Merge branch 'linus' of git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6
[deliverable/linux.git] / drivers / nvme / host / core.c
1 /*
2 * NVM Express device driver
3 * Copyright (c) 2011-2014, Intel Corporation.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 */
14
15 #include <linux/blkdev.h>
16 #include <linux/blk-mq.h>
17 #include <linux/delay.h>
18 #include <linux/errno.h>
19 #include <linux/hdreg.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/list_sort.h>
23 #include <linux/slab.h>
24 #include <linux/types.h>
25 #include <linux/pr.h>
26 #include <linux/ptrace.h>
27 #include <linux/nvme_ioctl.h>
28 #include <linux/t10-pi.h>
29 #include <scsi/sg.h>
30 #include <asm/unaligned.h>
31
32 #include "nvme.h"
33
34 #define NVME_MINORS (1U << MINORBITS)
35
36 unsigned char admin_timeout = 60;
37 module_param(admin_timeout, byte, 0644);
38 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
39 EXPORT_SYMBOL_GPL(admin_timeout);
40
41 unsigned char nvme_io_timeout = 30;
42 module_param_named(io_timeout, nvme_io_timeout, byte, 0644);
43 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
44 EXPORT_SYMBOL_GPL(nvme_io_timeout);
45
46 unsigned char shutdown_timeout = 5;
47 module_param(shutdown_timeout, byte, 0644);
48 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
49
50 static int nvme_major;
51 module_param(nvme_major, int, 0);
52
53 static int nvme_char_major;
54 module_param(nvme_char_major, int, 0);
55
56 static LIST_HEAD(nvme_ctrl_list);
57 static DEFINE_SPINLOCK(dev_list_lock);
58
59 static struct class *nvme_class;
60
61 static void nvme_free_ns(struct kref *kref)
62 {
63 struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
64
65 if (ns->type == NVME_NS_LIGHTNVM)
66 nvme_nvm_unregister(ns->queue, ns->disk->disk_name);
67
68 spin_lock(&dev_list_lock);
69 ns->disk->private_data = NULL;
70 spin_unlock(&dev_list_lock);
71
72 put_disk(ns->disk);
73 ida_simple_remove(&ns->ctrl->ns_ida, ns->instance);
74 nvme_put_ctrl(ns->ctrl);
75 kfree(ns);
76 }
77
78 static void nvme_put_ns(struct nvme_ns *ns)
79 {
80 kref_put(&ns->kref, nvme_free_ns);
81 }
82
83 static struct nvme_ns *nvme_get_ns_from_disk(struct gendisk *disk)
84 {
85 struct nvme_ns *ns;
86
87 spin_lock(&dev_list_lock);
88 ns = disk->private_data;
89 if (ns) {
90 if (!kref_get_unless_zero(&ns->kref))
91 goto fail;
92 if (!try_module_get(ns->ctrl->ops->module))
93 goto fail_put_ns;
94 }
95 spin_unlock(&dev_list_lock);
96
97 return ns;
98
99 fail_put_ns:
100 kref_put(&ns->kref, nvme_free_ns);
101 fail:
102 spin_unlock(&dev_list_lock);
103 return NULL;
104 }
105
106 void nvme_requeue_req(struct request *req)
107 {
108 unsigned long flags;
109
110 blk_mq_requeue_request(req);
111 spin_lock_irqsave(req->q->queue_lock, flags);
112 if (!blk_queue_stopped(req->q))
113 blk_mq_kick_requeue_list(req->q);
114 spin_unlock_irqrestore(req->q->queue_lock, flags);
115 }
116 EXPORT_SYMBOL_GPL(nvme_requeue_req);
117
118 struct request *nvme_alloc_request(struct request_queue *q,
119 struct nvme_command *cmd, unsigned int flags)
120 {
121 bool write = cmd->common.opcode & 1;
122 struct request *req;
123
124 req = blk_mq_alloc_request(q, write, flags);
125 if (IS_ERR(req))
126 return req;
127
128 req->cmd_type = REQ_TYPE_DRV_PRIV;
129 req->cmd_flags |= REQ_FAILFAST_DRIVER;
130 req->__data_len = 0;
131 req->__sector = (sector_t) -1;
132 req->bio = req->biotail = NULL;
133
134 req->cmd = (unsigned char *)cmd;
135 req->cmd_len = sizeof(struct nvme_command);
136
137 return req;
138 }
139 EXPORT_SYMBOL_GPL(nvme_alloc_request);
140
141 /*
142 * Returns 0 on success. If the result is negative, it's a Linux error code;
143 * if the result is positive, it's an NVM Express status code
144 */
145 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
146 struct nvme_completion *cqe, void *buffer, unsigned bufflen,
147 unsigned timeout)
148 {
149 struct request *req;
150 int ret;
151
152 req = nvme_alloc_request(q, cmd, 0);
153 if (IS_ERR(req))
154 return PTR_ERR(req);
155
156 req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
157 req->special = cqe;
158
159 if (buffer && bufflen) {
160 ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
161 if (ret)
162 goto out;
163 }
164
165 blk_execute_rq(req->q, NULL, req, 0);
166 ret = req->errors;
167 out:
168 blk_mq_free_request(req);
169 return ret;
170 }
171
172 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
