mm: introduce find_dev_pagemap()
[deliverable/linux.git] / drivers / nvdimm / pmem.c
1 /*
2 * Persistent Memory Driver
3 *
4 * Copyright (c) 2014-2015, Intel Corporation.
5 * Copyright (c) 2015, Christoph Hellwig <hch@lst.de>.
6 * Copyright (c) 2015, Boaz Harrosh <boaz@plexistor.com>.
7 *
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms and conditions of the GNU General Public License,
10 * version 2, as published by the Free Software Foundation.
11 *
12 * This program is distributed in the hope it will be useful, but WITHOUT
13 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 * more details.
16 */
17
18 #include <asm/cacheflush.h>
19 #include <linux/blkdev.h>
20 #include <linux/hdreg.h>
21 #include <linux/init.h>
22 #include <linux/platform_device.h>
23 #include <linux/module.h>
24 #include <linux/moduleparam.h>
25 #include <linux/badblocks.h>
26 #include <linux/memremap.h>
27 #include <linux/vmalloc.h>
28 #include <linux/pfn_t.h>
29 #include <linux/slab.h>
30 #include <linux/pmem.h>
31 #include <linux/nd.h>
32 #include "pfn.h"
33 #include "nd.h"
34
35 struct pmem_device {
36 struct request_queue *pmem_queue;
37 struct gendisk *pmem_disk;
38 struct nd_namespace_common *ndns;
39
40 /* One contiguous memory region per device */
41 phys_addr_t phys_addr;
42 /* when non-zero this device is hosting a 'pfn' instance */
43 phys_addr_t data_offset;
44 unsigned long pfn_flags;
45 void __pmem *virt_addr;
46 size_t size;
47 struct badblocks bb;
48 };
49
50 static int pmem_major;
51
52 static bool is_bad_pmem(struct badblocks *bb, sector_t sector, unsigned int len)
53 {
54 if (bb->count) {
55 sector_t first_bad;
56 int num_bad;
57
58 return !!badblocks_check(bb, sector, len / 512, &first_bad,
59 &num_bad);
60 }
61
62 return false;
63 }
64
65 static int pmem_do_bvec(struct pmem_device *pmem, struct page *page,
66 unsigned int len, unsigned int off, int rw,
67 sector_t sector)
68 {
69 void *mem = kmap_atomic(page);
70 phys_addr_t pmem_off = sector * 512 + pmem->data_offset;
71 void __pmem *pmem_addr = pmem->virt_addr + pmem_off;
72
73 if (rw == READ) {
74 if (unlikely(is_bad_pmem(&pmem->bb, sector, len)))
75 return -EIO;
76 memcpy_from_pmem(mem + off, pmem_addr, len);
77 flush_dcache_page(page);
78 } else {
79 flush_dcache_page(page);
80 memcpy_to_pmem(pmem_addr, mem + off, len);
81 }
82
83 kunmap_atomic(mem);
84 return 0;
85 }
86
87 static blk_qc_t pmem_make_request(struct request_queue *q, struct bio *bio)
88 {
89 int rc = 0;
90 bool do_acct;
91 unsigned long start;
92 struct bio_vec bvec;
93 struct bvec_iter iter;
94 struct block_device *bdev = bio->bi_bdev;
95 struct pmem_device *pmem = bdev->bd_disk->private_data;
96
97 do_acct = nd_iostat_start(bio, &start);
98 bio_for_each_segment(bvec, bio, iter) {
99 rc = pmem_do_bvec(pmem, bvec.bv_page, bvec.bv_len,
100 bvec.bv_offset, bio_data_dir(bio),
101 iter.bi_sector);
102 if (rc) {
103 bio->bi_error = rc;
104 break;
105 }
106 }
107 if (do_acct)
108 nd_iostat_end(bio, start);
109
110 if (bio_data_dir(bio))
111 wmb_pmem();
112
113 bio_endio(bio);
114 return BLK_QC_T_NONE;
115 }
116
117 static int pmem_rw_page(struct block_device *bdev, sector_t sector,
118 struct page *page, int rw)
119 {
120 struct pmem_device *pmem = bdev->bd_disk->private_data;
121 int rc;
122
123 rc = pmem_do_bvec(pmem, page, PAGE_CACHE_SIZE, 0, rw, sector);
124 if (rw & WRITE)
125 wmb_pmem();
126
127 /*
128 * The ->rw_page interface is subtle and tricky. The core
129 * retries on any error, so we can only invoke page_endio() in
130 * the successful completion case. Otherwise, we'll see crashes
131 * caused by double completion.
