NTB: ntb_hw_intel: show BAR size in debugfs info
[deliverable/linux.git] / drivers / ntb / hw / intel / ntb_hw_intel.c
1 /*
2 * This file is provided under a dual BSD/GPLv2 license. When using or
3 * redistributing this file, you may do so under either license.
4 *
5 * GPL LICENSE SUMMARY
6 *
7 * Copyright(c) 2012 Intel Corporation. All rights reserved.
8 * Copyright (C) 2015 EMC Corporation. All Rights Reserved.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of version 2 of the GNU General Public License as
12 * published by the Free Software Foundation.
13 *
14 * BSD LICENSE
15 *
16 * Copyright(c) 2012 Intel Corporation. All rights reserved.
17 * Copyright (C) 2015 EMC Corporation. All Rights Reserved.
18 *
19 * Redistribution and use in source and binary forms, with or without
20 * modification, are permitted provided that the following conditions
21 * are met:
22 *
23 * * Redistributions of source code must retain the above copyright
24 * notice, this list of conditions and the following disclaimer.
25 * * Redistributions in binary form must reproduce the above copy
26 * notice, this list of conditions and the following disclaimer in
27 * the documentation and/or other materials provided with the
28 * distribution.
29 * * Neither the name of Intel Corporation nor the names of its
30 * contributors may be used to endorse or promote products derived
31 * from this software without specific prior written permission.
32 *
33 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
34 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
35 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
36 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
37 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
38 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
39 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
40 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
41 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
42 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
43 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
44 *
45 * Intel PCIe NTB Linux driver
46 *
47 * Contact Information:
48 * Jon Mason <jon.mason@intel.com>
49 */
50
51 #include <linux/debugfs.h>
52 #include <linux/delay.h>
53 #include <linux/init.h>
54 #include <linux/interrupt.h>
55 #include <linux/module.h>
56 #include <linux/pci.h>
57 #include <linux/random.h>
58 #include <linux/slab.h>
59 #include <linux/ntb.h>
60
61 #include "ntb_hw_intel.h"
62
63 #define NTB_NAME "ntb_hw_intel"
64 #define NTB_DESC "Intel(R) PCI-E Non-Transparent Bridge Driver"
65 #define NTB_VER "2.0"
66
67 MODULE_DESCRIPTION(NTB_DESC);
68 MODULE_VERSION(NTB_VER);
69 MODULE_LICENSE("Dual BSD/GPL");
70 MODULE_AUTHOR("Intel Corporation");
71
72 #define bar0_off(base, bar) ((base) + ((bar) << 2))
73 #define bar2_off(base, bar) bar0_off(base, (bar) - 2)
74
75 static const struct intel_ntb_reg atom_reg;
76 static const struct intel_ntb_alt_reg atom_pri_reg;
77 static const struct intel_ntb_alt_reg atom_sec_reg;
78 static const struct intel_ntb_alt_reg atom_b2b_reg;
79 static const struct intel_ntb_xlat_reg atom_pri_xlat;
80 static const struct intel_ntb_xlat_reg atom_sec_xlat;
81 static const struct intel_ntb_reg xeon_reg;
82 static const struct intel_ntb_alt_reg xeon_pri_reg;
83 static const struct intel_ntb_alt_reg xeon_sec_reg;
84 static const struct intel_ntb_alt_reg xeon_b2b_reg;
85 static const struct intel_ntb_xlat_reg xeon_pri_xlat;
86 static const struct intel_ntb_xlat_reg xeon_sec_xlat;
87 static struct intel_b2b_addr xeon_b2b_usd_addr;
88 static struct intel_b2b_addr xeon_b2b_dsd_addr;
89 static const struct ntb_dev_ops intel_ntb_ops;
90
91 static const struct file_operations intel_ntb_debugfs_info;
92 static struct dentry *debugfs_dir;
93
94 static int b2b_mw_idx = -1;
95 module_param(b2b_mw_idx, int, 0644);
96 MODULE_PARM_DESC(b2b_mw_idx, "Use this mw idx to access the peer ntb. A "
97 "value of zero or positive starts from first mw idx, and a "
98 "negative value starts from last mw idx. Both sides MUST "
99 "set the same value here!");
100
101 static unsigned int b2b_mw_share;
102 module_param(b2b_mw_share, uint, 0644);
103 MODULE_PARM_DESC(b2b_mw_share, "If the b2b mw is large enough, configure the "
104 "ntb so that the peer ntb only occupies the first half of "
105 "the mw, so the second half can still be used as a mw. Both "
106 "sides MUST set the same value here!");
107
108 module_param_named(xeon_b2b_usd_bar2_addr64,
109 xeon_b2b_usd_addr.bar2_addr64, ullong, 0644);
110 MODULE_PARM_DESC(xeon_b2b_usd_bar2_addr64,
111 "XEON B2B USD BAR 2 64-bit address");
112
113 module_param_named(xeon_b2b_usd_bar4_addr64,
114 xeon_b2b_usd_addr.bar4_addr64, ullong, 0644);
115 MODULE_PARM_DESC(xeon_b2b_usd_bar2_addr64,
116 "XEON B2B USD BAR 4 64-bit address");
117
118 module_param_named(xeon_b2b_usd_bar4_addr32,
119 xeon_b2b_usd_addr.bar4_addr32, ullong, 0644);
120 MODULE_PARM_DESC(xeon_b2b_usd_bar2_addr64,
121 "XEON B2B USD split-BAR 4 32-bit address");
122
123 module_param_named(xeon_b2b_usd_bar5_addr32,
124 xeon_b2b_usd_addr.bar5_addr32, ullong, 0644);
125 MODULE_PARM_DESC(xeon_b2b_usd_bar2_addr64,
126 "XEON B2B USD split-BAR 5 32-bit address");
127
128 module_param_named(xeon_b2b_dsd_bar2_addr64,
129 xeon_b2b_dsd_addr.bar2_addr64, ullong, 0644);
130 MODULE_PARM_DESC(xeon_b2b_dsd_bar2_addr64,
131 "XEON B2B DSD BAR 2 64-bit address");
132
133 module_param_named(xeon_b2b_dsd_bar4_addr64,
134 xeon_b2b_dsd_addr.bar4_addr64, ullong, 0644);
135 MODULE_PARM_DESC(xeon_b2b_dsd_bar2_addr64,
136 "XEON B2B DSD BAR 4 64-bit address");
137
138 module_param_named(xeon_b2b_dsd_bar4_addr32,
139 xeon_b2b_dsd_addr.bar4_addr32, ullong, 0644);
140 MODULE_PARM_DESC(xeon_b2b_dsd_bar2_addr64,
141 "XEON B2B DSD split-BAR 4 32-bit address");
142
143 module_param_named(xeon_b2b_dsd_bar5_addr32,
144 xeon_b2b_dsd_addr.bar5_addr32, ullong, 0644);
145 MODULE_PARM_DESC(xeon_b2b_dsd_bar2_addr64,
146 "XEON B2B DSD split-BAR 5 32-bit address");
147
148 #ifndef ioread64
149 #ifdef readq
150 #define ioread64 readq
151 #else
152 #define ioread64 _ioread64
153 static inline u64 _ioread64(void __iomem *mmio)
154 {
155 u64 low, high;
156
157 low = ioread32(mmio);
158 high = ioread32(mmio + sizeof(u32));
159 return low | (high << 32);
160 }
161 #endif
162 #endif
163
164 #ifndef iowrite64
165 #ifdef writeq
166 #define iowrite64 writeq
167 #else
168 #define iowrite64 _iowrite64
169 static inline void _iowrite64(u64 val, void __iomem *mmio)
170 {
171 iowrite32(val, mmio);
172 iowrite32(val >> 32, mmio + sizeof(u32));
173 }
174 #endif
175 #endif
176
177 static inline int pdev_is_atom(struct pci_dev *pdev)
178 {
179 switch (pdev->device) {
180 case PCI_DEVICE_ID_INTEL_NTB_B2B_BWD:
181 return 1;
182 }
183 return 0;
184 }
185
186 static inline int pdev_is_xeon(struct pci_dev *pdev)
187 {
188 switch (pdev->device) {
189 case PCI_DEVICE_ID_INTEL_NTB_SS_JSF:
190 case PCI_DEVICE_ID_INTEL_NTB_SS_SNB:
191 case PCI_DEVICE_ID_INTEL_NTB_SS_IVT:
192 case PCI_DEVICE_ID_INTEL_NTB_SS_HSX:
193 case PCI_DEVICE_ID_INTEL_NTB_SS_BDX:
194 case PCI_DEVICE_ID_INTEL_NTB_PS_JSF:
195 case PCI_DEVICE_ID_INTEL_NTB_PS_SNB:
196 case PCI_DEVICE_ID_INTEL_NTB_PS_IVT:
197 case PCI_DEVICE_ID_INTEL_NTB_PS_HSX:
198 case PCI_DEVICE_ID_INTEL_NTB_PS_BDX:
199 case PCI_DEVICE_ID_INTEL_NTB_B2B_JSF:
200 case PCI_DEVICE_ID_INTEL_NTB_B2B_SNB:
201 case PCI_DEVICE_ID_INTEL_NTB_B2B_IVT:
202 case PCI_DEVICE_ID_INTEL_NTB_B2B_HSX:
203 case PCI_DEVICE_ID_INTEL_NTB_B2B_BDX:
204 return 1;
205 }
206 return 0;
207 }
208
209 static inline void ndev_reset_unsafe_flags(struct intel_ntb_dev *ndev)
210 {
211 ndev->unsafe_flags = 0;
212 ndev->unsafe_flags_ignore = 0;
213
214 /* Only B2B has a workaround to avoid SDOORBELL */
215 if (ndev->hwerr_flags & NTB_HWERR_SDOORBELL_LOCKUP)
216 if (!ntb_topo_is_b2b(ndev->ntb.topo))
217 ndev->unsafe_flags |= NTB_UNSAFE_DB;
218
219 /* No low level workaround to avoid SB01BASE */
220 if (ndev->hwerr_flags & NTB_HWERR_SB01BASE_LOCKUP) {
221 ndev->unsafe_flags |= NTB_UNSAFE_DB;
222 ndev->unsafe_flags |= NTB_UNSAFE_SPAD;
223 }
224 }
225
226 static inline int ndev_is_unsafe(struct intel_ntb_dev *ndev,
227 unsigned long flag)
228 {
229 return !!(flag & ndev->unsafe_flags & ~ndev->unsafe_flags_ignore);
230 }
231
232 static inline int ndev_ignore_unsafe(struct intel_ntb_dev *ndev,
233 unsigned long flag)
234 {
235 flag &= ndev->unsafe_flags;
236 ndev->unsafe_flags_ignore |= flag;
237
238 return !!flag;
239 }
240
241 static int ndev_mw_to_bar(struct intel_ntb_dev *ndev, int idx)
242 {
243 if (idx < 0 || idx >= ndev->mw_count)
244 return -EINVAL;
245 return ndev->reg->mw_bar[idx];
246 }
247
248 static inline int ndev_db_addr(struct intel_ntb_dev *ndev,
249 phys_addr_t *db_addr, resource_size_t *db_size,
250 phys_addr_t reg_addr, unsigned long reg)
251 {
252 if (ndev_is_unsafe(ndev, NTB_UNSAFE_DB))
253 pr_warn_once("%s: NTB unsafe doorbell access", __func__);
254
255 if (db_addr) {
256 *db_addr = reg_addr + reg;
257 dev_dbg(ndev_dev(ndev), "Peer db addr %llx\n", *db_addr);
258 }
259
260 if (db_size) {
261 *db_size = ndev->reg->db_size;
262 dev_dbg(ndev_dev(ndev), "Peer db size %llx\n", *db_size);
263 }
264
265 return 0;
266 }
267
268 static inline u64 ndev_db_read(struct intel_ntb_dev *ndev,
269 void __iomem *mmio)
270 {
271 if (ndev_is_unsafe(ndev, NTB_UNSAFE_DB))
272 pr_warn_once("%s: NTB unsafe doorbell access", __func__);
273
274 return ndev->reg->db_ioread(mmio);
275 }
276