173 void *buffer, unsigned bufflen)
174 {
175 return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0);
176 }
177 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
178
179 int __nvme_submit_user_cmd(struct request_queue *q, struct nvme_command *cmd,
180 void __user *ubuffer, unsigned bufflen,
181 void __user *meta_buffer, unsigned meta_len, u32 meta_seed,
182 u32 *result, unsigned timeout)
183 {
184 bool write = cmd->common.opcode & 1;
185 struct nvme_completion cqe;
186 struct nvme_ns *ns = q->queuedata;
187 struct gendisk *disk = ns ? ns->disk : NULL;
188 struct request *req;
189 struct bio *bio = NULL;
190 void *meta = NULL;
191 int ret;
192
193 req = nvme_alloc_request(q, cmd, 0);
194 if (IS_ERR(req))
195 return PTR_ERR(req);
196
197 req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
198 req->special = &cqe;
199
200 if (ubuffer && bufflen) {
201 ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen,
202 GFP_KERNEL);
203 if (ret)
204 goto out;
205 bio = req->bio;
206
207 if (!disk)
208 goto submit;
209 bio->bi_bdev = bdget_disk(disk, 0);
210 if (!bio->bi_bdev) {
211 ret = -ENODEV;
212 goto out_unmap;
213 }
214
215 if (meta_buffer && meta_len) {
216 struct bio_integrity_payload *bip;
217
218 meta = kmalloc(meta_len, GFP_KERNEL);
219 if (!meta) {
220 ret = -ENOMEM;
221 goto out_unmap;
222 }
223
224 if (write) {
225 if (copy_from_user(meta, meta_buffer,
226 meta_len)) {
227 ret = -EFAULT;
228 goto out_free_meta;
229 }
230 }
231
232 bip = bio_integrity_alloc(bio, GFP_KERNEL, 1);
233 if (IS_ERR(bip)) {
234 ret = PTR_ERR(bip);
235 goto out_free_meta;
236 }
237
238 bip->bip_iter.bi_size = meta_len;
239 bip->bip_iter.bi_sector = meta_seed;
240
241 ret = bio_integrity_add_page(bio, virt_to_page(meta),
242 meta_len, offset_in_page(meta));
243 if (ret != meta_len) {
244 ret = -ENOMEM;
245 goto out_free_meta;
246 }
247 }
248 }
249 submit:
250 blk_execute_rq(req->q, disk, req, 0);
251 ret = req->errors;
252 if (result)
253 *result = le32_to_cpu(cqe.result);
254 if (meta && !ret && !write) {
255 if (copy_to_user(meta_buffer, meta, meta_len))
256 ret = -EFAULT;
257 }
258 out_free_meta:
259 kfree(meta);
260 out_unmap:
261 if (bio) {
262 if (disk && bio->bi_bdev)
263 bdput(bio->bi_bdev);
264 blk_rq_unmap_user(bio);
265 }
266 out:
267 blk_mq_free_request(req);
268 return ret;
269 }
270
271 int nvme_submit_user_cmd(struct request_queue *q, struct nvme_command *cmd,
272 void __user *ubuffer, unsigned bufflen, u32 *result,
273 unsigned timeout)
274 {
275 return __nvme_submit_user_cmd(q, cmd, ubuffer, bufflen, NULL, 0, 0,
276 result, timeout);
277 }
278
279 int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
280 {
281 struct nvme_command c = { };
282 int error;
283
284 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
285 c.identify.opcode = nvme_admin_identify;
286 c.identify.cns = cpu_to_le32(1);
287
288 *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
289 if (!*id)
290 return -ENOMEM;
291
292 error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
293 sizeof(struct nvme_id_ctrl));
294 if (error)
295 kfree(*id);
296 return error;
297 }
298
299 static int nvme_identify_ns_list(struct nvme_ctrl *dev, unsigned nsid, __le32 *ns_list)
300 {
301 struct nvme_command c = { };
302
303 c.identify.opcode = nvme_admin_identify;
304 c.identify.cns = cpu_to_le32(2);
305 c.identify.nsid = cpu_to_le32(nsid);
306 return nvme_submit_sync_cmd(dev->admin_q, &c, ns_list, 0x1000);
307 }
308
309 int nvme_identify_ns(struct nvme_ctrl *dev, unsigned nsid,
310 struct nvme_id_ns **id)
311 {
312 struct nvme_command c = { };
313 int error;
314
315 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
316 c.identify.opcode = nvme_admin_identify,
317 c.identify.nsid = cpu_to_le32(nsid),
318
319 *id = kmalloc(sizeof(struct nvme_id_ns), GFP_KERNEL);
320 if (!*id)
321 return -ENOMEM;
322
323 error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
324 sizeof(struct nvme_id_ns));
325 if (error)
326 kfree(*id);
327 return error;
328 }
329
330 int nvme_get_features(struct nvme_ctrl *dev, unsigned fid, unsigned nsid,
331 dma_addr_t dma_addr, u32 *result)
332 {
333 struct nvme_command c;
334 struct nvme_completion cqe;
335 int ret;
336
337 memset(&c, 0, sizeof(c));
338 c.features.opcode = nvme_admin_get_features;
339 c.features.nsid = cpu_to_le32(nsid);
340 c.features.prp1 = cpu_to_le64(dma_addr);
341 c.features.fid = cpu_to_le32(fid);
