Merge tag 'asoc-fix-v4.2-rc3' of git://git.kernel.org/pub/scm/linux/kernel/git/brooni...
[deliverable/linux.git] / drivers / ntb / ntb_transport.c
1 /*
2 * This file is provided under a dual BSD/GPLv2 license. When using or
3 * redistributing this file, you may do so under either license.
4 *
5 * GPL LICENSE SUMMARY
6 *
7 * Copyright(c) 2012 Intel Corporation. All rights reserved.
8 * Copyright (C) 2015 EMC Corporation. All Rights Reserved.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of version 2 of the GNU General Public License as
12 * published by the Free Software Foundation.
13 *
14 * BSD LICENSE
15 *
16 * Copyright(c) 2012 Intel Corporation. All rights reserved.
17 * Copyright (C) 2015 EMC Corporation. All Rights Reserved.
18 *
19 * Redistribution and use in source and binary forms, with or without
20 * modification, are permitted provided that the following conditions
21 * are met:
22 *
23 * * Redistributions of source code must retain the above copyright
24 * notice, this list of conditions and the following disclaimer.
25 * * Redistributions in binary form must reproduce the above copy
26 * notice, this list of conditions and the following disclaimer in
27 * the documentation and/or other materials provided with the
28 * distribution.
29 * * Neither the name of Intel Corporation nor the names of its
30 * contributors may be used to endorse or promote products derived
31 * from this software without specific prior written permission.
32 *
33 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
34 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
35 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
36 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
37 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
38 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
39 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
40 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
41 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
42 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
43 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
44 *
45 * PCIe NTB Transport Linux driver
46 *
47 * Contact Information:
48 * Jon Mason <jon.mason@intel.com>
49 */
50 #include <linux/debugfs.h>
51 #include <linux/delay.h>
52 #include <linux/dmaengine.h>
53 #include <linux/dma-mapping.h>
54 #include <linux/errno.h>
55 #include <linux/export.h>
56 #include <linux/interrupt.h>
57 #include <linux/module.h>
58 #include <linux/pci.h>
59 #include <linux/slab.h>
60 #include <linux/types.h>
61 #include <linux/uaccess.h>
62 #include "linux/ntb.h"
63 #include "linux/ntb_transport.h"
64
65 #define NTB_TRANSPORT_VERSION 4
66 #define NTB_TRANSPORT_VER "4"
67 #define NTB_TRANSPORT_NAME "ntb_transport"
68 #define NTB_TRANSPORT_DESC "Software Queue-Pair Transport over NTB"
69
70 MODULE_DESCRIPTION(NTB_TRANSPORT_DESC);
71 MODULE_VERSION(NTB_TRANSPORT_VER);
72 MODULE_LICENSE("Dual BSD/GPL");
73 MODULE_AUTHOR("Intel Corporation");
74
75 static unsigned long max_mw_size;
76 module_param(max_mw_size, ulong, 0644);
77 MODULE_PARM_DESC(max_mw_size, "Limit size of large memory windows");
78
79 static unsigned int transport_mtu = 0x10000;
80 module_param(transport_mtu, uint, 0644);
81 MODULE_PARM_DESC(transport_mtu, "Maximum size of NTB transport packets");
82
83 static unsigned char max_num_clients;
84 module_param(max_num_clients, byte, 0644);
85 MODULE_PARM_DESC(max_num_clients, "Maximum number of NTB transport clients");
86
87 static unsigned int copy_bytes = 1024;
88 module_param(copy_bytes, uint, 0644);
89 MODULE_PARM_DESC(copy_bytes, "Threshold under which NTB will use the CPU to copy instead of DMA");
90
91 static bool use_dma;
92 module_param(use_dma, bool, 0644);
93 MODULE_PARM_DESC(use_dma, "Use DMA engine to perform large data copy");
94
95 static struct dentry *nt_debugfs_dir;
96
97 struct ntb_queue_entry {
98 /* ntb_queue list reference */
99 struct list_head entry;
100 /* pointers to data to be transferred */
101 void *cb_data;
102 void *buf;
103 unsigned int len;
104 unsigned int flags;
105
106 struct ntb_transport_qp *qp;
107 union {
108 struct ntb_payload_header __iomem *tx_hdr;
109 struct ntb_payload_header *rx_hdr;
110 };
111 unsigned int index;
112 };
113
114 struct ntb_rx_info {
115 unsigned int entry;
116 };
117
118 struct ntb_transport_qp {
119 struct ntb_transport_ctx *transport;
120 struct ntb_dev *ndev;
121 void *cb_data;
122 struct dma_chan *dma_chan;
123
124 bool client_ready;
125 bool link_is_up;
126
127 u8 qp_num; /* Only 64 QP's are allowed. 0-63 */
128 u64 qp_bit;
129
130 struct ntb_rx_info __iomem *rx_info;
131 struct ntb_rx_info *remote_rx_info;
132
133 void (*tx_handler)(struct ntb_transport_qp *qp, void *qp_data,
134 void *data, int len);
135 struct list_head tx_free_q;
136 spinlock_t ntb_tx_free_q_lock;
137 void __iomem *tx_mw;
138 dma_addr_t tx_mw_phys;
139 unsigned int tx_index;
140 unsigned int tx_max_entry;
141 unsigned int tx_max_frame;
142
143 void (*rx_handler)(struct ntb_transport_qp *qp, void *qp_data,
144 void *data, int len);
145 struct list_head rx_pend_q;
146 struct list_head rx_free_q;
147 spinlock_t ntb_rx_pend_q_lock;
148 spinlock_t ntb_rx_free_q_lock;
149 void *rx_buff;
150 unsigned int rx_index;
151 unsigned int rx_max_entry;
152 unsigned int rx_max_frame;
153 dma_cookie_t last_cookie;
154 struct tasklet_struct rxc_db_work;
155
156 void (*event_handler)(void *data, int status);
157 struct delayed_work link_work;
158 struct work_struct link_cleanup;
159
160 struct dentry *debugfs_dir;
161 struct dentry *debugfs_stats;
162
163 /* Stats */
164 u64 rx_bytes;
165 u64 rx_pkts;
166 u64 rx_ring_empty;
167 u64 rx_err_no_buf;
168 u64 rx_err_oflow;
169 u64 rx_err_ver;
170 u64 rx_memcpy;
171 u64 rx_async;
172 u64 tx_bytes;
173 u64 tx_pkts;
174 u64 tx_ring_full;
175 u64 tx_err_no_buf;
176 u64 tx_memcpy;
177 u64 tx_async;
178 };
179
180 struct ntb_transport_mw {
181 phys_addr_t phys_addr;
182 resource_size_t phys_size;
183 resource_size_t xlat_align;
184 resource_size_t xlat_align_size;
185 void __iomem *vbase;
186 size_t xlat_size;
187 size_t buff_size;
188 void *virt_addr;
189 dma_addr_t dma_addr;
190 };
191
192 struct ntb_transport_client_dev {
193 struct list_head entry;
194 struct ntb_transport_ctx *nt;
195 struct device dev;
196 };
197
198 struct ntb_transport_ctx {
199 struct list_head entry;
200 struct list_head client_devs;
201
202 struct ntb_dev *ndev;
203
204 struct ntb_transport_mw *mw_vec;
205 struct ntb_transport_qp *qp_vec;
206 unsigned int mw_count;
207 unsigned int qp_count;
208 u64 qp_bitmap;
209 u64 qp_bitmap_free;
210
211 bool link_is_up;
212 struct delayed_work link_work;
213 struct work_struct link_cleanup;
214 };
215
216 enum {
217 DESC_DONE_FLAG = BIT(0),
218 LINK_DOWN_FLAG = BIT(1),
219 };
220
221 struct ntb_payload_header {
222 unsigned int ver;
223 unsigned int len;
224 unsigned int flags;
225 };
226
227 enum {