277 static inline int ndev_db_write(struct intel_ntb_dev *ndev, u64 db_bits,
278 void __iomem *mmio)
279 {
280 if (ndev_is_unsafe(ndev, NTB_UNSAFE_DB))
281 pr_warn_once("%s: NTB unsafe doorbell access", __func__);
282
283 if (db_bits & ~ndev->db_valid_mask)
284 return -EINVAL;
285
286 ndev->reg->db_iowrite(db_bits, mmio);
287
288 return 0;
289 }
290
291 static inline int ndev_db_set_mask(struct intel_ntb_dev *ndev, u64 db_bits,
292 void __iomem *mmio)
293 {
294 unsigned long irqflags;
295
296 if (ndev_is_unsafe(ndev, NTB_UNSAFE_DB))
297 pr_warn_once("%s: NTB unsafe doorbell access", __func__);
298
299 if (db_bits & ~ndev->db_valid_mask)
300 return -EINVAL;
301
302 spin_lock_irqsave(&ndev->db_mask_lock, irqflags);
303 {
304 ndev->db_mask |= db_bits;
305 ndev->reg->db_iowrite(ndev->db_mask, mmio);
306 }
307 spin_unlock_irqrestore(&ndev->db_mask_lock, irqflags);
308
309 return 0;
310 }
311
312 static inline int ndev_db_clear_mask(struct intel_ntb_dev *ndev, u64 db_bits,
313 void __iomem *mmio)
314 {
315 unsigned long irqflags;
316
317 if (ndev_is_unsafe(ndev, NTB_UNSAFE_DB))
318 pr_warn_once("%s: NTB unsafe doorbell access", __func__);
319
320 if (db_bits & ~ndev->db_valid_mask)
321 return -EINVAL;
322
323 spin_lock_irqsave(&ndev->db_mask_lock, irqflags);
324 {
325 ndev->db_mask &= ~db_bits;
326 ndev->reg->db_iowrite(ndev->db_mask, mmio);
327 }
328 spin_unlock_irqrestore(&ndev->db_mask_lock, irqflags);
329
330 return 0;
331 }
332
333 static inline int ndev_vec_mask(struct intel_ntb_dev *ndev, int db_vector)
334 {
335 u64 shift, mask;
336
337 shift = ndev->db_vec_shift;
338 mask = BIT_ULL(shift) - 1;
339
340 return mask << (shift * db_vector);
341 }
342
343 static inline int ndev_spad_addr(struct intel_ntb_dev *ndev, int idx,
344 phys_addr_t *spad_addr, phys_addr_t reg_addr,
345 unsigned long reg)
346 {
347 if (ndev_is_unsafe(ndev, NTB_UNSAFE_SPAD))
348 pr_warn_once("%s: NTB unsafe scratchpad access", __func__);
349
350 if (idx < 0 || idx >= ndev->spad_count)
351 return -EINVAL;
352
353 if (spad_addr) {
354 *spad_addr = reg_addr + reg + (idx << 2);
355 dev_dbg(ndev_dev(ndev), "Peer spad addr %llx\n", *spad_addr);
356 }
357
358 return 0;
359 }
360
361 static inline u32 ndev_spad_read(struct intel_ntb_dev *ndev, int idx,
362 void __iomem *mmio)
363 {
364 if (ndev_is_unsafe(ndev, NTB_UNSAFE_SPAD))
365 pr_warn_once("%s: NTB unsafe scratchpad access", __func__);
366
367 if (idx < 0 || idx >= ndev->spad_count)
368 return 0;
369
370 return ioread32(mmio + (idx << 2));
371 }
372
373 static inline int ndev_spad_write(struct intel_ntb_dev *ndev, int idx, u32 val,
374 void __iomem *mmio)
375 {
376 if (ndev_is_unsafe(ndev, NTB_UNSAFE_SPAD))
377 pr_warn_once("%s: NTB unsafe scratchpad access", __func__);
378
379 if (idx < 0 || idx >= ndev->spad_count)
380 return -EINVAL;
381
382 iowrite32(val, mmio + (idx << 2));
383
384 return 0;
385 }
386
387 static irqreturn_t ndev_interrupt(struct intel_ntb_dev *ndev, int vec)
388 {
389 u64 vec_mask;
390
391 vec_mask = ndev_vec_mask(ndev, vec);
392
393 dev_dbg(ndev_dev(ndev), "vec %d vec_mask %llx\n", vec, vec_mask);
394
395 ndev->last_ts = jiffies;
396
397 if (vec_mask & ndev->db_link_mask) {
398 if (ndev->reg->poll_link(ndev))
399 ntb_link_event(&ndev->ntb);
400 }
401
402 if (vec_mask & ndev->db_valid_mask)
403 ntb_db_event(&ndev->ntb, vec);
404
405 return IRQ_HANDLED;
406 }
407
408 static irqreturn_t ndev_vec_isr(int irq, void *dev)
409 {
410 struct intel_ntb_vec *nvec = dev;
411
412 return ndev_interrupt(nvec->ndev, nvec->num);
413 }
414
415 static irqreturn_t ndev_irq_isr(int irq, void *dev)
416 {
417 struct intel_ntb_dev *ndev = dev;
418
419 return ndev_interrupt(ndev, irq - ndev_pdev(ndev)->irq);
420 }
421
422 static int ndev_init_isr(struct intel_ntb_dev *ndev,
423 int msix_min, int msix_max,
424 int msix_shift, int total_shift)
425 {
426 struct pci_dev *pdev;
427 int rc, i, msix_count, node;
428
429 pdev = ndev_pdev(ndev);
430
431 node = dev_to_node(&pdev->dev);
432
433 /* Mask all doorbell interrupts */
434 ndev->db_mask = ndev->db_valid_mask;
435 ndev->reg->db_iowrite(ndev->db_mask,
436 ndev->self_mmio +
437 ndev->self_reg->db_mask);
438
439 /* Try to set up msix irq */
440
441 ndev->vec = kzalloc_node(msix_max * sizeof(*ndev->vec),
442 GFP_KERNEL, node);
443 if (!ndev->vec)
444 goto err_msix_vec_alloc;
445
446 ndev->msix = kzalloc_node(msix_max * sizeof(*ndev->msix),
447 GFP_KERNEL, node);
448 if (!ndev->msix)
449 goto err_msix_alloc;
450
451 for (i = 0; i < msix_max; ++i)
452 ndev->msix[i].entry = i;
453
454 msix_count = pci_enable_msix_range(pdev, ndev->msix,
455 msix_min, msix_max);
456 if (msix_count < 0)
457 goto err_msix_enable;
458
459 for (i = 0; i < msix_count; ++i) {
460 ndev->vec[i].ndev = ndev;
461 ndev->vec[i].num = i;
462 rc = request_irq(ndev->msix[i].vector, ndev_vec_isr, 0,
463 "ndev_vec_isr", &ndev->vec[i]);
464 if (rc)
465 goto err_msix_request;
466 }
467
468 dev_dbg(ndev_dev(ndev), "Using msix interrupts\n");
469 ndev->db_vec_count = msix_count;
470 ndev->db_vec_shift = msix_shift;
471 return 0;
472
473 err_msix_request:
474 while (i-- > 0)
475 free_irq(ndev->msix[i].vector, ndev);
476 pci_disable_msix(pdev);
477 err_msix_enable:
478 kfree(ndev->msix);
479 err_msix_alloc:
480 kfree(ndev->vec);
481 err_msix_vec_alloc:
482 ndev->msix = NULL;
483 ndev->vec = NULL;
484
485 /* Try to set up msi irq */
486
487 rc = pci_enable_msi(pdev);
488 if (rc)
489 goto err_msi_enable;
490
491 rc = request_irq(pdev->irq, ndev_irq_isr, 0,
492 "ndev_irq_isr", ndev);
493 if (rc)
494 goto err_msi_request;
495
496 dev_dbg(ndev_dev(ndev), "Using msi interrupts\n");
497 ndev->db_vec_count = 1;
498 ndev->db_vec_shift = total_shift;
499 return 0;
500
501 err_msi_request:
502 pci_disable_msi(pdev);
503 err_msi_enable:
504
505 /* Try to set up intx irq */
506
507 pci_intx(pdev, 1);
508
509 rc = request_irq(pdev->irq, ndev_irq_isr, IRQF_SHARED,
510 "ndev_irq_isr", ndev);
511 if (rc)
512 goto err_intx_request;
513
514 dev_dbg(ndev_dev(ndev), "Using intx interrupts\n");
515 ndev->db_vec_count = 1;
516 ndev->db_vec_shift = total_shift;
517 return 0;
518
519 err_intx_request:
520 return rc;
521 }
522
523 static void ndev_deinit_isr(struct intel_ntb_dev *ndev)
524 {
525 struct pci_dev *pdev;
526 int i;
527
528 pdev = ndev_pdev(ndev);
529
530 /* Mask all doorbell interrupts */
531 ndev->db_mask = ndev->db_valid_mask;
532 ndev->reg->db_iowrite(ndev->db_mask,
533 ndev->self_mmio +
534 ndev->self_reg->db_mask);
535
536 if (ndev->msix) {
537 i = ndev->db_vec_count;
538 while (i--)
539 free_irq(ndev->msix[i].vector, &ndev->vec[i]);
540 pci_disable_msix(pdev);
541 kfree(ndev->msix);
542 kfree(ndev->vec);
543 } else {
544 free_irq(pdev->irq, ndev);
545 if (pci_dev_msi_enabled(pdev))
546 pci_disable_msi(pdev);
547 }
548 }
549
550 static ssize_t ndev_debugfs_read(struct file *filp, char __user *ubuf,
551 size_t count, loff_t *offp)
552 {
553 struct intel_ntb_dev *ndev;
554 struct pci_dev *pdev;
555 void __iomem *mmio;
556 char *buf;
557 size_t buf_size;
558 ssize_t ret, off;
559 union { u64 v64; u32 v32; u16 v16; u8 v8; } u;
560
561 ndev = filp->private_data;
562 pdev = ndev_pdev(ndev);
563 mmio = ndev->self_mmio;
564
565 buf_size = min(count, 0x800ul);
566
567 buf = kmalloc(buf_size, GFP_KERNEL);
568 if (!buf)
569 return -ENOMEM;
570
571 off = 0;
572
573 off += scnprintf(buf + off, buf_size - off,
574 "NTB Device Information:\n");
575
576 off += scnprintf(buf + off, buf_size - off,
577 "Connection Topology -\t%s\n",
578 ntb_topo_string(ndev->ntb.topo));
579
580 if (ndev->b2b_idx != UINT_MAX) {
581 off += scnprintf(buf + off, buf_size - off,
582 "B2B MW Idx -\t\t%u\n", ndev->b2b_idx);
583 off += scnprintf(buf + off, buf_size - off,
584 "B2B Offset -\t\t%#lx\n", ndev->b2b_off);
585 }
586
587 off += scnprintf(buf + off, buf_size - off,
588 "BAR4 Split -\t\t%s\n",
589 ndev->bar4_split ? "yes" : "no");
590
591 off += scnprintf(buf + off, buf_size - off,
592 "NTB CTL -\t\t%#06x\n", ndev->ntb_ctl);
593 off += scnprintf(buf + off, buf_size - off,
594 "LNK STA -\t\t%#06x\n", ndev->lnk_sta);
595
596 if (!ndev->reg->link_is_up(ndev)) {
597 off += scnprintf(buf + off, buf_size - off,
598 "Link Status -\t\tDown\n");
599 } else {
600 off += scnprintf(buf + off, buf_size - off,
601 "Link Status -\t\tUp\n");
602 off += scnprintf(buf + off, buf_size - off,
603 "Link Speed -\t\tPCI-E Gen %u\n",
604 NTB_LNK_STA_SPEED(ndev->lnk_sta));
605 off += scnprintf(buf + off, buf_size - off,
606 "Link Width -\t\tx%u\n",
607 NTB_LNK_STA_WIDTH(ndev->lnk_sta));
608 }
609
610 off += scnprintf(buf + off, buf_size - off,
611 "Memory Window Count -\t%u\n", ndev->mw_count);
612 off += scnprintf(buf + off, buf_size - off,
613 "Scratchpad Count -\t%u\n", ndev->spad_count);
614 off += scnprintf(buf + off, buf_size - off,
615 "Doorbell Count -\t%u\n", ndev->db_count);
616 off += scnprintf(buf + off, buf_size - off,
617 "Doorbell Vector Count -\t%u\n", ndev->db_vec_count);
618 off += scnprintf(buf + off, buf_size - off,
619 "Doorbell Vector Shift -\t%u\n", ndev->db_vec_shift);
620
621 off += scnprintf(buf + off, buf_size - off,
622 "Doorbell Valid Mask -\t%#llx\n", ndev->db_valid_mask);
623 off += scnprintf(buf + off, buf_size - off,
624 "Doorbell Link Mask -\t%#llx\n", ndev->db_link_mask);
625 off += scnprintf(buf + off, buf_size - off,
626 "Doorbell Mask Cached -\t%#llx\n", ndev->db_mask);
627
628 u.v64 = ndev_db_read(ndev, mmio + ndev->self_reg->db_mask);
629 off += scnprintf(buf + off, buf_size - off,
