nvme: move nvme_cancel_request() to common code
[deliverable/linux.git] / drivers / nvme / host / core.c
1 /*
2 * NVM Express device driver
3 * Copyright (c) 2011-2014, Intel Corporation.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 */
14
15 #include <linux/blkdev.h>
16 #include <linux/blk-mq.h>
17 #include <linux/delay.h>
18 #include <linux/errno.h>
19 #include <linux/hdreg.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/list_sort.h>
23 #include <linux/slab.h>
24 #include <linux/types.h>
25 #include <linux/pr.h>
26 #include <linux/ptrace.h>
27 #include <linux/nvme_ioctl.h>
28 #include <linux/t10-pi.h>
29 #include <scsi/sg.h>
30 #include <asm/unaligned.h>
31
32 #include "nvme.h"
33
34 #define NVME_MINORS (1U << MINORBITS)
35
36 unsigned char admin_timeout = 60;
37 module_param(admin_timeout, byte, 0644);
38 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
39 EXPORT_SYMBOL_GPL(admin_timeout);
40
41 unsigned char nvme_io_timeout = 30;
42 module_param_named(io_timeout, nvme_io_timeout, byte, 0644);
43 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
44 EXPORT_SYMBOL_GPL(nvme_io_timeout);
45
46 unsigned char shutdown_timeout = 5;
47 module_param(shutdown_timeout, byte, 0644);
48 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
49
50 static int nvme_major;
51 module_param(nvme_major, int, 0);
52
53 static int nvme_char_major;
54 module_param(nvme_char_major, int, 0);
55
56 static LIST_HEAD(nvme_ctrl_list);
57 static DEFINE_SPINLOCK(dev_list_lock);
58
59 static struct class *nvme_class;
60
61 void nvme_cancel_request(struct request *req, void *data, bool reserved)
62 {
63 int status;
64
65 if (!blk_mq_request_started(req))
66 return;
67
68 dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
69 "Cancelling I/O %d", req->tag);
70
71 status = NVME_SC_ABORT_REQ;
72 if (blk_queue_dying(req->q))
73 status |= NVME_SC_DNR;
74 blk_mq_complete_request(req, status);
75 }
76 EXPORT_SYMBOL_GPL(nvme_cancel_request);
77
78 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
79 enum nvme_ctrl_state new_state)
80 {
81 enum nvme_ctrl_state old_state = ctrl->state;
82 bool changed = false;
83
84 spin_lock_irq(&ctrl->lock);
85 switch (new_state) {
86 case NVME_CTRL_LIVE:
87 switch (old_state) {
88 case NVME_CTRL_RESETTING:
89 changed = true;
90 /* FALLTHRU */
91 default:
92 break;
93 }
94 break;
95 case NVME_CTRL_RESETTING:
96 switch (old_state) {
97 case NVME_CTRL_NEW:
98 case NVME_CTRL_LIVE:
99 changed = true;
100 /* FALLTHRU */
101 default:
102 break;
103 }
104 break;
105 case NVME_CTRL_DELETING:
106 switch (old_state) {
107 case NVME_CTRL_LIVE:
108 case NVME_CTRL_RESETTING:
109 changed = true;
110 /* FALLTHRU */
111 default:
112 break;
113 }
114 break;
115 case NVME_CTRL_DEAD:
116 switch (old_state) {
117 case NVME_CTRL_DELETING:
118 changed = true;
119 /* FALLTHRU */
120 default:
121 break;
122 }
123 break;
124 default:
125 break;
126 }
127 spin_unlock_irq(&ctrl->lock);
128
129 if (changed)
130 ctrl->state = new_state;
131
132 return changed;
133 }
134 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);
135
136 static void nvme_free_ns(struct kref *kref)
137 {
138 struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
139
140 if (ns->type == NVME_NS_LIGHTNVM)
141 nvme_nvm_unregister(ns->queue, ns->disk->disk_name);
142
143 spin_lock(&dev_list_lock);
144 ns->disk->private_data = NULL;
145 spin_unlock(&dev_list_lock);
146
147 put_disk(ns->disk);
148 ida_simple_remove(&ns->ctrl->ns_ida, ns->instance);
149 nvme_put_ctrl(ns->ctrl);
150 kfree(ns);
151 }
152
153 static void nvme_put_ns(struct nvme_ns *ns)
154 {
155 kref_put(&ns->kref, nvme_free_ns);
156 }
157
158 static struct nvme_ns *nvme_get_ns_from_disk(struct gendisk *disk)
159 {
160 struct nvme_ns *ns;
161
162 spin_lock(&dev_list_lock);
163 ns = disk->private_data;
164 if (ns) {
165 if (!kref_get_unless_zero(&ns->kref))
166 goto fail;
167 if (!try_module_get(ns->ctrl->ops->module))
168 goto fail_put_ns;
169 }
170 spin_unlock(&dev_list_lock);
171
172 return ns;
173
174 fail_put_ns:
175 kref_put(&ns->kref, nvme_free_ns);
176 fail:
177 spin_unlock(&dev_list_lock);
178 return NULL;
179 }
180
181 void nvme_requeue_req(struct request *req)
182 {
183 unsigned long flags;
184
185 blk_mq_requeue_request(req);
186 spin_lock_irqsave(req->q->queue_lock, flags);
187 if (!blk_queue_stopped(req->q))
188 blk_mq_kick_requeue_list(req->q);
189 spin_unlock_irqrestore(req->q->queue_lock, flags);
190 }
191 EXPORT_SYMBOL_GPL(nvme_requeue_req);
192
193 struct request *nvme_alloc_request(struct request_queue *q,
194 struct nvme_command *cmd, unsigned int flags)
195 {
196 bool write = cmd->common.opcode & 1;
197 struct request *req;
198
199 req = blk_mq_alloc_request(q, write, flags);
200 if (IS_ERR(req))
201 return req;
202
203 req->cmd_type = REQ_TYPE_DRV_PRIV;
204 req->cmd_flags |= REQ_FAILFAST_DRIVER;
205 req->__data_len = 0;
206 req->__sector = (sector_t) -1;
207 req->bio = req->biotail = NULL;
208
209 req->cmd = (unsigned char *)cmd;
210 req->cmd_len = sizeof(struct nvme_command);
211
212 return req;
213 }
214 EXPORT_SYMBOL_GPL(nvme_alloc_request);
215
216 static inline void nvme_setup_flush(struct nvme_ns *ns,
217 struct nvme_command *cmnd)
218 {
219 memset(cmnd, 0, sizeof(*cmnd));
220 cmnd->common.opcode = nvme_cmd_flush;
221 cmnd->common.nsid = cpu_to_le32(ns->ns_id);
222 }
223
224 static inline int nvme_setup_discard(struct nvme_ns *ns, struct request *req,
225 struct nvme_command *cmnd)
226 {
227 struct nvme_dsm_range *range;
228 struct page *page;
229 int offset;
230 unsigned int nr_bytes = blk_rq_bytes(req);
231
232 range = kmalloc(sizeof(*range), GFP_ATOMIC);
233 if (!range)
234 return BLK_MQ_RQ_QUEUE_BUSY;
235
236 range->cattr = cpu_to_le32(0);
237 range->nlb = cpu_to_le32(nr_bytes >> ns->lba_shift);
238 range->slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
239
240 memset(cmnd, 0, sizeof(*cmnd));
241 cmnd->dsm.opcode = nvme_cmd_dsm;
242 cmnd->dsm.nsid = cpu_to_le32(ns->ns_id);
243 cmnd->dsm.nr = 0;
244 cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
245
246 req->completion_data = range;
247 page = virt_to_page(range);
248 offset = offset_in_page(range);
249 blk_add_request_payload(req, page, offset, sizeof(*range));
250
251 /*
252 * we set __data_len back to the size of the area to be discarded
253 * on disk. This allows us to report completion on the full amount
254 * of blocks described by the request.