342
343 ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &cqe, NULL, 0, 0);
344 if (ret >= 0)
345 *result = le32_to_cpu(cqe.result);
346 return ret;
347 }
348
349 int nvme_set_features(struct nvme_ctrl *dev, unsigned fid, unsigned dword11,
350 dma_addr_t dma_addr, u32 *result)
351 {
352 struct nvme_command c;
353 struct nvme_completion cqe;
354 int ret;
355
356 memset(&c, 0, sizeof(c));
357 c.features.opcode = nvme_admin_set_features;
358 c.features.prp1 = cpu_to_le64(dma_addr);
359 c.features.fid = cpu_to_le32(fid);
360 c.features.dword11 = cpu_to_le32(dword11);
361
362 ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &cqe, NULL, 0, 0);
363 if (ret >= 0)
364 *result = le32_to_cpu(cqe.result);
365 return ret;
366 }
367
368 int nvme_get_log_page(struct nvme_ctrl *dev, struct nvme_smart_log **log)
369 {
370 struct nvme_command c = { };
371 int error;
372
373 c.common.opcode = nvme_admin_get_log_page,
374 c.common.nsid = cpu_to_le32(0xFFFFFFFF),
375 c.common.cdw10[0] = cpu_to_le32(
376 (((sizeof(struct nvme_smart_log) / 4) - 1) << 16) |
377 NVME_LOG_SMART),
378
379 *log = kmalloc(sizeof(struct nvme_smart_log), GFP_KERNEL);
380 if (!*log)
381 return -ENOMEM;
382
383 error = nvme_submit_sync_cmd(dev->admin_q, &c, *log,
384 sizeof(struct nvme_smart_log));
385 if (error)
386 kfree(*log);
387 return error;
388 }
389
390 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
391 {
392 u32 q_count = (*count - 1) | ((*count - 1) << 16);
393 u32 result;
394 int status, nr_io_queues;
395
396 status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, 0,
397 &result);
398 if (status)
399 return status;
400
401 nr_io_queues = min(result & 0xffff, result >> 16) + 1;
402 *count = min(*count, nr_io_queues);
403 return 0;
404 }
405 EXPORT_SYMBOL_GPL(nvme_set_queue_count);
406
407 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
408 {
409 struct nvme_user_io io;
410 struct nvme_command c;
411 unsigned length, meta_len;
412 void __user *metadata;
413
414 if (copy_from_user(&io, uio, sizeof(io)))
415 return -EFAULT;
416 if (io.flags)
417 return -EINVAL;
418
419 switch (io.opcode) {
420 case nvme_cmd_write:
421 case nvme_cmd_read:
422 case nvme_cmd_compare:
423 break;
424 default:
425 return -EINVAL;
426 }
427
428 length = (io.nblocks + 1) << ns->lba_shift;
429 meta_len = (io.nblocks + 1) * ns->ms;
430 metadata = (void __user *)(uintptr_t)io.metadata;
431
432 if (ns->ext) {
433 length += meta_len;
434 meta_len = 0;
435 } else if (meta_len) {
436 if ((io.metadata & 3) || !io.metadata)
437 return -EINVAL;
438 }
439
440 memset(&c, 0, sizeof(c));
441 c.rw.opcode = io.opcode;
442 c.rw.flags = io.flags;
443 c.rw.nsid = cpu_to_le32(ns->ns_id);
444 c.rw.slba = cpu_to_le64(io.slba);
445 c.rw.length = cpu_to_le16(io.nblocks);
446 c.rw.control = cpu_to_le16(io.control);
447 c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
448 c.rw.reftag = cpu_to_le32(io.reftag);
449 c.rw.apptag = cpu_to_le16(io.apptag);
450 c.rw.appmask = cpu_to_le16(io.appmask);
451
452 return __nvme_submit_user_cmd(ns->queue, &c,
453 (void __user *)(uintptr_t)io.addr, length,
454 metadata, meta_len, io.slba, NULL, 0);
455 }
456
457 static int nvme_user_cmd(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
458 struct nvme_passthru_cmd __user *ucmd)
459 {
460 struct nvme_passthru_cmd cmd;
461 struct nvme_command c;
462 unsigned timeout = 0;
463 int status;
464
465 if (!capable(CAP_SYS_ADMIN))
466 return -EACCES;
467 if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
468 return -EFAULT;
469 if (cmd.flags)
470 return -EINVAL;
471
472 memset(&c, 0, sizeof(c));
473 c.common.opcode = cmd.opcode;
474 c.common.flags = cmd.flags;
475 c.common.nsid = cpu_to_le32(cmd.nsid);
476 c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
477 c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
478 c.common.cdw10[0] = cpu_to_le32(cmd.cdw10);
479 c.common.cdw10[1] = cpu_to_le32(cmd.cdw11);
480 c.common.cdw10[2] = cpu_to_le32(cmd.cdw12);
481 c.common.cdw10[3] = cpu_to_le32(cmd.cdw13);
482 c.common.cdw10[4] = cpu_to_le32(cmd.cdw14);
483 c.common.cdw10[5] = cpu_to_le32(cmd.cdw15);
484
485 if (cmd.timeout_ms)
486 timeout = msecs_to_jiffies(cmd.timeout_ms);
487
488 status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
489 (void __user *)(uintptr_t)cmd.addr, cmd.data_len,
490 &cmd.result, timeout);
491 if (status >= 0) {
492 if (put_user(cmd.result, &ucmd->result))