132 */
133 if (rc == 0)
134 page_endio(page, rw & WRITE, 0);
135
136 return rc;
137 }
138
139 static long pmem_direct_access(struct block_device *bdev, sector_t sector,
140 void __pmem **kaddr, pfn_t *pfn)
141 {
142 struct pmem_device *pmem = bdev->bd_disk->private_data;
143 resource_size_t offset = sector * 512 + pmem->data_offset;
144
145 *kaddr = pmem->virt_addr + offset;
146 *pfn = phys_to_pfn_t(pmem->phys_addr + offset, pmem->pfn_flags);
147
148 return pmem->size - offset;
149 }
150
151 static const struct block_device_operations pmem_fops = {
152 .owner = THIS_MODULE,
153 .rw_page = pmem_rw_page,
154 .direct_access = pmem_direct_access,
155 .revalidate_disk = nvdimm_revalidate_disk,
156 };
157
158 static struct pmem_device *pmem_alloc(struct device *dev,
159 struct resource *res, int id)
160 {
161 struct pmem_device *pmem;
162
163 pmem = devm_kzalloc(dev, sizeof(*pmem), GFP_KERNEL);
164 if (!pmem)
165 return ERR_PTR(-ENOMEM);
166
167 pmem->phys_addr = res->start;
168 pmem->size = resource_size(res);
169 if (!arch_has_wmb_pmem())
170 dev_warn(dev, "unable to guarantee persistence of writes\n");
171
172 if (!devm_request_mem_region(dev, pmem->phys_addr, pmem->size,
173 dev_name(dev))) {
174 dev_warn(dev, "could not reserve region [0x%pa:0x%zx]\n",
175 &pmem->phys_addr, pmem->size);
176 return ERR_PTR(-EBUSY);
177 }
178
179 pmem->pfn_flags = PFN_DEV;
180 if (pmem_should_map_pages(dev)) {
181 pmem->virt_addr = (void __pmem *) devm_memremap_pages(dev, res);
182 pmem->pfn_flags |= PFN_MAP;
183 } else
184 pmem->virt_addr = (void __pmem *) devm_memremap(dev,
185 pmem->phys_addr, pmem->size,
186 ARCH_MEMREMAP_PMEM);
187
188 if (IS_ERR(pmem->virt_addr))
189 return (void __force *) pmem->virt_addr;
190
191 return pmem;
192 }
193
194 static void pmem_detach_disk(struct pmem_device *pmem)
195 {
196 if (!pmem->pmem_disk)
197 return;
198
199 del_gendisk(pmem->pmem_disk);
200 put_disk(pmem->pmem_disk);
201 blk_cleanup_queue(pmem->pmem_queue);
202 }
203
204 static int pmem_attach_disk(struct device *dev,
205 struct nd_namespace_common *ndns, struct pmem_device *pmem)
206 {
207 int nid = dev_to_node(dev);
208 struct gendisk *disk;
209
210 pmem->pmem_queue = blk_alloc_queue_node(GFP_KERNEL, nid);
211 if (!pmem->pmem_queue)
212 return -ENOMEM;
213
214 blk_queue_make_request(pmem->pmem_queue, pmem_make_request);
215 blk_queue_physical_block_size(pmem->pmem_queue, PAGE_SIZE);
216 blk_queue_max_hw_sectors(pmem->pmem_queue, UINT_MAX);
217 blk_queue_bounce_limit(pmem->pmem_queue, BLK_BOUNCE_ANY);
218 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, pmem->pmem_queue);
219
220 disk = alloc_disk_node(0, nid);
221 if (!disk) {
222 blk_cleanup_queue(pmem->pmem_queue);
223 return -ENOMEM;
224 }
225
226 disk->major = pmem_major;
227 disk->first_minor = 0;
228 disk->fops = &pmem_fops;
229 disk->private_data = pmem;
230 disk->queue = pmem->pmem_queue;
231 disk->flags = GENHD_FL_EXT_DEVT;
232 nvdimm_namespace_disk_name(ndns, disk->disk_name);
233 disk->driverfs_dev = dev;
234 set_capacity(disk, (pmem->size - pmem->data_offset) / 512);
235 pmem->pmem_disk = disk;
236 devm_exit_badblocks(dev, &pmem->bb);
237 if (devm_init_badblocks(dev, &pmem->bb))
238 return -ENOMEM;
239 nvdimm_namespace_add_poison(ndns, &pmem->bb, pmem->data_offset);
240
241 disk->bb = &pmem->bb;
242 add_disk(disk);
243 revalidate_disk(disk);
244
245 return 0;
246 }
247
248 static int pmem_rw_bytes(struct nd_namespace_common *ndns,
249 resource_size_t offset, void *buf, size_t size, int rw)
