Merge tag 'platform-drivers-x86-v4.5-2' of git://git.infradead.org/users/dvhart/linux...
[deliverable/linux.git] / drivers / ntb / test / ntb_perf.c
1 /*
2 * This file is provided under a dual BSD/GPLv2 license. When using or
3 * redistributing this file, you may do so under either license.
4 *
5 * GPL LICENSE SUMMARY
6 *
7 * Copyright(c) 2015 Intel Corporation. All rights reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of version 2 of the GNU General Public License as
11 * published by the Free Software Foundation.
12 *
13 * BSD LICENSE
14 *
15 * Copyright(c) 2015 Intel Corporation. All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions
19 * are met:
20 *
21 * * Redistributions of source code must retain the above copyright
22 * notice, this list of conditions and the following disclaimer.
23 * * Redistributions in binary form must reproduce the above copy
24 * notice, this list of conditions and the following disclaimer in
25 * the documentation and/or other materials provided with the
26 * distribution.
27 * * Neither the name of Intel Corporation nor the names of its
28 * contributors may be used to endorse or promote products derived
29 * from this software without specific prior written permission.
30 *
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
36 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
37 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
38 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
39 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
40 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
41 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
42 *
43 * PCIe NTB Perf Linux driver
44 */
45
46 #include <linux/init.h>
47 #include <linux/kernel.h>
48 #include <linux/module.h>
49 #include <linux/kthread.h>
50 #include <linux/time.h>
51 #include <linux/timer.h>
52 #include <linux/dma-mapping.h>
53 #include <linux/pci.h>
54 #include <linux/slab.h>
55 #include <linux/spinlock.h>
56 #include <linux/debugfs.h>
57 #include <linux/dmaengine.h>
58 #include <linux/delay.h>
59 #include <linux/sizes.h>
60 #include <linux/ntb.h>
61
62 #define DRIVER_NAME "ntb_perf"
63 #define DRIVER_DESCRIPTION "PCIe NTB Performance Measurement Tool"
64
65 #define DRIVER_LICENSE "Dual BSD/GPL"
66 #define DRIVER_VERSION "1.0"
67 #define DRIVER_AUTHOR "Dave Jiang <dave.jiang@intel.com>"
68
69 #define PERF_LINK_DOWN_TIMEOUT 10
70 #define PERF_VERSION 0xffff0001
71 #define MAX_THREADS 32
72 #define MAX_TEST_SIZE SZ_1M
73 #define MAX_SRCS 32
74 #define DMA_OUT_RESOURCE_TO 50
75 #define DMA_RETRIES 20
76 #define SZ_4G (1ULL << 32)
77 #define MAX_SEG_ORDER 20 /* no larger than 1M for kmalloc buffer */
78
79 MODULE_LICENSE(DRIVER_LICENSE);
80 MODULE_VERSION(DRIVER_VERSION);
81 MODULE_AUTHOR(DRIVER_AUTHOR);
82 MODULE_DESCRIPTION(DRIVER_DESCRIPTION);
83
84 static struct dentry *perf_debugfs_dir;
85
86 static unsigned int seg_order = 19; /* 512K */
87 module_param(seg_order, uint, 0644);
88 MODULE_PARM_DESC(seg_order, "size order [n^2] of buffer segment for testing");
89
90 static unsigned int run_order = 32; /* 4G */
91 module_param(run_order, uint, 0644);
