libnvdimm, pmem: nvdimm_read_bytes() badblocks support
[deliverable/linux.git] / drivers / nvdimm / pmem.c
1 /*
2 * Persistent Memory Driver
3 *
4 * Copyright (c) 2014-2015, Intel Corporation.
5 * Copyright (c) 2015, Christoph Hellwig <hch@lst.de>.
6 * Copyright (c) 2015, Boaz Harrosh <boaz@plexistor.com>.
7 *
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms and conditions of the GNU General Public License,
10 * version 2, as published by the Free Software Foundation.
11 *
12 * This program is distributed in the hope it will be useful, but WITHOUT
13 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 * more details.
16 */
17
18 #include <asm/cacheflush.h>
19 #include <linux/blkdev.h>
20 #include <linux/hdreg.h>
21 #include <linux/init.h>
22 #include <linux/platform_device.h>
23 #include <linux/module.h>
24 #include <linux/memory_hotplug.h>
25 #include <linux/moduleparam.h>
26 #include <linux/badblocks.h>
27 #include <linux/vmalloc.h>
28 #include <linux/slab.h>
29 #include <linux/pmem.h>
30 #include <linux/nd.h>
31 #include "pfn.h"
32 #include "nd.h"
33
34 struct pmem_device {
35 struct request_queue *pmem_queue;
36 struct gendisk *pmem_disk;
37 struct nd_namespace_common *ndns;
38
39 /* One contiguous memory region per device */
40 phys_addr_t phys_addr;
41 /* when non-zero this device is hosting a 'pfn' instance */
42 phys_addr_t data_offset;
43 void __pmem *virt_addr;
44 size_t size;
45 struct badblocks bb;
46 };
47
48 static int pmem_major;
49
50 static bool is_bad_pmem(struct badblocks *bb, sector_t sector, unsigned int len)
51 {
52 if (bb->count) {
53 sector_t first_bad;
54 int num_bad;
55
56 return !!badblocks_check(bb, sector, len / 512, &first_bad,
57 &num_bad);
58 }
59
60 return false;
61 }
62
63 static int pmem_do_bvec(struct pmem_device *pmem, struct page *page,
64 unsigned int len, unsigned int off, int rw,
65 sector_t sector)
66 {
67 void *mem = kmap_atomic(page);
68 phys_addr_t pmem_off = sector * 512 + pmem->data_offset;
69 void __pmem *pmem_addr = pmem->virt_addr + pmem_off;
70
71 if (rw == READ) {
72 if (unlikely(is_bad_pmem(&pmem->bb, sector, len)))
73 return -EIO;
74 memcpy_from_pmem(mem + off, pmem_addr, len);
75 flush_dcache_page(page);
76 } else {
77 flush_dcache_page(page);
78 memcpy_to_pmem(pmem_addr, mem + off, len);
79 }
80
81 kunmap_atomic(mem);
82 return 0;
83 }
84
85 static blk_qc_t pmem_make_request(struct request_queue *q, struct bio *bio)
86 {
87 int rc = 0;
88 bool do_acct;
89 unsigned long start;
90 struct bio_vec bvec;
91 struct bvec_iter iter;
92 struct block_device *bdev = bio->bi_bdev;
93 struct pmem_device *pmem = bdev->bd_disk->private_data;
94
95 do_acct = nd_iostat_start(bio, &start);
96 bio_for_each_segment(bvec, bio, iter) {
97 rc = pmem_do_bvec(pmem, bvec.bv_page, bvec.bv_len,
98 bvec.bv_offset, bio_data_dir(bio),
99 iter.bi_sector);
100 if (rc) {
101 bio->bi_error = rc;
102 break;
103 }
104 }
105 if (do_acct)
106 nd_iostat_end(bio, start);
107
108 if (bio_data_dir(bio))
109 wmb_pmem();
110
111 bio_endio(bio);
112 return BLK_QC_T_NONE;
113 }
114
115 static int pmem_rw_page(struct block_device *bdev, sector_t sector,
116 struct page *page, int rw)
117 {
118 struct pmem_device *pmem = bdev->bd_disk->private_data;
119 int rc;
120
121 rc = pmem_do_bvec(pmem, page, PAGE_CACHE_SIZE, 0, rw, sector);
122 if (rw & WRITE)
123 wmb_pmem();
124
125 /*
126 * The ->rw_page interface is subtle and tricky. The core
127 * retries on any error, so we can only invoke page_endio() in
128 * the successful completion case. Otherwise, we'll see crashes
129 * caused by double completion.