493 return -EFAULT;
494 }
495
496 return status;
497 }
498
499 static int nvme_ioctl(struct block_device *bdev, fmode_t mode,
500 unsigned int cmd, unsigned long arg)
501 {
502 struct nvme_ns *ns = bdev->bd_disk->private_data;
503
504 switch (cmd) {
505 case NVME_IOCTL_ID:
506 force_successful_syscall_return();
507 return ns->ns_id;
508 case NVME_IOCTL_ADMIN_CMD:
509 return nvme_user_cmd(ns->ctrl, NULL, (void __user *)arg);
510 case NVME_IOCTL_IO_CMD:
511 return nvme_user_cmd(ns->ctrl, ns, (void __user *)arg);
512 case NVME_IOCTL_SUBMIT_IO:
513 return nvme_submit_io(ns, (void __user *)arg);
514 #ifdef CONFIG_BLK_DEV_NVME_SCSI
515 case SG_GET_VERSION_NUM:
516 return nvme_sg_get_version_num((void __user *)arg);
517 case SG_IO:
518 return nvme_sg_io(ns, (void __user *)arg);
519 #endif
520 default:
521 return -ENOTTY;
522 }
523 }
524
525 #ifdef CONFIG_COMPAT
526 static int nvme_compat_ioctl(struct block_device *bdev, fmode_t mode,
527 unsigned int cmd, unsigned long arg)
528 {
529 switch (cmd) {
530 case SG_IO:
531 return -ENOIOCTLCMD;
532 }
533 return nvme_ioctl(bdev, mode, cmd, arg);
534 }
535 #else
536 #define nvme_compat_ioctl NULL
537 #endif
538
539 static int nvme_open(struct block_device *bdev, fmode_t mode)
540 {
541 return nvme_get_ns_from_disk(bdev->bd_disk) ? 0 : -ENXIO;
542 }
543
544 static void nvme_release(struct gendisk *disk, fmode_t mode)
545 {
546 struct nvme_ns *ns = disk->private_data;
547
548 module_put(ns->ctrl->ops->module);
549 nvme_put_ns(ns);
550 }
551
552 static int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
553 {
554 /* some standard values */
555 geo->heads = 1 << 6;
556 geo->sectors = 1 << 5;
557 geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
558 return 0;
559 }
560
561 #ifdef CONFIG_BLK_DEV_INTEGRITY
562 static void nvme_init_integrity(struct nvme_ns *ns)
563 {
564 struct blk_integrity integrity;
565
566 switch (ns->pi_type) {
567 case NVME_NS_DPS_PI_TYPE3:
568 integrity.profile = &t10_pi_type3_crc;
569 break;
570 case NVME_NS_DPS_PI_TYPE1:
571 case NVME_NS_DPS_PI_TYPE2:
572 integrity.profile = &t10_pi_type1_crc;
573 break;
574 default:
575 integrity.profile = NULL;
576 break;
577 }
578 integrity.tuple_size = ns->ms;
579 blk_integrity_register(ns->disk, &integrity);
580 blk_queue_max_integrity_segments(ns->queue, 1);
581 }
582 #else
583 static void nvme_init_integrity(struct nvme_ns *ns)
584 {
585 }
586 #endif /* CONFIG_BLK_DEV_INTEGRITY */
587
588 static void nvme_config_discard(struct nvme_ns *ns)
589 {
590 struct nvme_ctrl *ctrl = ns->ctrl;
591 u32 logical_block_size = queue_logical_block_size(ns->queue);
592
593 if (ctrl->quirks & NVME_QUIRK_DISCARD_ZEROES)
594 ns->queue->limits.discard_zeroes_data = 1;
595 else
596 ns->queue->limits.discard_zeroes_data = 0;
597
598 ns->queue->limits.discard_alignment = logical_block_size;
599 ns->queue->limits.discard_granularity = logical_block_size;
600 blk_queue_max_discard_sectors(ns->queue, 0xffffffff);
601 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, ns->queue);
602 }
603
604 static int nvme_revalidate_disk(struct gendisk *disk)
605 {
606 struct nvme_ns *ns = disk->private_data;
607 struct nvme_id_ns *id;
608 u8 lbaf, pi_type;
609 u16 old_ms;
610 unsigned short bs;
611
612 if (test_bit(NVME_NS_DEAD, &ns->flags)) {
613 set_capacity(disk, 0);
614 return -ENODEV;
615 }
616 if (nvme_identify_ns(ns->ctrl, ns->ns_id, &id)) {
617 dev_warn(disk_to_dev(ns->disk), "%s: Identify failure\n",
618 __func__);
619 return -ENODEV;
620 }
621 if (id->ncap == 0) {
622 kfree(id);
623 return -ENODEV;
624 }
625
626 if (nvme_nvm_ns_supported(ns, id) && ns->type != NVME_NS_LIGHTNVM) {
627 if (nvme_nvm_register(ns->queue, disk->disk_name)) {
628 dev_warn(disk_to_dev(ns->disk),
629 "%s: LightNVM init failure\n", __func__);
630 kfree(id);
631 return -ENODEV;
632 }
633 ns->type = NVME_NS_LIGHTNVM;
634 }
635
636 if (ns->ctrl->vs >= NVME_VS(1, 1))
637 memcpy(ns->eui, id->eui64, sizeof(ns->eui));
638 if (ns->ctrl->vs >= NVME_VS(1, 2))
639 memcpy(ns->uuid, id->nguid, sizeof(ns->uuid));
640
641 old_ms = ns->ms;
642 lbaf = id->flbas & NVME_NS_FLBAS_LBA_MASK;
643 ns->lba_shift = id->lbaf[lbaf].ds;
644 ns->ms = le16_to_cpu(id->lbaf[lbaf].ms);
645 ns->ext = ns->ms && (id->flbas & NVME_NS_FLBAS_META_EXT);
646
647 /*
648 * If identify namespace failed, use default 512 byte block size so
649 * block layer can use before failing read/write for 0 capacity.