228 VERSION = 0,
229 QP_LINKS,
230 NUM_QPS,
231 NUM_MWS,
232 MW0_SZ_HIGH,
233 MW0_SZ_LOW,
234 MW1_SZ_HIGH,
235 MW1_SZ_LOW,
236 MAX_SPAD,
237 };
238
239 #define dev_client_dev(__dev) \
240 container_of((__dev), struct ntb_transport_client_dev, dev)
241
242 #define drv_client(__drv) \
243 container_of((__drv), struct ntb_transport_client, driver)
244
245 #define QP_TO_MW(nt, qp) ((qp) % nt->mw_count)
246 #define NTB_QP_DEF_NUM_ENTRIES 100
247 #define NTB_LINK_DOWN_TIMEOUT 10
248
249 static void ntb_transport_rxc_db(unsigned long data);
250 static const struct ntb_ctx_ops ntb_transport_ops;
251 static struct ntb_client ntb_transport_client;
252
253 static int ntb_transport_bus_match(struct device *dev,
254 struct device_driver *drv)
255 {
256 return !strncmp(dev_name(dev), drv->name, strlen(drv->name));
257 }
258
259 static int ntb_transport_bus_probe(struct device *dev)
260 {
261 const struct ntb_transport_client *client;
262 int rc = -EINVAL;
263
264 get_device(dev);
265
266 client = drv_client(dev->driver);
267 rc = client->probe(dev);
268 if (rc)
269 put_device(dev);
270
271 return rc;
272 }
273
274 static int ntb_transport_bus_remove(struct device *dev)
275 {
276 const struct ntb_transport_client *client;
277
278 client = drv_client(dev->driver);
279 client->remove(dev);
280
281 put_device(dev);
282
283 return 0;
284 }
285
286 static struct bus_type ntb_transport_bus = {
287 .name = "ntb_transport",
288 .match = ntb_transport_bus_match,
289 .probe = ntb_transport_bus_probe,
290 .remove = ntb_transport_bus_remove,
291 };
292
293 static LIST_HEAD(ntb_transport_list);
294
295 static int ntb_bus_init(struct ntb_transport_ctx *nt)
296 {
297 list_add(&nt->entry, &ntb_transport_list);
298 return 0;
299 }
300
301 static void ntb_bus_remove(struct ntb_transport_ctx *nt)
302 {
303 struct ntb_transport_client_dev *client_dev, *cd;
304
305 list_for_each_entry_safe(client_dev, cd, &nt->client_devs, entry) {
306 dev_err(client_dev->dev.parent, "%s still attached to bus, removing\n",
307 dev_name(&client_dev->dev));
308 list_del(&client_dev->entry);
309 device_unregister(&client_dev->dev);
310 }
311
312 list_del(&nt->entry);
313 }
314
315 static void ntb_transport_client_release(struct device *dev)
316 {
317 struct ntb_transport_client_dev *client_dev;
318
319 client_dev = dev_client_dev(dev);
320 kfree(client_dev);
321 }
322
323 /**
324 * ntb_transport_unregister_client_dev - Unregister NTB client device
325 * @device_name: Name of NTB client device
326 *
327 * Unregister an NTB client device with the NTB transport layer
328 */
329 void ntb_transport_unregister_client_dev(char *device_name)
330 {
331 struct ntb_transport_client_dev *client, *cd;
332 struct ntb_transport_ctx *nt;
333
334 list_for_each_entry(nt, &ntb_transport_list, entry)
335 list_for_each_entry_safe(client, cd, &nt->client_devs, entry)
336 if (!strncmp(dev_name(&client->dev), device_name,
337 strlen(device_name))) {
338 list_del(&client->entry);
339 device_unregister(&client->dev);
340 }
341 }
342 EXPORT_SYMBOL_GPL(ntb_transport_unregister_client_dev);
343
344 /**
345 * ntb_transport_register_client_dev - Register NTB client device
346 * @device_name: Name of NTB client device
347 *
348 * Register an NTB client device with the NTB transport layer
349 */
350 int ntb_transport_register_client_dev(char *device_name)
351 {
352 struct ntb_transport_client_dev *client_dev;
353 struct ntb_transport_ctx *nt;
354 int node;
355 int rc, i = 0;
356
357 if (list_empty(&ntb_transport_list))
358 return -ENODEV;
359
360 list_for_each_entry(nt, &ntb_transport_list, entry) {
361 struct device *dev;
362
363 node = dev_to_node(&nt->ndev->dev);
364
365 client_dev = kzalloc_node(sizeof(*client_dev),
366 GFP_KERNEL, node);
367 if (!client_dev) {
368 rc = -ENOMEM;
369 goto err;
370 }
371
372 dev = &client_dev->dev;
373
374 /* setup and register client devices */
375 dev_set_name(dev, "%s%d", device_name, i);
376 dev->bus = &ntb_transport_bus;
377 dev->release = ntb_transport_client_release;
378 dev->parent = &nt->ndev->dev;
379
380 rc = device_register(dev);
381 if (rc) {
382 kfree(client_dev);
383 goto err;
384 }
385
386 list_add_tail(&client_dev->entry, &nt->client_devs);
387 i++;
388 }
389
390 return 0;
391
392 err:
393 ntb_transport_unregister_client_dev(device_name);
394
395 return rc;
396 }
397 EXPORT_SYMBOL_GPL(ntb_transport_register_client_dev);
398
399 /**
400 * ntb_transport_register_client - Register NTB client driver
401 * @drv: NTB client driver to be registered
402 *
403 * Register an NTB client driver with the NTB transport layer
404 *
405 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
406 */
407 int ntb_transport_register_client(struct ntb_transport_client *drv)
408 {
409 drv->driver.bus = &ntb_transport_bus;
410
411 if (list_empty(&ntb_transport_list))
412 return -ENODEV;
413
414 return driver_register(&drv->driver);
415 }
416 EXPORT_SYMBOL_GPL(ntb_transport_register_client);
417
418 /**
419 * ntb_transport_unregister_client - Unregister NTB client driver
420 * @drv: NTB client driver to be unregistered
421 *
422 * Unregister an NTB client driver with the NTB transport layer
423 *
424 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
425 */
426 void ntb_transport_unregister_client(struct ntb_transport_client *drv)
427 {
428 driver_unregister(&drv->driver);
429 }
430 EXPORT_SYMBOL_GPL(ntb_transport_unregister_client);
431
432 static ssize_t debugfs_read(struct file *filp, char __user *ubuf, size_t count,
433 loff_t *offp)
434 {
435 struct ntb_transport_qp *qp;
436 char *buf;
437 ssize_t ret, out_offset, out_count;
438
439 out_count = 1000;
440
441 buf = kmalloc(out_count, GFP_KERNEL);
442 if (!buf)
443 return -ENOMEM;
444
445 qp = filp->private_data;
446 out_offset = 0;
447 out_offset += snprintf(buf + out_offset, out_count - out_offset,
448 "NTB QP stats\n");
449 out_offset += snprintf(buf + out_offset, out_count - out_offset,
450 "rx_bytes - \t%llu\n", qp->rx_bytes);
451 out_offset += snprintf(buf + out_offset, out_count - out_offset,
452 "rx_pkts - \t%llu\n", qp->rx_pkts);
453 out_offset += snprintf(buf + out_offset, out_count - out_offset,
454 "rx_memcpy - \t%llu\n", qp->rx_memcpy);
455 out_offset += snprintf(buf + out_offset, out_count - out_offset,
456 "rx_async - \t%llu\n", qp->rx_async);
457 out_offset += snprintf(buf + out_offset, out_count - out_offset,
458 "rx_ring_empty - %llu\n", qp->rx_ring_empty);
459 out_offset += snprintf(buf + out_offset, out_count - out_offset,
460 "rx_err_no_buf - %llu\n", qp->rx_err_no_buf);
461 out_offset += snprintf(buf + out_offset, out_count - out_offset,
462 "rx_err_oflow - \t%llu\n", qp->rx_err_oflow);
463 out_offset += snprintf(buf + out_offset, out_count - out_offset,
464 "rx_err_ver - \t%llu\n", qp->rx_err_ver);
465 out_offset += snprintf(buf + out_offset, out_count - out_offset,
466 "rx_buff - \t%p\n", qp->rx_buff);
467 out_offset += snprintf(buf + out_offset, out_count - out_offset,
