net/mlx5e: Fix del vxlan port command buffer memset
[deliverable/linux.git] / drivers / nvdimm / pmem.c
1 /*
2 * Persistent Memory Driver
3 *
4 * Copyright (c) 2014-2015, Intel Corporation.
5 * Copyright (c) 2015, Christoph Hellwig <hch@lst.de>.
6 * Copyright (c) 2015, Boaz Harrosh <boaz@plexistor.com>.
7 *
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms and conditions of the GNU General Public License,
10 * version 2, as published by the Free Software Foundation.
11 *
12 * This program is distributed in the hope it will be useful, but WITHOUT
13 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 * more details.
16 */
17
18 #include <asm/cacheflush.h>
19 #include <linux/blkdev.h>
20 #include <linux/hdreg.h>
21 #include <linux/init.h>
22 #include <linux/platform_device.h>
23 #include <linux/module.h>
24 #include <linux/moduleparam.h>
25 #include <linux/badblocks.h>
26 #include <linux/memremap.h>
27 #include <linux/vmalloc.h>
28 #include <linux/pfn_t.h>
29 #include <linux/slab.h>
30 #include <linux/pmem.h>
31 #include <linux/nd.h>
32 #include "pfn.h"
33 #include "nd.h"
34
35 struct pmem_device {
36 /* One contiguous memory region per device */
37 phys_addr_t phys_addr;
38 /* when non-zero this device is hosting a 'pfn' instance */
39 phys_addr_t data_offset;
40 u64 pfn_flags;
41 void __pmem *virt_addr;
42 /* immutable base size of the namespace */
43 size_t size;
44 /* trim size when namespace capacity has been section aligned */
45 u32 pfn_pad;
46 struct badblocks bb;
47 };
48
49 static void pmem_clear_poison(struct pmem_device *pmem, phys_addr_t offset,
50 unsigned int len)
51 {
52 struct device *dev = pmem->bb.dev;
53 sector_t sector;
54 long cleared;
55
56 sector = (offset - pmem->data_offset) / 512;
57 cleared = nvdimm_clear_poison(dev, pmem->phys_addr + offset, len);
58
59 if (cleared > 0 && cleared / 512) {
60 dev_dbg(dev, "%s: %llx clear %ld sector%s\n",
61 __func__, (unsigned long long) sector,
62 cleared / 512, cleared / 512 > 1 ? "s" : "");
63 badblocks_clear(&pmem->bb, sector, cleared / 512);
64 }
65 invalidate_pmem(pmem->virt_addr + offset, len);
66 }
67
68 static int pmem_do_bvec(struct pmem_device *pmem, struct page *page,
69 unsigned int len, unsigned int off, int rw,
70 sector_t sector)
71 {
72 int rc = 0;
73 bool bad_pmem = false;
74 void *mem = kmap_atomic(page);
75 phys_addr_t pmem_off = sector * 512 + pmem->data_offset;
76 void __pmem *pmem_addr = pmem->virt_addr + pmem_off;
77
78 if (unlikely(is_bad_pmem(&pmem->bb, sector, len)))
79 bad_pmem = true;
80
81 if (rw == READ) {
82 if (unlikely(bad_pmem))
83 rc = -EIO;
84 else {
85 rc = memcpy_from_pmem(mem + off, pmem_addr, len);
86 flush_dcache_page(page);
87 }
88 } else {
89 /*
90 * Note that we write the data both before and after
91 * clearing poison. The write before clear poison
92 * handles situations where the latest written data is
93 * preserved and the clear poison operation simply marks
94 * the address range as valid without changing the data.
95 * In this case application software can assume that an
96 * interrupted write will either return the new good
97 * data or an error.
98 *
99 * However, if pmem_clear_poison() leaves the data in an
100 * indeterminate state we need to perform the write
101 * after clear poison.
102 */
103 flush_dcache_page(page);
104 memcpy_to_pmem(pmem_addr, mem + off, len);
105 if (unlikely(bad_pmem)) {
106 pmem_clear_poison(pmem, pmem_off, len);
107 memcpy_to_pmem(pmem_addr, mem + off, len);
108 }
109 }
110
111 kunmap_atomic(mem);
112 return rc;
113 }
114
115 static blk_qc_t pmem_make_request(struct request_queue *q, struct bio *bio)
116 {
117 int rc = 0;
118 bool do_acct;
119 unsigned long start;
120 struct bio_vec bvec;
121 struct bvec_iter iter;
122 struct pmem_device *pmem = q->queuedata;
123
124 do_acct = nd_iostat_start(bio, &start);
125 bio_for_each_segment(bvec, bio, iter) {
126 rc = pmem_do_bvec(pmem, bvec.bv_page, bvec.bv_len,
127 bvec.bv_offset, bio_data_dir(bio),
128 iter.bi_sector);
129 if (rc) {
130 bio->bi_error = rc;
131 break;
132 }
133 }
134 if (do_acct)
135 nd_iostat_end(bio, start);
136
137 if (bio_data_dir(bio))
138 wmb_pmem();
139
140 bio_endio(bio);
141 return BLK_QC_T_NONE;
142 }
143
144 static int pmem_rw_page(struct block_device *bdev, sector_t sector,
145 struct page *page, int rw)
146 {
147 struct pmem_device *pmem = bdev->bd_queue->queuedata;
148 int rc;
149
150 rc = pmem_do_bvec(pmem, page, PAGE_SIZE, 0, rw, sector);
151 if (rw & WRITE)
152 wmb_pmem();
153
154 /*
155 * The ->rw_page interface is subtle and tricky. The core
156 * retries on any error, so we can only invoke page_endio() in
157 * the successful completion case. Otherwise, we'll see crashes
158 * caused by double completion.