630 "Doorbell Mask -\t\t%#llx\n", u.v64);
631
632 u.v64 = ndev_db_read(ndev, mmio + ndev->self_reg->db_bell);
633 off += scnprintf(buf + off, buf_size - off,
634 "Doorbell Bell -\t\t%#llx\n", u.v64);
635
636 off += scnprintf(buf + off, buf_size - off,
637 "\nNTB Window Size:\n");
638
639 pci_read_config_byte(pdev, XEON_PBAR23SZ_OFFSET, &u.v8);
640 off += scnprintf(buf + off, buf_size - off,
641 "PBAR23SZ %hhu\n", u.v8);
642 if (!ndev->bar4_split) {
643 pci_read_config_byte(pdev, XEON_PBAR45SZ_OFFSET, &u.v8);
644 off += scnprintf(buf + off, buf_size - off,
645 "PBAR45SZ %hhu\n", u.v8);
646 } else {
647 pci_read_config_byte(pdev, XEON_PBAR4SZ_OFFSET, &u.v8);
648 off += scnprintf(buf + off, buf_size - off,
649 "PBAR4SZ %hhu\n", u.v8);
650 pci_read_config_byte(pdev, XEON_PBAR5SZ_OFFSET, &u.v8);
651 off += scnprintf(buf + off, buf_size - off,
652 "PBAR5SZ %hhu\n", u.v8);
653 }
654
655 pci_read_config_byte(pdev, XEON_SBAR23SZ_OFFSET, &u.v8);
656 off += scnprintf(buf + off, buf_size - off,
657 "SBAR23SZ %hhu\n", u.v8);
658 if (!ndev->bar4_split) {
659 pci_read_config_byte(pdev, XEON_SBAR45SZ_OFFSET, &u.v8);
660 off += scnprintf(buf + off, buf_size - off,
661 "SBAR45SZ %hhu\n", u.v8);
662 } else {
663 pci_read_config_byte(pdev, XEON_SBAR4SZ_OFFSET, &u.v8);
664 off += scnprintf(buf + off, buf_size - off,
665 "SBAR4SZ %hhu\n", u.v8);
666 pci_read_config_byte(pdev, XEON_SBAR5SZ_OFFSET, &u.v8);
667 off += scnprintf(buf + off, buf_size - off,
668 "SBAR5SZ %hhu\n", u.v8);
669 }
670
671 off += scnprintf(buf + off, buf_size - off,
672 "\nNTB Incoming XLAT:\n");
673
674 u.v64 = ioread64(mmio + bar2_off(ndev->xlat_reg->bar2_xlat, 2));
675 off += scnprintf(buf + off, buf_size - off,
676 "XLAT23 -\t\t%#018llx\n", u.v64);
677
678 if (ndev->bar4_split) {
679 u.v32 = ioread32(mmio + bar2_off(ndev->xlat_reg->bar2_xlat, 4));
680 off += scnprintf(buf + off, buf_size - off,
681 "XLAT4 -\t\t\t%#06x\n", u.v32);
682
683 u.v32 = ioread32(mmio + bar2_off(ndev->xlat_reg->bar2_xlat, 5));
684 off += scnprintf(buf + off, buf_size - off,
685 "XLAT5 -\t\t\t%#06x\n", u.v32);
686 } else {
687 u.v64 = ioread64(mmio + bar2_off(ndev->xlat_reg->bar2_xlat, 4));
688 off += scnprintf(buf + off, buf_size - off,
689 "XLAT45 -\t\t%#018llx\n", u.v64);
690 }
691
692 u.v64 = ioread64(mmio + bar2_off(ndev->xlat_reg->bar2_limit, 2));
693 off += scnprintf(buf + off, buf_size - off,
694 "LMT23 -\t\t\t%#018llx\n", u.v64);
695
696 if (ndev->bar4_split) {
697 u.v32 = ioread32(mmio + bar2_off(ndev->xlat_reg->bar2_limit, 4));
698 off += scnprintf(buf + off, buf_size - off,
699 "LMT4 -\t\t\t%#06x\n", u.v32);
700 u.v32 = ioread32(mmio + bar2_off(ndev->xlat_reg->bar2_limit, 5));
701 off += scnprintf(buf + off, buf_size - off,
702 "LMT5 -\t\t\t%#06x\n", u.v32);
703 } else {
704 u.v64 = ioread64(mmio + bar2_off(ndev->xlat_reg->bar2_limit, 4));
705 off += scnprintf(buf + off, buf_size - off,
706 "LMT45 -\t\t\t%#018llx\n", u.v64);
707 }
708
709 if (pdev_is_xeon(ndev->ntb.pdev)) {
710 if (ntb_topo_is_b2b(ndev->ntb.topo)) {
711 off += scnprintf(buf + off, buf_size - off,
712 "\nNTB Outgoing B2B XLAT:\n");
713
714 u.v64 = ioread64(mmio + XEON_PBAR23XLAT_OFFSET);
715 off += scnprintf(buf + off, buf_size - off,
716 "B2B XLAT23 -\t\t%#018llx\n", u.v64);
717
718 if (ndev->bar4_split) {
719 u.v32 = ioread32(mmio + XEON_PBAR4XLAT_OFFSET);
720 off += scnprintf(buf + off, buf_size - off,
721 "B2B XLAT4 -\t\t%#06x\n",
722 u.v32);
723 u.v32 = ioread32(mmio + XEON_PBAR5XLAT_OFFSET);
724 off += scnprintf(buf + off, buf_size - off,
725 "B2B XLAT5 -\t\t%#06x\n",
726 u.v32);
727 } else {
728 u.v64 = ioread64(mmio + XEON_PBAR45XLAT_OFFSET);
729 off += scnprintf(buf + off, buf_size - off,
730 "B2B XLAT45 -\t\t%#018llx\n",
731 u.v64);
732 }
733
734 u.v64 = ioread64(mmio + XEON_PBAR23LMT_OFFSET);
735 off += scnprintf(buf + off, buf_size - off,
736 "B2B LMT23 -\t\t%#018llx\n", u.v64);
737
738 if (ndev->bar4_split) {
739 u.v32 = ioread32(mmio + XEON_PBAR4LMT_OFFSET);
740 off += scnprintf(buf + off, buf_size - off,
741 "B2B LMT4 -\t\t%#06x\n",
742 u.v32);
743 u.v32 = ioread32(mmio + XEON_PBAR5LMT_OFFSET);
744 off += scnprintf(buf + off, buf_size - off,
745 "B2B LMT5 -\t\t%#06x\n",
746 u.v32);
747 } else {
748 u.v64 = ioread64(mmio + XEON_PBAR45LMT_OFFSET);
749 off += scnprintf(buf + off, buf_size - off,
750 "B2B LMT45 -\t\t%#018llx\n",
751 u.v64);
752 }
753
754 off += scnprintf(buf + off, buf_size - off,
755 "\nNTB Secondary BAR:\n");
756
757 u.v64 = ioread64(mmio + XEON_SBAR0BASE_OFFSET);
758 off += scnprintf(buf + off, buf_size - off,
759 "SBAR01 -\t\t%#018llx\n", u.v64);
760
761 u.v64 = ioread64(mmio + XEON_SBAR23BASE_OFFSET);
762 off += scnprintf(buf + off, buf_size - off,
763 "SBAR23 -\t\t%#018llx\n", u.v64);
764
765 if (ndev->bar4_split) {
766 u.v32 = ioread32(mmio + XEON_SBAR4BASE_OFFSET);
767 off += scnprintf(buf + off, buf_size - off,
768 "SBAR4 -\t\t\t%#06x\n", u.v32);
769 u.v32 = ioread32(mmio + XEON_SBAR5BASE_OFFSET);
770 off += scnprintf(buf + off, buf_size - off,
771 "SBAR5 -\t\t\t%#06x\n", u.v32);
772 } else {
773 u.v64 = ioread64(mmio + XEON_SBAR45BASE_OFFSET);
774 off += scnprintf(buf + off, buf_size - off,
775 "SBAR45 -\t\t%#018llx\n",
776 u.v64);
777 }
778 }
779
780 off += scnprintf(buf + off, buf_size - off,
781 "\nXEON NTB Statistics:\n");
782
783 u.v16 = ioread16(mmio + XEON_USMEMMISS_OFFSET);
784 off += scnprintf(buf + off, buf_size - off,
785 "Upstream Memory Miss -\t%u\n", u.v16);
786
787 off += scnprintf(buf + off, buf_size - off,
788 "\nXEON NTB Hardware Errors:\n");
789
790 if (!pci_read_config_word(ndev->ntb.pdev,
791 XEON_DEVSTS_OFFSET, &u.v16))
792 off += scnprintf(buf + off, buf_size - off,
793 "DEVSTS -\t\t%#06x\n", u.v16);
794
795 if (!pci_read_config_word(ndev->ntb.pdev,
796 XEON_LINK_STATUS_OFFSET, &u.v16))
797 off += scnprintf(buf + off, buf_size - off,
798 "LNKSTS -\t\t%#06x\n", u.v16);
799
800 if (!pci_read_config_dword(ndev->ntb.pdev,
801 XEON_UNCERRSTS_OFFSET, &u.v32))
802 off += scnprintf(buf + off, buf_size - off,
803 "UNCERRSTS -\t\t%#06x\n", u.v32);
804
805 if (!pci_read_config_dword(ndev->ntb.pdev,
806 XEON_CORERRSTS_OFFSET, &u.v32))
807 off += scnprintf(buf + off, buf_size - off,
808 "CORERRSTS -\t\t%#06x\n", u.v32);
809 }
810
811 ret = simple_read_from_buffer(ubuf, count, offp, buf, off);
812 kfree(buf);
813 return ret;
814 }
815
816 static void ndev_init_debugfs(struct intel_ntb_dev *ndev)
817 {
818 if (!debugfs_dir) {
819 ndev->debugfs_dir = NULL;
820 ndev->debugfs_info = NULL;
821 } else {
822 ndev->debugfs_dir =
823 debugfs_create_dir(ndev_name(ndev), debugfs_dir);
824 if (!ndev->debugfs_dir)
825 ndev->debugfs_info = NULL;
826 else
827 ndev->debugfs_info =
828 debugfs_create_file("info", S_IRUSR,
829 ndev->debugfs_dir, ndev,
830 &intel_ntb_debugfs_info);
831 }
832 }
833
834 static void ndev_deinit_debugfs(struct intel_ntb_dev *ndev)
835 {
836 debugfs_remove_recursive(ndev->debugfs_dir);
837 }
838
839 static int intel_ntb_mw_count(struct ntb_dev *ntb)
840 {
841 return ntb_ndev(ntb)->mw_count;
842 }
843
844 static int intel_ntb_mw_get_range(struct ntb_dev *ntb, int idx,
845 phys_addr_t *base,
846 resource_size_t *size,
847 resource_size_t *align,
848 resource_size_t *align_size)
849 {
850 struct intel_ntb_dev *ndev = ntb_ndev(ntb);
851 int bar;
852
853 if (idx >= ndev->b2b_idx && !ndev->b2b_off)
854 idx += 1;
855
856 bar = ndev_mw_to_bar(ndev, idx);
857 if (bar < 0)
858 return bar;
859
860 if (base)
861 *base = pci_resource_start(ndev->ntb.pdev, bar) +
862 (idx == ndev->b2b_idx ? ndev->b2b_off : 0);
863
864 if (size)
865 *size = pci_resource_len(ndev->ntb.pdev, bar) -
866 (idx == ndev->b2b_idx ? ndev->b2b_off : 0);
867
868 if (align)
869 *align = pci_resource_len(ndev->ntb.pdev, bar);
870
871 if (align_size)
872 *align_size = 1;
873
874 return 0;
875 }
876
877 static int intel_ntb_mw_set_trans(struct ntb_dev *ntb, int idx,
878 dma_addr_t addr, resource_size_t size)
879 {
880 struct intel_ntb_dev *ndev = ntb_ndev(ntb);
881 unsigned long base_reg, xlat_reg, limit_reg;
882 resource_size_t bar_size, mw_size;
883 void __iomem *mmio;
884 u64 base, limit, reg_val;
885 int bar;
886
887 if (idx >= ndev->b2b_idx && !ndev->b2b_off)
888 idx += 1;
889
890 bar = ndev_mw_to_bar(ndev, idx);
891 if (bar < 0)
892 return bar;
893
894 bar_size = pci_resource_len(ndev->ntb.pdev, bar);
895
896 if (idx == ndev->b2b_idx)
897 mw_size = bar_size - ndev->b2b_off;
898 else
899 mw_size = bar_size;
900
901 /* hardware requires that addr is aligned to bar size */
902 if (addr & (bar_size - 1))
903 return -EINVAL;
904
905 /* make sure the range fits in the usable mw size */
906 if (size > mw_size)
907 return -EINVAL;
908
909 mmio = ndev->self_mmio;
910 base_reg = bar0_off(ndev->xlat_reg->bar0_base, bar);
911 xlat_reg = bar2_off(ndev->xlat_reg->bar2_xlat, bar);
912 limit_reg = bar2_off(ndev->xlat_reg->bar2_limit, bar);
913
914 if (bar < 4 || !ndev->bar4_split) {
915 base = ioread64(mmio + base_reg) & NTB_BAR_MASK_64;
916
917 /* Set the limit if supported, if size is not mw_size */
918 if (limit_reg && size != mw_size)
919 limit = base + size;
920 else
921 limit = 0;
922
923 /* set and verify setting the translation address */
924 iowrite64(addr, mmio + xlat_reg);
925 reg_val = ioread64(mmio + xlat_reg);
926 if (reg_val != addr) {
927 iowrite64(0, mmio + xlat_reg);
928 return -EIO;
929 }
930
931 /* set and verify setting the limit */
932 iowrite64(limit, mmio + limit_reg);
933 reg_val = ioread64(mmio + limit_reg);
934 if (reg_val != limit) {