255 */
256 req->__data_len = nr_bytes;
257
258 return 0;
259 }
260
261 static inline void nvme_setup_rw(struct nvme_ns *ns, struct request *req,
262 struct nvme_command *cmnd)
263 {
264 u16 control = 0;
265 u32 dsmgmt = 0;
266
267 if (req->cmd_flags & REQ_FUA)
268 control |= NVME_RW_FUA;
269 if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
270 control |= NVME_RW_LR;
271
272 if (req->cmd_flags & REQ_RAHEAD)
273 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
274
275 memset(cmnd, 0, sizeof(*cmnd));
276 cmnd->rw.opcode = (rq_data_dir(req) ? nvme_cmd_write : nvme_cmd_read);
277 cmnd->rw.command_id = req->tag;
278 cmnd->rw.nsid = cpu_to_le32(ns->ns_id);
279 cmnd->rw.slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
280 cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
281
282 if (ns->ms) {
283 switch (ns->pi_type) {
284 case NVME_NS_DPS_PI_TYPE3:
285 control |= NVME_RW_PRINFO_PRCHK_GUARD;
286 break;
287 case NVME_NS_DPS_PI_TYPE1:
288 case NVME_NS_DPS_PI_TYPE2:
289 control |= NVME_RW_PRINFO_PRCHK_GUARD |
290 NVME_RW_PRINFO_PRCHK_REF;
291 cmnd->rw.reftag = cpu_to_le32(
292 nvme_block_nr(ns, blk_rq_pos(req)));
293 break;
294 }
295 if (!blk_integrity_rq(req))
296 control |= NVME_RW_PRINFO_PRACT;
297 }
298
299 cmnd->rw.control = cpu_to_le16(control);
300 cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
301 }
302
303 int nvme_setup_cmd(struct nvme_ns *ns, struct request *req,
304 struct nvme_command *cmd)
305 {
306 int ret = 0;
307
308 if (req->cmd_type == REQ_TYPE_DRV_PRIV)
309 memcpy(cmd, req->cmd, sizeof(*cmd));
310 else if (req_op(req) == REQ_OP_FLUSH)
311 nvme_setup_flush(ns, cmd);
312 else if (req_op(req) == REQ_OP_DISCARD)
313 ret = nvme_setup_discard(ns, req, cmd);
314 else
315 nvme_setup_rw(ns, req, cmd);
316
317 return ret;
318 }
319 EXPORT_SYMBOL_GPL(nvme_setup_cmd);
320
321 /*
322 * Returns 0 on success. If the result is negative, it's a Linux error code;
323 * if the result is positive, it's an NVM Express status code
324 */
325 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
326 struct nvme_completion *cqe, void *buffer, unsigned bufflen,
327 unsigned timeout)
328 {
329 struct request *req;
330 int ret;
331
332 req = nvme_alloc_request(q, cmd, 0);
333 if (IS_ERR(req))
334 return PTR_ERR(req);
335
336 req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
337 req->special = cqe;
338
339 if (buffer && bufflen) {
340 ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
341 if (ret)
342 goto out;
343 }
344
345 blk_execute_rq(req->q, NULL, req, 0);
346 ret = req->errors;
347 out:
348 blk_mq_free_request(req);
349 return ret;
350 }
351
352 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
353 void *buffer, unsigned bufflen)
354 {
355 return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0);
356 }
357 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
358
359 int __nvme_submit_user_cmd(struct request_queue *q, struct nvme_command *cmd,
360 void __user *ubuffer, unsigned bufflen,
361 void __user *meta_buffer, unsigned meta_len, u32 meta_seed,
362 u32 *result, unsigned timeout)
363 {
364 bool write = cmd->common.opcode & 1;
365 struct nvme_completion cqe;
366 struct nvme_ns *ns = q->queuedata;
367 struct gendisk *disk = ns ? ns->disk : NULL;
368 struct request *req;
369 struct bio *bio = NULL;
370 void *meta = NULL;
371 int ret;
372
373 req = nvme_alloc_request(q, cmd, 0);
374 if (IS_ERR(req))
375 return PTR_ERR(req);
376
377 req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
378 req->special = &cqe;
379
380 if (ubuffer && bufflen) {
381 ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen,
382 GFP_KERNEL);
383 if (ret)
384 goto out;
385 bio = req->bio;
386
387 if (!disk)
388 goto submit;
389 bio->bi_bdev = bdget_disk(disk, 0);
390 if (!bio->bi_bdev) {
391 ret = -ENODEV;
392 goto out_unmap;
393 }
394
395 if (meta_buffer && meta_len) {
396 struct bio_integrity_payload *bip;
397
398 meta = kmalloc(meta_len, GFP_KERNEL);
399 if (!meta) {
400 ret = -ENOMEM;
401 goto out_unmap;
402 }
403
404 if (write) {
405 if (copy_from_user(meta, meta_buffer,
406 meta_len)) {
407 ret = -EFAULT;
408 goto out_free_meta;
409 }
410 }
411
412 bip = bio_integrity_alloc(bio, GFP_KERNEL, 1);
413 if (IS_ERR(bip)) {
414 ret = PTR_ERR(bip);
415 goto out_free_meta;
416 }
417
418 bip->bip_iter.bi_size = meta_len;
419 bip->bip_iter.bi_sector = meta_seed;
420
421 ret = bio_integrity_add_page(bio, virt_to_page(meta),
422 meta_len, offset_in_page(meta));
423 if (ret != meta_len) {
424 ret = -ENOMEM;
425 goto out_free_meta;
426 }
427 }
428 }
429 submit:
430 blk_execute_rq(req->q, disk, req, 0);
431 ret = req->errors;
432 if (result)
433 *result = le32_to_cpu(cqe.result);
434 if (meta && !ret && !write) {
435 if (copy_to_user(meta_buffer, meta, meta_len))
436 ret = -EFAULT;
437 }
438 out_free_meta:
439 kfree(meta);
440 out_unmap:
441 if (bio) {
442 if (disk && bio->bi_bdev)
443 bdput(bio->bi_bdev);
444 blk_rq_unmap_user(bio);
445 }
446 out:
447 blk_mq_free_request(req);
448 return ret;
449 }
450
451 int nvme_submit_user_cmd(struct request_queue *q, struct nvme_command *cmd,
452 void __user *ubuffer, unsigned bufflen, u32 *result,
453 unsigned timeout)
454 {
455 return __nvme_submit_user_cmd(q, cmd, ubuffer, bufflen, NULL, 0, 0,
456 result, timeout);
457 }
458
459 int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
460 {
461 struct nvme_command c = { };
462 int error;
463
464 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
465 c.identify.opcode = nvme_admin_identify;
466 c.identify.cns = cpu_to_le32(1);
467
468 *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
469 if (!*id)
470 return -ENOMEM;
471
472 error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
473 sizeof(struct nvme_id_ctrl));
474 if (error)
475 kfree(*id);
476 return error;
477 }
478
479 static int nvme_identify_ns_list(struct nvme_ctrl *dev, unsigned nsid, __le32 *ns_list)
480 {
481 struct nvme_command c = { };
482
483 c.identify.opcode = nvme_admin_identify;
484 c.identify.cns = cpu_to_le32(2);
485 c.identify.nsid = cpu_to_le32(nsid);
486 return nvme_submit_sync_cmd(dev->admin_q, &c, ns_list, 0x1000);
487 }
488
489 int nvme_identify_ns(struct nvme_ctrl *dev, unsigned nsid,
490 struct nvme_id_ns **id)
491 {
492 struct nvme_command c = { };
493 int error;
494
495 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
496 c.identify.opcode = nvme_admin_identify,
497 c.identify.nsid = cpu_to_le32(nsid),
498
499 *id = kmalloc(sizeof(struct nvme_id_ns), GFP_KERNEL);
500 if (!*id)
501 return -ENOMEM;
502
503 error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
504 sizeof(struct nvme_id_ns));
505 if (error)
506 kfree(*id);
507 return error;
508 }
509
510 int nvme_get_features(struct nvme_ctrl *dev, unsigned fid, unsigned nsid,
511 dma_addr_t dma_addr, u32 *result)
512 {
513 struct nvme_command c;