650 */
651 if (ns->lba_shift == 0)
652 ns->lba_shift = 9;
653 bs = 1 << ns->lba_shift;
654 /* XXX: PI implementation requires metadata equal t10 pi tuple size */
655 pi_type = ns->ms == sizeof(struct t10_pi_tuple) ?
656 id->dps & NVME_NS_DPS_PI_MASK : 0;
657
658 blk_mq_freeze_queue(disk->queue);
659 if (blk_get_integrity(disk) && (ns->pi_type != pi_type ||
660 ns->ms != old_ms ||
661 bs != queue_logical_block_size(disk->queue) ||
662 (ns->ms && ns->ext)))
663 blk_integrity_unregister(disk);
664
665 ns->pi_type = pi_type;
666 blk_queue_logical_block_size(ns->queue, bs);
667
668 if (ns->ms && !blk_get_integrity(disk) && !ns->ext)
669 nvme_init_integrity(ns);
670 if (ns->ms && !(ns->ms == 8 && ns->pi_type) && !blk_get_integrity(disk))
671 set_capacity(disk, 0);
672 else
673 set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
674
675 if (ns->ctrl->oncs & NVME_CTRL_ONCS_DSM)
676 nvme_config_discard(ns);
677 blk_mq_unfreeze_queue(disk->queue);
678
679 kfree(id);
680 return 0;
681 }
682
683 static char nvme_pr_type(enum pr_type type)
684 {
685 switch (type) {
686 case PR_WRITE_EXCLUSIVE:
687 return 1;
688 case PR_EXCLUSIVE_ACCESS:
689 return 2;
690 case PR_WRITE_EXCLUSIVE_REG_ONLY:
691 return 3;
692 case PR_EXCLUSIVE_ACCESS_REG_ONLY:
693 return 4;
694 case PR_WRITE_EXCLUSIVE_ALL_REGS:
695 return 5;
696 case PR_EXCLUSIVE_ACCESS_ALL_REGS:
697 return 6;
698 default:
699 return 0;
700 }
701 };
702
703 static int nvme_pr_command(struct block_device *bdev, u32 cdw10,
704 u64 key, u64 sa_key, u8 op)
705 {
706 struct nvme_ns *ns = bdev->bd_disk->private_data;
707 struct nvme_command c;
708 u8 data[16] = { 0, };
709
710 put_unaligned_le64(key, &data[0]);
711 put_unaligned_le64(sa_key, &data[8]);
712
713 memset(&c, 0, sizeof(c));
714 c.common.opcode = op;
715 c.common.nsid = cpu_to_le32(ns->ns_id);
716 c.common.cdw10[0] = cpu_to_le32(cdw10);
717
718 return nvme_submit_sync_cmd(ns->queue, &c, data, 16);
719 }
720
721 static int nvme_pr_register(struct block_device *bdev, u64 old,
722 u64 new, unsigned flags)
723 {
724 u32 cdw10;
725
726 if (flags & ~PR_FL_IGNORE_KEY)
727 return -EOPNOTSUPP;
728
729 cdw10 = old ? 2 : 0;
730 cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0;
731 cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */
732 return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register);
733 }
734
735 static int nvme_pr_reserve(struct block_device *bdev, u64 key,
736 enum pr_type type, unsigned flags)
737 {
738 u32 cdw10;
739
740 if (flags & ~PR_FL_IGNORE_KEY)
741 return -EOPNOTSUPP;
742
743 cdw10 = nvme_pr_type(type) << 8;
744 cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0);
745 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire);
746 }
747
748 static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new,
749 enum pr_type type, bool abort)
750 {
751 u32 cdw10 = nvme_pr_type(type) << 8 | abort ? 2 : 1;
752 return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire);
753 }
754
755 static int nvme_pr_clear(struct block_device *bdev, u64 key)
756 {
757 u32 cdw10 = 1 | (key ? 1 << 3 : 0);
758 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register);
759 }
760
761 static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
762 {
763 u32 cdw10 = nvme_pr_type(type) << 8 | key ? 1 << 3 : 0;
764 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
765 }
766
767 static const struct pr_ops nvme_pr_ops = {
768 .pr_register = nvme_pr_register,
769 .pr_reserve = nvme_pr_reserve,
770 .pr_release = nvme_pr_release,
771 .pr_preempt = nvme_pr_preempt,
772 .pr_clear = nvme_pr_clear,
773 };
774
775 static const struct block_device_operations nvme_fops = {
776 .owner = THIS_MODULE,
777 .ioctl = nvme_ioctl,
778 .compat_ioctl = nvme_compat_ioctl,
779 .open = nvme_open,
780 .release = nvme_release,
781 .getgeo = nvme_getgeo,
782 .revalidate_disk= nvme_revalidate_disk,
783 .pr_ops = &nvme_pr_ops,
784 };
785
786 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled)