159 */
160 if (rc == 0)
161 page_endio(page, rw & WRITE, 0);
162
163 return rc;
164 }
165
166 static long pmem_direct_access(struct block_device *bdev, sector_t sector,
167 void __pmem **kaddr, pfn_t *pfn, long size)
168 {
169 struct pmem_device *pmem = bdev->bd_queue->queuedata;
170 resource_size_t offset = sector * 512 + pmem->data_offset;
171
172 if (unlikely(is_bad_pmem(&pmem->bb, sector, size)))
173 return -EIO;
174 *kaddr = pmem->virt_addr + offset;
175 *pfn = phys_to_pfn_t(pmem->phys_addr + offset, pmem->pfn_flags);
176
177 /*
178 * If badblocks are present, limit known good range to the
179 * requested range.
180 */
181 if (unlikely(pmem->bb.count))
182 return size;
183 return pmem->size - pmem->pfn_pad - offset;
184 }
185
186 static const struct block_device_operations pmem_fops = {
187 .owner = THIS_MODULE,
188 .rw_page = pmem_rw_page,
189 .direct_access = pmem_direct_access,
190 .revalidate_disk = nvdimm_revalidate_disk,
191 };
192
193 static void pmem_release_queue(void *q)
194 {
195 blk_cleanup_queue(q);
196 }
197
198 void pmem_release_disk(void *disk)
199 {
200 del_gendisk(disk);
201 put_disk(disk);
202 }
203
204 static int pmem_attach_disk(struct device *dev,
205 struct nd_namespace_common *ndns)
206 {
207 struct nd_namespace_io *nsio = to_nd_namespace_io(&ndns->dev);
208 struct vmem_altmap __altmap, *altmap = NULL;
209 struct resource *res = &nsio->res;
210 struct nd_pfn *nd_pfn = NULL;
211 int nid = dev_to_node(dev);
212 struct nd_pfn_sb *pfn_sb;
213 struct pmem_device *pmem;
214 struct resource pfn_res;
215 struct request_queue *q;
216 struct gendisk *disk;
217 void *addr;
218
219 /* while nsio_rw_bytes is active, parse a pfn info block if present */
220 if (is_nd_pfn(dev)) {
221 nd_pfn = to_nd_pfn(dev);
222 altmap = nvdimm_setup_pfn(nd_pfn, &pfn_res, &__altmap);
223 if (IS_ERR(altmap))
224 return PTR_ERR(altmap);
225 }
226
227 /* we're attaching a block device, disable raw namespace access */
228 devm_nsio_disable(dev, nsio);
229
230 pmem = devm_kzalloc(dev, sizeof(*pmem), GFP_KERNEL);
231 if (!pmem)
232 return -ENOMEM;
233
234 dev_set_drvdata(dev, pmem);
235 pmem->phys_addr = res->start;
236 pmem->size = resource_size(res);
237 if (!arch_has_wmb_pmem())
238 dev_warn(dev, "unable to guarantee persistence of writes\n");
239
240 if (!devm_request_mem_region(dev, res->start, resource_size(res),
241 dev_name(dev))) {
242 dev_warn(dev, "could not reserve region %pR\n", res);
243 return -EBUSY;
244 }
245
246 q = blk_alloc_queue_node(GFP_KERNEL, dev_to_node(dev));
247 if (!q)
248 return -ENOMEM;
249
250 pmem->pfn_flags = PFN_DEV;
251 if (is_nd_pfn(dev)) {
252 addr = devm_memremap_pages(dev, &pfn_res, &q->q_usage_counter,
253 altmap);
254 pfn_sb = nd_pfn->pfn_sb;
255 pmem->data_offset = le64_to_cpu(pfn_sb->dataoff);
256 pmem->pfn_pad = resource_size(res) - resource_size(&pfn_res);
257 pmem->pfn_flags |= PFN_MAP;
258 res = &pfn_res; /* for badblocks populate */
259 res->start += pmem->data_offset;
260 } else if (pmem_should_map_pages(dev)) {
261 addr = devm_memremap_pages(dev, &nsio->res,
262 &q->q_usage_counter, NULL);
263 pmem->pfn_flags |= PFN_MAP;
264 } else
265 addr = devm_memremap(dev, pmem->phys_addr,
266 pmem->size, ARCH_MEMREMAP_PMEM);
267
268 /*
269 * At release time the queue must be dead before
270 * devm_memremap_pages is unwound
271 */
272 if (devm_add_action(dev, pmem_release_queue, q)) {
273 blk_cleanup_queue(q);
274 return -ENOMEM;
275 }
276
277 if (IS_ERR(addr))
278 return PTR_ERR(addr);
279 pmem->virt_addr = (void __pmem *) addr;
280
281 blk_queue_make_request(q, pmem_make_request);