935 iowrite64(base, mmio + limit_reg);
936 iowrite64(0, mmio + xlat_reg);
937 return -EIO;
938 }
939 } else {
940 /* split bar addr range must all be 32 bit */
941 if (addr & (~0ull << 32))
942 return -EINVAL;
943 if ((addr + size) & (~0ull << 32))
944 return -EINVAL;
945
946 base = ioread32(mmio + base_reg) & NTB_BAR_MASK_32;
947
948 /* Set the limit if supported, if size is not mw_size */
949 if (limit_reg && size != mw_size)
950 limit = base + size;
951 else
952 limit = 0;
953
954 /* set and verify setting the translation address */
955 iowrite32(addr, mmio + xlat_reg);
956 reg_val = ioread32(mmio + xlat_reg);
957 if (reg_val != addr) {
958 iowrite32(0, mmio + xlat_reg);
959 return -EIO;
960 }
961
962 /* set and verify setting the limit */
963 iowrite32(limit, mmio + limit_reg);
964 reg_val = ioread32(mmio + limit_reg);
965 if (reg_val != limit) {
966 iowrite32(base, mmio + limit_reg);
967 iowrite32(0, mmio + xlat_reg);
968 return -EIO;
969 }
970 }
971
972 return 0;
973 }
974
975 static int intel_ntb_link_is_up(struct ntb_dev *ntb,
976 enum ntb_speed *speed,
977 enum ntb_width *width)
978 {
979 struct intel_ntb_dev *ndev = ntb_ndev(ntb);
980
981 if (ndev->reg->link_is_up(ndev)) {
982 if (speed)
983 *speed = NTB_LNK_STA_SPEED(ndev->lnk_sta);
984 if (width)
985 *width = NTB_LNK_STA_WIDTH(ndev->lnk_sta);
986 return 1;
987 } else {
988 /* TODO MAYBE: is it possible to observe the link speed and
989 * width while link is training? */
990 if (speed)
991 *speed = NTB_SPEED_NONE;
992 if (width)
993 *width = NTB_WIDTH_NONE;
994 return 0;
995 }
996 }
997
998 static int intel_ntb_link_enable(struct ntb_dev *ntb,
999 enum ntb_speed max_speed,
1000 enum ntb_width max_width)
1001 {
1002 struct intel_ntb_dev *ndev;
1003 u32 ntb_ctl;
1004
1005 ndev = container_of(ntb, struct intel_ntb_dev, ntb);
1006
1007 if (ndev->ntb.topo == NTB_TOPO_SEC)
1008 return -EINVAL;
1009
1010 dev_dbg(ndev_dev(ndev),
1011 "Enabling link with max_speed %d max_width %d\n",
1012 max_speed, max_width);
1013 if (max_speed != NTB_SPEED_AUTO)
1014 dev_dbg(ndev_dev(ndev), "ignoring max_speed %d\n", max_speed);
1015 if (max_width != NTB_WIDTH_AUTO)
1016 dev_dbg(ndev_dev(ndev), "ignoring max_width %d\n", max_width);
1017
1018 ntb_ctl = ioread32(ndev->self_mmio + ndev->reg->ntb_ctl);
1019 ntb_ctl &= ~(NTB_CTL_DISABLE | NTB_CTL_CFG_LOCK);
1020 ntb_ctl |= NTB_CTL_P2S_BAR2_SNOOP | NTB_CTL_S2P_BAR2_SNOOP;
1021 ntb_ctl |= NTB_CTL_P2S_BAR4_SNOOP | NTB_CTL_S2P_BAR4_SNOOP;
1022 if (ndev->bar4_split)
1023 ntb_ctl |= NTB_CTL_P2S_BAR5_SNOOP | NTB_CTL_S2P_BAR5_SNOOP;
1024 iowrite32(ntb_ctl, ndev->self_mmio + ndev->reg->ntb_ctl);
1025
1026 return 0;
1027 }
1028
1029 static int intel_ntb_link_disable(struct ntb_dev *ntb)
1030 {
1031 struct intel_ntb_dev *ndev;
1032 u32 ntb_cntl;
1033
1034 ndev = container_of(ntb, struct intel_ntb_dev, ntb);
1035
1036 if (ndev->ntb.topo == NTB_TOPO_SEC)
1037 return -EINVAL;
1038
1039 dev_dbg(ndev_dev(ndev), "Disabling link\n");
1040
1041 /* Bring NTB link down */
1042 ntb_cntl = ioread32(ndev->self_mmio + ndev->reg->ntb_ctl);
1043 ntb_cntl &= ~(NTB_CTL_P2S_BAR2_SNOOP | NTB_CTL_S2P_BAR2_SNOOP);
1044 ntb_cntl &= ~(NTB_CTL_P2S_BAR4_SNOOP | NTB_CTL_S2P_BAR4_SNOOP);
1045 if (ndev->bar4_split)
1046 ntb_cntl &= ~(NTB_CTL_P2S_BAR5_SNOOP | NTB_CTL_S2P_BAR5_SNOOP);
1047 ntb_cntl |= NTB_CTL_DISABLE | NTB_CTL_CFG_LOCK;
1048 iowrite32(ntb_cntl, ndev->self_mmio + ndev->reg->ntb_ctl);
1049
1050 return 0;
1051 }
1052
1053 static int intel_ntb_db_is_unsafe(struct ntb_dev *ntb)
1054 {
1055 return ndev_ignore_unsafe(ntb_ndev(ntb), NTB_UNSAFE_DB);
1056 }
1057
1058 static u64 intel_ntb_db_valid_mask(struct ntb_dev *ntb)
1059 {
1060 return ntb_ndev(ntb)->db_valid_mask;
1061 }
1062
1063 static int intel_ntb_db_vector_count(struct ntb_dev *ntb)
1064 {
1065 struct intel_ntb_dev *ndev;
1066
1067 ndev = container_of(ntb, struct intel_ntb_dev, ntb);
1068
1069 return ndev->db_vec_count;
1070 }
1071
1072 static u64 intel_ntb_db_vector_mask(struct ntb_dev *ntb, int db_vector)
1073 {
1074 struct intel_ntb_dev *ndev = ntb_ndev(ntb);
1075
1076 if (db_vector < 0 || db_vector > ndev->db_vec_count)
1077 return 0;
1078
1079 return ndev->db_valid_mask & ndev_vec_mask(ndev, db_vector);
1080 }
1081
1082 static u64 intel_ntb_db_read(struct ntb_dev *ntb)
1083 {
1084 struct intel_ntb_dev *ndev = ntb_ndev(ntb);
1085
1086 return ndev_db_read(ndev,
1087 ndev->self_mmio +
1088 ndev->self_reg->db_bell);
1089 }
1090
1091 static int intel_ntb_db_clear(struct ntb_dev *ntb, u64 db_bits)
1092 {
1093 struct intel_ntb_dev *ndev = ntb_ndev(ntb);
1094
1095 return ndev_db_write(ndev, db_bits,
1096 ndev->self_mmio +
1097 ndev->self_reg->db_bell);
1098 }
1099
1100 static int intel_ntb_db_set_mask(struct ntb_dev *ntb, u64 db_bits)
1101 {
1102 struct intel_ntb_dev *ndev = ntb_ndev(ntb);
1103
1104 return ndev_db_set_mask(ndev, db_bits,
1105 ndev->self_mmio +
1106 ndev->self_reg->db_mask);
1107 }
1108
1109 static int intel_ntb_db_clear_mask(struct ntb_dev *ntb, u64 db_bits)
1110 {
1111 struct intel_ntb_dev *ndev = ntb_ndev(ntb);
1112
1113 return ndev_db_clear_mask(ndev, db_bits,
1114 ndev->self_mmio +
1115 ndev->self_reg->db_mask);
1116 }
1117
1118 static int intel_ntb_peer_db_addr(struct ntb_dev *ntb,
1119 phys_addr_t *db_addr,
1120 resource_size_t *db_size)
1121 {
1122 struct intel_ntb_dev *ndev = ntb_ndev(ntb);
1123
1124 return ndev_db_addr(ndev, db_addr, db_size, ndev->peer_addr,
1125 ndev->peer_reg->db_bell);
1126 }
1127
1128 static int intel_ntb_peer_db_set(struct ntb_dev *ntb, u64 db_bits)
1129 {
1130 struct intel_ntb_dev *ndev = ntb_ndev(ntb);
1131
1132 return ndev_db_write(ndev, db_bits,
1133 ndev->peer_mmio +
1134 ndev->peer_reg->db_bell);
1135 }
1136
1137 static int intel_ntb_spad_is_unsafe(struct ntb_dev *ntb)
1138 {
1139 return ndev_ignore_unsafe(ntb_ndev(ntb), NTB_UNSAFE_SPAD);
1140 }
1141
1142 static int intel_ntb_spad_count(struct ntb_dev *ntb)
1143 {
1144 struct intel_ntb_dev *ndev;
1145
1146 ndev = container_of(ntb, struct intel_ntb_dev, ntb);
1147
1148 return ndev->spad_count;
1149 }
1150
1151 static u32 intel_ntb_spad_read(struct ntb_dev *ntb, int idx)
1152 {
1153 struct intel_ntb_dev *ndev = ntb_ndev(ntb);
1154
1155 return ndev_spad_read(ndev, idx,
1156 ndev->self_mmio +
1157 ndev->self_reg->spad);
1158 }
1159
1160 static int intel_ntb_spad_write(struct ntb_dev *ntb,
1161 int idx, u32 val)
1162 {
1163 struct intel_ntb_dev *ndev = ntb_ndev(ntb);
1164
1165 return ndev_spad_write(ndev, idx, val,
1166 ndev->self_mmio +
1167 ndev->self_reg->spad);
1168 }
1169
1170 static int intel_ntb_peer_spad_addr(struct ntb_dev *ntb, int idx,
1171 phys_addr_t *spad_addr)
1172 {
1173 struct intel_ntb_dev *ndev = ntb_ndev(ntb);
1174
1175 return ndev_spad_addr(ndev, idx, spad_addr, ndev->peer_addr,
1176 ndev->peer_reg->spad);
1177 }
1178
1179 static u32 intel_ntb_peer_spad_read(struct ntb_dev *ntb, int idx)
1180 {
1181 struct intel_ntb_dev *ndev = ntb_ndev(ntb);
1182
1183 return ndev_spad_read(ndev, idx,
1184 ndev->peer_mmio +
1185 ndev->peer_reg->spad);
1186 }
1187
1188 static int intel_ntb_peer_spad_write(struct ntb_dev *ntb,
1189 int idx, u32 val)
1190 {
1191 struct intel_ntb_dev *ndev = ntb_ndev(ntb);
1192
1193 return ndev_spad_write(ndev, idx, val,
1194 ndev->peer_mmio +
1195 ndev->peer_reg->spad);
1196 }
1197
1198 /* ATOM */
1199
1200 static u64 atom_db_ioread(void __iomem *mmio)
1201 {
1202 return ioread64(mmio);
1203 }
1204
1205 static void atom_db_iowrite(u64 bits, void __iomem *mmio)
1206 {
1207 iowrite64(bits, mmio);
1208 }
1209
1210 static int atom_poll_link(struct intel_ntb_dev *ndev)
1211 {
1212 u32 ntb_ctl;
1213
1214 ntb_ctl = ioread32(ndev->self_mmio + ATOM_NTBCNTL_OFFSET);
1215
1216 if (ntb_ctl == ndev->ntb_ctl)
1217 return 0;
1218
1219 ndev->ntb_ctl = ntb_ctl;
1220
1221 ndev->lnk_sta = ioread32(ndev->self_mmio + ATOM_LINK_STATUS_OFFSET);
1222
1223 return 1;
1224 }
1225
1226 static int atom_link_is_up(struct intel_ntb_dev *ndev)
1227 {
1228 return ATOM_NTB_CTL_ACTIVE(ndev->ntb_ctl);
1229 }
1230
1231 static int atom_link_is_err(struct intel_ntb_dev *ndev)
1232 {
1233 if (ioread32(ndev->self_mmio + ATOM_LTSSMSTATEJMP_OFFSET)
1234 & ATOM_LTSSMSTATEJMP_FORCEDETECT)
1235 return 1;
1236
1237 if (ioread32(ndev->self_mmio + ATOM_IBSTERRRCRVSTS0_OFFSET)
1238 & ATOM_IBIST_ERR_OFLOW)
1239 return 1;
1240
1241 return 0;
1242 }
1243
1244 static inline enum ntb_topo atom_ppd_topo(struct intel_ntb_dev *ndev, u32 ppd)
1245 {
1246 switch (ppd & ATOM_PPD_TOPO_MASK) {
1247 case ATOM_PPD_TOPO_B2B_USD:
1248 dev_dbg(ndev_dev(ndev), "PPD %d B2B USD\n", ppd);
1249 return NTB_TOPO_B2B_USD;
1250
1251 case ATOM_PPD_TOPO_B2B_DSD:
1252 dev_dbg(ndev_dev(ndev), "PPD %d B2B DSD\n", ppd);
1253 return NTB_TOPO_B2B_DSD;
1254
1255 case ATOM_PPD_TOPO_PRI_USD:
1256 case ATOM_PPD_TOPO_PRI_DSD: /* accept bogus PRI_DSD */
1257 case ATOM_PPD_TOPO_SEC_USD:
1258 case ATOM_PPD_TOPO_SEC_DSD: /* accept bogus SEC_DSD */
1259 dev_dbg(ndev_dev(ndev), "PPD %d non B2B disabled\n", ppd);
1260 return NTB_TOPO_NONE;
1261 }
1262
1263 dev_dbg(ndev_dev(ndev), "PPD %d invalid\n", ppd);
1264 return NTB_TOPO_NONE;
1265 }
1266
1267 static void atom_link_hb(struct work_struct *work)
1268 {
1269 struct intel_ntb_dev *ndev = hb_ndev(work);
1270 unsigned long poll_ts;
1271 void __iomem *mmio;
1272 u32 status32;
1273
1274 poll_ts = ndev->last_ts + ATOM_LINK_HB_TIMEOUT;
1275
1276 /* Delay polling the link status if an interrupt was received,
1277 * unless the cached link status says the link is down.