514 struct nvme_completion cqe;
515 int ret;
516
517 memset(&c, 0, sizeof(c));
518 c.features.opcode = nvme_admin_get_features;
519 c.features.nsid = cpu_to_le32(nsid);
520 c.features.prp1 = cpu_to_le64(dma_addr);
521 c.features.fid = cpu_to_le32(fid);
522
523 ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &cqe, NULL, 0, 0);
524 if (ret >= 0)
525 *result = le32_to_cpu(cqe.result);
526 return ret;
527 }
528
529 int nvme_set_features(struct nvme_ctrl *dev, unsigned fid, unsigned dword11,
530 dma_addr_t dma_addr, u32 *result)
531 {
532 struct nvme_command c;
533 struct nvme_completion cqe;
534 int ret;
535
536 memset(&c, 0, sizeof(c));
537 c.features.opcode = nvme_admin_set_features;
538 c.features.prp1 = cpu_to_le64(dma_addr);
539 c.features.fid = cpu_to_le32(fid);
540 c.features.dword11 = cpu_to_le32(dword11);
541
542 ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &cqe, NULL, 0, 0);
543 if (ret >= 0)
544 *result = le32_to_cpu(cqe.result);
545 return ret;
546 }
547
548 int nvme_get_log_page(struct nvme_ctrl *dev, struct nvme_smart_log **log)
549 {
550 struct nvme_command c = { };
551 int error;
552
553 c.common.opcode = nvme_admin_get_log_page,
554 c.common.nsid = cpu_to_le32(0xFFFFFFFF),
555 c.common.cdw10[0] = cpu_to_le32(
556 (((sizeof(struct nvme_smart_log) / 4) - 1) << 16) |
557 NVME_LOG_SMART),
558
559 *log = kmalloc(sizeof(struct nvme_smart_log), GFP_KERNEL);
560 if (!*log)
561 return -ENOMEM;
562
563 error = nvme_submit_sync_cmd(dev->admin_q, &c, *log,
564 sizeof(struct nvme_smart_log));
565 if (error)
566 kfree(*log);
567 return error;
568 }
569
570 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
571 {
572 u32 q_count = (*count - 1) | ((*count - 1) << 16);
573 u32 result;
574 int status, nr_io_queues;
575
576 status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, 0,
577 &result);
578 if (status)
579 return status;
580
581 nr_io_queues = min(result & 0xffff, result >> 16) + 1;
582 *count = min(*count, nr_io_queues);
583 return 0;
584 }
585 EXPORT_SYMBOL_GPL(nvme_set_queue_count);
586
587 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
588 {
589 struct nvme_user_io io;
590 struct nvme_command c;
591 unsigned length, meta_len;
592 void __user *metadata;
593
594 if (copy_from_user(&io, uio, sizeof(io)))
595 return -EFAULT;
596 if (io.flags)
597 return -EINVAL;
598
599 switch (io.opcode) {
600 case nvme_cmd_write:
601 case nvme_cmd_read:
602 case nvme_cmd_compare:
603 break;
604 default:
605 return -EINVAL;
606 }
607
608 length = (io.nblocks + 1) << ns->lba_shift;
609 meta_len = (io.nblocks + 1) * ns->ms;
610 metadata = (void __user *)(uintptr_t)io.metadata;
611
612 if (ns->ext) {
613 length += meta_len;
614 meta_len = 0;
615 } else if (meta_len) {
616 if ((io.metadata & 3) || !io.metadata)
617 return -EINVAL;
618 }
619
620 memset(&c, 0, sizeof(c));
621 c.rw.opcode = io.opcode;
622 c.rw.flags = io.flags;
623 c.rw.nsid = cpu_to_le32(ns->ns_id);
624 c.rw.slba = cpu_to_le64(io.slba);
625 c.rw.length = cpu_to_le16(io.nblocks);
626 c.rw.control = cpu_to_le16(io.control);
627 c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
628 c.rw.reftag = cpu_to_le32(io.reftag);
629 c.rw.apptag = cpu_to_le16(io.apptag);
630 c.rw.appmask = cpu_to_le16(io.appmask);
631
632 return __nvme_submit_user_cmd(ns->queue, &c,
633 (void __user *)(uintptr_t)io.addr, length,
634 metadata, meta_len, io.slba, NULL, 0);
635 }
636
637 static int nvme_user_cmd(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
638 struct nvme_passthru_cmd __user *ucmd)
639 {
640 struct nvme_passthru_cmd cmd;
641 struct nvme_command c;
642 unsigned timeout = 0;
643 int status;
644
645 if (!capable(CAP_SYS_ADMIN))
646 return -EACCES;
647 if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
648 return -EFAULT;
649 if (cmd.flags)
650 return -EINVAL;
651
652 memset(&c, 0, sizeof(c));
653 c.common.opcode = cmd.opcode;
654 c.common.flags = cmd.flags;
655 c.common.nsid = cpu_to_le32(cmd.nsid);
656 c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
657 c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
658 c.common.cdw10[0] = cpu_to_le32(cmd.cdw10);
659 c.common.cdw10[1] = cpu_to_le32(cmd.cdw11);
660 c.common.cdw10[2] = cpu_to_le32(cmd.cdw12);
661 c.common.cdw10[3] = cpu_to_le32(cmd.cdw13);
662 c.common.cdw10[4] = cpu_to_le32(cmd.cdw14);
663 c.common.cdw10[5] = cpu_to_le32(cmd.cdw15);
664
665 if (cmd.timeout_ms)
666 timeout = msecs_to_jiffies(cmd.timeout_ms);
667
668 status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
669 (void __user *)(uintptr_t)cmd.addr, cmd.data_len,
670 &cmd.result, timeout);
671 if (status >= 0) {
672 if (put_user(cmd.result, &ucmd->result))
673 return -EFAULT;
674 }
675
676 return status;
677 }
678
679 static int nvme_ioctl(struct block_device *bdev, fmode_t mode,
680 unsigned int cmd, unsigned long arg)
681 {
682 struct nvme_ns *ns = bdev->bd_disk->private_data;
683
684 switch (cmd) {
685 case NVME_IOCTL_ID:
686 force_successful_syscall_return();
687 return ns->ns_id;
688 case NVME_IOCTL_ADMIN_CMD:
689 return nvme_user_cmd(ns->ctrl, NULL, (void __user *)arg);
690 case NVME_IOCTL_IO_CMD:
691 return nvme_user_cmd(ns->ctrl, ns, (void __user *)arg);
692 case NVME_IOCTL_SUBMIT_IO:
693 return nvme_submit_io(ns, (void __user *)arg);
694 #ifdef CONFIG_BLK_DEV_NVME_SCSI
695 case SG_GET_VERSION_NUM:
696 return nvme_sg_get_version_num((void __user *)arg);
697 case SG_IO:
698 return nvme_sg_io(ns, (void __user *)arg);
699 #endif
700 default:
701 return -ENOTTY;
702 }
703 }
704
705 #ifdef CONFIG_COMPAT
706 static int nvme_compat_ioctl(struct block_device *bdev, fmode_t mode,
707 unsigned int cmd, unsigned long arg)
708 {
709 switch (cmd) {
710 case SG_IO:
711 return -ENOIOCTLCMD;
712 }
713 return nvme_ioctl(bdev, mode, cmd, arg);
714 }
715 #else
716 #define nvme_compat_ioctl NULL
717 #endif
718
719 static int nvme_open(struct block_device *bdev, fmode_t mode)
720 {
721 return nvme_get_ns_from_disk(bdev->bd_disk) ? 0 : -ENXIO;
722 }
723
724 static void nvme_release(struct gendisk *disk, fmode_t mode)
725 {
726 struct nvme_ns *ns = disk->private_data;
727
728 module_put(ns->ctrl->ops->module);
729 nvme_put_ns(ns);
730 }
731
732 static int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
733 {
734 /* some standard values */
735 geo->heads = 1 << 6;
736 geo->sectors = 1 << 5;
737 geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
738 return 0;
739 }
740
741 #ifdef CONFIG_BLK_DEV_INTEGRITY
742 static void nvme_init_integrity(struct nvme_ns *ns)
743 {
744 struct blk_integrity integrity;
745
746 switch (ns->pi_type) {
747 case NVME_NS_DPS_PI_TYPE3:
748 integrity.profile = &t10_pi_type3_crc;
749 integrity.tag_size = sizeof(u16) + sizeof(u32);
750 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
751 break;
752 case NVME_NS_DPS_PI_TYPE1:
753 case NVME_NS_DPS_PI_TYPE2:
754 integrity.profile = &t10_pi_type1_crc;