282 blk_queue_physical_block_size(q, PAGE_SIZE);
283 blk_queue_max_hw_sectors(q, UINT_MAX);
284 blk_queue_bounce_limit(q, BLK_BOUNCE_ANY);
285 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q);
286 q->queuedata = pmem;
287
288 disk = alloc_disk_node(0, nid);
289 if (!disk)
290 return -ENOMEM;
291 if (devm_add_action(dev, pmem_release_disk, disk)) {
292 put_disk(disk);
293 return -ENOMEM;
294 }
295
296 disk->fops = &pmem_fops;
297 disk->queue = q;
298 disk->flags = GENHD_FL_EXT_DEVT;
299 nvdimm_namespace_disk_name(ndns, disk->disk_name);
300 disk->driverfs_dev = dev;
301 set_capacity(disk, (pmem->size - pmem->pfn_pad - pmem->data_offset)
302 / 512);
303 if (devm_init_badblocks(dev, &pmem->bb))
304 return -ENOMEM;
305 nvdimm_badblocks_populate(to_nd_region(dev->parent), &pmem->bb, res);
306 disk->bb = &pmem->bb;
307 add_disk(disk);
308 revalidate_disk(disk);
309
310 return 0;
311 }
312
313 static int nd_pmem_probe(struct device *dev)
314 {
315 struct nd_namespace_common *ndns;
316
317 ndns = nvdimm_namespace_common_probe(dev);
318 if (IS_ERR(ndns))
319 return PTR_ERR(ndns);
320
321 if (devm_nsio_enable(dev, to_nd_namespace_io(&ndns->dev)))
322 return -ENXIO;
323
324 if (is_nd_btt(dev))
325 return nvdimm_namespace_attach_btt(ndns);
326
327 if (is_nd_pfn(dev))
328 return pmem_attach_disk(dev, ndns);
329
330 /* if we find a valid info-block we'll come back as that personality */
331 if (nd_btt_probe(dev, ndns) == 0 || nd_pfn_probe(dev, ndns) == 0
332 || nd_dax_probe(dev, ndns) == 0)
333 return -ENXIO;
334
335 /* ...otherwise we're just a raw pmem device */
336 return pmem_attach_disk(dev, ndns);
337 }
338
339 static int nd_pmem_remove(struct device *dev)
340 {
341 if (is_nd_btt(dev))
342 nvdimm_namespace_detach_btt(to_nd_btt(dev));
343 return 0;
344 }
345
346 static void nd_pmem_notify(struct device *dev, enum nvdimm_event event)
347 {
348 struct nd_region *nd_region = to_nd_region(dev->parent);
349 struct pmem_device *pmem = dev_get_drvdata(dev);
350 resource_size_t offset = 0, end_trunc = 0;
351 struct nd_namespace_common *ndns;
352 struct nd_namespace_io *nsio;
353 struct resource res;
354
355 if (event != NVDIMM_REVALIDATE_POISON)
356 return;
357
358 if (is_nd_btt(dev)) {
359 struct nd_btt *nd_btt = to_nd_btt(dev);
360
361 ndns = nd_btt->ndns;
362 } else if (is_nd_pfn(dev)) {
363 struct nd_pfn *nd_pfn = to_nd_pfn(dev);
364 struct nd_pfn_sb *pfn_sb = nd_pfn->pfn_sb;
365
366 ndns = nd_pfn->ndns;
367 offset = pmem->data_offset + __le32_to_cpu(pfn_sb->start_pad);
368 end_trunc = __le32_to_cpu(pfn_sb->end_trunc);
369 } else
370 ndns = to_ndns(dev);
371
372 nsio = to_nd_namespace_io(&ndns->dev);
373 res.start = nsio->res.start + offset;
374 res.end = nsio->res.end - end_trunc;
375 nvdimm_badblocks_populate(nd_region, &pmem->bb, &res);
376 }
377
378 MODULE_ALIAS("pmem");
379 MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_IO);
380 MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_PMEM);
381 static struct nd_device_driver nd_pmem_driver = {
382 .probe = nd_pmem_probe,
383 .remove = nd_pmem_remove,
384 .notify = nd_pmem_notify,
385 .drv = {
386 .name = "nd_pmem",
387 },
388 .type = ND_DRIVER_NAMESPACE_IO | ND_DRIVER_NAMESPACE_PMEM,
389 };
390
391 static int __init pmem_init(void)
392 {
393 return nd_driver_register(&nd_pmem_driver);
394 }
395 module_init(pmem_init);
396
397 static void pmem_exit(void)
398 {
399 driver_unregister(&nd_pmem_driver.drv);
400 }
401 module_exit(pmem_exit);
402
403 MODULE_AUTHOR("Ross Zwisler <ross.zwisler@linux.intel.com>");
404 MODULE_LICENSE("GPL v2");
This page took 0.069311 seconds and 5 git commands to generate.