468 "rx_index - \t%u\n", qp->rx_index);
469 out_offset += snprintf(buf + out_offset, out_count - out_offset,
470 "rx_max_entry - \t%u\n", qp->rx_max_entry);
471
472 out_offset += snprintf(buf + out_offset, out_count - out_offset,
473 "tx_bytes - \t%llu\n", qp->tx_bytes);
474 out_offset += snprintf(buf + out_offset, out_count - out_offset,
475 "tx_pkts - \t%llu\n", qp->tx_pkts);
476 out_offset += snprintf(buf + out_offset, out_count - out_offset,
477 "tx_memcpy - \t%llu\n", qp->tx_memcpy);
478 out_offset += snprintf(buf + out_offset, out_count - out_offset,
479 "tx_async - \t%llu\n", qp->tx_async);
480 out_offset += snprintf(buf + out_offset, out_count - out_offset,
481 "tx_ring_full - \t%llu\n", qp->tx_ring_full);
482 out_offset += snprintf(buf + out_offset, out_count - out_offset,
483 "tx_err_no_buf - %llu\n", qp->tx_err_no_buf);
484 out_offset += snprintf(buf + out_offset, out_count - out_offset,
485 "tx_mw - \t%p\n", qp->tx_mw);
486 out_offset += snprintf(buf + out_offset, out_count - out_offset,
487 "tx_index - \t%u\n", qp->tx_index);
488 out_offset += snprintf(buf + out_offset, out_count - out_offset,
489 "tx_max_entry - \t%u\n", qp->tx_max_entry);
490
491 out_offset += snprintf(buf + out_offset, out_count - out_offset,
492 "\nQP Link %s\n",
493 qp->link_is_up ? "Up" : "Down");
494 if (out_offset > out_count)
495 out_offset = out_count;
496
497 ret = simple_read_from_buffer(ubuf, count, offp, buf, out_offset);
498 kfree(buf);
499 return ret;
500 }
501
502 static const struct file_operations ntb_qp_debugfs_stats = {
503 .owner = THIS_MODULE,
504 .open = simple_open,
505 .read = debugfs_read,
506 };
507
508 static void ntb_list_add(spinlock_t *lock, struct list_head *entry,
509 struct list_head *list)
510 {
511 unsigned long flags;
512
513 spin_lock_irqsave(lock, flags);
514 list_add_tail(entry, list);
515 spin_unlock_irqrestore(lock, flags);
516 }
517
518 static struct ntb_queue_entry *ntb_list_rm(spinlock_t *lock,
519 struct list_head *list)
520 {
521 struct ntb_queue_entry *entry;
522 unsigned long flags;
523
524 spin_lock_irqsave(lock, flags);
525 if (list_empty(list)) {
526 entry = NULL;
527 goto out;
528 }
529 entry = list_first_entry(list, struct ntb_queue_entry, entry);
530 list_del(&entry->entry);
531 out:
532 spin_unlock_irqrestore(lock, flags);
533
534 return entry;
535 }
536
537 static int ntb_transport_setup_qp_mw(struct ntb_transport_ctx *nt,
538 unsigned int qp_num)
539 {
540 struct ntb_transport_qp *qp = &nt->qp_vec[qp_num];
541 struct ntb_transport_mw *mw;
542 unsigned int rx_size, num_qps_mw;
543 unsigned int mw_num, mw_count, qp_count;
544 unsigned int i;
545
546 mw_count = nt->mw_count;
547 qp_count = nt->qp_count;
548
549 mw_num = QP_TO_MW(nt, qp_num);
550 mw = &nt->mw_vec[mw_num];
551
552 if (!mw->virt_addr)
553 return -ENOMEM;
554
555 if (qp_count % mw_count && mw_num + 1 < qp_count / mw_count)
556 num_qps_mw = qp_count / mw_count + 1;
557 else
558 num_qps_mw = qp_count / mw_count;
559
560 rx_size = (unsigned int)mw->xlat_size / num_qps_mw;
561 qp->rx_buff = mw->virt_addr + rx_size * qp_num / mw_count;
562 rx_size -= sizeof(struct ntb_rx_info);
563
564 qp->remote_rx_info = qp->rx_buff + rx_size;
565
566 /* Due to housekeeping, there must be atleast 2 buffs */
567 qp->rx_max_frame = min(transport_mtu, rx_size / 2);
568 qp->rx_max_entry = rx_size / qp->rx_max_frame;
569 qp->rx_index = 0;
570
571 qp->remote_rx_info->entry = qp->rx_max_entry - 1;
572
573 /* setup the hdr offsets with 0's */
574 for (i = 0; i < qp->rx_max_entry; i++) {
575 void *offset = (qp->rx_buff + qp->rx_max_frame * (i + 1) -
576 sizeof(struct ntb_payload_header));
577 memset(offset, 0, sizeof(struct ntb_payload_header));
578 }
579
580 qp->rx_pkts = 0;
581 qp->tx_pkts = 0;
582 qp->tx_index = 0;
583
584 return 0;
585 }
586
587 static void ntb_free_mw(struct ntb_transport_ctx *nt, int num_mw)
588 {
589 struct ntb_transport_mw *mw = &nt->mw_vec[num_mw];
590 struct pci_dev *pdev = nt->ndev->pdev;
591
592 if (!mw->virt_addr)
593 return;
594
595 ntb_mw_clear_trans(nt->ndev, num_mw);
596 dma_free_coherent(&pdev->dev, mw->buff_size,
597 mw->virt_addr, mw->dma_addr);
598 mw->xlat_size = 0;
599 mw->buff_size = 0;
600 mw->virt_addr = NULL;
601 }
602
603 static int ntb_set_mw(struct ntb_transport_ctx *nt, int num_mw,
604 unsigned int size)
605 {
606 struct ntb_transport_mw *mw = &nt->mw_vec[num_mw];
607 struct pci_dev *pdev = nt->ndev->pdev;
608 unsigned int xlat_size, buff_size;
609 int rc;
610
611 xlat_size = round_up(size, mw->xlat_align_size);
612 buff_size = round_up(size, mw->xlat_align);
613
614 /* No need to re-setup */
615 if (mw->xlat_size == xlat_size)
616 return 0;
617
618 if (mw->buff_size)
619 ntb_free_mw(nt, num_mw);
620
621 /* Alloc memory for receiving data. Must be aligned */
622 mw->xlat_size = xlat_size;
623 mw->buff_size = buff_size;
624
625 mw->virt_addr = dma_alloc_coherent(&pdev->dev, buff_size,
626 &mw->dma_addr, GFP_KERNEL);
627 if (!mw->virt_addr) {
628 mw->xlat_size = 0;
629 mw->buff_size = 0;
630 dev_err(&pdev->dev, "Unable to alloc MW buff of size %d\n",
631 buff_size);
632 return -ENOMEM;
633 }
634
635 /*
636 * we must ensure that the memory address allocated is BAR size
637 * aligned in order for the XLAT register to take the value. This
638 * is a requirement of the hardware. It is recommended to setup CMA
639 * for BAR sizes equal or greater than 4MB.
640 */
641 if (!IS_ALIGNED(mw->dma_addr, mw->xlat_align)) {
642 dev_err(&pdev->dev, "DMA memory %pad is not aligned\n",
643 &mw->dma_addr);
644 ntb_free_mw(nt, num_mw);
645 return -ENOMEM;
646 }
647
648 /* Notify HW the memory location of the receive buffer */
649 rc = ntb_mw_set_trans(nt->ndev, num_mw, mw->dma_addr, mw->xlat_size);
650 if (rc) {
651 dev_err(&pdev->dev, "Unable to set mw%d translation", num_mw);
652 ntb_free_mw(nt, num_mw);
653 return -EIO;
654 }
655
656 return 0;
657 }
658
659 static void ntb_qp_link_down_reset(struct ntb_transport_qp *qp)
660 {
661 qp->link_is_up = false;
662
663 qp->tx_index = 0;
664 qp->rx_index = 0;
665 qp->rx_bytes = 0;
666 qp->rx_pkts = 0;
667 qp->rx_ring_empty = 0;
668 qp->rx_err_no_buf = 0;
669 qp->rx_err_oflow = 0;
670 qp->rx_err_ver = 0;
671 qp->rx_memcpy = 0;
672 qp->rx_async = 0;
673 qp->tx_bytes = 0;
674 qp->tx_pkts = 0;
675 qp->tx_ring_full = 0;
676 qp->tx_err_no_buf = 0;
677 qp->tx_memcpy = 0;
678 qp->tx_async = 0;
679 }
680
681 static void ntb_qp_link_cleanup(struct ntb_transport_qp *qp)
682 {
683 struct ntb_transport_ctx *nt = qp->transport;
684 struct pci_dev *pdev = nt->ndev->pdev;
685
686 dev_info(&pdev->dev, "qp %d: Link Cleanup\n", qp->qp_num);
687
688 cancel_delayed_work_sync(&qp->link_work);
689 ntb_qp_link_down_reset(qp);
690
691 if (qp->event_handler)
692 qp->event_handler(qp->cb_data, qp->link_is_up);
693 }
694
695 static void ntb_qp_link_cleanup_work(struct work_struct *work)
696 {
697 struct ntb_transport_qp *qp = container_of(work,