130 */
131 if (rc == 0)
132 page_endio(page, rw & WRITE, 0);
133
134 return rc;
135 }
136
137 static long pmem_direct_access(struct block_device *bdev, sector_t sector,
138 void __pmem **kaddr, unsigned long *pfn)
139 {
140 struct pmem_device *pmem = bdev->bd_disk->private_data;
141 resource_size_t offset = sector * 512 + pmem->data_offset;
142
143 *kaddr = pmem->virt_addr + offset;
144 *pfn = (pmem->phys_addr + offset) >> PAGE_SHIFT;
145
146 return pmem->size - offset;
147 }
148
149 static const struct block_device_operations pmem_fops = {
150 .owner = THIS_MODULE,
151 .rw_page = pmem_rw_page,
152 .direct_access = pmem_direct_access,
153 .revalidate_disk = nvdimm_revalidate_disk,
154 };
155
156 static struct pmem_device *pmem_alloc(struct device *dev,
157 struct resource *res, int id)
158 {
159 struct pmem_device *pmem;
160
161 pmem = devm_kzalloc(dev, sizeof(*pmem), GFP_KERNEL);
162 if (!pmem)
163 return ERR_PTR(-ENOMEM);
164
165 pmem->phys_addr = res->start;
166 pmem->size = resource_size(res);
167 if (!arch_has_wmb_pmem())
168 dev_warn(dev, "unable to guarantee persistence of writes\n");
169
170 if (!devm_request_mem_region(dev, pmem->phys_addr, pmem->size,
171 dev_name(dev))) {
172 dev_warn(dev, "could not reserve region [0x%pa:0x%zx]\n",
173 &pmem->phys_addr, pmem->size);
174 return ERR_PTR(-EBUSY);
175 }
176
177 if (pmem_should_map_pages(dev))
178 pmem->virt_addr = (void __pmem *) devm_memremap_pages(dev, res);
179 else
180 pmem->virt_addr = (void __pmem *) devm_memremap(dev,
181 pmem->phys_addr, pmem->size,
182 ARCH_MEMREMAP_PMEM);
183
184 if (IS_ERR(pmem->virt_addr))
185 return (void __force *) pmem->virt_addr;
186
187 return pmem;
188 }
189
190 static void pmem_detach_disk(struct pmem_device *pmem)
191 {
192 if (!pmem->pmem_disk)
193 return;
194
195 del_gendisk(pmem->pmem_disk);
196 put_disk(pmem->pmem_disk);
197 blk_cleanup_queue(pmem->pmem_queue);
198 }
199
200 static int pmem_attach_disk(struct device *dev,
201 struct nd_namespace_common *ndns, struct pmem_device *pmem)
202 {
203 int nid = dev_to_node(dev);
204 struct gendisk *disk;
205
206 pmem->pmem_queue = blk_alloc_queue_node(GFP_KERNEL, nid);
207 if (!pmem->pmem_queue)
208 return -ENOMEM;
209
210 blk_queue_make_request(pmem->pmem_queue, pmem_make_request);
211 blk_queue_physical_block_size(pmem->pmem_queue, PAGE_SIZE);
212 blk_queue_max_hw_sectors(pmem->pmem_queue, UINT_MAX);
213 blk_queue_bounce_limit(pmem->pmem_queue, BLK_BOUNCE_ANY);
214 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, pmem->pmem_queue);
215
216 disk = alloc_disk_node(0, nid);
217 if (!disk) {
218 blk_cleanup_queue(pmem->pmem_queue);
