading of the driver will fail.
997 */
998 usb_reset_device(interface_to_usbdev(intf));
999
1000 zd_netdev_free(netdev);
1001 dev_dbg(&intf->dev, "disconnected\n");
1002 }
1003
1004 static struct usb_driver driver = {
1005 .name = "zd1211rw",
1006 .id_table = usb_ids,
1007 .probe = probe,
1008 .disconnect = disconnect,
1009 };
1010
1011 struct workqueue_struct *zd_workqueue;
1012
1013 static int __init usb_init(void)
1014 {
1015 int r;
1016
1017 pr_debug("%s usb_init()\n", driver.name);
1018
1019 zd_workqueue = create_singlethread_workqueue(driver.name);
1020 if (zd_workqueue == NULL) {
1021 printk(KERN_ERR "%s couldn't create workqueue\n", driver.name);
1022 return -ENOMEM;
1023 }
1024
1025 r = usb_register(&driver);
1026 if (r) {
1027 printk(KERN_ERR "%s usb_register() failed. Error number %d\n",
1028 driver.name, r);
1029 return r;
1030 }
1031
1032 pr_debug("%s initialized\n", driver.name);
1033 return 0;
1034 }
1035
1036 static void __exit usb_exit(void)
1037 {
1038 pr_debug("%s usb_exit()\n", driver.name);
1039 usb_deregister(&driver);
1040 destroy_workqueue(zd_workqueue);
1041 }
1042
1043 module_init(usb_init);
1044 module_exit(usb_exit);
1045
1046 static int usb_int_regs_length(unsigned int count)
1047 {
1048 return sizeof(struct usb_int_regs) + count * sizeof(struct reg_data);
1049 }
1050
1051 static void prepare_read_regs_int(struct zd_usb *usb)
1052 {
1053 struct zd_usb_interrupt *intr = &usb->intr;
1054
1055 spin_lock_irq(&intr->lock);
1056 intr->read_regs_enabled = 1;
1057 INIT_COMPLETION(intr->read_regs.completion);
1058 spin_unlock_irq(&intr->lock);
1059 }
1060
1061 static void disable_read_regs_int(struct zd_usb *usb)
1062 {
1063 struct zd_usb_interrupt *intr = &usb->intr;
1064
1065 spin_lock_irq(&intr->lock);
1066 intr->read_regs_enabled = 0;
1067 spin_unlock_irq(&intr->lock);
1068 }
1069
1070 static int get_results(struct zd_usb *usb, u16 *values,
1071 struct usb_req_read_regs *req, unsigned int count)
1072 {
1073 int r;
1074 int i;
1075 struct zd_usb_interrupt *intr = &usb->intr;
1076 struct read_regs_int *rr = &intr->read_regs;
1077 struct usb_int_regs *regs = (struct usb_int_regs *)rr->buffer;
1078
1079 spin_lock_irq(&intr->lock);
1080
1081 r = -EIO;
1082 /* The created block size seems to be larger than expected.
1083 * However results appear to be correct.
1084 */
1085 if (rr->length < usb_int_regs_length(count)) {
1086 dev_dbg_f(zd_usb_dev(usb),
1087 "error: actual length %d less than expected %d\n",
1088 rr->length, usb_int_regs_length(count));
1089 goto error_unlock;
1090 }
1091 if (rr->length > sizeof(rr->buffer)) {
1092 dev_dbg_f(zd_usb_dev(usb),
1093 "error: actual length %d exceeds buffer size %zu\n",
1094 rr->length, sizeof(rr->buffer));
1095 goto error_unlock;
1096 }
1097
1098 for (i = 0; i < count; i++) {
1099 struct reg_data *rd = &regs->regs[i];
1100 if (rd->addr != req->addr[i]) {
1101 dev_dbg_f(zd_usb_dev(usb),
1102 "rd[%d] addr %#06hx expected %#06hx\n", i,
1103 le16_to_cpu(rd->addr),
1104 le16_to_cpu(req->addr[i]));
1105 goto error_unlock;
1106 }
1107 values[i] = le16_to_cpu(rd->value);
1108 }
1109