787 {
788 unsigned long timeout =
789 ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
790 u32 csts, bit = enabled ? NVME_CSTS_RDY : 0;
791 int ret;
792
793 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
794 if ((csts & NVME_CSTS_RDY) == bit)
795 break;
796
797 msleep(100);
798 if (fatal_signal_pending(current))
799 return -EINTR;
800 if (time_after(jiffies, timeout)) {
801 dev_err(ctrl->device,
802 "Device not ready; aborting %s\n", enabled ?
803 "initialisation" : "reset");
804 return -ENODEV;
805 }
806 }
807
808 return ret;
809 }
810
811 /*
812 * If the device has been passed off to us in an enabled state, just clear
813 * the enabled bit. The spec says we should set the 'shutdown notification
814 * bits', but doing so may cause the device to complete commands to the
815 * admin queue ... and we don't know what memory that might be pointing at!
816 */
817 int nvme_disable_ctrl(struct nvme_ctrl *ctrl, u64 cap)
818 {
819 int ret;
820
821 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
822 ctrl->ctrl_config &= ~NVME_CC_ENABLE;
823
824 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
825 if (ret)
826 return ret;
827 return nvme_wait_ready(ctrl, cap, false);
828 }
829 EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
830
831 int nvme_enable_ctrl(struct nvme_ctrl *ctrl, u64 cap)
832 {
833 /*
834 * Default to a 4K page size, with the intention to update this
835 * path in the future to accomodate architectures with differing
836 * kernel and IO page sizes.
837 */
838 unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12, page_shift = 12;
839 int ret;
840
841 if (page_shift < dev_page_min) {
842 dev_err(ctrl->device,
843 "Minimum device page size %u too large for host (%u)\n",
844 1 << dev_page_min, 1 << page_shift);
845 return -ENODEV;
846 }
847
848 ctrl->page_size = 1 << page_shift;
849
850 ctrl->ctrl_config = NVME_CC_CSS_NVM;
851 ctrl->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT;
852 ctrl->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
853 ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
854 ctrl->ctrl_config |= NVME_CC_ENABLE;
855
856 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
857 if (ret)
858 return ret;
859 return nvme_wait_ready(ctrl, cap, true);
860 }
861 EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
862
863 int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl)
864 {
865 unsigned long timeout = SHUTDOWN_TIMEOUT + jiffies;
866 u32 csts;
867 int ret;
868
869 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
870 ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
871
872 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
873 if (ret)
874 return ret;
875
876 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
877 if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT)
878 break;
879
880 msleep(100);
881 if (fatal_signal_pending(current))
882 return -EINTR;
883 if (time_after(jiffies, timeout)) {
884 dev_err(ctrl->device,
885 "Device shutdown incomplete; abort shutdown\n");
886 return -ENODEV;
887 }
888 }
889
890 return ret;
891 }
892 EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl);
893
894 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl,
895 struct request_queue *q)
896 {
897 if (ctrl->max_hw_sectors) {
898 u32 max_segments =
899 (ctrl->max_hw_sectors / (ctrl->page_size >> 9)) + 1;
900
901 blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors);
902 blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX));
903 }
904 if (ctrl->stripe_size)
905 blk_queue_chunk_sectors(q, ctrl->stripe_size >> 9);
906 if (ctrl->vwc & NVME_CTRL_VWC_PRESENT)
907 blk_queue_flush(q, REQ_FLUSH | REQ_FUA);
908 blk_queue_virt_boundary(q, ctrl->page_size - 1);
909 }
910
911 /*
912 * Initialize the cached copies of the Identify data and various controller
913 * register in our nvme_ctrl structure. This should be called as soon as
914 * the admin queue is fully up and running.