250 {
251 struct pmem_device *pmem = dev_get_drvdata(ndns->claim);
252
253 if (unlikely(offset + size > pmem->size)) {
254 dev_WARN_ONCE(&ndns->dev, 1, "request out of range\n");
255 return -EFAULT;
256 }
257
258 if (rw == READ) {
259 unsigned int sz_align = ALIGN(size + (offset & (512 - 1)), 512);
260
261 if (unlikely(is_bad_pmem(&pmem->bb, offset / 512, sz_align)))
262 return -EIO;
263 memcpy_from_pmem(buf, pmem->virt_addr + offset, size);
264 } else {
265 memcpy_to_pmem(pmem->virt_addr + offset, buf, size);
266 wmb_pmem();
267 }
268
269 return 0;
270 }
271
272 static int nd_pfn_init(struct nd_pfn *nd_pfn)
273 {
274 struct nd_pfn_sb *pfn_sb = kzalloc(sizeof(*pfn_sb), GFP_KERNEL);
275 struct pmem_device *pmem = dev_get_drvdata(&nd_pfn->dev);
276 struct nd_namespace_common *ndns = nd_pfn->ndns;
277 struct nd_region *nd_region;
278 unsigned long npfns;
279 phys_addr_t offset;
280 u64 checksum;
281 int rc;
282
283 if (!pfn_sb)
284 return -ENOMEM;
285
286 nd_pfn->pfn_sb = pfn_sb;
287 rc = nd_pfn_validate(nd_pfn);
288 if (rc == -ENODEV)
289 /* no info block, do init */;
290 else
291 return rc;
292
293 nd_region = to_nd_region(nd_pfn->dev.parent);
294 if (nd_region->ro) {
295 dev_info(&nd_pfn->dev,
296 "%s is read-only, unable to init metadata\n",
297 dev_name(&nd_region->dev));
298 goto err;
299 }
300
301 memset(pfn_sb, 0, sizeof(*pfn_sb));
302 npfns = (pmem->size - SZ_8K) / SZ_4K;
303 /*
304 * Note, we use 64 here for the standard size of struct page,
305 * debugging options may cause it to be larger in which case the
306 * implementation will limit the pfns advertised through
307 * ->direct_access() to those that are included in the memmap.
308 */
309 if (nd_pfn->mode == PFN_MODE_PMEM)
310 offset = ALIGN(SZ_8K + 64 * npfns, nd_pfn->align);
311 else if (nd_pfn->mode == PFN_MODE_RAM)
312 offset = ALIGN(SZ_8K, nd_pfn->align);
313 else
314 goto err;
315
316 npfns = (pmem->size - offset) / SZ_4K;
317 pfn_sb->mode = cpu_to_le32(nd_pfn->mode);
318 pfn_sb->dataoff = cpu_to_le64(offset);
319 pfn_sb->npfns = cpu_to_le64(npfns);
320 memcpy(pfn_sb->signature, PFN_SIG, PFN_SIG_LEN);
321 memcpy(pfn_sb->uuid, nd_pfn->uuid, 16);
322 memcpy(pfn_sb->parent_uuid, nd_dev_to_uuid(&ndns->dev), 16);
323 pfn_sb->version_major = cpu_to_le16(1);
324 checksum = nd_sb_checksum((struct nd_gen_sb *) pfn_sb);
325 pfn_sb->checksum = cpu_to_le64(checksum);
326
327 rc = nvdimm_write_bytes(ndns, SZ_4K, pfn_sb, sizeof(*pfn_sb));
328 if (rc)
329 goto err;
330
331 return 0;
332 err:
333 nd_pfn->pfn_sb = NULL;
334 kfree(pfn_sb);
335 return -ENXIO;
336 }
337
338 static int nvdimm_namespace_detach_pfn(struct nd_namespace_common *ndns)
339 {
340 struct nd_pfn *nd_pfn = to_nd_pfn(ndns->claim);
341 struct pmem_device *pmem;
342
343 /* free pmem disk */
344 pmem = dev_get_drvdata(&nd_pfn->dev);
345 pmem_detach_disk(pmem);
346
347 /* release nd_pfn resources */
348 kfree(nd_pfn->pfn_sb);
349 nd_pfn->pfn_sb = NULL;
350
351 return 0;
352 }
353
354 static int nvdimm_namespace_attach_pfn(struct nd_namespace_common *ndns)
355 {
356 struct nd_namespace_io *nsio = to_nd_namespace_io(&ndns->dev);
357 struct nd_pfn *nd_pfn = to_nd_pfn(ndns->claim);
358 struct device *dev = &nd_pfn->dev;
359 struct vmem_altmap *altmap;
360 struct nd_region *nd_region;
361 struct nd_pfn_sb *pfn_sb;
362 struct pmem_device *pmem;
363 phys_addr_t offset;
364 int rc;
365
366 if (!nd_pfn->uuid || !nd_pfn->ndns)
367 return -ENODEV;
368
369 nd_region = to_nd_region(dev->parent);