92 MODULE_PARM_DESC(run_order, "size order [n^2] of total data to transfer");
93
94 static bool use_dma; /* default to 0 */
95 module_param(use_dma, bool, 0644);
96 MODULE_PARM_DESC(use_dma, "Using DMA engine to measure performance");
97
98 struct perf_mw {
99 phys_addr_t phys_addr;
100 resource_size_t phys_size;
101 resource_size_t xlat_align;
102 resource_size_t xlat_align_size;
103 void __iomem *vbase;
104 size_t xlat_size;
105 size_t buf_size;
106 void *virt_addr;
107 dma_addr_t dma_addr;
108 };
109
110 struct perf_ctx;
111
112 struct pthr_ctx {
113 struct task_struct *thread;
114 struct perf_ctx *perf;
115 atomic_t dma_sync;
116 struct dma_chan *dma_chan;
117 int dma_prep_err;
118 int src_idx;
119 void *srcs[MAX_SRCS];
120 };
121
122 struct perf_ctx {
123 struct ntb_dev *ntb;
124 spinlock_t db_lock;
125 struct perf_mw mw;
126 bool link_is_up;
127 struct work_struct link_cleanup;
128 struct delayed_work link_work;
129 struct dentry *debugfs_node_dir;
130 struct dentry *debugfs_run;
131 struct dentry *debugfs_threads;
132 u8 perf_threads;
133 bool run;
134 struct pthr_ctx pthr_ctx[MAX_THREADS];
135 atomic_t tsync;
136 };
137
138 enum {
139 VERSION = 0,
140 MW_SZ_HIGH,
141 MW_SZ_LOW,
142 SPAD_MSG,
143 SPAD_ACK,
144 MAX_SPAD
145 };
146
147 static void perf_link_event(void *ctx)
148 {
149 struct perf_ctx *perf = ctx;
150
151 if (ntb_link_is_up(perf->ntb, NULL, NULL) == 1)
152 schedule_delayed_work(&perf->link_work, 2*HZ);
153 else
154 schedule_work(&perf->link_cleanup);
155 }
156
157 static void perf_db_event(void *ctx, int vec)
158 {
159 struct perf_ctx *perf = ctx;
160 u64 db_bits, db_mask;
161
162 db_mask = ntb_db_vector_mask(perf->ntb, vec);
163 db_bits = ntb_db_read(perf->ntb);
164
165 dev_dbg(&perf->ntb->dev, "doorbell vec %d mask %#llx bits %#llx\n",
166 vec, db_mask, db_bits);
167 }
168
169 static const struct ntb_ctx_ops perf_ops = {
170 .link_event = perf_link_event,
171 .db_event = perf_db_event,
172 };
173
174 static void perf_copy_callback(void *data)
175 {
176 struct pthr_ctx *pctx = data;
177
178 atomic_dec(&pctx->dma_sync);
179 }
180
181 static ssize_t perf_copy(struct pthr_ctx *pctx, char *dst,
182 char *src, size_t size)
183 {
184 struct perf_ctx *perf = pctx->perf;
185 struct dma_async_tx_descriptor *txd;
186 struct dma_chan *chan = pctx->dma_chan;
187 struct dma_device *device;
188 struct dmaengine_unmap_data *unmap;
189 dma_cookie_t cookie;
190 size_t src_off, dst_off;
191 struct perf_mw *mw = &perf->mw;
192 u64 vbase, dst_vaddr;
193 dma_addr_t dst_phys;
194 int retries = 0;
195
196 if (!use_dma) {
197 memcpy_toio(dst, src, size);
198 return size;
199 }
200
201 if (!chan) {
202 dev_err(&perf->ntb->dev, "DMA engine does not exist\n");
203 return -EINVAL;
204 }
205
206 device = chan->device;
207 src_off = (size_t)src & ~PAGE_MASK;
208 dst_off = (size_t)dst & ~PAGE_MASK;
209
210 if (!is_dma_copy_aligned(device, src_off, dst_off, size))
211 return -ENODEV;
212
213 vbase = (u64)(u64 *)mw->vbase;
214 dst_vaddr = (u64)(u64 *)dst;
215 dst_phys = mw->phys_addr + (dst_vaddr - vbase);
216
217 unmap = dmaengine_get_unmap_data(device->dev, 1, GFP_NOWAIT);
218 if (!unmap)
219 return -ENOMEM;
220
221 unmap->len = size;