915 */
916 int nvme_init_identify(struct nvme_ctrl *ctrl)
917 {
918 struct nvme_id_ctrl *id;
919 u64 cap;
920 int ret, page_shift;
921
922 ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
923 if (ret) {
924 dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
925 return ret;
926 }
927
928 ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &cap);
929 if (ret) {
930 dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
931 return ret;
932 }
933 page_shift = NVME_CAP_MPSMIN(cap) + 12;
934
935 if (ctrl->vs >= NVME_VS(1, 1))
936 ctrl->subsystem = NVME_CAP_NSSRC(cap);
937
938 ret = nvme_identify_ctrl(ctrl, &id);
939 if (ret) {
940 dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
941 return -EIO;
942 }
943
944 ctrl->vid = le16_to_cpu(id->vid);
945 ctrl->oncs = le16_to_cpup(&id->oncs);
946 atomic_set(&ctrl->abort_limit, id->acl + 1);
947 ctrl->vwc = id->vwc;
948 ctrl->cntlid = le16_to_cpup(&id->cntlid);
949 memcpy(ctrl->serial, id->sn, sizeof(id->sn));
950 memcpy(ctrl->model, id->mn, sizeof(id->mn));
951 memcpy(ctrl->firmware_rev, id->fr, sizeof(id->fr));
952 if (id->mdts)
953 ctrl->max_hw_sectors = 1 << (id->mdts + page_shift - 9);
954 else
955 ctrl->max_hw_sectors = UINT_MAX;
956
957 if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) && id->vs[3]) {
958 unsigned int max_hw_sectors;
959
960 ctrl->stripe_size = 1 << (id->vs[3] + page_shift);
961 max_hw_sectors = ctrl->stripe_size >> (page_shift - 9);
962 if (ctrl->max_hw_sectors) {
963 ctrl->max_hw_sectors = min(max_hw_sectors,
964 ctrl->max_hw_sectors);
965 } else {
966 ctrl->max_hw_sectors = max_hw_sectors;
967 }
968 }
969
970 nvme_set_queue_limits(ctrl, ctrl->admin_q);
971
972 kfree(id);
973 return 0;
974 }
975 EXPORT_SYMBOL_GPL(nvme_init_identify);
976
977 static int nvme_dev_open(struct inode *inode, struct file *file)
978 {
979 struct nvme_ctrl *ctrl;
980 int instance = iminor(inode);
981 int ret = -ENODEV;
982
983 spin_lock(&dev_list_lock);
984 list_for_each_entry(ctrl, &nvme_ctrl_list, node) {
985 if (ctrl->instance != instance)
986 continue;
987
988 if (!ctrl->admin_q) {
989 ret = -EWOULDBLOCK;
990 break;
991 }
992 if (!kref_get_unless_zero(&ctrl->kref))
993 break;
994 file->private_data = ctrl;
995 ret = 0;
996 break;
997 }
998 spin_unlock(&dev_list_lock);
999
1000 return ret;
1001 }
1002
1003 static int nvme_dev_release(struct inode *inode, struct file *file)
1004 {
1005 nvme_put_ctrl(file->private_data);
1006 return 0;
1007 }
1008
1009 static int nvme_dev_user_cmd(struct nvme_ctrl *ctrl, void __user *argp)
1010 {
1011 struct nvme_ns *ns;
1012 int ret;
1013
1014 mutex_lock(&ctrl->namespaces_mutex);
1015 if (list_empty(&ctrl->namespaces)) {
1016 ret = -ENOTTY;
1017 goto out_unlock;
1018 }
1019
1020 ns = list_first_entry(&ctrl->namespaces, struct nvme_ns, list);
1021 if (ns != list_last_entry(&ctrl->namespaces, struct nvme_ns, list)) {
1022 dev_warn(ctrl->device,
1023 "NVME_IOCTL_IO_CMD not supported when multiple namespaces present!\n");
1024 ret = -EINVAL;
1025 goto out_unlock;
1026 }
1027
1028 dev_warn(ctrl->device,
1029 "using deprecated NVME_IOCTL_IO_CMD ioctl on the char device!\n");
1030 kref_get(&ns->kref);
1031 mutex_unlock(&ctrl->namespaces_mutex);
1032
1033 ret = nvme_user_cmd(ctrl, ns, argp);
1034 nvme_put_ns(ns);
1035 return ret;
1036
1037 out_unlock:
1038 mutex_unlock(&ctrl->namespaces_mutex);
1039 return ret;
1040 }
1041
1042 static long nvme_dev_ioctl(struct file *file, unsigned int cmd,
1043 unsigned long arg)
1044 {
1045 struct nvme_ctrl *ctrl = file->private_data;
1046 void __user *argp = (void __user *)arg;
1047
1048 switch (cmd) {
1049 case NVME_IOCTL_ADMIN_CMD:
1050 return nvme_user_cmd(ctrl, NULL, argp);
1051 case NVME_IOCTL_IO_CMD:
1052 return nvme_dev_user_cmd(ctrl, argp);
1053 case NVME_IOCTL_RESET:
1054 dev_warn(ctrl->device, "resetting controller\n");
1055 return ctrl->ops->reset_ctrl(ctrl);
1056 case NVME_IOCTL_SUBSYS_RESET:
1057 return nvme_reset_subsystem(ctrl);
1058 default:
1059 return -ENOTTY;
1060 }
1061 }
1062
1063 static const struct file_operations nvme_dev_fops = {
1064 .owner = THIS_MODULE,