219 return -ENOMEM;
220 }
221
222 disk->major = pmem_major;
223 disk->first_minor = 0;
224 disk->fops = &pmem_fops;
225 disk->private_data = pmem;
226 disk->queue = pmem->pmem_queue;
227 disk->flags = GENHD_FL_EXT_DEVT;
228 nvdimm_namespace_disk_name(ndns, disk->disk_name);
229 disk->driverfs_dev = dev;
230 set_capacity(disk, (pmem->size - pmem->data_offset) / 512);
231 pmem->pmem_disk = disk;
232 devm_exit_badblocks(dev, &pmem->bb);
233 if (devm_init_badblocks(dev, &pmem->bb))
234 return -ENOMEM;
235 nvdimm_namespace_add_poison(ndns, &pmem->bb, pmem->data_offset);
236
237 disk->bb = &pmem->bb;
238 add_disk(disk);
239 revalidate_disk(disk);
240
241 return 0;
242 }
243
244 static int pmem_rw_bytes(struct nd_namespace_common *ndns,
245 resource_size_t offset, void *buf, size_t size, int rw)
246 {
247 struct pmem_device *pmem = dev_get_drvdata(ndns->claim);
248
249 if (unlikely(offset + size > pmem->size)) {
250 dev_WARN_ONCE(&ndns->dev, 1, "request out of range\n");
251 return -EFAULT;
252 }
253
254 if (rw == READ) {
255 unsigned int sz_align = ALIGN(size + (offset & (512 - 1)), 512);
256
257 if (unlikely(is_bad_pmem(&pmem->bb, offset / 512, sz_align)))
258 return -EIO;
259 memcpy_from_pmem(buf, pmem->virt_addr + offset, size);
260 } else {
261 memcpy_to_pmem(pmem->virt_addr + offset, buf, size);
262 wmb_pmem();
263 }
264
265 return 0;
266 }
267
268 static int nd_pfn_init(struct nd_pfn *nd_pfn)
269 {
270 struct nd_pfn_sb *pfn_sb = kzalloc(sizeof(*pfn_sb), GFP_KERNEL);
271 struct pmem_device *pmem = dev_get_drvdata(&nd_pfn->dev);
272 struct nd_namespace_common *ndns = nd_pfn->ndns;
273 struct nd_region *nd_region;
274 unsigned long npfns;
275 phys_addr_t offset;
276 u64 checksum;
277 int rc;
278
279 if (!pfn_sb)
280 return -ENOMEM;
281
282 nd_pfn->pfn_sb = pfn_sb;
283 rc = nd_pfn_validate(nd_pfn);
284 if (rc == 0 || rc == -EBUSY)
285 return rc;
286
287 /* section alignment for simple hotplug */
288 if (nvdimm_namespace_capacity(ndns) < ND_PFN_ALIGN
289 || pmem->phys_addr & ND_PFN_MASK)
290 return -ENODEV;
291
292 nd_region = to_nd_region(nd_pfn->dev.parent);
293 if (nd_region->ro) {
294 dev_info(&nd_pfn->dev,
295 "%s is read-only, unable to init metadata\n",
296 dev_name(&nd_region->dev));
297 goto err;
298 }
299
300 memset(pfn_sb, 0, sizeof(*pfn_sb));
301 npfns = (pmem->size - SZ_8K) / SZ_4K;
302 /*
303 * Note, we use 64 here for the standard size of struct page,
304 * debugging options may cause it to be larger in which case the
305 * implementation will limit the pfns advertised through
306 * ->direct_access() to those that are included in the memmap.