370 rc = nd_pfn_init(nd_pfn);
371 if (rc)
372 return rc;
373
374 pfn_sb = nd_pfn->pfn_sb;
375 offset = le64_to_cpu(pfn_sb->dataoff);
376 nd_pfn->mode = le32_to_cpu(nd_pfn->pfn_sb->mode);
377 if (nd_pfn->mode == PFN_MODE_RAM) {
378 if (offset < SZ_8K)
379 return -EINVAL;
380 nd_pfn->npfns = le64_to_cpu(pfn_sb->npfns);
381 altmap = NULL;
382 } else {
383 rc = -ENXIO;
384 goto err;
385 }
386
387 /* establish pfn range for lookup, and switch to direct map */
388 pmem = dev_get_drvdata(dev);
389 devm_memunmap(dev, (void __force *) pmem->virt_addr);
390 pmem->virt_addr = (void __pmem *) devm_memremap_pages(dev, &nsio->res);
391 pmem->pfn_flags |= PFN_MAP;
392 if (IS_ERR(pmem->virt_addr)) {
393 rc = PTR_ERR(pmem->virt_addr);
394 goto err;
395 }
396
397 /* attach pmem disk in "pfn-mode" */
398 pmem->data_offset = offset;
399 rc = pmem_attach_disk(dev, ndns, pmem);
400 if (rc)
401 goto err;
402
403 return rc;
404 err:
405 nvdimm_namespace_detach_pfn(ndns);
406 return rc;
407 }
408
409 static int nd_pmem_probe(struct device *dev)
410 {
411 struct nd_region *nd_region = to_nd_region(dev->parent);
412 struct nd_namespace_common *ndns;
413 struct nd_namespace_io *nsio;
414 struct pmem_device *pmem;
415
416 ndns = nvdimm_namespace_common_probe(dev);
417 if (IS_ERR(ndns))
418 return PTR_ERR(ndns);
419
420 nsio = to_nd_namespace_io(&ndns->dev);
421 pmem = pmem_alloc(dev, &nsio->res, nd_region->id);
422 if (IS_ERR(pmem))
423 return PTR_ERR(pmem);
424
425 pmem->ndns = ndns;
426 dev_set_drvdata(dev, pmem);
427 ndns->rw_bytes = pmem_rw_bytes;
428 if (devm_init_badblocks(dev, &pmem->bb))
429 return -ENOMEM;
430 nvdimm_namespace_add_poison(ndns, &pmem->bb, 0);
431
432 if (is_nd_btt(dev))
433 return nvdimm_namespace_attach_btt(ndns);
434
435 if (is_nd_pfn(dev))
436 return nvdimm_namespace_attach_pfn(ndns);
437
438 if (nd_btt_probe(ndns, pmem) == 0) {
439 /* we'll come back as btt-pmem */
440 return -ENXIO;
441 }
442
443 if (nd_pfn_probe(ndns, pmem) == 0) {
444 /* we'll come back as pfn-pmem */
445 return -ENXIO;
446 }
447
448 return pmem_attach_disk(dev, ndns, pmem);
449 }
450
451 static int nd_pmem_remove(struct device *dev)
452 {
453 struct pmem_device *pmem = dev_get_drvdata(dev);
454
455 if (is_nd_btt(dev))
456 nvdimm_namespace_detach_btt(pmem->ndns);
457 else if (is_nd_pfn(dev))
458 nvdimm_namespace_detach_pfn(pmem->ndns);
459 else
460 pmem_detach_disk(pmem);
461
462 return 0;
463 }
464
465 MODULE_ALIAS("pmem");
466 MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_IO);
467 MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_PMEM);
468 static struct nd_device_driver nd_pmem_driver = {
469 .probe = nd_pmem_probe,
470 .remove = nd_pmem_remove,
471 .drv = {
472 .name = "nd_pmem",
473 },
474 .type = ND_DRIVER_NAMESPACE_IO | ND_DRIVER_NAMESPACE_PMEM,
475 };
476
477 static int __init pmem_init(void)
478 {
479 int error;
480
481 pmem_major = register_blkdev(0, "pmem");
482 if (pmem_major < 0)
483 return pmem_major;
484
485 error = nd_driver_register(&nd_pmem_driver);
486 if (error) {
487 unregister_blkdev(pmem_major, "pmem");
488 return error;
489 }
490
491 return 0;
492 }
493 module_init(pmem_init);
494
495 static void pmem_exit(void)
496 {
497 driver_unregister(&nd_pmem_driver.drv);
498 unregister_blkdev(pmem_major, "pmem");
499 }
500 module_exit(pmem_exit);
501
502 MODULE_AUTHOR("Ross Zwisler <ross.zwisler@linux.intel.com>");
503 MODULE_LICENSE("GPL v2");
This page took 0.063398 seconds and 5 git commands to generate.