755 integrity.tag_size = sizeof(u16);
756 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
757 break;
758 default:
759 integrity.profile = NULL;
760 break;
761 }
762 integrity.tuple_size = ns->ms;
763 blk_integrity_register(ns->disk, &integrity);
764 blk_queue_max_integrity_segments(ns->queue, 1);
765 }
766 #else
767 static void nvme_init_integrity(struct nvme_ns *ns)
768 {
769 }
770 #endif /* CONFIG_BLK_DEV_INTEGRITY */
771
772 static void nvme_config_discard(struct nvme_ns *ns)
773 {
774 struct nvme_ctrl *ctrl = ns->ctrl;
775 u32 logical_block_size = queue_logical_block_size(ns->queue);
776
777 if (ctrl->quirks & NVME_QUIRK_DISCARD_ZEROES)
778 ns->queue->limits.discard_zeroes_data = 1;
779 else
780 ns->queue->limits.discard_zeroes_data = 0;
781
782 ns->queue->limits.discard_alignment = logical_block_size;
783 ns->queue->limits.discard_granularity = logical_block_size;
784 blk_queue_max_discard_sectors(ns->queue, 0xffffffff);
785 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, ns->queue);
786 }
787
788 static int nvme_revalidate_disk(struct gendisk *disk)
789 {
790 struct nvme_ns *ns = disk->private_data;
791 struct nvme_id_ns *id;
792 u8 lbaf, pi_type;
793 u16 old_ms;
794 unsigned short bs;
795
796 if (test_bit(NVME_NS_DEAD, &ns->flags)) {
797 set_capacity(disk, 0);
798 return -ENODEV;
799 }
800 if (nvme_identify_ns(ns->ctrl, ns->ns_id, &id)) {
801 dev_warn(disk_to_dev(ns->disk), "%s: Identify failure\n",
802 __func__);
803 return -ENODEV;
804 }
805 if (id->ncap == 0) {
806 kfree(id);
807 return -ENODEV;
808 }
809
810 if (nvme_nvm_ns_supported(ns, id) && ns->type != NVME_NS_LIGHTNVM) {
811 if (nvme_nvm_register(ns->queue, disk->disk_name)) {
812 dev_warn(disk_to_dev(ns->disk),
813 "%s: LightNVM init failure\n", __func__);
814 kfree(id);
815 return -ENODEV;
816 }
817 ns->type = NVME_NS_LIGHTNVM;
818 }
819
820 if (ns->ctrl->vs >= NVME_VS(1, 1))
821 memcpy(ns->eui, id->eui64, sizeof(ns->eui));
822 if (ns->ctrl->vs >= NVME_VS(1, 2))
823 memcpy(ns->uuid, id->nguid, sizeof(ns->uuid));
824
825 old_ms = ns->ms;
826 lbaf = id->flbas & NVME_NS_FLBAS_LBA_MASK;
827 ns->lba_shift = id->lbaf[lbaf].ds;
828 ns->ms = le16_to_cpu(id->lbaf[lbaf].ms);
829 ns->ext = ns->ms && (id->flbas & NVME_NS_FLBAS_META_EXT);
830
831 /*
832 * If identify namespace failed, use default 512 byte block size so
833 * block layer can use before failing read/write for 0 capacity.
834 */
835 if (ns->lba_shift == 0)
836 ns->lba_shift = 9;
837 bs = 1 << ns->lba_shift;
838 /* XXX: PI implementation requires metadata equal t10 pi tuple size */
839 pi_type = ns->ms == sizeof(struct t10_pi_tuple) ?
840 id->dps & NVME_NS_DPS_PI_MASK : 0;
841
842 blk_mq_freeze_queue(disk->queue);
843 if (blk_get_integrity(disk) && (ns->pi_type != pi_type ||
844 ns->ms != old_ms ||
845 bs != queue_logical_block_size(disk->queue) ||
846 (ns->ms && ns->ext)))
847 blk_integrity_unregister(disk);
848
849 ns->pi_type = pi_type;
850 blk_queue_logical_block_size(ns->queue, bs);
851
852 if (ns->ms && !blk_get_integrity(disk) && !ns->ext)
853 nvme_init_integrity(ns);
854 if (ns->ms && !(ns->ms == 8 && ns->pi_type) && !blk_get_integrity(disk))
855 set_capacity(disk, 0);
856 else
857 set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
858
859 if (ns->ctrl->oncs & NVME_CTRL_ONCS_DSM)
860 nvme_config_discard(ns);
861 blk_mq_unfreeze_queue(disk->queue);
862
863 kfree(id);
864 return 0;
865 }
866
867 static char nvme_pr_type(enum pr_type type)
868 {
869 switch (type) {
870 case PR_WRITE_EXCLUSIVE:
871 return 1;
872 case PR_EXCLUSIVE_ACCESS:
873 return 2;
874 case PR_WRITE_EXCLUSIVE_REG_ONLY:
875 return 3;
876 case PR_EXCLUSIVE_ACCESS_REG_ONLY:
877 return 4;
878 case PR_WRITE_EXCLUSIVE_ALL_REGS:
879 return 5;
880 case PR_EXCLUSIVE_ACCESS_ALL_REGS:
881 return 6;
882 default:
883 return 0;
884 }
885 };
886
887 static int nvme_pr_command(struct block_device *bdev, u32 cdw10,
888 u64 key, u64 sa_key, u8 op)
889 {
890 struct nvme_ns *ns = bdev->bd_disk->private_data;
891 struct nvme_command c;
892 u8 data[16] = { 0, };
893
894 put_unaligned_le64(key, &data[0]);
895 put_unaligned_le64(sa_key, &data[8]);
896
897 memset(&c, 0, sizeof(c));
898 c.common.opcode = op;
899 c.common.nsid = cpu_to_le32(ns->ns_id);
900 c.common.cdw10[0] = cpu_to_le32(cdw10);
901
902 return nvme_submit_sync_cmd(ns->queue, &c, data, 16);
903 }
904
905 static int nvme_pr_register(struct block_device *bdev, u64 old,
906 u64 new, unsigned flags)
907 {
908 u32 cdw10;
909
910 if (flags & ~PR_FL_IGNORE_KEY)
911 return -EOPNOTSUPP;
912
913 cdw10 = old ? 2 : 0;
914 cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0;
915 cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */
916 return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register);
917 }
918
919 static int nvme_pr_reserve(struct block_device *bdev, u64 key,
920 enum pr_type type, unsigned flags)
921 {
922 u32 cdw10;
923
924 if (flags & ~PR_FL_IGNORE_KEY)
925 return -EOPNOTSUPP;
926
927 cdw10 = nvme_pr_type(type) << 8;
928 cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0);
929 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire);
930 }
931
932 static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new,
933 enum pr_type type, bool abort)
934 {
935 u32 cdw10 = nvme_pr_type(type) << 8 | abort ? 2 : 1;
936 return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire);
937 }
938
939 static int nvme_pr_clear(struct block_device *bdev, u64 key)
940 {
941 u32 cdw10 = 1 | (key ? 1 << 3 : 0);
942 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register);
943 }
944
945 static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
946 {
947 u32 cdw10 = nvme_pr_type(type) << 8 | key ? 1 << 3 : 0;
948 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
949 }
950
951 static const struct pr_ops nvme_pr_ops = {
952 .pr_register = nvme_pr_register,
953 .pr_reserve = nvme_pr_reserve,
954 .pr_release = nvme_pr_release,
955 .pr_preempt = nvme_pr_preempt,
956 .pr_clear = nvme_pr_clear,
957 };
958
959 static const struct block_device_operations nvme_fops = {
960 .owner = THIS_MODULE,
961 .ioctl = nvme_ioctl,
962 .compat_ioctl = nvme_compat_ioctl,
963 .open = nvme_open,
964 .release = nvme_release,
965 .getgeo = nvme_getgeo,
966 .revalidate_disk= nvme_revalidate_disk,
967 .pr_ops = &nvme_pr_ops,
968 };
969
970 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled)
971 {
972 unsigned long timeout =
973 ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
974 u32 csts, bit = enabled ? NVME_CSTS_RDY : 0;
975 int ret;
976
977 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
978 if ((csts & NVME_CSTS_RDY) == bit)
979 break;
980
981 msleep(100);
982 if (fatal_signal_pending(current))
983 return -EINTR;
984 if (time_after(jiffies, timeout)) {
985 dev_err(ctrl->device,
986 "Device not ready; aborting %s\n", enabled ?