1278 */
1279 if (time_after(poll_ts, jiffies) && atom_link_is_up(ndev)) {
1280 schedule_delayed_work(&ndev->hb_timer, poll_ts - jiffies);
1281 return;
1282 }
1283
1284 if (atom_poll_link(ndev))
1285 ntb_link_event(&ndev->ntb);
1286
1287 if (atom_link_is_up(ndev) || !atom_link_is_err(ndev)) {
1288 schedule_delayed_work(&ndev->hb_timer, ATOM_LINK_HB_TIMEOUT);
1289 return;
1290 }
1291
1292 /* Link is down with error: recover the link! */
1293
1294 mmio = ndev->self_mmio;
1295
1296 /* Driver resets the NTB ModPhy lanes - magic! */
1297 iowrite8(0xe0, mmio + ATOM_MODPHY_PCSREG6);
1298 iowrite8(0x40, mmio + ATOM_MODPHY_PCSREG4);
1299 iowrite8(0x60, mmio + ATOM_MODPHY_PCSREG4);
1300 iowrite8(0x60, mmio + ATOM_MODPHY_PCSREG6);
1301
1302 /* Driver waits 100ms to allow the NTB ModPhy to settle */
1303 msleep(100);
1304
1305 /* Clear AER Errors, write to clear */
1306 status32 = ioread32(mmio + ATOM_ERRCORSTS_OFFSET);
1307 dev_dbg(ndev_dev(ndev), "ERRCORSTS = %x\n", status32);
1308 status32 &= PCI_ERR_COR_REP_ROLL;
1309 iowrite32(status32, mmio + ATOM_ERRCORSTS_OFFSET);
1310
1311 /* Clear unexpected electrical idle event in LTSSM, write to clear */
1312 status32 = ioread32(mmio + ATOM_LTSSMERRSTS0_OFFSET);
1313 dev_dbg(ndev_dev(ndev), "LTSSMERRSTS0 = %x\n", status32);
1314 status32 |= ATOM_LTSSMERRSTS0_UNEXPECTEDEI;
1315 iowrite32(status32, mmio + ATOM_LTSSMERRSTS0_OFFSET);
1316
1317 /* Clear DeSkew Buffer error, write to clear */
1318 status32 = ioread32(mmio + ATOM_DESKEWSTS_OFFSET);
1319 dev_dbg(ndev_dev(ndev), "DESKEWSTS = %x\n", status32);
1320 status32 |= ATOM_DESKEWSTS_DBERR;
1321 iowrite32(status32, mmio + ATOM_DESKEWSTS_OFFSET);
1322
1323 status32 = ioread32(mmio + ATOM_IBSTERRRCRVSTS0_OFFSET);
1324 dev_dbg(ndev_dev(ndev), "IBSTERRRCRVSTS0 = %x\n", status32);
1325 status32 &= ATOM_IBIST_ERR_OFLOW;
1326 iowrite32(status32, mmio + ATOM_IBSTERRRCRVSTS0_OFFSET);
1327
1328 /* Releases the NTB state machine to allow the link to retrain */
1329 status32 = ioread32(mmio + ATOM_LTSSMSTATEJMP_OFFSET);
1330 dev_dbg(ndev_dev(ndev), "LTSSMSTATEJMP = %x\n", status32);
1331 status32 &= ~ATOM_LTSSMSTATEJMP_FORCEDETECT;
1332 iowrite32(status32, mmio + ATOM_LTSSMSTATEJMP_OFFSET);
1333
1334 /* There is a potential race between the 2 NTB devices recovering at the
1335 * same time. If the times are the same, the link will not recover and
1336 * the driver will be stuck in this loop forever. Add a random interval
1337 * to the recovery time to prevent this race.
1338 */
1339 schedule_delayed_work(&ndev->hb_timer, ATOM_LINK_RECOVERY_TIME
1340 + prandom_u32() % ATOM_LINK_RECOVERY_TIME);
1341 }
1342
1343 static int atom_init_isr(struct intel_ntb_dev *ndev)
1344 {
1345 int rc;
1346
1347 rc = ndev_init_isr(ndev, 1, ATOM_DB_MSIX_VECTOR_COUNT,
1348 ATOM_DB_MSIX_VECTOR_SHIFT, ATOM_DB_TOTAL_SHIFT);
1349 if (rc)
1350 return rc;
1351
1352 /* ATOM doesn't have link status interrupt, poll on that platform */
1353 ndev->last_ts = jiffies;
1354 INIT_DELAYED_WORK(&ndev->hb_timer, atom_link_hb);
1355 schedule_delayed_work(&ndev->hb_timer, ATOM_LINK_HB_TIMEOUT);
1356
1357 return 0;
1358 }
1359
1360 static void atom_deinit_isr(struct intel_ntb_dev *ndev)
1361 {
1362 cancel_delayed_work_sync(&ndev->hb_timer);
1363 ndev_deinit_isr(ndev);
1364 }
1365
1366 static int atom_init_ntb(struct intel_ntb_dev *ndev)
1367 {
1368 ndev->mw_count = ATOM_MW_COUNT;
1369 ndev->spad_count = ATOM_SPAD_COUNT;
1370 ndev->db_count = ATOM_DB_COUNT;
1371
1372 switch (ndev->ntb.topo) {
1373 case NTB_TOPO_B2B_USD:
1374 case NTB_TOPO_B2B_DSD:
1375 ndev->self_reg = &atom_pri_reg;
1376 ndev->peer_reg = &atom_b2b_reg;
1377 ndev->xlat_reg = &atom_sec_xlat;
1378
1379 /* Enable Bus Master and Memory Space on the secondary side */
1380 iowrite16(PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER,
1381 ndev->self_mmio + ATOM_SPCICMD_OFFSET);
1382
1383 break;
1384
1385 default:
1386 return -EINVAL;
1387 }
1388
1389 ndev->db_valid_mask = BIT_ULL(ndev->db_count) - 1;
1390
1391 return 0;
1392 }
1393
1394 static int atom_init_dev(struct intel_ntb_dev *ndev)
1395 {
1396 u32 ppd;
1397 int rc;
1398
1399 rc = pci_read_config_dword(ndev->ntb.pdev, ATOM_PPD_OFFSET, &ppd);
1400 if (rc)
1401 return -EIO;
1402
1403 ndev->ntb.topo = atom_ppd_topo(ndev, ppd);
1404 if (ndev->ntb.topo == NTB_TOPO_NONE)
1405 return -EINVAL;
1406
1407 rc = atom_init_ntb(ndev);
1408 if (rc)
1409 return rc;
1410
1411 rc = atom_init_isr(ndev);
1412 if (rc)
1413 return rc;
1414
1415 if (ndev->ntb.topo != NTB_TOPO_SEC) {
1416 /* Initiate PCI-E link training */
1417 rc = pci_write_config_dword(ndev->ntb.pdev, ATOM_PPD_OFFSET,
1418 ppd | ATOM_PPD_INIT_LINK);
1419 if (rc)
1420 return rc;
1421 }
1422
1423 return 0;
1424 }
1425
1426 static void atom_deinit_dev(struct intel_ntb_dev *ndev)
1427 {
1428 atom_deinit_isr(ndev);
1429 }
1430
1431 /* XEON */
1432
1433 static u64 xeon_db_ioread(void __iomem *mmio)
1434 {
1435 return (u64)ioread16(mmio);
1436 }
1437
1438 static void xeon_db_iowrite(u64 bits, void __iomem *mmio)
1439 {
1440 iowrite16((u16)bits, mmio);
1441 }
1442
1443 static int xeon_poll_link(struct intel_ntb_dev *ndev)
1444 {
1445 u16 reg_val;
1446 int rc;
1447
1448 ndev->reg->db_iowrite(ndev->db_link_mask,
1449 ndev->self_mmio +
1450 ndev->self_reg->db_bell);
1451
1452 rc = pci_read_config_word(ndev->ntb.pdev,
1453 XEON_LINK_STATUS_OFFSET, &reg_val);
1454 if (rc)
1455 return 0;
1456
1457 if (reg_val == ndev->lnk_sta)
1458 return 0;
1459
1460 ndev->lnk_sta = reg_val;
1461
1462 return 1;
1463 }
1464
1465 static int xeon_link_is_up(struct intel_ntb_dev *ndev)
1466 {
1467 if (ndev->ntb.topo == NTB_TOPO_SEC)
1468 return 1;
1469
1470 return NTB_LNK_STA_ACTIVE(ndev->lnk_sta);
1471 }
1472
1473 static inline enum ntb_topo xeon_ppd_topo(struct intel_ntb_dev *ndev, u8 ppd)
1474 {
1475 switch (ppd & XEON_PPD_TOPO_MASK) {
1476 case XEON_PPD_TOPO_B2B_USD:
1477 return NTB_TOPO_B2B_USD;
1478
1479 case XEON_PPD_TOPO_B2B_DSD:
1480 return NTB_TOPO_B2B_DSD;
1481
1482 case XEON_PPD_TOPO_PRI_USD:
1483 case XEON_PPD_TOPO_PRI_DSD: /* accept bogus PRI_DSD */
1484 return NTB_TOPO_PRI;
1485
1486 case XEON_PPD_TOPO_SEC_USD:
1487 case XEON_PPD_TOPO_SEC_DSD: /* accept bogus SEC_DSD */
1488 return NTB_TOPO_SEC;
1489 }
1490
1491 return NTB_TOPO_NONE;
1492 }
1493
1494 static inline int xeon_ppd_bar4_split(struct intel_ntb_dev *ndev, u8 ppd)
1495 {
1496 if (ppd & XEON_PPD_SPLIT_BAR_MASK) {
1497 dev_dbg(ndev_dev(ndev), "PPD %d split bar\n", ppd);
1498 return 1;
1499 }
1500 return 0;
1501 }
1502
1503 static int xeon_init_isr(struct intel_ntb_dev *ndev)
1504 {
1505 return ndev_init_isr(ndev, XEON_DB_MSIX_VECTOR_COUNT,
1506 XEON_DB_MSIX_VECTOR_COUNT,
1507 XEON_DB_MSIX_VECTOR_SHIFT,
1508 XEON_DB_TOTAL_SHIFT);
1509 }
1510
1511 static void xeon_deinit_isr(struct intel_ntb_dev *ndev)
1512 {
1513 ndev_deinit_isr(ndev);
1514 }
1515
1516 static int xeon_setup_b2b_mw(struct intel_ntb_dev *ndev,
1517 const struct intel_b2b_addr *addr,
1518 const struct intel_b2b_addr *peer_addr)
1519 {
1520 struct pci_dev *pdev;
1521 void __iomem *mmio;
1522 resource_size_t bar_size;
1523 phys_addr_t bar_addr;
1524 int b2b_bar;
1525 u8 bar_sz;
1526
1527 pdev = ndev_pdev(ndev);
1528 mmio = ndev->self_mmio;
1529
1530 if (ndev->b2b_idx == UINT_MAX) {
1531 dev_dbg(ndev_dev(ndev), "not using b2b mw\n");
1532 b2b_bar = 0;
1533 ndev->b2b_off = 0;
1534 } else {
1535 b2b_bar = ndev_mw_to_bar(ndev, ndev->b2b_idx);
1536 if (b2b_bar < 0)
1537 return -EIO;
1538
1539 dev_dbg(ndev_dev(ndev), "using b2b mw bar %d\n", b2b_bar);
1540
1541 bar_size = pci_resource_len(ndev->ntb.pdev, b2b_bar);
1542
1543 dev_dbg(ndev_dev(ndev), "b2b bar size %#llx\n", bar_size);
1544
1545 if (b2b_mw_share && XEON_B2B_MIN_SIZE <= bar_size >> 1) {
1546 dev_dbg(ndev_dev(ndev),
1547 "b2b using first half of bar\n");
1548 ndev->b2b_off = bar_size >> 1;
1549 } else if (XEON_B2B_MIN_SIZE <= bar_size) {
1550 dev_dbg(ndev_dev(ndev),
1551 "b2b using whole bar\n");
1552 ndev->b2b_off = 0;
1553 --ndev->mw_count;
1554 } else {
1555 dev_dbg(ndev_dev(ndev),
1556 "b2b bar size is too small\n");
1557 return -EIO;
1558 }
1559 }
1560
1561 /* Reset the secondary bar sizes to match the primary bar sizes,
1562 * except disable or halve the size of the b2b secondary bar.