1110 r = 0;
1111 error_unlock:
1112 spin_unlock_irq(&intr->lock);
1113 return r;
1114 }
1115
1116 int zd_usb_ioread16v(struct zd_usb *usb, u16 *values,
1117 const zd_addr_t *addresses, unsigned int count)
1118 {
1119 int r;
1120 int i, req_len, actual_req_len;
1121 struct usb_device *udev;
1122 struct usb_req_read_regs *req = NULL;
1123 unsigned long timeout;
1124
1125 if (count < 1) {
1126 dev_dbg_f(zd_usb_dev(usb), "error: count is zero\n");
1127 return -EINVAL;
1128 }
1129 if (count > USB_MAX_IOREAD16_COUNT) {
1130 dev_dbg_f(zd_usb_dev(usb),
1131 "error: count %u exceeds possible max %u\n",
1132 count, USB_MAX_IOREAD16_COUNT);
1133 return -EINVAL;
1134 }
1135 if (in_atomic()) {
1136 dev_dbg_f(zd_usb_dev(usb),
1137 "error: io in atomic context not supported\n");
1138 return -EWOULDBLOCK;
1139 }
1140 if (!usb_int_enabled(usb)) {
1141 dev_dbg_f(zd_usb_dev(usb),
1142 "error: usb interrupt not enabled\n");
1143 return -EWOULDBLOCK;
1144 }
1145
1146 req_len = sizeof(struct usb_req_read_regs) + count * sizeof(__le16);
1147 req = kmalloc(req_len, GFP_NOFS);
1148 if (!req)
1149 return -ENOMEM;
1150 req->id = cpu_to_le16(USB_REQ_READ_REGS);
1151 for (i = 0; i < count; i++)
1152 req->addr[i] = cpu_to_le16((u16)addresses[i]);
1153
1154 udev = zd_usb_to_usbdev(usb);
1155 prepare_read_regs_int(usb);
1156 r = usb_bulk_msg(udev, usb_sndbulkpipe(udev, EP_REGS_OUT),
1157 req, req_len, &actual_req_len, 1000 /* ms */);
1158 if (r) {
1159 dev_dbg_f(zd_usb_dev(usb),
1160 "error in usb_bulk_msg(). Error number %d\n", r);
1161 goto error;
1162 }
1163 if (req_len != actual_req_len) {
1164 dev_dbg_f(zd_usb_dev(usb), "error in usb_bulk_msg()\n"
1165 " req_len %d != actual_req_len %d\n",
1166 req_len, actual_req_len);
1167 r = -EIO;
1168 goto error;
1169 }
1170
1171 timeout = wait_for_completion_timeout(&usb->intr.read_regs.completion,
1172 msecs_to_jiffies(1000));
1173 if (!timeout) {
1174 disable_read_regs_int(usb);
1175 dev_dbg_f(zd_usb_dev(usb), "read timed out\n");
1176 r = -ETIMEDOUT;
1177 goto error;
1178 }
1179
1180 r = get_results(usb, values, req, count);
1181 error:
1182 kfree(req);
1183 return r;
1184 }
1185
1186 int zd_usb_iowrite16v(struct zd_usb *usb, const struct zd_ioreq16 *ioreqs,
1187 unsigned int count)
1188 {
1189 int r;
1190 struct usb_device *udev;
1191 struct usb_req_write_regs *req = NULL;
1192 int i, req_len, actual_req_len;
1193
1194 if (count == 0)
1195 return 0;
1196 if (count > USB_MAX_IOWRITE16_COUNT) {
1197 dev_dbg_f(zd_usb_dev(usb),
1198 "error: count %u exceeds possible max %u\n",
1199 count, USB_MAX_IOWRITE16_COUNT);
1200 return -EINVAL;
1201 }
1202 if (in_atomic()) {
1203 dev_dbg_f(zd_usb_dev(usb),
1204 "error: io in atomic context not supported\n");
1205 return -EWOULDBLOCK;
1206 }
1207
1208 req_len = sizeof(struct usb_req_write_regs) +
1209 count * sizeof(struct reg_data);
1210 req = kmalloc(req_len, GFP_NOFS);
1211 if (!req)
1212 return -ENOMEM;
1213
1214 req->id = cpu_to_le16(USB_REQ_WRITE_REGS);
1215 for (i = 0; i < count; i++) {
1216 struct reg_data *rw = &req->reg_writes[i];
1217 rw->addr = cpu_to_le16((u16)ioreqs[i].addr);