698 struct ntb_transport_qp,
699 link_cleanup);
700 struct ntb_transport_ctx *nt = qp->transport;
701
702 ntb_qp_link_cleanup(qp);
703
704 if (nt->link_is_up)
705 schedule_delayed_work(&qp->link_work,
706 msecs_to_jiffies(NTB_LINK_DOWN_TIMEOUT));
707 }
708
709 static void ntb_qp_link_down(struct ntb_transport_qp *qp)
710 {
711 schedule_work(&qp->link_cleanup);
712 }
713
714 static void ntb_transport_link_cleanup(struct ntb_transport_ctx *nt)
715 {
716 struct ntb_transport_qp *qp;
717 u64 qp_bitmap_alloc;
718 int i;
719
720 qp_bitmap_alloc = nt->qp_bitmap & ~nt->qp_bitmap_free;
721
722 /* Pass along the info to any clients */
723 for (i = 0; i < nt->qp_count; i++)
724 if (qp_bitmap_alloc & BIT_ULL(i)) {
725 qp = &nt->qp_vec[i];
726 ntb_qp_link_cleanup(qp);
727 cancel_work_sync(&qp->link_cleanup);
728 cancel_delayed_work_sync(&qp->link_work);
729 }
730
731 if (!nt->link_is_up)
732 cancel_delayed_work_sync(&nt->link_work);
733
734 /* The scratchpad registers keep the values if the remote side
735 * goes down, blast them now to give them a sane value the next
736 * time they are accessed
737 */
738 for (i = 0; i < MAX_SPAD; i++)
739 ntb_spad_write(nt->ndev, i, 0);
740 }
741
742 static void ntb_transport_link_cleanup_work(struct work_struct *work)
743 {
744 struct ntb_transport_ctx *nt =
745 container_of(work, struct ntb_transport_ctx, link_cleanup);
746
747 ntb_transport_link_cleanup(nt);
748 }
749
750 static void ntb_transport_event_callback(void *data)
751 {
752 struct ntb_transport_ctx *nt = data;
753
754 if (ntb_link_is_up(nt->ndev, NULL, NULL) == 1)
755 schedule_delayed_work(&nt->link_work, 0);
756 else
757 schedule_work(&nt->link_cleanup);
758 }
759
760 static void ntb_transport_link_work(struct work_struct *work)
761 {
762 struct ntb_transport_ctx *nt =
763 container_of(work, struct ntb_transport_ctx, link_work.work);
764 struct ntb_dev *ndev = nt->ndev;
765 struct pci_dev *pdev = ndev->pdev;
766 resource_size_t size;
767 u32 val;
768 int rc, i, spad;
769
770 /* send the local info, in the opposite order of the way we read it */
771 for (i = 0; i < nt->mw_count; i++) {
772 size = nt->mw_vec[i].phys_size;
773
774 if (max_mw_size && size > max_mw_size)
775 size = max_mw_size;
776
777 spad = MW0_SZ_HIGH + (i * 2);
778 ntb_peer_spad_write(ndev, spad, (u32)(size >> 32));
779
780 spad = MW0_SZ_LOW + (i * 2);
781 ntb_peer_spad_write(ndev, spad, (u32)size);
782 }
783
784 ntb_peer_spad_write(ndev, NUM_MWS, nt->mw_count);
785
786 ntb_peer_spad_write(ndev, NUM_QPS, nt->qp_count);
787
788 ntb_peer_spad_write(ndev, VERSION, NTB_TRANSPORT_VERSION);
789
790 /* Query the remote side for its info */
791 val = ntb_spad_read(ndev, VERSION);
792 dev_dbg(&pdev->dev, "Remote version = %d\n", val);
793 if (val != NTB_TRANSPORT_VERSION)
794 goto out;
795
796 val = ntb_spad_read(ndev, NUM_QPS);
797 dev_dbg(&pdev->dev, "Remote max number of qps = %d\n", val);
798 if (val != nt->qp_count)
799 goto out;
800
801 val = ntb_spad_read(ndev, NUM_MWS);
802 dev_dbg(&pdev->dev, "Remote number of mws = %d\n", val);
803 if (val != nt->mw_count)
804 goto out;
805
806 for (i = 0; i < nt->mw_count; i++) {
807 u64 val64;
808
809 val = ntb_spad_read(ndev, MW0_SZ_HIGH + (i * 2));
810 val64 = (u64)val << 32;
811
812 val = ntb_spad_read(ndev, MW0_SZ_LOW + (i * 2));
813 val64 |= val;
814
815 dev_dbg(&pdev->dev, "Remote MW%d size = %#llx\n", i, val64);
816
817 rc = ntb_set_mw(nt, i, val64);
818 if (rc)
819 goto out1;
820 }
821
822 nt->link_is_up = true;
823
824 for (i = 0; i < nt->qp_count; i++) {
825 struct ntb_transport_qp *qp = &nt->qp_vec[i];
826
827 ntb_transport_setup_qp_mw(nt, i);
828
829 if (qp->client_ready)
830 schedule_delayed_work(&qp->link_work, 0);
831 }
832
833 return;
834
835 out1:
836 for (i = 0; i < nt->mw_count; i++)
837 ntb_free_mw(nt, i);
838 out:
839 if (ntb_link_is_up(ndev, NULL, NULL) == 1)
840 schedule_delayed_work(&nt->link_work,
841 msecs_to_jiffies(NTB_LINK_DOWN_TIMEOUT));
842 }
843
844 static void ntb_qp_link_work(struct work_struct *work)
845 {
846 struct ntb_transport_qp *qp = container_of(work,
847 struct ntb_transport_qp,
848 link_work.work);
849 struct pci_dev *pdev = qp->ndev->pdev;
850 struct ntb_transport_ctx *nt = qp->transport;
851 int val;
852
853 WARN_ON(!nt->link_is_up);
854
855 val = ntb_spad_read(nt->ndev, QP_LINKS);
856
857 ntb_peer_spad_write(nt->ndev, QP_LINKS, val | BIT(qp->qp_num));
858
859 /* query remote spad for qp ready bits */
860 ntb_peer_spad_read(nt->ndev, QP_LINKS);
861 dev_dbg_ratelimited(&pdev->dev, "Remote QP link status = %x\n", val);
862
863 /* See if the remote side is up */
864 if (val & BIT(qp->qp_num)) {
865 dev_info(&pdev->dev, "qp %d: Link Up\n", qp->qp_num);
866 qp->link_is_up = true;
867
868 if (qp->event_handler)
869 qp->event_handler(qp->cb_data, qp->link_is_up);
870 } else if (nt->link_is_up)
871 schedule_delayed_work(&qp->link_work,
872 msecs_to_jiffies(NTB_LINK_DOWN_TIMEOUT));
873 }
874
875 static int ntb_transport_init_queue(struct ntb_transport_ctx *nt,
876 unsigned int qp_num)
877 {
878 struct ntb_transport_qp *qp;
879 struct ntb_transport_mw *mw;
880 phys_addr_t mw_base;
881 resource_size_t mw_size;
882 unsigned int num_qps_mw, tx_size;
883 unsigned int mw_num, mw_count, qp_count;
884 u64 qp_offset;
885
886 mw_count = nt->mw_count;
887 qp_count = nt->qp_count;
888
889 mw_num = QP_TO_MW(nt, qp_num);
890 mw = &nt->mw_vec[mw_num];
891
892 qp = &nt->qp_vec[qp_num];
893 qp->qp_num = qp_num;
894 qp->transport = nt;
895 qp->ndev = nt->ndev;
896 qp->client_ready = false;
897 qp->event_handler = NULL;
898 ntb_qp_link_down_reset(qp);
899
900 if (qp_count % mw_count && mw_num + 1 < qp_count / mw_count)
901 num_qps_mw = qp_count / mw_count + 1;
902 else
903 num_qps_mw = qp_count / mw_count;
904
905 mw_base = nt->mw_vec[mw_num].phys_addr;
906 mw_size = nt->mw_vec[mw_num].phys_size;
907
908 tx_size = (unsigned int)mw_size / num_qps_mw;
909 qp_offset = tx_size * qp_num / mw_count;
910
911 qp->tx_mw = nt->mw_vec[mw_num].vbase + qp_offset;
912 if (!qp->tx_mw)
913 return -EINVAL;
914
915 qp->tx_mw_phys = mw_base + qp_offset;
916 if (!qp->tx_mw_phys)
917 return -EINVAL;
918
919 tx_size -= sizeof(struct ntb_rx_info);
920 qp->rx_info = qp->tx_mw + tx_size;
921
922 /* Due to housekeeping, there must be atleast 2 buffs */
923 qp->tx_max_frame = min(transport_mtu, tx_size / 2);
924 qp->tx_max_entry = tx_size / qp->tx_max_frame;
925
926 if (nt_debugfs_dir) {
927 char debugfs_name[4];
928
929 snprintf(debugfs_name, 4, "qp%d", qp_num);
930 qp->debugfs_dir = debugfs_create_dir(debugfs_name,
931 nt_debugfs_dir);
932
933 qp->debugfs_stats = debugfs_create_file("stats", S_IRUSR,
934 qp->debugfs_dir, qp,
935 &ntb_qp_debugfs_stats);
936 } else {
937 qp->debugfs_dir = NULL;
938 qp->debugfs_stats = NULL;
939 }
940
941 INIT_DELAYED_WORK(&qp->link_work, ntb_qp_link_work);
942 INIT_WORK(&qp->link_cleanup, ntb_qp_link_cleanup_work);
943