987 "initialisation" : "reset");
988 return -ENODEV;
989 }
990 }
991
992 return ret;
993 }
994
995 /*
996 * If the device has been passed off to us in an enabled state, just clear
997 * the enabled bit. The spec says we should set the 'shutdown notification
998 * bits', but doing so may cause the device to complete commands to the
999 * admin queue ... and we don't know what memory that might be pointing at!
1000 */
1001 int nvme_disable_ctrl(struct nvme_ctrl *ctrl, u64 cap)
1002 {
1003 int ret;
1004
1005 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
1006 ctrl->ctrl_config &= ~NVME_CC_ENABLE;
1007
1008 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
1009 if (ret)
1010 return ret;
1011 return nvme_wait_ready(ctrl, cap, false);
1012 }
1013 EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
1014
1015 int nvme_enable_ctrl(struct nvme_ctrl *ctrl, u64 cap)
1016 {
1017 /*
1018 * Default to a 4K page size, with the intention to update this
1019 * path in the future to accomodate architectures with differing
1020 * kernel and IO page sizes.
1021 */
1022 unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12, page_shift = 12;
1023 int ret;
1024
1025 if (page_shift < dev_page_min) {
1026 dev_err(ctrl->device,
1027 "Minimum device page size %u too large for host (%u)\n",
1028 1 << dev_page_min, 1 << page_shift);
1029 return -ENODEV;
1030 }
1031
1032 ctrl->page_size = 1 << page_shift;
1033
1034 ctrl->ctrl_config = NVME_CC_CSS_NVM;
1035 ctrl->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT;
1036 ctrl->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
1037 ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
1038 ctrl->ctrl_config |= NVME_CC_ENABLE;
1039
1040 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
1041 if (ret)
1042 return ret;
1043 return nvme_wait_ready(ctrl, cap, true);
1044 }
1045 EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
1046
1047 int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl)
1048 {
1049 unsigned long timeout = SHUTDOWN_TIMEOUT + jiffies;
1050 u32 csts;
1051 int ret;
1052
1053 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
1054 ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
1055
1056 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
1057 if (ret)
1058 return ret;
1059
1060 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
1061 if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT)
1062 break;
1063
1064 msleep(100);
1065 if (fatal_signal_pending(current))
1066 return -EINTR;
1067 if (time_after(jiffies, timeout)) {
1068 dev_err(ctrl->device,
1069 "Device shutdown incomplete; abort shutdown\n");
1070 return -ENODEV;
1071 }
1072 }
1073
1074 return ret;
1075 }
1076 EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl);
1077
1078 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl,
1079 struct request_queue *q)
1080 {
1081 bool vwc = false;
1082
1083 if (ctrl->max_hw_sectors) {
1084 u32 max_segments =
1085 (ctrl->max_hw_sectors / (ctrl->page_size >> 9)) + 1;
1086
1087 blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors);
1088 blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX));
1089 }
1090 if (ctrl->stripe_size)
1091 blk_queue_chunk_sectors(q, ctrl->stripe_size >> 9);
1092 blk_queue_virt_boundary(q, ctrl->page_size - 1);
1093 if (ctrl->vwc & NVME_CTRL_VWC_PRESENT)
1094 vwc = true;
1095 blk_queue_write_cache(q, vwc, vwc);
1096 }
1097
1098 /*
1099 * Initialize the cached copies of the Identify data and various controller
1100 * register in our nvme_ctrl structure. This should be called as soon as
1101 * the admin queue is fully up and running.
1102 */
1103 int nvme_init_identify(struct nvme_ctrl *ctrl)
1104 {
1105 struct nvme_id_ctrl *id;
1106 u64 cap;
1107 int ret, page_shift;
1108
1109 ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
1110 if (ret) {
1111 dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
1112 return ret;
1113 }
1114
1115 ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &cap);
1116 if (ret) {
1117 dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
1118 return ret;
1119 }
1120 page_shift = NVME_CAP_MPSMIN(cap) + 12;
1121
1122 if (ctrl->vs >= NVME_VS(1, 1))
1123 ctrl->subsystem = NVME_CAP_NSSRC(cap);
1124
1125 ret = nvme_identify_ctrl(ctrl, &id);
1126 if (ret) {
1127 dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
1128 return -EIO;
1129 }
1130
1131 ctrl->vid = le16_to_cpu(id->vid);
1132 ctrl->oncs = le16_to_cpup(&id->oncs);
1133 atomic_set(&ctrl->abort_limit, id->acl + 1);
1134 ctrl->vwc = id->vwc;
1135 ctrl->cntlid = le16_to_cpup(&id->cntlid);
1136 memcpy(ctrl->serial, id->sn, sizeof(id->sn));
1137 memcpy(ctrl->model, id->mn, sizeof(id->mn));
1138 memcpy(ctrl->firmware_rev, id->fr, sizeof(id->fr));
1139 if (id->mdts)
1140 ctrl->max_hw_sectors = 1 << (id->mdts + page_shift - 9);
1141 else
1142 ctrl->max_hw_sectors = UINT_MAX;
1143
1144 if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) && id->vs[3]) {
1145 unsigned int max_hw_sectors;
1146
1147 ctrl->stripe_size = 1 << (id->vs[3] + page_shift);
1148 max_hw_sectors = ctrl->stripe_size >> (page_shift - 9);
1149 if (ctrl->max_hw_sectors) {
1150 ctrl->max_hw_sectors = min(max_hw_sectors,
1151 ctrl->max_hw_sectors);
1152 } else {
1153 ctrl->max_hw_sectors = max_hw_sectors;
1154 }
1155 }
1156
1157 nvme_set_queue_limits(ctrl, ctrl->admin_q);
1158
1159 kfree(id);
1160 return 0;
1161 }
1162 EXPORT_SYMBOL_GPL(nvme_init_identify);
1163
1164 static int nvme_dev_open(struct inode *inode, struct file *file)
1165 {
1166 struct nvme_ctrl *ctrl;
1167 int instance = iminor(inode);
1168 int ret = -ENODEV;
1169
1170 spin_lock(&dev_list_lock);
1171 list_for_each_entry(ctrl, &nvme_ctrl_list, node) {
1172 if (ctrl->instance != instance)
1173 continue;
1174
1175 if (!ctrl->admin_q) {
1176 ret = -EWOULDBLOCK;
1177 break;
1178 }
1179 if (!kref_get_unless_zero(&ctrl->kref))
1180 break;
1181 file->private_data = ctrl;
1182 ret = 0;
1183 break;
1184 }
1185 spin_unlock(&dev_list_lock);
1186
1187 return ret;
1188 }
1189
1190 static int nvme_dev_release(struct inode *inode, struct file *file)
1191 {
1192 nvme_put_ctrl(file->private_data);
1193 return 0;
1194 }
1195
1196 static int nvme_dev_user_cmd(struct nvme_ctrl *ctrl, void __user *argp)
1197 {