1563 *
1564 * Note: code for each specific bar size register, because the register
1565 * offsets are not in a consistent order (bar5sz comes after ppd, odd).
1566 */
1567 pci_read_config_byte(pdev, XEON_PBAR23SZ_OFFSET, &bar_sz);
1568 dev_dbg(ndev_dev(ndev), "PBAR23SZ %#x\n", bar_sz);
1569 if (b2b_bar == 2) {
1570 if (ndev->b2b_off)
1571 bar_sz -= 1;
1572 else
1573 bar_sz = 0;
1574 }
1575 pci_write_config_byte(pdev, XEON_SBAR23SZ_OFFSET, bar_sz);
1576 pci_read_config_byte(pdev, XEON_SBAR23SZ_OFFSET, &bar_sz);
1577 dev_dbg(ndev_dev(ndev), "SBAR23SZ %#x\n", bar_sz);
1578
1579 if (!ndev->bar4_split) {
1580 pci_read_config_byte(pdev, XEON_PBAR45SZ_OFFSET, &bar_sz);
1581 dev_dbg(ndev_dev(ndev), "PBAR45SZ %#x\n", bar_sz);
1582 if (b2b_bar == 4) {
1583 if (ndev->b2b_off)
1584 bar_sz -= 1;
1585 else
1586 bar_sz = 0;
1587 }
1588 pci_write_config_byte(pdev, XEON_SBAR45SZ_OFFSET, bar_sz);
1589 pci_read_config_byte(pdev, XEON_SBAR45SZ_OFFSET, &bar_sz);
1590 dev_dbg(ndev_dev(ndev), "SBAR45SZ %#x\n", bar_sz);
1591 } else {
1592 pci_read_config_byte(pdev, XEON_PBAR4SZ_OFFSET, &bar_sz);
1593 dev_dbg(ndev_dev(ndev), "PBAR4SZ %#x\n", bar_sz);
1594 if (b2b_bar == 4) {
1595 if (ndev->b2b_off)
1596 bar_sz -= 1;
1597 else
1598 bar_sz = 0;
1599 }
1600 pci_write_config_byte(pdev, XEON_SBAR4SZ_OFFSET, bar_sz);
1601 pci_read_config_byte(pdev, XEON_SBAR4SZ_OFFSET, &bar_sz);
1602 dev_dbg(ndev_dev(ndev), "SBAR4SZ %#x\n", bar_sz);
1603
1604 pci_read_config_byte(pdev, XEON_PBAR5SZ_OFFSET, &bar_sz);
1605 dev_dbg(ndev_dev(ndev), "PBAR5SZ %#x\n", bar_sz);
1606 if (b2b_bar == 5) {
1607 if (ndev->b2b_off)
1608 bar_sz -= 1;
1609 else
1610 bar_sz = 0;
1611 }
1612 pci_write_config_byte(pdev, XEON_SBAR5SZ_OFFSET, bar_sz);
1613 pci_read_config_byte(pdev, XEON_SBAR5SZ_OFFSET, &bar_sz);
1614 dev_dbg(ndev_dev(ndev), "SBAR5SZ %#x\n", bar_sz);
1615 }
1616
1617 /* SBAR01 hit by first part of the b2b bar */
1618 if (b2b_bar == 0)
1619 bar_addr = addr->bar0_addr;
1620 else if (b2b_bar == 2)
1621 bar_addr = addr->bar2_addr64;
1622 else if (b2b_bar == 4 && !ndev->bar4_split)
1623 bar_addr = addr->bar4_addr64;
1624 else if (b2b_bar == 4)
1625 bar_addr = addr->bar4_addr32;
1626 else if (b2b_bar == 5)
1627 bar_addr = addr->bar5_addr32;
1628 else
1629 return -EIO;
1630
1631 dev_dbg(ndev_dev(ndev), "SBAR01 %#018llx\n", bar_addr);
1632 iowrite64(bar_addr, mmio + XEON_SBAR0BASE_OFFSET);
1633
1634 /* Other SBAR are normally hit by the PBAR xlat, except for b2b bar.
1635 * The b2b bar is either disabled above, or configured half-size, and
1636 * it starts at the PBAR xlat + offset.
1637 */
1638
1639 bar_addr = addr->bar2_addr64 + (b2b_bar == 2 ? ndev->b2b_off : 0);
1640 iowrite64(bar_addr, mmio + XEON_SBAR23BASE_OFFSET);
1641 bar_addr = ioread64(mmio + XEON_SBAR23BASE_OFFSET);
1642 dev_dbg(ndev_dev(ndev), "SBAR23 %#018llx\n", bar_addr);
1643
1644 if (!ndev->bar4_split) {
1645 bar_addr = addr->bar4_addr64 +
1646 (b2b_bar == 4 ? ndev->b2b_off : 0);
1647 iowrite64(bar_addr, mmio + XEON_SBAR45BASE_OFFSET);
1648 bar_addr = ioread64(mmio + XEON_SBAR45BASE_OFFSET);
1649 dev_dbg(ndev_dev(ndev), "SBAR45 %#018llx\n", bar_addr);
1650 } else {
1651 bar_addr = addr->bar4_addr32 +
1652 (b2b_bar == 4 ? ndev->b2b_off : 0);
1653 iowrite32(bar_addr, mmio + XEON_SBAR4BASE_OFFSET);
1654 bar_addr = ioread32(mmio + XEON_SBAR4BASE_OFFSET);
1655 dev_dbg(ndev_dev(ndev), "SBAR4 %#010llx\n", bar_addr);
1656
1657 bar_addr = addr->bar5_addr32 +
1658 (b2b_bar == 5 ? ndev->b2b_off : 0);
1659 iowrite32(bar_addr, mmio + XEON_SBAR5BASE_OFFSET);
1660 bar_addr = ioread32(mmio + XEON_SBAR5BASE_OFFSET);
1661 dev_dbg(ndev_dev(ndev), "SBAR5 %#010llx\n", bar_addr);
1662 }
1663
1664 /* setup incoming bar limits == base addrs (zero length windows) */
1665
1666 bar_addr = addr->bar2_addr64 + (b2b_bar == 2 ? ndev->b2b_off : 0);
1667 iowrite64(bar_addr, mmio + XEON_SBAR23LMT_OFFSET);
1668 bar_addr = ioread64(mmio + XEON_SBAR23LMT_OFFSET);
1669 dev_dbg(ndev_dev(ndev), "SBAR23LMT %#018llx\n", bar_addr);
1670
1671 if (!ndev->bar4_split) {
1672 bar_addr = addr->bar4_addr64 +
1673 (b2b_bar == 4 ? ndev->b2b_off : 0);
1674 iowrite64(bar_addr, mmio + XEON_SBAR45LMT_OFFSET);
1675 bar_addr = ioread64(mmio + XEON_SBAR45LMT_OFFSET);
1676 dev_dbg(ndev_dev(ndev), "SBAR45LMT %#018llx\n", bar_addr);
1677 } else {
1678 bar_addr = addr->bar4_addr32 +
1679 (b2b_bar == 4 ? ndev->b2b_off : 0);
1680 iowrite32(bar_addr, mmio + XEON_SBAR4LMT_OFFSET);
1681 bar_addr = ioread32(mmio + XEON_SBAR4LMT_OFFSET);
1682 dev_dbg(ndev_dev(ndev), "SBAR4LMT %#010llx\n", bar_addr);
1683
1684 bar_addr = addr->bar5_addr32 +
1685 (b2b_bar == 5 ? ndev->b2b_off : 0);
1686 iowrite32(bar_addr, mmio + XEON_SBAR5LMT_OFFSET);
1687 bar_addr = ioread32(mmio + XEON_SBAR5LMT_OFFSET);
1688 dev_dbg(ndev_dev(ndev), "SBAR5LMT %#05llx\n", bar_addr);
1689 }
1690
1691 /* zero incoming translation addrs */
1692 iowrite64(0, mmio + XEON_SBAR23XLAT_OFFSET);
1693
1694 if (!ndev->bar4_split) {
1695 iowrite64(0, mmio + XEON_SBAR45XLAT_OFFSET);
1696 } else {
1697 iowrite32(0, mmio + XEON_SBAR4XLAT_OFFSET);
1698 iowrite32(0, mmio + XEON_SBAR5XLAT_OFFSET);
1699 }
1700
1701 /* zero outgoing translation limits (whole bar size windows) */
1702 iowrite64(0, mmio + XEON_PBAR23LMT_OFFSET);
1703 if (!ndev->bar4_split) {
1704 iowrite64(0, mmio + XEON_PBAR45LMT_OFFSET);
1705 } else {
1706 iowrite32(0, mmio + XEON_PBAR4LMT_OFFSET);
1707 iowrite32(0, mmio + XEON_PBAR5LMT_OFFSET);
1708 }
1709
1710 /* set outgoing translation offsets */
1711 bar_addr = peer_addr->bar2_addr64;
1712 iowrite64(bar_addr, mmio + XEON_PBAR23XLAT_OFFSET);
1713 bar_addr = ioread64(mmio + XEON_PBAR23XLAT_OFFSET);
1714 dev_dbg(ndev_dev(ndev), "PBAR23XLAT %#018llx\n", bar_addr);
1715
1716 if (!ndev->bar4_split) {
1717 bar_addr = peer_addr->bar4_addr64;
1718 iowrite64(bar_addr, mmio + XEON_PBAR45XLAT_OFFSET);
1719 bar_addr = ioread64(mmio + XEON_PBAR45XLAT_OFFSET);
1720 dev_dbg(ndev_dev(ndev), "PBAR45XLAT %#018llx\n", bar_addr);
1721 } else {
1722 bar_addr = peer_addr->bar4_addr32;
1723 iowrite32(bar_addr, mmio + XEON_PBAR4XLAT_OFFSET);
1724 bar_addr = ioread32(mmio + XEON_PBAR4XLAT_OFFSET);
1725 dev_dbg(ndev_dev(ndev), "PBAR4XLAT %#010llx\n", bar_addr);
1726
1727 bar_addr = peer_addr->bar5_addr32;
1728 iowrite32(bar_addr, mmio + XEON_PBAR5XLAT_OFFSET);
1729 bar_addr = ioread32(mmio + XEON_PBAR5XLAT_OFFSET);
1730 dev_dbg(ndev_dev(ndev), "PBAR5XLAT %#010llx\n", bar_addr);
1731 }
1732
1733 /* set the translation offset for b2b registers */
1734 if (b2b_bar == 0)
1735 bar_addr = peer_addr->bar0_addr;
1736 else if (b2b_bar == 2)
1737 bar_addr = peer_addr->bar2_addr64;
1738 else if (b2b_bar == 4 && !ndev->bar4_split)
1739 bar_addr = peer_addr->bar4_addr64;
1740 else if (b2b_bar == 4)
1741 bar_addr = peer_addr->bar4_addr32;
1742 else if (b2b_bar == 5)
1743 bar_addr = peer_addr->bar5_addr32;
1744 else
1745 return -EIO;
1746
1747 /* B2B_XLAT_OFFSET is 64bit, but can only take 32bit writes */