944 spin_lock_init(&qp->ntb_rx_pend_q_lock);
945 spin_lock_init(&qp->ntb_rx_free_q_lock);
946 spin_lock_init(&qp->ntb_tx_free_q_lock);
947
948 INIT_LIST_HEAD(&qp->rx_pend_q);
949 INIT_LIST_HEAD(&qp->rx_free_q);
950 INIT_LIST_HEAD(&qp->tx_free_q);
951
952 tasklet_init(&qp->rxc_db_work, ntb_transport_rxc_db,
953 (unsigned long)qp);
954
955 return 0;
956 }
957
958 static int ntb_transport_probe(struct ntb_client *self, struct ntb_dev *ndev)
959 {
960 struct ntb_transport_ctx *nt;
961 struct ntb_transport_mw *mw;
962 unsigned int mw_count, qp_count;
963 u64 qp_bitmap;
964 int node;
965 int rc, i;
966
967 if (ntb_db_is_unsafe(ndev))
968 dev_dbg(&ndev->dev,
969 "doorbell is unsafe, proceed anyway...\n");
970 if (ntb_spad_is_unsafe(ndev))
971 dev_dbg(&ndev->dev,
972 "scratchpad is unsafe, proceed anyway...\n");
973
974 node = dev_to_node(&ndev->dev);
975
976 nt = kzalloc_node(sizeof(*nt), GFP_KERNEL, node);
977 if (!nt)
978 return -ENOMEM;
979
980 nt->ndev = ndev;
981
982 mw_count = ntb_mw_count(ndev);
983
984 nt->mw_count = mw_count;
985
986 nt->mw_vec = kzalloc_node(mw_count * sizeof(*nt->mw_vec),
987 GFP_KERNEL, node);
988 if (!nt->mw_vec) {
989 rc = -ENOMEM;
990 goto err;
991 }
992
993 for (i = 0; i < mw_count; i++) {
994 mw = &nt->mw_vec[i];
995
996 rc = ntb_mw_get_range(ndev, i, &mw->phys_addr, &mw->phys_size,
997 &mw->xlat_align, &mw->xlat_align_size);
998 if (rc)
999 goto err1;
1000
1001 mw->vbase = ioremap_wc(mw->phys_addr, mw->phys_size);
1002 if (!mw->vbase) {
1003 rc = -ENOMEM;
1004 goto err1;
1005 }
1006
1007 mw->buff_size = 0;
1008 mw->xlat_size = 0;
1009 mw->virt_addr = NULL;
1010 mw->dma_addr = 0;
1011 }
1012
1013 qp_bitmap = ntb_db_valid_mask(ndev);
1014
1015 qp_count = ilog2(qp_bitmap);
1016 if (max_num_clients && max_num_clients < qp_count)
1017 qp_count = max_num_clients;
1018 else if (mw_count < qp_count)
1019 qp_count = mw_count;
1020
1021 qp_bitmap &= BIT_ULL(qp_count) - 1;
1022
1023 nt->qp_count = qp_count;
1024 nt->qp_bitmap = qp_bitmap;
1025 nt->qp_bitmap_free = qp_bitmap;
1026
1027 nt->qp_vec = kzalloc_node(qp_count * sizeof(*nt->qp_vec),
1028 GFP_KERNEL, node);
1029 if (!nt->qp_vec) {
1030 rc = -ENOMEM;
1031 goto err2;
1032 }
1033
1034 for (i = 0; i < qp_count; i++) {
1035 rc = ntb_transport_init_queue(nt, i);
1036 if (rc)
1037 goto err3;
1038 }
1039
1040 INIT_DELAYED_WORK(&nt->link_work, ntb_transport_link_work);
1041 INIT_WORK(&nt->link_cleanup, ntb_transport_link_cleanup_work);
1042
1043 rc = ntb_set_ctx(ndev, nt, &ntb_transport_ops);
1044 if (rc)
1045 goto err3;
1046
1047 INIT_LIST_HEAD(&nt->client_devs);
1048 rc = ntb_bus_init(nt);
1049 if (rc)
1050 goto err4;
1051
1052 nt->link_is_up = false;
1053 ntb_link_enable(ndev, NTB_SPEED_AUTO, NTB_WIDTH_AUTO);
1054 ntb_link_event(ndev);
1055
1056 return 0;
1057
1058 err4:
1059 ntb_clear_ctx(ndev);
1060 err3:
1061 kfree(nt->qp_vec);
1062 err2:
1063 kfree(nt->mw_vec);
1064 err1:
1065 while (i--) {
1066 mw = &nt->mw_vec[i];
1067 iounmap(mw->vbase);
1068 }
1069 err:
1070 kfree(nt);
1071 return rc;
1072 }
1073
1074 static void ntb_transport_free(struct ntb_client *self, struct ntb_dev *ndev)
1075 {
1076 struct ntb_transport_ctx *nt = ndev->ctx;
1077 struct ntb_transport_qp *qp;
1078 u64 qp_bitmap_alloc;
1079 int i;
1080
1081 ntb_transport_link_cleanup(nt);
1082 cancel_work_sync(&nt->link_cleanup);
1083 cancel_delayed_work_sync(&nt->link_work);
1084
1085 qp_bitmap_alloc = nt->qp_bitmap & ~nt->qp_bitmap_free;
1086
1087 /* verify that all the qp's are freed */
1088 for (i = 0; i < nt->qp_count; i++) {
1089 qp = &nt->qp_vec[i];
1090 if (qp_bitmap_alloc & BIT_ULL(i))
1091 ntb_transport_free_queue(qp);
1092 debugfs_remove_recursive(qp->debugfs_dir);
1093 }
1094
1095 ntb_link_disable(ndev);
1096 ntb_clear_ctx(ndev);
1097
1098 ntb_bus_remove(nt);
1099
1100 for (i = nt->mw_count; i--; ) {
1101 ntb_free_mw(nt, i);
1102 iounmap(nt->mw_vec[i].vbase);
1103 }
1104
1105 kfree(nt->qp_vec);
1106 kfree(nt->mw_vec);
1107 kfree(nt);
1108 }
1109
1110 static void ntb_rx_copy_callback(void *data)
1111 {
1112 struct ntb_queue_entry *entry = data;
1113 struct ntb_transport_qp *qp = entry->qp;
1114 void *cb_data = entry->cb_data;
1115 unsigned int len = entry->len;
1116 struct ntb_payload_header *hdr = entry->rx_hdr;
1117
1118 hdr->flags = 0;
1119
1120 iowrite32(entry->index, &qp->rx_info->entry);
1121
1122 ntb_list_add(&qp->ntb_rx_free_q_lock, &entry->entry, &qp->rx_free_q);
1123
1124 if (qp->rx_handler && qp->client_ready)
1125 qp->rx_handler(qp, qp->cb_data, cb_data, len);
1126 }
1127
1128 static void ntb_memcpy_rx(struct ntb_queue_entry *entry, void *offset)
1129 {
1130 void *buf = entry->buf;
1131 size_t len = entry->len;
1132
1133 memcpy(buf, offset, len);
1134
1135 /* Ensure that the data is fully copied out before clearing the flag */
1136 wmb();
1137
1138 ntb_rx_copy_callback(entry);
1139 }
1140
1141 static void ntb_async_rx(struct ntb_queue_entry *entry, void *offset,
1142 size_t len)
1143 {
1144 struct dma_async_tx_descriptor *txd;
1145 struct ntb_transport_qp *qp = entry->qp;
1146 struct dma_chan *chan = qp->dma_chan;
1147 struct dma_device *device;
1148 size_t pay_off, buff_off;
1149 struct dmaengine_unmap_data *unmap;
1150 dma_cookie_t cookie;
1151 void *buf = entry->buf;
1152
1153 entry->len = len;
1154
1155 if (!chan)
1156 goto err;
1157
1158 if (len < copy_bytes)
1159 goto err_wait;
1160
1161 device = chan->device;
1162 pay_off = (size_t)offset & ~PAGE_MASK;
1163 buff_off = (size_t)buf & ~PAGE_MASK;
1164
1165 if (!is_dma_copy_aligned(device, pay_off, buff_off, len))
1166 goto err_wait;
1167
1168 unmap = dmaengine_get_unmap_data(device->dev, 2, GFP_NOWAIT);
1169 if (!unmap)
1170 goto err_wait;
1171
1172 unmap->len = len;
1173 unmap->addr[0] = dma_map_page(device->dev, virt_to_page(offset),
1174 pay_off, len, DMA_TO_DEVICE);
1175 if (dma_mapping_error(device->dev, unmap->addr[0]))
1176 goto err_get_unmap;
1177
1178 unmap->to_cnt = 1;
1179
1180 unmap->addr[1] = dma_map_page(device->dev, virt_to_page(buf),
1181 buff_off, len, DMA_FROM_DEVICE);
1182 if (dma_mapping_error(device->dev, unmap->addr[1]))
1183 goto err_get_unmap;
1184
1185 unmap->from_cnt = 1;
1186
1187 txd = device->device_prep_dma_memcpy(chan, unmap->addr[1],
1188 unmap->addr[0], len,
1189 DMA_PREP_INTERRUPT);
1190 if (!txd)
1191 goto err_get_unmap;
1192
1193 txd->callback = ntb_rx_copy_callback;
1194 txd->callback_param = entry;
1195 dma_set_unmap(txd, unmap);
1196
1197 cookie = dmaengine_submit(txd);
1198 if (dma_submit_error(cookie))
1199 goto err_set_unmap;
1200
1201 dmaengine_unmap_put(unmap);
1202
1203 qp->last_cookie = cookie;
1204
1205 qp->rx_async++;
1206
1207 return;
1208
1209 err_set_unmap:
1210 dmaengine_unmap_put(unmap);
1211 err_get_unmap:
1212 dmaengine_unmap_put(unmap);
1213 err_wait:
1214 /* If the callbacks come out of order, the writing of the index to the
1215 * last completed will be out of order. This may result in the
1216 * receive stalling forever.