222 unmap->addr[0] = dma_map_page(device->dev, virt_to_page(src),
223 src_off, size, DMA_TO_DEVICE);
224 if (dma_mapping_error(device->dev, unmap->addr[0]))
225 goto err_get_unmap;
226
227 unmap->to_cnt = 1;
228
229 do {
230 txd = device->device_prep_dma_memcpy(chan, dst_phys,
231 unmap->addr[0],
232 size, DMA_PREP_INTERRUPT);
233 if (!txd) {
234 set_current_state(TASK_INTERRUPTIBLE);
235 schedule_timeout(DMA_OUT_RESOURCE_TO);
236 }
237 } while (!txd && (++retries < DMA_RETRIES));
238
239 if (!txd) {
240 pctx->dma_prep_err++;
241 goto err_get_unmap;
242 }
243
244 txd->callback = perf_copy_callback;
245 txd->callback_param = pctx;
246 dma_set_unmap(txd, unmap);
247
248 cookie = dmaengine_submit(txd);
249 if (dma_submit_error(cookie))
250 goto err_set_unmap;
251
252 atomic_inc(&pctx->dma_sync);
253 dma_async_issue_pending(chan);
254
255 return size;
256
257 err_set_unmap:
258 dmaengine_unmap_put(unmap);
259 err_get_unmap:
260 dmaengine_unmap_put(unmap);
261 return 0;
262 }
263
264 static int perf_move_data(struct pthr_ctx *pctx, char *dst, char *src,
265 u64 buf_size, u64 win_size, u64 total)
266 {
267 int chunks, total_chunks, i;
268 int copied_chunks = 0;
269 u64 copied = 0, result;
270 char *tmp = dst;
271 u64 perf, diff_us;
272 ktime_t kstart, kstop, kdiff;
273
274 chunks = div64_u64(win_size, buf_size);
275 total_chunks = div64_u64(total, buf_size);
276 kstart = ktime_get();
277
278 for (i = 0; i < total_chunks; i++) {
279 result = perf_copy(pctx, tmp, src, buf_size);
280 copied += result;
281 copied_chunks++;
282 if (copied_chunks == chunks) {
283 tmp = dst;
284 copied_chunks = 0;
285 } else
286 tmp += buf_size;
287
288 /* Probably should schedule every 4GB to prevent soft hang. */
289 if (((copied % SZ_4G) == 0) && !use_dma) {
290 set_current_state(TASK_INTERRUPTIBLE);
291 schedule_timeout(1);
292 }
293 }
294
295 if (use_dma) {
296 pr_info("%s: All DMA descriptors submitted\n", current->comm);
297 while (atomic_read(&pctx->dma_sync) != 0)
298 msleep(20);
299 }
300
301 kstop = ktime_get();
302 kdiff = ktime_sub(kstop, kstart);
303 diff_us = ktime_to_us(kdiff);
304
305 pr_info("%s: copied %llu bytes\n", current->comm, copied);
306
307 pr_info("%s: lasted %llu usecs\n", current->comm, diff_us);
308
309 perf = div64_u64(copied, diff_us);
310
311 pr_info("%s: MBytes/s: %llu\n", current->comm, perf);
312
313 return 0;
314 }
315
316 static bool perf_dma_filter_fn(struct dma_chan *chan, void *node)
317 {
318 return dev_to_node(&chan->dev->device) == (int)(unsigned long)node;
319 }
320
321 static int ntb_perf_thread(void *data)
322 {
323 struct pthr_ctx *pctx = data;
324 struct perf_ctx *perf = pctx->perf;
325 struct pci_dev *pdev = perf->ntb->pdev;
326 struct perf_mw *mw = &perf->mw;
327 char *dst;
328 u64 win_size, buf_size, total;
329 void *src;
330 int rc, node, i;
331 struct dma_chan *dma_chan = NULL;
332
333 pr_info("kthread %s starting...\n", current->comm);
334
335 node = dev_to_node(&pdev->dev);
336
337 if (use_dma && !pctx->dma_chan) {
338 dma_cap_mask_t dma_mask;
339
340 dma_cap_zero(dma_mask);
341 dma_cap_set(DMA_MEMCPY, dma_mask);
342 dma_chan = dma_request_channel(dma_mask, perf_dma_filter_fn,
343 (void *)(unsigned long)node);