1198 struct nvme_ns *ns;
1199 int ret;
1200
1201 mutex_lock(&ctrl->namespaces_mutex);
1202 if (list_empty(&ctrl->namespaces)) {
1203 ret = -ENOTTY;
1204 goto out_unlock;
1205 }
1206
1207 ns = list_first_entry(&ctrl->namespaces, struct nvme_ns, list);
1208 if (ns != list_last_entry(&ctrl->namespaces, struct nvme_ns, list)) {
1209 dev_warn(ctrl->device,
1210 "NVME_IOCTL_IO_CMD not supported when multiple namespaces present!\n");
1211 ret = -EINVAL;
1212 goto out_unlock;
1213 }
1214
1215 dev_warn(ctrl->device,
1216 "using deprecated NVME_IOCTL_IO_CMD ioctl on the char device!\n");
1217 kref_get(&ns->kref);
1218 mutex_unlock(&ctrl->namespaces_mutex);
1219
1220 ret = nvme_user_cmd(ctrl, ns, argp);
1221 nvme_put_ns(ns);
1222 return ret;
1223
1224 out_unlock:
1225 mutex_unlock(&ctrl->namespaces_mutex);
1226 return ret;
1227 }
1228
1229 static long nvme_dev_ioctl(struct file *file, unsigned int cmd,
1230 unsigned long arg)
1231 {
1232 struct nvme_ctrl *ctrl = file->private_data;
1233 void __user *argp = (void __user *)arg;
1234
1235 switch (cmd) {
1236 case NVME_IOCTL_ADMIN_CMD:
1237 return nvme_user_cmd(ctrl, NULL, argp);
1238 case NVME_IOCTL_IO_CMD:
1239 return nvme_dev_user_cmd(ctrl, argp);
1240 case NVME_IOCTL_RESET:
1241 dev_warn(ctrl->device, "resetting controller\n");
1242 return ctrl->ops->reset_ctrl(ctrl);
1243 case NVME_IOCTL_SUBSYS_RESET:
1244 return nvme_reset_subsystem(ctrl);
1245 case NVME_IOCTL_RESCAN:
1246 nvme_queue_scan(ctrl);
1247 return 0;
1248 default:
1249 return -ENOTTY;
1250 }
1251 }
1252
1253 static const struct file_operations nvme_dev_fops = {
1254 .owner = THIS_MODULE,
1255 .open = nvme_dev_open,
1256 .release = nvme_dev_release,
1257 .unlocked_ioctl = nvme_dev_ioctl,
1258 .compat_ioctl = nvme_dev_ioctl,
1259 };
1260
1261 static ssize_t nvme_sysfs_reset(struct device *dev,
1262 struct device_attribute *attr, const char *buf,
1263 size_t count)
1264 {
1265 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1266 int ret;
1267
1268 ret = ctrl->ops->reset_ctrl(ctrl);
1269 if (ret < 0)
1270 return ret;
1271 return count;
1272 }
1273 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
1274
1275 static ssize_t nvme_sysfs_rescan(struct device *dev,
1276 struct device_attribute *attr, const char *buf,
1277 size_t count)
1278 {
1279 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1280
1281 nvme_queue_scan(ctrl);
1282 return count;
1283 }
1284 static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan);
1285
1286 static ssize_t wwid_show(struct device *dev, struct device_attribute *attr,
1287 char *buf)
1288 {
1289 struct nvme_ns *ns = dev_to_disk(dev)->private_data;
1290 struct nvme_ctrl *ctrl = ns->ctrl;
1291 int serial_len = sizeof(ctrl->serial);
1292 int model_len = sizeof(ctrl->model);
1293
1294 if (memchr_inv(ns->uuid, 0, sizeof(ns->uuid)))
1295 return sprintf(buf, "eui.%16phN\n", ns->uuid);
1296
1297 if (memchr_inv(ns->eui, 0, sizeof(ns->eui)))
1298 return sprintf(buf, "eui.%8phN\n", ns->eui);
1299
1300 while (ctrl->serial[serial_len - 1] == ' ')
1301 serial_len--;
1302 while (ctrl->model[model_len - 1] == ' ')
1303 model_len--;
1304
1305 return sprintf(buf, "nvme.%04x-%*phN-%*phN-%08x\n", ctrl->vid,
1306 serial_len, ctrl->serial, model_len, ctrl->model, ns->ns_id);
1307 }
1308 static DEVICE_ATTR(wwid, S_IRUGO, wwid_show, NULL);
1309
1310 static ssize_t uuid_show(struct device *dev, struct device_attribute *attr,
1311 char *buf)
1312 {
1313 struct nvme_ns *ns = dev_to_disk(dev)->private_data;
1314 return sprintf(buf, "%pU\n", ns->uuid);
1315 }
1316 static DEVICE_ATTR(uuid, S_IRUGO, uuid_show, NULL);
1317
1318 static ssize_t eui_show(struct device *dev, struct device_attribute *attr,
1319 char *buf)
1320 {
1321 struct nvme_ns *ns = dev_to_disk(dev)->private_data;
1322 return sprintf(buf, "%8phd\n", ns->eui);
1323 }
1324 static DEVICE_ATTR(eui, S_IRUGO, eui_show, NULL);
1325
1326 static ssize_t nsid_show(struct device *dev, struct device_attribute *attr,
1327 char *buf)
1328 {
1329 struct nvme_ns *ns = dev_to_disk(dev)->private_data;
1330 return sprintf(buf, "%d\n", ns->ns_id);
1331 }
1332 static DEVICE_ATTR(nsid, S_IRUGO, nsid_show, NULL);
1333
1334 static struct attribute *nvme_ns_attrs[] = {
1335 &dev_attr_wwid.attr,
1336 &dev_attr_uuid.attr,
1337 &dev_attr_eui.attr,
1338 &dev_attr_nsid.attr,
1339 NULL,
1340 };
1341
1342 static umode_t nvme_attrs_are_visible(struct kobject *kobj,
1343 struct attribute *a, int n)
1344 {
1345 struct device *dev = container_of(kobj, struct device, kobj);
1346 struct nvme_ns *ns = dev_to_disk(dev)->private_data;
1347
1348 if (a == &dev_attr_uuid.attr) {
1349 if (!memchr_inv(ns->uuid, 0, sizeof(ns->uuid)))
1350 return 0;
1351 }
1352 if (a == &dev_attr_eui.attr) {
1353 if (!memchr_inv(ns->eui, 0, sizeof(ns->eui)))
1354 return 0;
1355 }
1356 return a->mode;
1357 }
1358
1359 static const struct attribute_group nvme_ns_attr_group = {
1360 .attrs = nvme_ns_attrs,
1361 .is_visible = nvme_attrs_are_visible,
1362 };
1363
1364 #define nvme_show_str_function(field) \
1365 static ssize_t field##_show(struct device *dev, \
1366 struct device_attribute *attr, char *buf) \
1367 { \
1368 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \
1369 return sprintf(buf, "%.*s\n", (int)sizeof(ctrl->field), ctrl->field); \
1370 } \
1371 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
1372
1373 #define nvme_show_int_function(field) \
1374 static ssize_t field##_show(struct device *dev, \
1375 struct device_attribute *attr, char *buf) \
1376 { \
1377 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \
1378 return sprintf(buf, "%d\n", ctrl->field); \
1379 } \
1380 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
1381
1382 nvme_show_str_function(model);
1383 nvme_show_str_function(serial);
1384 nvme_show_str_function(firmware_rev);
1385 nvme_show_int_function(cntlid);
1386
1387 static struct attribute *nvme_dev_attrs[] = {
1388 &dev_attr_reset_controller.attr,
1389 &dev_attr_rescan_controller.attr,
1390 &dev_attr_model.attr,
1391 &dev_attr_serial.attr,
1392 &dev_attr_firmware_rev.attr,
1393 &dev_attr_cntlid.attr,
1394 NULL
1395 };
1396
1397 static struct attribute_group nvme_dev_attrs_group = {
1398 .attrs = nvme_dev_attrs,
1399 };
1400