1748 dev_dbg(ndev_dev(ndev), "B2BXLAT %#018llx\n", bar_addr);
1749 iowrite32(bar_addr, mmio + XEON_B2B_XLAT_OFFSETL);
1750 iowrite32(bar_addr >> 32, mmio + XEON_B2B_XLAT_OFFSETU);
1751
1752 if (b2b_bar) {
1753 /* map peer ntb mmio config space registers */
1754 ndev->peer_mmio = pci_iomap(pdev, b2b_bar,
1755 XEON_B2B_MIN_SIZE);
1756 if (!ndev->peer_mmio)
1757 return -EIO;
1758 }
1759
1760 return 0;
1761 }
1762
1763 static int xeon_init_ntb(struct intel_ntb_dev *ndev)
1764 {
1765 int rc;
1766 u32 ntb_ctl;
1767
1768 if (ndev->bar4_split)
1769 ndev->mw_count = HSX_SPLIT_BAR_MW_COUNT;
1770 else
1771 ndev->mw_count = XEON_MW_COUNT;
1772
1773 ndev->spad_count = XEON_SPAD_COUNT;
1774 ndev->db_count = XEON_DB_COUNT;
1775 ndev->db_link_mask = XEON_DB_LINK_BIT;
1776
1777 switch (ndev->ntb.topo) {
1778 case NTB_TOPO_PRI:
1779 if (ndev->hwerr_flags & NTB_HWERR_SDOORBELL_LOCKUP) {
1780 dev_err(ndev_dev(ndev), "NTB Primary config disabled\n");
1781 return -EINVAL;
1782 }
1783
1784 /* enable link to allow secondary side device to appear */
1785 ntb_ctl = ioread32(ndev->self_mmio + ndev->reg->ntb_ctl);
1786 ntb_ctl &= ~NTB_CTL_DISABLE;
1787 iowrite32(ntb_ctl, ndev->self_mmio + ndev->reg->ntb_ctl);
1788
1789 /* use half the spads for the peer */
1790 ndev->spad_count >>= 1;
1791 ndev->self_reg = &xeon_pri_reg;
1792 ndev->peer_reg = &xeon_sec_reg;
1793 ndev->xlat_reg = &xeon_sec_xlat;
1794 break;
1795
1796 case NTB_TOPO_SEC:
1797 if (ndev->hwerr_flags & NTB_HWERR_SDOORBELL_LOCKUP) {
1798 dev_err(ndev_dev(ndev), "NTB Secondary config disabled\n");
1799 return -EINVAL;
1800 }
1801 /* use half the spads for the peer */
1802 ndev->spad_count >>= 1;
1803 ndev->self_reg = &xeon_sec_reg;
1804 ndev->peer_reg = &xeon_pri_reg;
1805 ndev->xlat_reg = &xeon_pri_xlat;
1806 break;
1807
1808 case NTB_TOPO_B2B_USD:
1809 case NTB_TOPO_B2B_DSD:
1810 ndev->self_reg = &xeon_pri_reg;
1811 ndev->peer_reg = &xeon_b2b_reg;
1812 ndev->xlat_reg = &xeon_sec_xlat;
1813
1814 if (ndev->hwerr_flags & NTB_HWERR_SDOORBELL_LOCKUP) {
1815 ndev->peer_reg = &xeon_pri_reg;
1816
1817 if (b2b_mw_idx < 0)
1818 ndev->b2b_idx = b2b_mw_idx + ndev->mw_count;
1819 else
1820 ndev->b2b_idx = b2b_mw_idx;
1821
1822 if (ndev->b2b_idx >= ndev->mw_count) {
1823 dev_dbg(ndev_dev(ndev),
1824 "b2b_mw_idx %d invalid for mw_count %u\n",
1825 b2b_mw_idx, ndev->mw_count);
1826 return -EINVAL;
1827 }
1828
1829 dev_dbg(ndev_dev(ndev),
1830 "setting up b2b mw idx %d means %d\n",
1831 b2b_mw_idx, ndev->b2b_idx);
1832
1833 } else if (ndev->hwerr_flags & NTB_HWERR_B2BDOORBELL_BIT14) {
1834 dev_warn(ndev_dev(ndev), "Reduce doorbell count by 1\n");
1835 ndev->db_count -= 1;
1836 }
1837
1838 if (ndev->ntb.topo == NTB_TOPO_B2B_USD) {
1839 rc = xeon_setup_b2b_mw(ndev,
1840 &xeon_b2b_dsd_addr,
1841 &xeon_b2b_usd_addr);
1842 } else {
1843 rc = xeon_setup_b2b_mw(ndev,
1844 &xeon_b2b_usd_addr,
1845 &xeon_b2b_dsd_addr);
1846 }
1847 if (rc)
1848 return rc;
1849
1850 /* Enable Bus Master and Memory Space on the secondary side */
1851 iowrite16(PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER,
1852 ndev->self_mmio + XEON_SPCICMD_OFFSET);
1853
1854 break;
1855
1856 default:
1857 return -EINVAL;
1858 }
1859
1860 ndev->db_valid_mask = BIT_ULL(ndev->db_count) - 1;
1861
1862 ndev->reg->db_iowrite(ndev->db_valid_mask,
1863 ndev->self_mmio +
1864 ndev->self_reg->db_mask);
1865
1866 return 0;
1867 }
1868
1869 static int xeon_init_dev(struct intel_ntb_dev *ndev)
1870 {
1871 struct pci_dev *pdev;
1872 u8 ppd;
1873 int rc, mem;
1874
1875 pdev = ndev_pdev(ndev);
1876
1877 switch (pdev->device) {
1878 /* There is a Xeon hardware errata related to writes to SDOORBELL or
1879 * B2BDOORBELL in conjunction with inbound access to NTB MMIO Space,
1880 * which may hang the system. To workaround this use the second memory
1881 * window to access the interrupt and scratch pad registers on the
1882 * remote system.
1883 */
1884 case PCI_DEVICE_ID_INTEL_NTB_SS_JSF:
1885 case PCI_DEVICE_ID_INTEL_NTB_PS_JSF:
1886 case PCI_DEVICE_ID_INTEL_NTB_B2B_JSF:
1887 case PCI_DEVICE_ID_INTEL_NTB_SS_SNB:
1888 case PCI_DEVICE_ID_INTEL_NTB_PS_SNB:
1889 case PCI_DEVICE_ID_INTEL_NTB_B2B_SNB:
1890 case PCI_DEVICE_ID_INTEL_NTB_SS_IVT:
1891 case PCI_DEVICE_ID_INTEL_NTB_PS_IVT:
1892 case PCI_DEVICE_ID_INTEL_NTB_B2B_IVT:
1893 case PCI_DEVICE_ID_INTEL_NTB_SS_HSX:
1894 case PCI_DEVICE_ID_INTEL_NTB_PS_HSX:
1895 case PCI_DEVICE_ID_INTEL_NTB_B2B_HSX:
1896 case PCI_DEVICE_ID_INTEL_NTB_SS_BDX:
1897 case PCI_DEVICE_ID_INTEL_NTB_PS_BDX:
1898 case PCI_DEVICE_ID_INTEL_NTB_B2B_BDX:
1899 ndev->hwerr_flags |= NTB_HWERR_SDOORBELL_LOCKUP;
1900 break;
1901 }
1902
1903 switch (pdev->device) {
1904 /* There is a hardware errata related to accessing any register in
1905 * SB01BASE in the presence of bidirectional traffic crossing the NTB.
1906 */
1907 case PCI_DEVICE_ID_INTEL_NTB_SS_IVT:
1908 case PCI_DEVICE_ID_INTEL_NTB_PS_IVT:
1909 case PCI_DEVICE_ID_INTEL_NTB_B2B_IVT:
1910 case PCI_DEVICE_ID_INTEL_NTB_SS_HSX:
1911 case PCI_DEVICE_ID_INTEL_NTB_PS_HSX:
1912 case PCI_DEVICE_ID_INTEL_NTB_B2B_HSX:
1913 case PCI_DEVICE_ID_INTEL_NTB_SS_BDX:
1914 case PCI_DEVICE_ID_INTEL_NTB_PS_BDX:
1915 case PCI_DEVICE_ID_INTEL_NTB_B2B_BDX:
1916 ndev->hwerr_flags |= NTB_HWERR_SB01BASE_LOCKUP;
1917 break;
1918 }
1919
1920 switch (pdev->device) {
1921 /* HW Errata on bit 14 of b2bdoorbell register. Writes will not be
1922 * mirrored to the remote system. Shrink the number of bits by one,
1923 * since bit 14 is the last bit.
1924 */
1925 case PCI_DEVICE_ID_INTEL_NTB_SS_JSF:
1926 case PCI_DEVICE_ID_INTEL_NTB_PS_JSF:
1927 case PCI_DEVICE_ID_INTEL_NTB_B2B_JSF:
1928 case PCI_DEVICE_ID_INTEL_NTB_SS_SNB:
1929 case PCI_DEVICE_ID_INTEL_NTB_PS_SNB:
1930 case PCI_DEVICE_ID_INTEL_NTB_B2B_SNB:
1931 case PCI_DEVICE_ID_INTEL_NTB_SS_IVT:
1932 case PCI_DEVICE_ID_INTEL_NTB_PS_IVT:
1933 case PCI_DEVICE_ID_INTEL_NTB_B2B_IVT:
1934 case PCI_DEVICE_ID_INTEL_NTB_SS_HSX:
1935 case PCI_DEVICE_ID_INTEL_NTB_PS_HSX:
1936 case PCI_DEVICE_ID_INTEL_NTB_B2B_HSX:
1937 case PCI_DEVICE_ID_INTEL_NTB_SS_BDX:
1938 case PCI_DEVICE_ID_INTEL_NTB_PS_BDX:
1939 case PCI_DEVICE_ID_INTEL_NTB_B2B_BDX:
1940 ndev->hwerr_flags |= NTB_HWERR_B2BDOORBELL_BIT14;
1941 break;
1942 }
1943
1944 ndev->reg = &xeon_reg;
1945
1946 rc = pci_read_config_byte(pdev, XEON_PPD_OFFSET, &ppd);
1947 if (rc)
1948 return -EIO;
1949
1950 ndev->ntb.topo = xeon_ppd_topo(ndev, ppd);
1951 dev_dbg(ndev_dev(ndev), "ppd %#x topo %s\n", ppd,
1952 ntb_topo_string(ndev->ntb.topo));
1953 if (ndev->ntb.topo == NTB_TOPO_NONE)
1954 return -EINVAL;
1955
1956 if (ndev->ntb.topo != NTB_TOPO_SEC) {
1957 ndev->bar4_split = xeon_ppd_bar4_split(ndev, ppd);
1958 dev_dbg(ndev_dev(ndev), "ppd %#x bar4_split %d\n",
1959 ppd, ndev->bar4_split);
1960 } else {
1961 /* This is a way for transparent BAR to figure out if we are
1962 * doing split BAR or not. There is no way for the hw on the
1963 * transparent side to know and set the PPD.