344 if (!dma_chan) {
345 pr_warn("%s: cannot acquire DMA channel, quitting\n",
346 current->comm);
347 return -ENODEV;
348 }
349 pctx->dma_chan = dma_chan;
350 }
351
352 for (i = 0; i < MAX_SRCS; i++) {
353 pctx->srcs[i] = kmalloc_node(MAX_TEST_SIZE, GFP_KERNEL, node);
354 if (!pctx->srcs[i]) {
355 rc = -ENOMEM;
356 goto err;
357 }
358 }
359
360 win_size = mw->phys_size;
361 buf_size = 1ULL << seg_order;
362 total = 1ULL << run_order;
363
364 if (buf_size > MAX_TEST_SIZE)
365 buf_size = MAX_TEST_SIZE;
366
367 dst = (char *)mw->vbase;
368
369 atomic_inc(&perf->tsync);
370 while (atomic_read(&perf->tsync) != perf->perf_threads)
371 schedule();
372
373 src = pctx->srcs[pctx->src_idx];
374 pctx->src_idx = (pctx->src_idx + 1) & (MAX_SRCS - 1);
375
376 rc = perf_move_data(pctx, dst, src, buf_size, win_size, total);
377
378 atomic_dec(&perf->tsync);
379
380 if (rc < 0) {
381 pr_err("%s: failed\n", current->comm);
382 rc = -ENXIO;
383 goto err;
384 }
385
386 for (i = 0; i < MAX_SRCS; i++) {
387 kfree(pctx->srcs[i]);
388 pctx->srcs[i] = NULL;
389 }
390
391 return 0;
392
393 err:
394 for (i = 0; i < MAX_SRCS; i++) {
395 kfree(pctx->srcs[i]);
396 pctx->srcs[i] = NULL;
397 }
398
399 if (dma_chan) {
400 dma_release_channel(dma_chan);
401 pctx->dma_chan = NULL;
402 }
403
404 return rc;
405 }
406
407 static void perf_free_mw(struct perf_ctx *perf)
408 {
409 struct perf_mw *mw = &perf->mw;
410 struct pci_dev *pdev = perf->ntb->pdev;
411
412 if (!mw->virt_addr)
413 return;
414
415 ntb_mw_clear_trans(perf->ntb, 0);
416 dma_free_coherent(&pdev->dev, mw->buf_size,
417 mw->virt_addr, mw->dma_addr);
418 mw->xlat_size = 0;
419 mw->buf_size = 0;
420 mw->virt_addr = NULL;
421 }
422
423 static int perf_set_mw(struct perf_ctx *perf, resource_size_t size)
424 {
425 struct perf_mw *mw = &perf->mw;
426 size_t xlat_size, buf_size;
427
428 if (!size)
429 return -EINVAL;
430
431 xlat_size = round_up(size, mw->xlat_align_size);
432 buf_size = round_up(size, mw->xlat_align);
433
434 if (mw->xlat_size == xlat_size)
435 return 0;
436
437 if (mw->buf_size)
438 perf_free_mw(perf);
439
440 mw->xlat_size = xlat_size;
441 mw->buf_size = buf_size;
442
443 mw->virt_addr = dma_alloc_coherent(&perf->ntb->pdev->dev, buf_size,
444 &mw->dma_addr, GFP_KERNEL);
445 if (!mw->virt_addr) {
446 mw->xlat_size = 0;
447 mw->buf_size = 0;
448 }
449
450 return 0;
451 }
452
453 static void perf_link_work(struct work_struct *work)
454 {
455 struct perf_ctx *perf =
456 container_of(work, struct perf_ctx, link_work.work);
457 struct ntb_dev *ndev = perf->ntb;
458 struct pci_dev *pdev = ndev->pdev;
459 u32 val;
460 u64 size;
461 int rc;
462
463 dev_dbg(&perf->ntb->pdev->dev, "%s called\n", __func__);
464
465 size = perf->mw.phys_size;
466 ntb_peer_spad_write(ndev, MW_SZ_HIGH, upper_32_bits(size));
467 ntb_peer_spad_write(ndev, MW_SZ_LOW, lower_32_bits(size));
468 ntb_peer_spad_write(ndev, VERSION, PERF_VERSION);
469
470 /* now read what peer wrote */
471 val = ntb_spad_read(ndev, VERSION);
472 if (val != PERF_VERSION) {
473 dev_dbg(&pdev->dev, "Remote version = %#x\n", val);
474 goto out;
475 }
476
477 val = ntb_spad_read(ndev, MW_SZ_HIGH);
478 size = (u64)val << 32;
479