1401 static const struct attribute_group *nvme_dev_attr_groups[] = {
1402 &nvme_dev_attrs_group,
1403 NULL,
1404 };
1405
1406 static int ns_cmp(void *priv, struct list_head *a, struct list_head *b)
1407 {
1408 struct nvme_ns *nsa = container_of(a, struct nvme_ns, list);
1409 struct nvme_ns *nsb = container_of(b, struct nvme_ns, list);
1410
1411 return nsa->ns_id - nsb->ns_id;
1412 }
1413
1414 static struct nvme_ns *nvme_find_ns(struct nvme_ctrl *ctrl, unsigned nsid)
1415 {
1416 struct nvme_ns *ns;
1417
1418 lockdep_assert_held(&ctrl->namespaces_mutex);
1419
1420 list_for_each_entry(ns, &ctrl->namespaces, list) {
1421 if (ns->ns_id == nsid)
1422 return ns;
1423 if (ns->ns_id > nsid)
1424 break;
1425 }
1426 return NULL;
1427 }
1428
1429 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid)
1430 {
1431 struct nvme_ns *ns;
1432 struct gendisk *disk;
1433 int node = dev_to_node(ctrl->dev);
1434
1435 lockdep_assert_held(&ctrl->namespaces_mutex);
1436
1437 ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
1438 if (!ns)
1439 return;
1440
1441 ns->instance = ida_simple_get(&ctrl->ns_ida, 1, 0, GFP_KERNEL);
1442 if (ns->instance < 0)
1443 goto out_free_ns;
1444
1445 ns->queue = blk_mq_init_queue(ctrl->tagset);
1446 if (IS_ERR(ns->queue))
1447 goto out_release_instance;
1448 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, ns->queue);
1449 ns->queue->queuedata = ns;
1450 ns->ctrl = ctrl;
1451
1452 disk = alloc_disk_node(0, node);
1453 if (!disk)
1454 goto out_free_queue;
1455
1456 kref_init(&ns->kref);
1457 ns->ns_id = nsid;
1458 ns->disk = disk;
1459 ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */
1460
1461
1462 blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
1463 nvme_set_queue_limits(ctrl, ns->queue);
1464
1465 disk->major = nvme_major;
1466 disk->first_minor = 0;
1467 disk->fops = &nvme_fops;
1468 disk->private_data = ns;
1469 disk->queue = ns->queue;
1470 disk->driverfs_dev = ctrl->device;
1471 disk->flags = GENHD_FL_EXT_DEVT;
1472 sprintf(disk->disk_name, "nvme%dn%d", ctrl->instance, ns->instance);
1473
1474 if (nvme_revalidate_disk(ns->disk))
1475 goto out_free_disk;
1476
1477 list_add_tail_rcu(&ns->list, &ctrl->namespaces);
1478 kref_get(&ctrl->kref);
1479 if (ns->type == NVME_NS_LIGHTNVM)
1480 return;
1481
1482 add_disk(ns->disk);
1483 if (sysfs_create_group(&disk_to_dev(ns->disk)->kobj,
1484 &nvme_ns_attr_group))
1485 pr_warn("%s: failed to create sysfs group for identification\n",
1486 ns->disk->disk_name);
1487 return;
1488 out_free_disk:
1489 kfree(disk);
1490 out_free_queue:
1491 blk_cleanup_queue(ns->queue);
1492 out_release_instance:
1493 ida_simple_remove(&ctrl->ns_ida, ns->instance);
1494 out_free_ns:
1495 kfree(ns);
1496 }
1497
1498 static void nvme_ns_remove(struct nvme_ns *ns)
1499 {
1500 lockdep_assert_held(&ns->ctrl->namespaces_mutex);
1501
1502 if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
1503 return;
1504
1505 if (ns->disk->flags & GENHD_FL_UP) {
1506 if (blk_get_integrity(ns->disk))
1507 blk_integrity_unregister(ns->disk);
1508 sysfs_remove_group(&disk_to_dev(ns->disk)->kobj,
1509 &nvme_ns_attr_group);
1510 del_gendisk(ns->disk);
1511 blk_mq_abort_requeue_list(ns->queue);
1512 blk_cleanup_queue(ns->queue);
1513 }
1514 list_del_init(&ns->list);
1515 synchronize_rcu();
1516 nvme_put_ns(ns);
1517 }
1518
1519 static void nvme_validate_ns(struct nvme_ctrl *ctrl, unsigned nsid)
1520 {
1521 struct nvme_ns *ns;
1522
1523 ns = nvme_find_ns(ctrl, nsid);
1524 if (ns) {
1525 if (revalidate_disk(ns->disk))
1526 nvme_ns_remove(ns);
1527 } else
1528 nvme_alloc_ns(ctrl, nsid);
1529 }
1530
1531 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl, unsigned nn)
1532 {
1533 struct nvme_ns *ns;
1534 __le32 *ns_list;
1535 unsigned i, j, nsid, prev = 0, num_lists = DIV_ROUND_UP(nn, 1024);
1536 int ret = 0;
1537
1538 ns_list = kzalloc(0x1000, GFP_KERNEL);
1539 if (!ns_list)
1540 return -ENOMEM;
1541
1542 for (i = 0; i < num_lists; i++) {
1543 ret = nvme_identify_ns_list(ctrl, prev, ns_list);
1544 if (ret)
1545 goto out;
1546
1547 for (j = 0; j < min(nn, 1024U); j++) {
1548 nsid = le32_to_cpu(ns_list[j]);
1549 if (!nsid)
1550 goto out;
1551
1552 nvme_validate_ns(ctrl, nsid);
1553
1554 while (++prev < nsid) {
1555 ns = nvme_find_ns(ctrl, prev);
1556 if (ns)
1557 nvme_ns_remove(ns);
1558 }
1559 }
1560 nn -= j;
1561 }
1562 out:
1563 kfree(ns_list);
1564 return ret;
1565 }
1566
1567 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl, unsigned nn)
1568 {
1569 struct nvme_ns *ns, *next;
1570 unsigned i;
1571
1572 lockdep_assert_held(&ctrl->namespaces_mutex);
1573
1574 for (i = 1; i <= nn; i++)
1575 nvme_validate_ns(ctrl, i);
1576
1577 list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
1578 if (ns->ns_id > nn)
1579 nvme_ns_remove(ns);
1580 }
1581 }
1582
1583 static void nvme_scan_work(struct work_struct *work)
1584 {
1585 struct nvme_ctrl *ctrl =
1586 container_of(work, struct nvme_ctrl, scan_work);
1587 struct nvme_id_ctrl *id;
1588 unsigned nn;
1589
1590 if (ctrl->state != NVME_CTRL_LIVE)
1591 return;
1592
1593 if (nvme_identify_ctrl(ctrl, &id))
1594 return;
1595
1596 mutex_lock(&ctrl->namespaces_mutex);
1597 nn = le32_to_cpu(id->nn);
1598 if (ctrl->vs >= NVME_VS(1, 1) &&
1599 !(ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)) {
1600 if (!nvme_scan_ns_list(ctrl, nn))
1601 goto done;
1602 }
1603 nvme_scan_ns_sequential(ctrl, nn);
1604 done:
1605 list_sort(NULL, &ctrl->namespaces, ns_cmp);
1606 mutex_unlock(&ctrl->namespaces_mutex);
1607 kfree(id);
1608
1609 if (ctrl->ops->post_scan)
1610 ctrl->ops->post_scan(ctrl);
1611 }
1612
1613 void nvme_queue_scan(struct nvme_ctrl *ctrl)
1614 {
1615 /*
1616 * Do not queue new scan work when a controller is reset during
1617 * removal.
1618 */
1619 if (ctrl->state == NVME_CTRL_LIVE)
1620 schedule_work(&ctrl->scan_work);
1621 }
1622 EXPORT_SYMBOL_GPL(nvme_queue_scan);
1623
1624 void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
1625 {
1626 struct nvme_ns *ns, *next;
1627
1628 /*
1629 * The dead states indicates the controller was not gracefully
1630 * disconnected. In that case, we won't be able to flush any data while
1631 * removing the namespaces' disks; fail all the queues now to avoid
1632 * potentially having to clean up the failed sync later.