1964 */
1965 mem = pci_select_bars(pdev, IORESOURCE_MEM);
1966 ndev->bar4_split = hweight32(mem) ==
1967 HSX_SPLIT_BAR_MW_COUNT + 1;
1968 dev_dbg(ndev_dev(ndev), "mem %#x bar4_split %d\n",
1969 mem, ndev->bar4_split);
1970 }
1971
1972 rc = xeon_init_ntb(ndev);
1973 if (rc)
1974 return rc;
1975
1976 return xeon_init_isr(ndev);
1977 }
1978
1979 static void xeon_deinit_dev(struct intel_ntb_dev *ndev)
1980 {
1981 xeon_deinit_isr(ndev);
1982 }
1983
1984 static int intel_ntb_init_pci(struct intel_ntb_dev *ndev, struct pci_dev *pdev)
1985 {
1986 int rc;
1987
1988 pci_set_drvdata(pdev, ndev);
1989
1990 rc = pci_enable_device(pdev);
1991 if (rc)
1992 goto err_pci_enable;
1993
1994 rc = pci_request_regions(pdev, NTB_NAME);
1995 if (rc)
1996 goto err_pci_regions;
1997
1998 pci_set_master(pdev);
1999
2000 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
2001 if (rc) {
2002 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
2003 if (rc)
2004 goto err_dma_mask;
2005 dev_warn(ndev_dev(ndev), "Cannot DMA highmem\n");
2006 }
2007
2008 rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
2009 if (rc) {
2010 rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
2011 if (rc)
2012 goto err_dma_mask;
2013 dev_warn(ndev_dev(ndev), "Cannot DMA consistent highmem\n");
2014 }
2015
2016 ndev->self_mmio = pci_iomap(pdev, 0, 0);
2017 if (!ndev->self_mmio) {
2018 rc = -EIO;
2019 goto err_mmio;
2020 }
2021 ndev->peer_mmio = ndev->self_mmio;
2022
2023 return 0;
2024
2025 err_mmio:
2026 err_dma_mask:
2027 pci_clear_master(pdev);
2028 pci_release_regions(pdev);
2029 err_pci_regions:
2030 pci_disable_device(pdev);
2031 err_pci_enable:
2032 pci_set_drvdata(pdev, NULL);
2033 return rc;
2034 }
2035
2036 static void intel_ntb_deinit_pci(struct intel_ntb_dev *ndev)
2037 {
2038 struct pci_dev *pdev = ndev_pdev(ndev);
2039
2040 if (ndev->peer_mmio && ndev->peer_mmio != ndev->self_mmio)
2041 pci_iounmap(pdev, ndev->peer_mmio);
2042 pci_iounmap(pdev, ndev->self_mmio);
2043
2044 pci_clear_master(pdev);
2045 pci_release_regions(pdev);
2046 pci_disable_device(pdev);
2047 pci_set_drvdata(pdev, NULL);
2048 }
2049
2050 static inline void ndev_init_struct(struct intel_ntb_dev *ndev,
2051 struct pci_dev *pdev)
2052 {
2053 ndev->ntb.pdev = pdev;
2054 ndev->ntb.topo = NTB_TOPO_NONE;
2055 ndev->ntb.ops = &intel_ntb_ops;
2056
2057 ndev->b2b_off = 0;
2058 ndev->b2b_idx = UINT_MAX;
2059
2060 ndev->bar4_split = 0;
2061
2062 ndev->mw_count = 0;
2063 ndev->spad_count = 0;
2064 ndev->db_count = 0;
2065 ndev->db_vec_count = 0;
2066 ndev->db_vec_shift = 0;
2067
2068 ndev->ntb_ctl = 0;
2069 ndev->lnk_sta = 0;
2070
2071 ndev->db_valid_mask = 0;
2072 ndev->db_link_mask = 0;
2073 ndev->db_mask = 0;
2074
2075 spin_lock_init(&ndev->db_mask_lock);
2076 }
2077
2078 static int intel_ntb_pci_probe(struct pci_dev *pdev,
2079 const struct pci_device_id *id)
2080 {
2081 struct intel_ntb_dev *ndev;
2082 int rc, node;
2083
2084 node = dev_to_node(&pdev->dev);
2085
2086 if (pdev_is_atom(pdev)) {
2087 ndev = kzalloc_node(sizeof(*ndev), GFP_KERNEL, node);
2088 if (!ndev) {
2089 rc = -ENOMEM;
2090 goto err_ndev;
2091 }
2092
2093 ndev_init_struct(ndev, pdev);
2094
2095 rc = intel_ntb_init_pci(ndev, pdev);
2096 if (rc)
2097 goto err_init_pci;
2098
2099 rc = atom_init_dev(ndev);
2100 if (rc)
2101 goto err_init_dev;
2102
2103 } else if (pdev_is_xeon(pdev)) {
2104 ndev = kzalloc_node(sizeof(*ndev), GFP_KERNEL, node);
2105 if (!ndev) {
2106 rc = -ENOMEM;
2107 goto err_ndev;
2108 }
2109
2110 ndev_init_struct(ndev, pdev);
2111
2112 rc = intel_ntb_init_pci(ndev, pdev);
2113 if (rc)
2114 goto err_init_pci;
2115
2116 rc = xeon_init_dev(ndev);
2117 if (rc)
2118 goto err_init_dev;
2119
2120 } else {
2121 rc = -EINVAL;
2122 goto err_ndev;
2123 }
2124
2125 ndev_reset_unsafe_flags(ndev);
2126
2127 ndev->reg->poll_link(ndev);
2128
2129 ndev_init_debugfs(ndev);
2130
2131 rc = ntb_register_device(&ndev->ntb);
2132 if (rc)
2133 goto err_register;
2134
2135 dev_info(&pdev->dev, "NTB device registered.\n");
2136
2137 return 0;
2138
2139 err_register:
2140 ndev_deinit_debugfs(ndev);
2141 if (pdev_is_atom(pdev))
2142 atom_deinit_dev(ndev);
2143 else if (pdev_is_xeon(pdev))
2144 xeon_deinit_dev(ndev);
2145 err_init_dev:
2146 intel_ntb_deinit_pci(ndev);
2147 err_init_pci:
2148 kfree(ndev);
2149 err_ndev:
2150 return rc;
2151 }
2152
2153 static void intel_ntb_pci_remove(struct pci_dev *pdev)
2154 {
2155 struct intel_ntb_dev *ndev = pci_get_drvdata(pdev);
2156
2157 ntb_unregister_device(&ndev->ntb);
2158 ndev_deinit_debugfs(ndev);
2159 if (pdev_is_atom(pdev))
2160 atom_deinit_dev(ndev);
2161 else if (pdev_is_xeon(pdev))
2162 xeon_deinit_dev(ndev);
2163 intel_ntb_deinit_pci(ndev);
2164 kfree(ndev);
2165 }
2166
2167 static const struct intel_ntb_reg atom_reg = {
2168 .poll_link = atom_poll_link,
2169 .link_is_up = atom_link_is_up,
2170 .db_ioread = atom_db_ioread,
2171 .db_iowrite = atom_db_iowrite,
2172 .db_size = sizeof(u64),
2173 .ntb_ctl = ATOM_NTBCNTL_OFFSET,
2174 .mw_bar = {2, 4},
2175 };
2176
2177 static const struct intel_ntb_alt_reg atom_pri_reg = {
2178 .db_bell = ATOM_PDOORBELL_OFFSET,
2179 .db_mask = ATOM_PDBMSK_OFFSET,
2180 .spad = ATOM_SPAD_OFFSET,
2181 };
2182
2183 static const struct intel_ntb_alt_reg atom_b2b_reg = {
2184 .db_bell = ATOM_B2B_DOORBELL_OFFSET,
2185 .spad = ATOM_B2B_SPAD_OFFSET,
2186 };
2187
2188 static const struct intel_ntb_xlat_reg atom_sec_xlat = {
2189 /* FIXME : .bar0_base = ATOM_SBAR0BASE_OFFSET, */
2190 /* FIXME : .bar2_limit = ATOM_SBAR2LMT_OFFSET, */
2191 .bar2_xlat = ATOM_SBAR2XLAT_OFFSET,
2192 };
2193
2194 static const struct intel_ntb_reg xeon_reg = {
2195 .poll_link = xeon_poll_link,
2196 .link_is_up = xeon_link_is_up,
2197 .db_ioread = xeon_db_ioread,
2198 .db_iowrite = xeon_db_iowrite,
2199 .db_size = sizeof(u32),
2200 .ntb_ctl = XEON_NTBCNTL_OFFSET,
2201 .mw_bar = {2, 4, 5},
2202 };
2203
2204 static const struct intel_ntb_alt_reg xeon_pri_reg = {
2205 .db_bell = XEON_PDOORBELL_OFFSET,
2206 .db_mask = XEON_PDBMSK_OFFSET,
2207 .spad = XEON_SPAD_OFFSET,
2208 };
2209
2210 static const struct intel_ntb_alt_reg xeon_sec_reg = {
2211 .db_bell = XEON_SDOORBELL_OFFSET,
2212 .db_mask = XEON_SDBMSK_OFFSET,
2213 /* second half of the scratchpads */
2214 .spad = XEON_SPAD_OFFSET + (XEON_SPAD_COUNT << 1),
2215 };
2216
2217 static const struct intel_ntb_alt_reg xeon_b2b_reg = {
2218 .db_bell = XEON_B2B_DOORBELL_OFFSET,
2219 .spad = XEON_B2B_SPAD_OFFSET,
2220 };
2221
2222 static const struct intel_ntb_xlat_reg xeon_pri_xlat = {
2223 /* Note: no primary .bar0_base visible to the secondary side.
2224 *
2225 * The secondary side cannot get the base address stored in primary
2226 * bars. The base address is necessary to set the limit register to
2227 * any value other than zero, or unlimited.
2228 *
2229 * WITHOUT THE BASE ADDRESS, THE SECONDARY SIDE CANNOT DISABLE the
2230 * window by setting the limit equal to base, nor can it limit the size
2231 * of the memory window by setting the limit to base + size.
2232 */
2233 .bar2_limit = XEON_PBAR23LMT_OFFSET,
2234 .bar2_xlat = XEON_PBAR23XLAT_OFFSET,
2235 };
2236
2237 static const struct intel_ntb_xlat_reg xeon_sec_xlat = {
2238 .bar0_base = XEON_SBAR0BASE_OFFSET,
2239 .bar2_limit = XEON_SBAR23LMT_OFFSET,
2240 .bar2_xlat = XEON_SBAR23XLAT_OFFSET,
2241 };
2242
2243 static struct intel_b2b_addr xeon_b2b_usd_addr = {
2244 .bar2_addr64 = XEON_B2B_BAR2_ADDR64,
2245 .bar4_addr64 = XEON_B2B_BAR4_ADDR64,
2246 .bar4_addr32 = XEON_B2B_BAR4_ADDR32,
2247 .bar5_addr32 = XEON_B2B_BAR5_ADDR32,
2248 };
2249
2250 static struct intel_b2b_addr xeon_b2b_dsd_addr = {
2251 .bar2_addr64 = XEON_B2B_BAR2_ADDR64,
2252 .bar4_addr64 = XEON_B2B_BAR4_ADDR64,
2253 .bar4_addr32 = XEON_B2B_BAR4_ADDR32,
2254 .bar5_addr32 = XEON_B2B_BAR5_ADDR32,
2255 };
2256
2257 /* operations for primary side of local ntb */
2258 static const struct ntb_dev_ops intel_ntb_ops = {
2259 .mw_count = intel_ntb_mw_count,
2260 .mw_get_range = intel_ntb_mw_get_range,
2261 .mw_set_trans = intel_ntb_mw_set_trans,
2262 .link_is_up = intel_ntb_link_is_up,
2263 .link_enable = intel_ntb_link_enable,
2264 .link_disable = intel_ntb_link_disable,
2265 .db_is_unsafe = intel_ntb_db_is_unsafe,
2266 .db_valid_mask = intel_ntb_db_valid_mask,
2267 .db_vector_count = intel_ntb_db_vector_count,
2268 .db_vector_mask = intel_ntb_db_vector_mask,
2269 .db_read = intel_ntb_db_read,
2270 .db_clear = intel_ntb_db_clear,
2271 .db_set_mask = intel_ntb_db_set_mask,
2272 .db_clear_mask = intel_ntb_db_clear_mask,
2273 .peer_db_addr = intel_ntb_peer_db_addr,
2274 .peer_db_set = intel_ntb_peer_db_set,
2275 .spad_is_unsafe = intel_ntb_spad_is_unsafe,
2276 .spad_count = intel_ntb_spad_count,
2277 .spad_read = intel_ntb_spad_read,
2278 .spad_write = intel_ntb_spad_write,
2279 .peer_spad_addr = intel_ntb_peer_spad_addr,
2280 .peer_spad_read = intel_ntb_peer_spad_read,
2281 .peer_spad_write = intel_ntb_peer_spad_write,
2282 };
2283
2284 static const struct file_operations intel_ntb_debugfs_info = {
2285 .owner = THIS_MODULE,
2286 .open = simple_open,
2287 .read = ndev_debugfs_read,
2288 };
2289
2290 static const struct pci_device_id intel_ntb_pci_tbl[] = {
2291 {PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_NTB_B2B_BWD)},
2292 {PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_NTB_B2B_JSF)},
2293 {PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_NTB_B2B_SNB)},
2294 {PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_NTB_B2B_IVT)},
2295 {PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_NTB_B2B_HSX)},
2296 {PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_NTB_B2B_BDX)},
2297 {PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_NTB_PS_JSF)},
2298 {PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_NTB_PS_SNB)},
2299 {PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_NTB_PS_IVT)},
2300 {PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_NTB_PS_HSX)},
2301 {PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_NTB_PS_BDX)},
2302 {PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_NTB_SS_JSF)},
2303 {PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_NTB_SS_SNB)},
2304 {PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_NTB_SS_IVT)},
2305 {PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_NTB_SS_HSX)},
2306 {PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_NTB_SS_BDX)},
2307 {0}
2308 };
2309 MODULE_DEVICE_TABLE(pci, intel_ntb_pci_tbl);
2310
2311 static struct pci_driver intel_ntb_pci_driver = {
2312 .name = KBUILD_MODNAME,
2313 .id_table = intel_ntb_pci_tbl,
2314 .probe = intel_ntb_pci_probe,
2315 .remove = intel_ntb_pci_remove,
2316 };
2317
2318 static int __init intel_ntb_pci_driver_init(void)
2319 {
2320 pr_info("%s %s\n", NTB_DESC, NTB_VER);
2321
2322 if (debugfs_initialized())
2323 debugfs_dir = debugfs_create_dir(KBUILD_MODNAME, NULL);
2324
2325 return pci_register_driver(&intel_ntb_pci_driver);
2326 }
2327 module_init(intel_ntb_pci_driver_init);
2328
2329 static void __exit intel_ntb_pci_driver_exit(void)
2330 {
2331 pci_unregister_driver(&intel_ntb_pci_driver);
2332
2333 debugfs_remove_recursive(debugfs_dir);
2334 }
2335 module_exit(intel_ntb_pci_driver_exit);
2336
This page took 0.099901 seconds and 5 git commands to generate.