480 val = ntb_spad_read(ndev, MW_SZ_LOW);
481 size |= val;
482
483 dev_dbg(&pdev->dev, "Remote MW size = %#llx\n", size);
484
485 rc = perf_set_mw(perf, size);
486 if (rc)
487 goto out1;
488
489 perf->link_is_up = true;
490
491 return;
492
493 out1:
494 perf_free_mw(perf);
495
496 out:
497 if (ntb_link_is_up(ndev, NULL, NULL) == 1)
498 schedule_delayed_work(&perf->link_work,
499 msecs_to_jiffies(PERF_LINK_DOWN_TIMEOUT));
500 }
501
502 static void perf_link_cleanup(struct work_struct *work)
503 {
504 struct perf_ctx *perf = container_of(work,
505 struct perf_ctx,
506 link_cleanup);
507
508 dev_dbg(&perf->ntb->pdev->dev, "%s called\n", __func__);
509
510 if (!perf->link_is_up)
511 cancel_delayed_work_sync(&perf->link_work);
512 }
513
514 static int perf_setup_mw(struct ntb_dev *ntb, struct perf_ctx *perf)
515 {
516 struct perf_mw *mw;
517 int rc;
518
519 mw = &perf->mw;
520
521 rc = ntb_mw_get_range(ntb, 0, &mw->phys_addr, &mw->phys_size,
522 &mw->xlat_align, &mw->xlat_align_size);
523 if (rc)
524 return rc;
525
526 perf->mw.vbase = ioremap_wc(mw->phys_addr, mw->phys_size);
527 if (!mw->vbase)
528 return -ENOMEM;
529
530 return 0;
531 }
532
533 static ssize_t debugfs_run_read(struct file *filp, char __user *ubuf,
534 size_t count, loff_t *offp)
535 {
536 struct perf_ctx *perf = filp->private_data;
537 char *buf;
538 ssize_t ret, out_offset;
539
540 if (!perf)
541 return 0;
542
543 buf = kmalloc(64, GFP_KERNEL);
544 out_offset = snprintf(buf, 64, "%d\n", perf->run);
545 ret = simple_read_from_buffer(ubuf, count, offp, buf, out_offset);
546 kfree(buf);
547
548 return ret;
549 }
550
551 static ssize_t debugfs_run_write(struct file *filp, const char __user *ubuf,
552 size_t count, loff_t *offp)
553 {
554 struct perf_ctx *perf = filp->private_data;
555 int node, i;
556
557 if (!perf->link_is_up)
558 return 0;
559
560 if (perf->perf_threads == 0)
561 return 0;
562
563 if (atomic_read(&perf->tsync) == 0)
564 perf->run = false;
565
566 if (perf->run) {
567 /* lets stop the threads */
568 perf->run = false;
569 for (i = 0; i < MAX_THREADS; i++) {
570 if (perf->pthr_ctx[i].thread) {
571 kthread_stop(perf->pthr_ctx[i].thread);
572 perf->pthr_ctx[i].thread = NULL;
573 } else
574 break;
575 }
576 } else {
577 perf->run = true;
578
579 if (perf->perf_threads > MAX_THREADS) {
580 perf->perf_threads = MAX_THREADS;
581 pr_info("Reset total threads to: %u\n", MAX_THREADS);
582 }
583
584 /* no greater than 1M */
585 if (seg_order > MAX_SEG_ORDER) {
586 seg_order = MAX_SEG_ORDER;
587 pr_info("Fix seg_order to %u\n", seg_order);
588 }
589
590 if (run_order < seg_order) {
591 run_order = seg_order;
592 pr_info("Fix run_order to %u\n", run_order);
593 }
594
595 node = dev_to_node(&perf->ntb->pdev->dev);
596 /* launch kernel thread */
597 for (i = 0; i < perf->perf_threads; i++) {
598 struct pthr_ctx *pctx;
599
600 pctx = &perf->pthr_ctx[i];
601 atomic_set(&pctx->dma_sync, 0);
602 pctx->perf = perf;
603 pctx->thread =
604 kthread_create_on_node(ntb_perf_thread,
605 (void *)pctx,
606 node, "ntb_perf %d", i);
607 if (pctx->thread)
608 wake_up_process(pctx->thread);
609 else {
610 perf->run = false;
611 for (i = 0; i < MAX_THREADS; i++) {