307 */
308 if (nd_pfn->mode == PFN_MODE_PMEM)
309 offset = ALIGN(SZ_8K + 64 * npfns, PMD_SIZE);
310 else if (nd_pfn->mode == PFN_MODE_RAM)
311 offset = SZ_8K;
312 else
313 goto err;
314
315 npfns = (pmem->size - offset) / SZ_4K;
316 pfn_sb->mode = cpu_to_le32(nd_pfn->mode);
317 pfn_sb->dataoff = cpu_to_le64(offset);
318 pfn_sb->npfns = cpu_to_le64(npfns);
319 memcpy(pfn_sb->signature, PFN_SIG, PFN_SIG_LEN);
320 memcpy(pfn_sb->uuid, nd_pfn->uuid, 16);
321 pfn_sb->version_major = cpu_to_le16(1);
322 checksum = nd_sb_checksum((struct nd_gen_sb *) pfn_sb);
323 pfn_sb->checksum = cpu_to_le64(checksum);
324
325 rc = nvdimm_write_bytes(ndns, SZ_4K, pfn_sb, sizeof(*pfn_sb));
326 if (rc)
327 goto err;
328
329 return 0;
330 err:
331 nd_pfn->pfn_sb = NULL;
332 kfree(pfn_sb);
333 return -ENXIO;
334 }
335
336 static int nvdimm_namespace_detach_pfn(struct nd_namespace_common *ndns)
337 {
338 struct nd_pfn *nd_pfn = to_nd_pfn(ndns->claim);
339 struct pmem_device *pmem;
340
341 /* free pmem disk */
342 pmem = dev_get_drvdata(&nd_pfn->dev);
343 pmem_detach_disk(pmem);
344
345 /* release nd_pfn resources */
346 kfree(nd_pfn->pfn_sb);
347 nd_pfn->pfn_sb = NULL;
348
349 return 0;
350 }
351
352 static int nvdimm_namespace_attach_pfn(struct nd_namespace_common *ndns)
353 {
354 struct nd_namespace_io *nsio = to_nd_namespace_io(&ndns->dev);
355 struct nd_pfn *nd_pfn = to_nd_pfn(ndns->claim);
356 struct device *dev = &nd_pfn->dev;
357 struct vmem_altmap *altmap;
358 struct nd_region *nd_region;
359 struct nd_pfn_sb *pfn_sb;
360 struct pmem_device *pmem;
361 phys_addr_t offset;
362 int rc;
363
364 if (!nd_pfn->uuid || !nd_pfn->ndns)
365 return -ENODEV;
366
367 nd_region = to_nd_region(dev->parent);
368 rc = nd_pfn_init(nd_pfn);
369 if (rc)
370 return rc;
371
372 if (PAGE_SIZE != SZ_4K) {
373 dev_err(dev, "only supported on systems with 4K PAGE_SIZE\n");
374 return -ENXIO;
375 }
376 if (nsio->res.start & ND_PFN_MASK) {
377 dev_err(dev, "%s not memory hotplug section aligned\n",
378 dev_name(&ndns->dev));
379 return -ENXIO;
380 }
381
382 pfn_sb = nd_pfn->pfn_sb;
383 offset = le64_to_cpu(pfn_sb->dataoff);
384 nd_pfn->mode = le32_to_cpu(nd_pfn->pfn_sb->mode);
385 if (nd_pfn->mode == PFN_MODE_RAM) {
386 if (offset != SZ_8K)
387 return -EINVAL;
388 nd_pfn->npfns = le64_to_cpu(pfn_sb->npfns);
389 altmap = NULL;
390 } else {
391 rc = -ENXIO;
392 goto err;
393 }
394
395 /* establish pfn range for lookup, and switch to direct map */
396 pmem = dev_get_drvdata(dev);
397 devm_memunmap(dev, (void __force *) pmem->virt_addr);
398 pmem->virt_addr = (void __pmem *) devm_memremap_pages(dev, &nsio->res);
399 if (IS_ERR(pmem->virt_addr)) {
400 rc = PTR_ERR(pmem->virt_addr);
401 goto err;
402 }
403