1217 */
1218 dma_sync_wait(chan, qp->last_cookie);
1219 err:
1220 ntb_memcpy_rx(entry, offset);
1221 qp->rx_memcpy++;
1222 }
1223
1224 static int ntb_process_rxc(struct ntb_transport_qp *qp)
1225 {
1226 struct ntb_payload_header *hdr;
1227 struct ntb_queue_entry *entry;
1228 void *offset;
1229 int rc;
1230
1231 offset = qp->rx_buff + qp->rx_max_frame * qp->rx_index;
1232 hdr = offset + qp->rx_max_frame - sizeof(struct ntb_payload_header);
1233
1234 dev_dbg(&qp->ndev->pdev->dev, "qp %d: RX ver %u len %d flags %x\n",
1235 qp->qp_num, hdr->ver, hdr->len, hdr->flags);
1236
1237 if (!(hdr->flags & DESC_DONE_FLAG)) {
1238 dev_dbg(&qp->ndev->pdev->dev, "done flag not set\n");
1239 qp->rx_ring_empty++;
1240 return -EAGAIN;
1241 }
1242
1243 if (hdr->flags & LINK_DOWN_FLAG) {
1244 dev_dbg(&qp->ndev->pdev->dev, "link down flag set\n");
1245 ntb_qp_link_down(qp);
1246 hdr->flags = 0;
1247 return -EAGAIN;
1248 }
1249
1250 if (hdr->ver != (u32)qp->rx_pkts) {
1251 dev_dbg(&qp->ndev->pdev->dev,
1252 "version mismatch, expected %llu - got %u\n",
1253 qp->rx_pkts, hdr->ver);
1254 qp->rx_err_ver++;
1255 return -EIO;
1256 }
1257
1258 entry = ntb_list_rm(&qp->ntb_rx_pend_q_lock, &qp->rx_pend_q);
1259 if (!entry) {
1260 dev_dbg(&qp->ndev->pdev->dev, "no receive buffer\n");
1261 qp->rx_err_no_buf++;
1262
1263 rc = -ENOMEM;
1264 goto err;
1265 }
1266
1267 if (hdr->len > entry->len) {
1268 dev_dbg(&qp->ndev->pdev->dev,
1269 "receive buffer overflow! Wanted %d got %d\n",
1270 hdr->len, entry->len);
1271 qp->rx_err_oflow++;
1272
1273 rc = -EIO;
1274 goto err;
1275 }
1276
1277 dev_dbg(&qp->ndev->pdev->dev,
1278 "RX OK index %u ver %u size %d into buf size %d\n",
1279 qp->rx_index, hdr->ver, hdr->len, entry->len);
1280
1281 qp->rx_bytes += hdr->len;
1282 qp->rx_pkts++;
1283
1284 entry->index = qp->rx_index;
1285 entry->rx_hdr = hdr;
1286
1287 ntb_async_rx(entry, offset, hdr->len);
1288
1289 qp->rx_index++;
1290 qp->rx_index %= qp->rx_max_entry;
1291
1292 return 0;
1293
1294 err:
1295 /* FIXME: if this syncrhonous update of the rx_index gets ahead of
1296 * asyncrhonous ntb_rx_copy_callback of previous entry, there are three
1297 * scenarios:
1298 *
1299 * 1) The peer might miss this update, but observe the update
1300 * from the memcpy completion callback. In this case, the buffer will
1301 * not be freed on the peer to be reused for a different packet. The
1302 * successful rx of a later packet would clear the condition, but the
1303 * condition could persist if several rx fail in a row.
1304 *
1305 * 2) The peer may observe this update before the asyncrhonous copy of
1306 * prior packets is completed. The peer may overwrite the buffers of
1307 * the prior packets before they are copied.
1308 *
1309 * 3) Both: the peer may observe the update, and then observe the index
1310 * decrement by the asynchronous completion callback. Who knows what
1311 * badness that will cause.
1312 */
1313 hdr->flags = 0;
1314 iowrite32(qp->rx_index, &qp->rx_info->entry);
1315
1316 return rc;
1317 }
1318
1319 static void ntb_transport_rxc_db(unsigned long data)
1320 {
1321 struct ntb_transport_qp *qp = (void *)data;
1322 int rc, i;
1323
1324 dev_dbg(&qp->ndev->pdev->dev, "%s: doorbell %d received\n",
1325 __func__, qp->qp_num);
1326
1327 /* Limit the number of packets processed in a single interrupt to
1328 * provide fairness to others
1329 */
1330 for (i = 0; i < qp->rx_max_entry; i++) {
1331 rc = ntb_process_rxc(qp);
1332 if (rc)
1333 break;
1334 }
1335
1336 if (qp->dma_chan)
1337 dma_async_issue_pending(qp->dma_chan);
1338
1339 if (i == qp->rx_max_entry) {
1340 /* there is more work to do */
1341 tasklet_schedule(&qp->rxc_db_work);
1342 } else if (ntb_db_read(qp->ndev) & BIT_ULL(qp->qp_num)) {
1343 /* the doorbell bit is set: clear it */
1344 ntb_db_clear(qp->ndev, BIT_ULL(qp->qp_num));
1345 /* ntb_db_read ensures ntb_db_clear write is committed */
1346 ntb_db_read(qp->ndev);
1347
1348 /* an interrupt may have arrived between finishing
1349 * ntb_process_rxc and clearing the doorbell bit:
1350 * there might be some more work to do.
1351 */
1352 tasklet_schedule(&qp->rxc_db_work);
1353 }
1354 }
1355
1356 static void ntb_tx_copy_callback(void *data)
1357 {
1358 struct ntb_queue_entry *entry = data;
1359 struct ntb_transport_qp *qp = entry->qp;
1360 struct ntb_payload_header __iomem *hdr = entry->tx_hdr;
1361
1362 iowrite32(entry->flags | DESC_DONE_FLAG, &hdr->flags);
1363
1364 ntb_peer_db_set(qp->ndev, BIT_ULL(qp->qp_num));
1365
1366 /* The entry length can only be zero if the packet is intended to be a
1367 * "link down" or similar. Since no payload is being sent in these
1368 * cases, there is nothing to add to the completion queue.
1369 */
1370 if (entry->len > 0) {
1371 qp->tx_bytes += entry->len;
1372
1373 if (qp->tx_handler)
1374 qp->tx_handler(qp, qp->cb_data, entry->cb_data,
1375 entry->len);
1376 }
1377
1378 ntb_list_add(&qp->ntb_tx_free_q_lock, &entry->entry, &qp->tx_free_q);
1379 }
1380
1381 static void ntb_memcpy_tx(struct ntb_queue_entry *entry, void __iomem *offset)
1382 {
1383 #ifdef ARCH_HAS_NOCACHE_UACCESS
1384 /*
1385 * Using non-temporal mov to improve performance on non-cached
1386 * writes, even though we aren't actually copying from user space.
1387 */
1388 __copy_from_user_inatomic_nocache(offset, entry->buf, entry->len);
1389 #else
1390 memcpy_toio(offset, entry->buf, entry->len);
1391 #endif
1392
1393 /* Ensure that the data is fully copied out before setting the flags */
1394 wmb();
1395
1396 ntb_tx_copy_callback(entry);
1397 }
1398
1399 static void ntb_async_tx(struct ntb_transport_qp *qp,
1400 struct ntb_queue_entry *entry)
1401 {
1402 struct ntb_payload_header __iomem *hdr;
1403 struct dma_async_tx_descriptor *txd;
1404 struct dma_chan *chan = qp->dma_chan;
1405 struct dma_device *device;
1406 size_t dest_off, buff_off;
1407 struct dmaengine_unmap_data *unmap;
1408 dma_addr_t dest;
1409 dma_cookie_t cookie;
1410 void __iomem *offset;
1411 size_t len = entry->len;
1412 void *buf = entry->buf;
1413
1414 offset = qp->tx_mw + qp->tx_max_frame * qp->tx_index;
1415 hdr = offset + qp->tx_max_frame - sizeof(struct ntb_payload_header);
1416 entry->tx_hdr = hdr;
1417
1418 iowrite32(entry->len, &hdr->len);
1419 iowrite32((u32)qp->tx_pkts, &hdr->ver);
1420
1421 if (!chan)
1422 goto err;
1423
1424 if (len < copy_bytes)
1425 goto err;
1426
1427 device = chan->device;
1428 dest = qp->tx_mw_phys + qp->tx_max_frame * qp->tx_index;
1429 buff_off = (size_t)buf & ~PAGE_MASK;
1430 dest_off = (size_t)dest & ~PAGE_MASK;
1431
1432 if (!is_dma_copy_aligned(device, buff_off, dest_off, len))
1433 goto err;
1434
1435 unmap = dmaengine_get_unmap_data(device->dev, 1, GFP_NOWAIT);
1436 if (!unmap)
1437 goto err;
1438
1439 unmap->len = len;
1440 unmap->addr[0] = dma_map_page(device->dev, virt_to_page(buf),
1441 buff_off, len, DMA_TO_DEVICE);
1442 if (dma_mapping_error(device->dev, unmap->addr[0]))
1443 goto err_get_unmap;
1444
1445 unmap->to_cnt = 1;
1446
1447 txd = device->device_prep_dma_memcpy(chan, dest, unmap->addr[0], len,
1448 DMA_PREP_INTERRUPT);
1449 if (!txd)
1450 goto err_get_unmap;
1451
1452 txd->callback = ntb_tx_copy_callback;
1453 txd->callback_param = entry;
1454 dma_set_unmap(txd, unmap);
1455
1456 cookie = dmaengine_submit(txd);
1457 if (dma_submit_error(cookie))
1458 goto err_set_unmap;
1459
1460 dmaengine_unmap_put(unmap);
1461
1462 dma_async_issue_pending(chan);
1463 qp->tx_async++;
1464
1465 return;
1466 err_set_unmap:
1467 dmaengine_unmap_put(unmap);
1468 err_get_unmap:
1469 dmaengine_unmap_put(unmap);
1470 err:
1471 ntb_memcpy_tx(entry, offset);
1472 qp->tx_memcpy++;
1473 }
1474
1475 static int ntb_process_tx(struct ntb_transport_qp *qp,
1476 struct ntb_queue_entry *entry)
1477 {
1478 if (qp->tx_index == qp->remote_rx_info->entry) {
1479 qp->tx_ring_full++;
1480 return -EAGAIN;
1481 }
1482
1483 if (entry->len > qp->tx_max_frame - sizeof(struct ntb_payload_header)) {
1484 if (qp->tx_handler)
1485 qp->tx_handler(qp->cb_data, qp, NULL, -EIO);
1486
1487 ntb_list_add(&qp->ntb_tx_free_q_lock, &entry->entry,
1488 &qp->tx_free_q);
1489 return 0;
1490 }
1491
1492 ntb_async_tx(qp, entry);
1493
1494 qp->tx_index++;
1495 qp->tx_index %= qp->tx_max_entry;
1496
1497 qp->tx_pkts++;
1498
1499 return 0;
1500 }
1501
1502 static void ntb_send_link_down(struct ntb_transport_qp *qp)
1503 {
1504 struct pci_dev *pdev = qp->ndev->pdev;
1505 struct ntb_queue_entry *entry;
1506 int i, rc;
1507
1508 if (!qp->link_is_up)
1509 return;
1510
1511 dev_info(&pdev->dev, "qp %d: Send Link Down\n", qp->qp_num);
1512
1513 for (i = 0; i < NTB_LINK_DOWN_TIMEOUT; i++) {
1514 entry = ntb_list_rm(&qp->ntb_tx_free_q_lock, &qp->tx_free_q);
1515 if (entry)
1516 break;
1517 msleep(100);
1518 }
1519
1520 if (!entry)
1521 return;
1522
1523 entry->cb_data = NULL;
1524 entry->buf = NULL;
1525 entry->len = 0;
1526 entry->flags = LINK_DOWN_FLAG;
1527
1528 rc = ntb_process_tx(qp, entry);
1529 if (rc)
1530 dev_err(&pdev->dev, "ntb: QP%d unable to send linkdown msg\n",
1531 qp->qp_num);
1532
1533 ntb_qp_link_down_reset(qp);
1534 }
1535
1536 static bool ntb_dma_filter_fn(struct dma_chan *chan, void *node)
1537 {
1538 return dev_to_node(&chan->dev->device) == (int)(unsigned long)node;
1539 }
1540
1541 /**
1542 * ntb_transport_create_queue - Create a new NTB transport layer queue
1543 * @rx_handler: receive callback function
1544 * @tx_handler: transmit callback function
1545 * @event_handler: event callback function
1546 *
1547 * Create a new NTB transport layer queue and provide the queue with a callback
1548 * routine for both transmit and receive. The receive callback routine will be
1549 * used to pass up data when the transport has received it on the queue. The
1550 * transmit callback routine will be called when the transport has completed the
1551 * transmission of the data on the queue and the data is ready to be freed.