612 if (pctx->thread) {
613 kthread_stop(pctx->thread);
614 pctx->thread = NULL;
615 }
616 }
617 }
618
619 if (perf->run == false)
620 return -ENXIO;
621 }
622
623 }
624
625 return count;
626 }
627
628 static const struct file_operations ntb_perf_debugfs_run = {
629 .owner = THIS_MODULE,
630 .open = simple_open,
631 .read = debugfs_run_read,
632 .write = debugfs_run_write,
633 };
634
635 static int perf_debugfs_setup(struct perf_ctx *perf)
636 {
637 struct pci_dev *pdev = perf->ntb->pdev;
638
639 if (!debugfs_initialized())
640 return -ENODEV;
641
642 if (!perf_debugfs_dir) {
643 perf_debugfs_dir = debugfs_create_dir(KBUILD_MODNAME, NULL);
644 if (!perf_debugfs_dir)
645 return -ENODEV;
646 }
647
648 perf->debugfs_node_dir = debugfs_create_dir(pci_name(pdev),
649 perf_debugfs_dir);
650 if (!perf->debugfs_node_dir)
651 return -ENODEV;
652
653 perf->debugfs_run = debugfs_create_file("run", S_IRUSR | S_IWUSR,
654 perf->debugfs_node_dir, perf,
655 &ntb_perf_debugfs_run);
656 if (!perf->debugfs_run)
657 return -ENODEV;
658
659 perf->debugfs_threads = debugfs_create_u8("threads", S_IRUSR | S_IWUSR,
660 perf->debugfs_node_dir,
661 &perf->perf_threads);
662 if (!perf->debugfs_threads)
663 return -ENODEV;
664
665 return 0;
666 }
667
668 static int perf_probe(struct ntb_client *client, struct ntb_dev *ntb)
669 {
670 struct pci_dev *pdev = ntb->pdev;
671 struct perf_ctx *perf;
672 int node;
673 int rc = 0;
674
675 node = dev_to_node(&pdev->dev);
676
677 perf = kzalloc_node(sizeof(*perf), GFP_KERNEL, node);
678 if (!perf) {
679 rc = -ENOMEM;
680 goto err_perf;
681 }
682
683 perf->ntb = ntb;
684 perf->perf_threads = 1;
685 atomic_set(&perf->tsync, 0);
686 perf->run = false;
687 spin_lock_init(&perf->db_lock);
688 perf_setup_mw(ntb, perf);
689 INIT_DELAYED_WORK(&perf->link_work, perf_link_work);
690 INIT_WORK(&perf->link_cleanup, perf_link_cleanup);
691
692 rc = ntb_set_ctx(ntb, perf, &perf_ops);
693 if (rc)
694 goto err_ctx;
695
696 perf->link_is_up = false;
697 ntb_link_enable(ntb, NTB_SPEED_AUTO, NTB_WIDTH_AUTO);
698 ntb_link_event(ntb);
699
700 rc = perf_debugfs_setup(perf);
701 if (rc)
702 goto err_ctx;
703
704 return 0;
705
706 err_ctx:
707 cancel_delayed_work_sync(&perf->link_work);
708 cancel_work_sync(&perf->link_cleanup);
709 kfree(perf);
710 err_perf:
711 return rc;
712 }
713
714 static void perf_remove(struct ntb_client *client, struct ntb_dev *ntb)
715 {
716 struct perf_ctx *perf = ntb->ctx;
717 int i;
718
719 dev_dbg(&perf->ntb->dev, "%s called\n", __func__);
720
721 cancel_delayed_work_sync(&perf->link_work);
722 cancel_work_sync(&perf->link_cleanup);
723
724 ntb_clear_ctx(ntb);
725 ntb_link_disable(ntb);
726
727 debugfs_remove_recursive(perf_debugfs_dir);
728 perf_debugfs_dir = NULL;
729
730 if (use_dma) {
731 for (i = 0; i < MAX_THREADS; i++) {
732 struct pthr_ctx *pctx = &perf->pthr_ctx[i];
733
734 if (pctx->dma_chan)
735 dma_release_channel(pctx->dma_chan);
736 }
737 }
738
739 kfree(perf);
740 }
741
742 static struct ntb_client perf_client = {
743 .ops = {
744 .probe = perf_probe,
745 .remove = perf_remove,
746 },
747 };
748 module_ntb_client(perf_client);
This page took 0.057747 seconds and 5 git commands to generate.