404 /* attach pmem disk in "pfn-mode" */
405 pmem->data_offset = offset;
406 rc = pmem_attach_disk(dev, ndns, pmem);
407 if (rc)
408 goto err;
409
410 return rc;
411 err:
412 nvdimm_namespace_detach_pfn(ndns);
413 return rc;
414 }
415
416 static int nd_pmem_probe(struct device *dev)
417 {
418 struct nd_region *nd_region = to_nd_region(dev->parent);
419 struct nd_namespace_common *ndns;
420 struct nd_namespace_io *nsio;
421 struct pmem_device *pmem;
422
423 ndns = nvdimm_namespace_common_probe(dev);
424 if (IS_ERR(ndns))
425 return PTR_ERR(ndns);
426
427 nsio = to_nd_namespace_io(&ndns->dev);
428 pmem = pmem_alloc(dev, &nsio->res, nd_region->id);
429 if (IS_ERR(pmem))
430 return PTR_ERR(pmem);
431
432 pmem->ndns = ndns;
433 dev_set_drvdata(dev, pmem);
434 ndns->rw_bytes = pmem_rw_bytes;
435 if (devm_init_badblocks(dev, &pmem->bb))
436 return -ENOMEM;
437 nvdimm_namespace_add_poison(ndns, &pmem->bb, 0);
438
439 if (is_nd_btt(dev))
440 return nvdimm_namespace_attach_btt(ndns);
441
442 if (is_nd_pfn(dev))
443 return nvdimm_namespace_attach_pfn(ndns);
444
445 if (nd_btt_probe(ndns, pmem) == 0) {
446 /* we'll come back as btt-pmem */
447 return -ENXIO;
448 }
449
450 if (nd_pfn_probe(ndns, pmem) == 0) {
451 /* we'll come back as pfn-pmem */
452 return -ENXIO;
453 }
454
455 return pmem_attach_disk(dev, ndns, pmem);
456 }
457
458 static int nd_pmem_remove(struct device *dev)
459 {
460 struct pmem_device *pmem = dev_get_drvdata(dev);
461
462 if (is_nd_btt(dev))
463 nvdimm_namespace_detach_btt(pmem->ndns);
464 else if (is_nd_pfn(dev))
465 nvdimm_namespace_detach_pfn(pmem->ndns);
466 else
467 pmem_detach_disk(pmem);
468
469 return 0;
470 }
471
472 MODULE_ALIAS("pmem");
473 MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_IO);
474 MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_PMEM);
475 static struct nd_device_driver nd_pmem_driver = {
476 .probe = nd_pmem_probe,
477 .remove = nd_pmem_remove,
478 .drv = {
479 .name = "nd_pmem",
480 },
481 .type = ND_DRIVER_NAMESPACE_IO | ND_DRIVER_NAMESPACE_PMEM,
482 };
483
484 static int __init pmem_init(void)
485 {
486 int error;
487
488 pmem_major = register_blkdev(0, "pmem");
489 if (pmem_major < 0)
490 return pmem_major;
491
492 error = nd_driver_register(&nd_pmem_driver);
493 if (error) {
494 unregister_blkdev(pmem_major, "pmem");
495 return error;
496 }
497
498 return 0;
499 }
500 module_init(pmem_init);
501
502 static void pmem_exit(void)
503 {
504 driver_unregister(&nd_pmem_driver.drv);
505 unregister_blkdev(pmem_major, "pmem");
506 }
507 module_exit(pmem_exit);
508
509 MODULE_AUTHOR("Ross Zwisler <ross.zwisler@linux.intel.com>");
510 MODULE_LICENSE("GPL v2");
This page took 0.042032 seconds and 6 git commands to generate.