1218 rw->value = cpu_to_le16(ioreqs[i].value);
1219 }
1220
1221 udev = zd_usb_to_usbdev(usb);
1222 r = usb_bulk_msg(udev, usb_sndbulkpipe(udev, EP_REGS_OUT),
1223 req, req_len, &actual_req_len, 1000 /* ms */);
1224 if (r) {
1225 dev_dbg_f(zd_usb_dev(usb),
1226 "error in usb_bulk_msg(). Error number %d\n", r);
1227 goto error;
1228 }
1229 if (req_len != actual_req_len) {
1230 dev_dbg_f(zd_usb_dev(usb),
1231 "error in usb_bulk_msg()"
1232 " req_len %d != actual_req_len %d\n",
1233 req_len, actual_req_len);
1234 r = -EIO;
1235 goto error;
1236 }
1237
1238 /* FALL-THROUGH with r == 0 */
1239 error:
1240 kfree(req);
1241 return r;
1242 }
1243
1244 int zd_usb_rfwrite(struct zd_usb *usb, u32 value, u8 bits)
1245 {
1246 int r;
1247 struct usb_device *udev;
1248 struct usb_req_rfwrite *req = NULL;
1249 int i, req_len, actual_req_len;
1250 u16 bit_value_template;
1251
1252 if (in_atomic()) {
1253 dev_dbg_f(zd_usb_dev(usb),
1254 "error: io in atomic context not supported\n");
1255 return -EWOULDBLOCK;
1256 }
1257 if (bits < USB_MIN_RFWRITE_BIT_COUNT) {
1258 dev_dbg_f(zd_usb_dev(usb),
1259 "error: bits %d are smaller than"
1260 " USB_MIN_RFWRITE_BIT_COUNT %d\n",
1261 bits, USB_MIN_RFWRITE_BIT_COUNT);
1262 return -EINVAL;
1263 }
1264 if (bits > USB_MAX_RFWRITE_BIT_COUNT) {
1265 dev_dbg_f(zd_usb_dev(usb),
1266 "error: bits %d exceed USB_MAX_RFWRITE_BIT_COUNT %d\n",
1267 bits, USB_MAX_RFWRITE_BIT_COUNT);
1268 return -EINVAL;
1269 }
1270 #ifdef DEBUG
1271 if (value & (~0UL << bits)) {
1272 dev_dbg_f(zd_usb_dev(usb),
1273 "error: value %#09x has bits >= %d set\n",
1274 value, bits);
1275 return -EINVAL;
1276 }
1277 #endif /* DEBUG */
1278
1279 dev_dbg_f(zd_usb_dev(usb), "value %#09x bits %d\n", value, bits);
1280
1281 r = zd_usb_ioread16(usb, &bit_value_template, CR203);
1282 if (r) {
1283 dev_dbg_f(zd_usb_dev(usb),
1284 "error %d: Couldn't read CR203\n", r);
1285 goto out;
1286 }
1287 bit_value_template &= ~(RF_IF_LE|RF_CLK|RF_DATA);
1288
1289 req_len = sizeof(struct usb_req_rfwrite) + bits * sizeof(__le16);
1290 req = kmalloc(req_len, GFP_NOFS);
1291 if (!req)
1292 return -ENOMEM;
1293
1294 req->id = cpu_to_le16(USB_REQ_WRITE_RF);
1295 /* 1: 3683a, but not used in ZYDAS driver */
1296 req->value = cpu_to_le16(2);
1297 req->bits = cpu_to_le16(bits);
1298
1299 for (i = 0; i < bits; i++) {
1300 u16 bv = bit_value_template;
1301 if (value & (1 << (bits-1-i)))
1302 bv |= RF_DATA;
1303 req->bit_values[i] = cpu_to_le16(bv);
1304 }
1305
1306 udev = zd_usb_to_usbdev(usb);
1307 r = usb_bulk_msg(udev, usb_sndbulkpipe(udev, EP_REGS_OUT),
1308 req, req_len, &actual_req_len, 1000 /* ms */);
1309 if (r) {
1310 dev_dbg_f(zd_usb_dev(usb),
1311 "error in usb_bulk_msg(). Error number %d\n", r);
1312 goto out;
1313 }
1314 if (req_len != actual_req_len) {
1315 dev_dbg_f(zd_usb_dev(usb), "error in usb_bulk_msg()"
1316 " req_len %d != actual_req_len %d\n",
1317 req_len, actual_req_len);
1318 r = -EIO;
1319 goto out;
1320 }
1321
1322 /* FALL-THROUGH with r == 0 */
1323 out:
1324 kfree(req);
1325 return r;
1326 }
This page took 0.060778 seconds and 6 git commands to generate.