1633 */
1634 if (ctrl->state == NVME_CTRL_DEAD)
1635 nvme_kill_queues(ctrl);
1636
1637 mutex_lock(&ctrl->namespaces_mutex);
1638 list_for_each_entry_safe(ns, next, &ctrl->namespaces, list)
1639 nvme_ns_remove(ns);
1640 mutex_unlock(&ctrl->namespaces_mutex);
1641 }
1642 EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
1643
1644 static void nvme_async_event_work(struct work_struct *work)
1645 {
1646 struct nvme_ctrl *ctrl =
1647 container_of(work, struct nvme_ctrl, async_event_work);
1648
1649 spin_lock_irq(&ctrl->lock);
1650 while (ctrl->event_limit > 0) {
1651 int aer_idx = --ctrl->event_limit;
1652
1653 spin_unlock_irq(&ctrl->lock);
1654 ctrl->ops->submit_async_event(ctrl, aer_idx);
1655 spin_lock_irq(&ctrl->lock);
1656 }
1657 spin_unlock_irq(&ctrl->lock);
1658 }
1659
1660 void nvme_complete_async_event(struct nvme_ctrl *ctrl,
1661 struct nvme_completion *cqe)
1662 {
1663 u16 status = le16_to_cpu(cqe->status) >> 1;
1664 u32 result = le32_to_cpu(cqe->result);
1665
1666 if (status == NVME_SC_SUCCESS || status == NVME_SC_ABORT_REQ) {
1667 ++ctrl->event_limit;
1668 schedule_work(&ctrl->async_event_work);
1669 }
1670
1671 if (status != NVME_SC_SUCCESS)
1672 return;
1673
1674 switch (result & 0xff07) {
1675 case NVME_AER_NOTICE_NS_CHANGED:
1676 dev_info(ctrl->device, "rescanning\n");
1677 nvme_queue_scan(ctrl);
1678 break;
1679 default:
1680 dev_warn(ctrl->device, "async event result %08x\n", result);
1681 }
1682 }
1683 EXPORT_SYMBOL_GPL(nvme_complete_async_event);
1684
1685 void nvme_queue_async_events(struct nvme_ctrl *ctrl)
1686 {
1687 ctrl->event_limit = NVME_NR_AERS;
1688 schedule_work(&ctrl->async_event_work);
1689 }
1690 EXPORT_SYMBOL_GPL(nvme_queue_async_events);
1691
1692 static DEFINE_IDA(nvme_instance_ida);
1693
1694 static int nvme_set_instance(struct nvme_ctrl *ctrl)
1695 {
1696 int instance, error;
1697
1698 do {
1699 if (!ida_pre_get(&nvme_instance_ida, GFP_KERNEL))
1700 return -ENODEV;
1701
1702 spin_lock(&dev_list_lock);
1703 error = ida_get_new(&nvme_instance_ida, &instance);
1704 spin_unlock(&dev_list_lock);
1705 } while (error == -EAGAIN);
1706
1707 if (error)
1708 return -ENODEV;
1709
1710 ctrl->instance = instance;
1711 return 0;
1712 }
1713
1714 static void nvme_release_instance(struct nvme_ctrl *ctrl)
1715 {
1716 spin_lock(&dev_list_lock);
1717 ida_remove(&nvme_instance_ida, ctrl->instance);
1718 spin_unlock(&dev_list_lock);
1719 }
1720
1721 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
1722 {
1723 flush_work(&ctrl->async_event_work);
1724 flush_work(&ctrl->scan_work);
1725 nvme_remove_namespaces(ctrl);
1726
1727 device_destroy(nvme_class, MKDEV(nvme_char_major, ctrl->instance));
1728
1729 spin_lock(&dev_list_lock);
1730 list_del(&ctrl->node);
1731 spin_unlock(&dev_list_lock);
1732 }
1733 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
1734
1735 static void nvme_free_ctrl(struct kref *kref)
1736 {
1737 struct nvme_ctrl *ctrl = container_of(kref, struct nvme_ctrl, kref);
1738
1739 put_device(ctrl->device);
1740 nvme_release_instance(ctrl);
1741 ida_destroy(&ctrl->ns_ida);
1742
1743 ctrl->ops->free_ctrl(ctrl);
1744 }
1745
1746 void nvme_put_ctrl(struct nvme_ctrl *ctrl)
1747 {
1748 kref_put(&ctrl->kref, nvme_free_ctrl);
1749 }
1750 EXPORT_SYMBOL_GPL(nvme_put_ctrl);
1751
1752 /*
1753 * Initialize a NVMe controller structures. This needs to be called during
1754 * earliest initialization so that we have the initialized structured around
1755 * during probing.
1756 */
1757 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
1758 const struct nvme_ctrl_ops *ops, unsigned long quirks)
1759 {
1760 int ret;
1761
1762 ctrl->state = NVME_CTRL_NEW;
1763 spin_lock_init(&ctrl->lock);
1764 INIT_LIST_HEAD(&ctrl->namespaces);
1765 mutex_init(&ctrl->namespaces_mutex);
1766 kref_init(&ctrl->kref);
1767 ctrl->dev = dev;
1768 ctrl->ops = ops;
1769 ctrl->quirks = quirks;
1770 INIT_WORK(&ctrl->scan_work, nvme_scan_work);
1771 INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
1772
1773 ret = nvme_set_instance(ctrl);
1774 if (ret)
1775 goto out;
1776
1777 ctrl->device = device_create_with_groups(nvme_class, ctrl->dev,
1778 MKDEV(nvme_char_major, ctrl->instance),
1779 ctrl, nvme_dev_attr_groups,
1780 "nvme%d", ctrl->instance);
1781 if (IS_ERR(ctrl->device)) {
1782 ret = PTR_ERR(ctrl->device);
1783 goto out_release_instance;
1784 }
1785 get_device(ctrl->device);
1786 ida_init(&ctrl->ns_ida);
1787
1788 spin_lock(&dev_list_lock);
1789 list_add_tail(&ctrl->node, &nvme_ctrl_list);
1790 spin_unlock(&dev_list_lock);
1791
1792 return 0;
1793 out_release_instance:
1794 nvme_release_instance(ctrl);
1795 out:
1796 return ret;
1797 }
1798 EXPORT_SYMBOL_GPL(nvme_init_ctrl);
1799
1800 /**
1801 * nvme_kill_queues(): Ends all namespace queues
1802 * @ctrl: the dead controller that needs to end
1803 *
1804 * Call this function when the driver determines it is unable to get the
1805 * controller in a state capable of servicing IO.
1806 */
1807 void nvme_kill_queues(struct nvme_ctrl *ctrl)
1808 {
1809 struct nvme_ns *ns;
1810
1811 rcu_read_lock();
1812 list_for_each_entry_rcu(ns, &ctrl->namespaces, list) {
1813 if (!kref_get_unless_zero(&ns->kref))
1814 continue;
1815
1816 /*
1817 * Revalidating a dead namespace sets capacity to 0. This will
1818 * end buffered writers dirtying pages that can't be synced.
1819 */
1820 if (!test_and_set_bit(NVME_NS_DEAD, &ns->flags))
1821 revalidate_disk(ns->disk);
1822
1823 blk_set_queue_dying(ns->queue);
1824 blk_mq_abort_requeue_list(ns->queue);
1825 blk_mq_start_stopped_hw_queues(ns->queue, true);
1826
1827 nvme_put_ns(ns);
1828 }
1829 rcu_read_unlock();
1830 }
1831 EXPORT_SYMBOL_GPL(nvme_kill_queues);
1832
1833 void nvme_stop_queues(struct nvme_ctrl *ctrl)
1834 {
1835 struct nvme_ns *ns;
1836
1837 rcu_read_lock();
1838 list_for_each_entry_rcu(ns, &ctrl->namespaces, list) {
1839 spin_lock_irq(ns->queue->queue_lock);
1840 queue_flag_set(QUEUE_FLAG_STOPPED, ns->queue);
1841 spin_unlock_irq(ns->queue->queue_lock);
1842
1843 blk_mq_cancel_requeue_work(ns->queue);
1844 blk_mq_stop_hw_queues(ns->queue);
1845 }
1846 rcu_read_unlock();
1847 }
1848 EXPORT_SYMBOL_GPL(nvme_stop_queues);
1849
1850 void nvme_start_queues(struct nvme_ctrl *ctrl)
1851 {
1852 struct nvme_ns *ns;
1853
1854 rcu_read_lock();
1855 list_for_each_entry_rcu(ns, &ctrl->namespaces, list) {
1856 queue_flag_clear_unlocked(QUEUE_FLAG_STOPPED, ns->queue);
1857 blk_mq_start_stopped_hw_queues(ns->queue, true);
1858 blk_mq_kick_requeue_list(ns->queue);
1859 }
1860 rcu_read_unlock();
1861 }
1862 EXPORT_SYMBOL_GPL(nvme_start_queues);
1863
1864 int __init nvme_core_init(void)
1865 {
1866 int result;
1867
1868 result = register_blkdev(nvme_major, "nvme");
1869 if (result < 0)
1870 return result;
1871 else if (result > 0)
1872 nvme_major = result;
1873
1874 result = __register_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme",
1875 &nvme_dev_fops);
1876 if (result < 0)
1877 goto unregister_blkdev;
1878 else if (result > 0)
1879 nvme_char_major = result;
1880
1881 nvme_class = class_create(THIS_MODULE, "nvme");
1882 if (IS_ERR(nvme_class)) {
1883 result = PTR_ERR(nvme_class);
1884 goto unregister_chrdev;
1885 }
1886
1887 return 0;
1888
1889 unregister_chrdev:
1890 __unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
1891 unregister_blkdev:
1892 unregister_blkdev(nvme_major, "nvme");
1893 return result;
1894 }
1895
1896 void nvme_core_exit(void)
1897 {
1898 class_destroy(nvme_class);
1899 __unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
1900 unregister_blkdev(nvme_major, "nvme");
1901 }
1902
1903 MODULE_LICENSE("GPL");
1904 MODULE_VERSION("1.0");
1905 module_init(nvme_core_init);
1906 module_exit(nvme_core_exit);
This page took 0.099898 seconds and 5 git commands to generate.