1552 *
1553 * RETURNS: pointer to newly created ntb_queue, NULL on error.
1554 */
1555 struct ntb_transport_qp *
1556 ntb_transport_create_queue(void *data, struct device *client_dev,
1557 const struct ntb_queue_handlers *handlers)
1558 {
1559 struct ntb_dev *ndev;
1560 struct pci_dev *pdev;
1561 struct ntb_transport_ctx *nt;
1562 struct ntb_queue_entry *entry;
1563 struct ntb_transport_qp *qp;
1564 u64 qp_bit;
1565 unsigned int free_queue;
1566 dma_cap_mask_t dma_mask;
1567 int node;
1568 int i;
1569
1570 ndev = dev_ntb(client_dev->parent);
1571 pdev = ndev->pdev;
1572 nt = ndev->ctx;
1573
1574 node = dev_to_node(&ndev->dev);
1575
1576 free_queue = ffs(nt->qp_bitmap);
1577 if (!free_queue)
1578 goto err;
1579
1580 /* decrement free_queue to make it zero based */
1581 free_queue--;
1582
1583 qp = &nt->qp_vec[free_queue];
1584 qp_bit = BIT_ULL(qp->qp_num);
1585
1586 nt->qp_bitmap_free &= ~qp_bit;
1587
1588 qp->cb_data = data;
1589 qp->rx_handler = handlers->rx_handler;
1590 qp->tx_handler = handlers->tx_handler;
1591 qp->event_handler = handlers->event_handler;
1592
1593 dma_cap_zero(dma_mask);
1594 dma_cap_set(DMA_MEMCPY, dma_mask);
1595
1596 if (use_dma) {
1597 qp->dma_chan = dma_request_channel(dma_mask, ntb_dma_filter_fn,
1598 (void *)(unsigned long)node);
1599 if (!qp->dma_chan)
1600 dev_info(&pdev->dev, "Unable to allocate DMA channel\n");
1601 } else {
1602 qp->dma_chan = NULL;
1603 }
1604 dev_dbg(&pdev->dev, "Using %s memcpy\n", qp->dma_chan ? "DMA" : "CPU");
1605
1606 for (i = 0; i < NTB_QP_DEF_NUM_ENTRIES; i++) {
1607 entry = kzalloc_node(sizeof(*entry), GFP_ATOMIC, node);
1608 if (!entry)
1609 goto err1;
1610
1611 entry->qp = qp;
1612 ntb_list_add(&qp->ntb_rx_free_q_lock, &entry->entry,
1613 &qp->rx_free_q);
1614 }
1615
1616 for (i = 0; i < NTB_QP_DEF_NUM_ENTRIES; i++) {
1617 entry = kzalloc_node(sizeof(*entry), GFP_ATOMIC, node);
1618 if (!entry)
1619 goto err2;
1620
1621 entry->qp = qp;
1622 ntb_list_add(&qp->ntb_tx_free_q_lock, &entry->entry,
1623 &qp->tx_free_q);
1624 }
1625
1626 ntb_db_clear(qp->ndev, qp_bit);
1627 ntb_db_clear_mask(qp->ndev, qp_bit);
1628
1629 dev_info(&pdev->dev, "NTB Transport QP %d created\n", qp->qp_num);
1630
1631 return qp;
1632
1633 err2:
1634 while ((entry = ntb_list_rm(&qp->ntb_tx_free_q_lock, &qp->tx_free_q)))
1635 kfree(entry);
1636 err1:
1637 while ((entry = ntb_list_rm(&qp->ntb_rx_free_q_lock, &qp->rx_free_q)))
1638 kfree(entry);
1639 if (qp->dma_chan)
1640 dma_release_channel(qp->dma_chan);
1641 nt->qp_bitmap_free |= qp_bit;
1642 err:
1643 return NULL;
1644 }
1645 EXPORT_SYMBOL_GPL(ntb_transport_create_queue);
1646
1647 /**
1648 * ntb_transport_free_queue - Frees NTB transport queue
1649 * @qp: NTB queue to be freed
1650 *
1651 * Frees NTB transport queue
1652 */
1653 void ntb_transport_free_queue(struct ntb_transport_qp *qp)
1654 {
1655 struct ntb_transport_ctx *nt = qp->transport;
1656 struct pci_dev *pdev;
1657 struct ntb_queue_entry *entry;
1658 u64 qp_bit;
1659
1660 if (!qp)
1661 return;
1662
1663 pdev = qp->ndev->pdev;
1664
1665 if (qp->dma_chan) {
1666 struct dma_chan *chan = qp->dma_chan;
1667 /* Putting the dma_chan to NULL will force any new traffic to be
1668 * processed by the CPU instead of the DAM engine
1669 */
1670 qp->dma_chan = NULL;
1671
1672 /* Try to be nice and wait for any queued DMA engine
1673 * transactions to process before smashing it with a rock
1674 */
1675 dma_sync_wait(chan, qp->last_cookie);
1676 dmaengine_terminate_all(chan);
1677 dma_release_channel(chan);
1678 }
1679
1680 qp_bit = BIT_ULL(qp->qp_num);
1681
1682 ntb_db_set_mask(qp->ndev, qp_bit);
1683 tasklet_disable(&qp->rxc_db_work);
1684
1685 cancel_delayed_work_sync(&qp->link_work);
1686
1687 qp->cb_data = NULL;
1688 qp->rx_handler = NULL;
1689 qp->tx_handler = NULL;
1690 qp->event_handler = NULL;
1691
1692 while ((entry = ntb_list_rm(&qp->ntb_rx_free_q_lock, &qp->rx_free_q)))
1693 kfree(entry);
1694
1695 while ((entry = ntb_list_rm(&qp->ntb_rx_pend_q_lock, &qp->rx_pend_q))) {
1696 dev_warn(&pdev->dev, "Freeing item from a non-empty queue\n");
1697 kfree(entry);
1698 }
1699
1700 while ((entry = ntb_list_rm(&qp->ntb_tx_free_q_lock, &qp->tx_free_q)))
1701 kfree(entry);
1702
1703 nt->qp_bitmap_free |= qp_bit;
1704
1705 dev_info(&pdev->dev, "NTB Transport QP %d freed\n", qp->qp_num);
1706 }
1707 EXPORT_SYMBOL_GPL(ntb_transport_free_queue);
1708
1709 /**
1710 * ntb_transport_rx_remove - Dequeues enqueued rx packet
1711 * @qp: NTB queue to be freed
1712 * @len: pointer to variable to write enqueued buffers length
1713 *
1714 * Dequeues unused buffers from receive queue. Should only be used during
1715 * shutdown of qp.
1716 *
1717 * RETURNS: NULL error value on error, or void* for success.
1718 */
1719 void *ntb_transport_rx_remove(struct ntb_transport_qp *qp, unsigned int *len)
1720 {
1721 struct ntb_queue_entry *entry;
1722 void *buf;
1723
1724 if (!qp || qp->client_ready)
1725 return NULL;
1726
1727 entry = ntb_list_rm(&qp->ntb_rx_pend_q_lock, &qp->rx_pend_q);
1728 if (!entry)
1729 return NULL;
1730
1731 buf = entry->cb_data;
1732 *len = entry->len;
1733
1734 ntb_list_add(&qp->ntb_rx_free_q_lock, &entry->entry, &qp->rx_free_q);
1735
1736 return buf;
1737 }
1738 EXPORT_SYMBOL_GPL(ntb_transport_rx_remove);
1739
1740 /**
1741 * ntb_transport_rx_enqueue - Enqueue a new NTB queue entry
1742 * @qp: NTB transport layer queue the entry is to be enqueued on
1743 * @cb: per buffer pointer for callback function to use
1744 * @data: pointer to data buffer that incoming packets will be copied into
1745 * @len: length of the data buffer
1746 *
1747 * Enqueue a new receive buffer onto the transport queue into which a NTB
1748 * payload can be received into.
1749 *
1750 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
1751 */
1752 int ntb_transport_rx_enqueue(struct ntb_transport_qp *qp, void *cb, void *data,
1753 unsigned int len)
1754 {
1755 struct ntb_queue_entry *entry;
1756
1757 if (!qp)
1758 return -EINVAL;
1759
1760 entry = ntb_list_rm(&qp->ntb_rx_free_q_lock, &qp->rx_free_q);
1761 if (!entry)
1762 return -ENOMEM;
1763
1764 entry->cb_data = cb;
1765 entry->buf = data;
1766 entry->len = len;
1767
1768 ntb_list_add(&qp->ntb_rx_pend_q_lock, &entry->entry, &qp->rx_pend_q);
1769
1770 return 0;
1771 }
1772 EXPORT_SYMBOL_GPL(ntb_transport_rx_enqueue);
1773
1774 /**
1775 * ntb_transport_tx_enqueue - Enqueue a new NTB queue entry
1776 * @qp: NTB transport layer queue the entry is to be enqueued on
1777 * @cb: per buffer pointer for callback function to use
1778 * @data: pointer to data buffer that will be sent
1779 * @len: length of the data buffer
1780 *
1781 * Enqueue a new transmit buffer onto the transport queue from which a NTB
1782 * payload will be transmitted. This assumes that a lock is being held to
1783 * serialize access to the qp.
1784 *
1785 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
1786 */
1787 int ntb_transport_tx_enqueue(struct ntb_transport_qp *qp, void *cb, void *data,
1788 unsigned int len)
1789 {
1790 struct ntb_queue_entry *entry;
1791 int rc;
1792
1793 if (!qp || !qp->link_is_up || !len)
1794 return -EINVAL;
1795
1796 entry = ntb_list_rm(&qp->ntb_tx_free_q_lock, &qp->tx_free_q);
1797 if (!entry) {
1798 qp->tx_err_no_buf++;
1799 return -ENOMEM;
1800 }
1801
1802 entry->cb_data = cb;
1803 entry->buf = data;
1804 entry->len = len;
1805 entry->flags = 0;
1806
1807 rc = ntb_process_tx(qp, entry);
1808 if (rc)
1809 ntb_list_add(&qp->ntb_tx_free_q_lock, &entry->entry,
1810 &qp->tx_free_q);
1811
1812 return rc;
1813 }
1814 EXPORT_SYMBOL_GPL(ntb_transport_tx_enqueue);
1815
1816 /**
1817 * ntb_transport_link_up - Notify NTB transport of client readiness to use queue
1818 * @qp: NTB transport layer queue to be enabled
1819 *
1820 * Notify NTB transport layer of client readiness to use queue
1821 */
1822 void ntb_transport_link_up(struct ntb_transport_qp *qp)
1823 {
1824 if (!qp)
1825 return;
1826
1827 qp->client_ready = true;
1828
1829 if (qp->transport->link_is_up)
1830 schedule_delayed_work(&qp->link_work, 0);
1831 }
1832 EXPORT_SYMBOL_GPL(ntb_transport_link_up);
1833
1834 /**
1835 * ntb_transport_link_down - Notify NTB transport to no longer enqueue data
1836 * @qp: NTB transport layer queue to be disabled
1837 *
1838 * Notify NTB transport layer of client's desire to no longer receive data on
1839 * transport queue specified. It is the client's responsibility to ensure all
1840 * entries on queue are purged or otherwise handled appropriately.
1841 */
1842 void ntb_transport_link_down(struct ntb_transport_qp *qp)
1843 {
1844 struct pci_dev *pdev;
1845 int val;
1846
1847 if (!qp)
1848 return;
1849
1850 pdev = qp->ndev->pdev;
1851 qp->client_ready = false;
1852
1853 val = ntb_spad_read(qp->ndev, QP_LINKS);
1854
1855 ntb_peer_spad_write(qp->ndev, QP_LINKS,
1856 val & ~BIT(qp->qp_num));
1857
1858 if (qp->link_is_up)
1859 ntb_send_link_down(qp);
1860 else
1861 cancel_delayed_work_sync(&qp->link_work);
1862 }
1863 EXPORT_SYMBOL_GPL(ntb_transport_link_down);
1864
1865 /**
1866 * ntb_transport_link_query - Query transport link state
1867 * @qp: NTB transport layer queue to be queried
1868 *
1869 * Query connectivity to the remote system of the NTB transport queue
1870 *
1871 * RETURNS: true for link up or false for link down
1872 */
1873 bool ntb_transport_link_query(struct ntb_transport_qp *qp)
1874 {
1875 if (!qp)
1876 return false;
1877
1878 return qp->link_is_up;
1879 }
1880 EXPORT_SYMBOL_GPL(ntb_transport_link_query);
1881
1882 /**
1883 * ntb_transport_qp_num - Query the qp number
1884 * @qp: NTB transport layer queue to be queried
1885 *
1886 * Query qp number of the NTB transport queue
1887 *
1888 * RETURNS: a zero based number specifying the qp number
1889 */
1890 unsigned char ntb_transport_qp_num(struct ntb_transport_qp *qp)
1891 {
1892 if (!qp)
1893 return 0;
1894
1895 return qp->qp_num;
1896 }
1897 EXPORT_SYMBOL_GPL(ntb_transport_qp_num);
1898
1899 /**
1900 * ntb_transport_max_size - Query the max payload size of a qp
1901 * @qp: NTB transport layer queue to be queried
1902 *
1903 * Query the maximum payload size permissible on the given qp
1904 *
1905 * RETURNS: the max payload size of a qp
1906 */
1907 unsigned int ntb_transport_max_size(struct ntb_transport_qp *qp)
1908 {
1909 unsigned int max;
1910
1911 if (!qp)
1912 return 0;
1913
1914 if (!qp->dma_chan)
1915 return qp->tx_max_frame - sizeof(struct ntb_payload_header);
1916
1917 /* If DMA engine usage is possible, try to find the max size for that */
1918 max = qp->tx_max_frame - sizeof(struct ntb_payload_header);
1919 max -= max % (1 << qp->dma_chan->device->copy_align);
1920
1921 return max;
1922 }
1923 EXPORT_SYMBOL_GPL(ntb_transport_max_size);
1924
1925 static void ntb_transport_doorbell_callback(void *data, int vector)
1926 {
1927 struct ntb_transport_ctx *nt = data;
1928 struct ntb_transport_qp *qp;
1929 u64 db_bits;
1930 unsigned int qp_num;
1931
1932 db_bits = (nt->qp_bitmap & ~nt->qp_bitmap_free &
1933 ntb_db_vector_mask(nt->ndev, vector));
1934
1935 while (db_bits) {
1936 qp_num = __ffs(db_bits);
1937 qp = &nt->qp_vec[qp_num];
1938
1939 tasklet_schedule(&qp->rxc_db_work);
1940
1941 db_bits &= ~BIT_ULL(qp_num);
1942 }
1943 }
1944
1945 static const struct ntb_ctx_ops ntb_transport_ops = {
1946 .link_event = ntb_transport_event_callback,
1947 .db_event = ntb_transport_doorbell_callback,
1948 };
1949
1950 static struct ntb_client ntb_transport_client = {
1951 .ops = {
1952 .probe = ntb_transport_probe,
1953 .remove = ntb_transport_free,
1954 },
1955 };
1956
1957 static int __init ntb_transport_init(void)
1958 {
1959 int rc;
1960
1961 pr_info("%s, version %s\n", NTB_TRANSPORT_DESC, NTB_TRANSPORT_VER);
1962
1963 if (debugfs_initialized())
1964 nt_debugfs_dir = debugfs_create_dir(KBUILD_MODNAME, NULL);
1965
1966 rc = bus_register(&ntb_transport_bus);
1967 if (rc)
1968 goto err_bus;
1969
1970 rc = ntb_register_client(&ntb_transport_client);
1971 if (rc)
1972 goto err_client;
1973
1974 return 0;
1975
1976 err_client:
1977 bus_unregister(&ntb_transport_bus);
1978 err_bus:
1979 debugfs_remove_recursive(nt_debugfs_dir);
1980 return rc;
1981 }
1982 module_init(ntb_transport_init);
1983
1984 static void __exit ntb_transport_exit(void)
1985 {
1986 debugfs_remove_recursive(nt_debugfs_dir);
1987
1988 ntb_unregister_client(&ntb_transport_client);
1989 bus_unregister(&ntb_transport_bus);
1990 }
1991 module_exit(ntb_transport_exit);
This page took 0.078279 seconds and 5 git commands to generate.