1065 .open = nvme_dev_open,
1066 .release = nvme_dev_release,
1067 .unlocked_ioctl = nvme_dev_ioctl,
1068 .compat_ioctl = nvme_dev_ioctl,
1069 };
1070
1071 static ssize_t nvme_sysfs_reset(struct device *dev,
1072 struct device_attribute *attr, const char *buf,
1073 size_t count)
1074 {
1075 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1076 int ret;
1077
1078 ret = ctrl->ops->reset_ctrl(ctrl);
1079 if (ret < 0)
1080 return ret;
1081 return count;
1082 }
1083 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
1084
1085 static ssize_t wwid_show(struct device *dev, struct device_attribute *attr,
1086 char *buf)
1087 {
1088 struct nvme_ns *ns = dev_to_disk(dev)->private_data;
1089 struct nvme_ctrl *ctrl = ns->ctrl;
1090 int serial_len = sizeof(ctrl->serial);
1091 int model_len = sizeof(ctrl->model);
1092
1093 if (memchr_inv(ns->uuid, 0, sizeof(ns->uuid)))
1094 return sprintf(buf, "eui.%16phN\n", ns->uuid);
1095
1096 if (memchr_inv(ns->eui, 0, sizeof(ns->eui)))
1097 return sprintf(buf, "eui.%8phN\n", ns->eui);
1098
1099 while (ctrl->serial[serial_len - 1] == ' ')
1100 serial_len--;
1101 while (ctrl->model[model_len - 1] == ' ')
1102 model_len--;
1103
1104 return sprintf(buf, "nvme.%04x-%*phN-%*phN-%08x\n", ctrl->vid,
1105 serial_len, ctrl->serial, model_len, ctrl->model, ns->ns_id);
1106 }
1107 static DEVICE_ATTR(wwid, S_IRUGO, wwid_show, NULL);
1108
1109 static ssize_t uuid_show(struct device *dev, struct device_attribute *attr,
1110 char *buf)
1111 {
1112 struct nvme_ns *ns = dev_to_disk(dev)->private_data;
1113 return sprintf(buf, "%pU\n", ns->uuid);
1114 }
1115 static DEVICE_ATTR(uuid, S_IRUGO, uuid_show, NULL);
1116
1117 static ssize_t eui_show(struct device *dev, struct device_attribute *attr,
1118 char *buf)
1119 {
1120 struct nvme_ns *ns = dev_to_disk(dev)->private_data;
1121 return sprintf(buf, "%8phd\n", ns->eui);
1122 }
1123 static DEVICE_ATTR(eui, S_IRUGO, eui_show, NULL);
1124
1125 static ssize_t nsid_show(struct device *dev, struct device_attribute *attr,
1126 char *buf)
1127 {
1128 struct nvme_ns *ns = dev_to_disk(dev)->private_data;
1129 return sprintf(buf, "%d\n", ns->ns_id);
1130 }
1131 static DEVICE_ATTR(nsid, S_IRUGO, nsid_show, NULL);
1132
1133 static struct attribute *nvme_ns_attrs[] = {
1134 &dev_attr_wwid.attr,
1135 &dev_attr_uuid.attr,
1136 &dev_attr_eui.attr,
1137 &dev_attr_nsid.attr,
1138 NULL,
1139 };
1140
1141 static umode_t nvme_attrs_are_visible(struct kobject *kobj,
1142 struct attribute *a, int n)
1143 {
1144 struct device *dev = container_of(kobj, struct device, kobj);
1145 struct nvme_ns *ns = dev_to_disk(dev)->private_data;
1146
1147 if (a == &dev_attr_uuid.attr) {
1148 if (!memchr_inv(ns->uuid, 0, sizeof(ns->uuid)))
1149 return 0;
1150 }
1151 if (a == &dev_attr_eui.attr) {
1152 if (!memchr_inv(ns->eui, 0, sizeof(ns->eui)))
1153 return 0;
1154 }
1155 return a->mode;
1156 }
1157
1158 static const struct attribute_group nvme_ns_attr_group = {
1159 .attrs = nvme_ns_attrs,
1160 .is_visible = nvme_attrs_are_visible,
1161 };
1162
1163 #define nvme_show_str_function(field) \
1164 static ssize_t field##_show(struct device *dev, \
1165 struct device_attribute *attr, char *buf) \
1166 { \
1167 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \
1168 return sprintf(buf, "%.*s\n", (int)sizeof(ctrl->field), ctrl->field); \
1169 } \
1170 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
1171
1172 #define nvme_show_int_function(field) \
1173 static ssize_t field##_show(struct device *dev, \
1174 struct device_attribute *attr, char *buf) \
1175 { \
1176 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \
1177 return sprintf(buf, "%d\n", ctrl->field); \
1178 } \
1179 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
1180
1181 nvme_show_str_function(model);
1182 nvme_show_str_function(serial);
1183 nvme_show_str_function(firmware_rev);
1184 nvme_show_int_function(cntlid);
1185
1186 static struct attribute *nvme_dev_attrs[] = {
1187 &dev_attr_reset_controller.attr,
1188 &dev_attr_model.attr,
1189 &dev_attr_serial.attr,
1190 &dev_attr_firmware_rev.attr,
1191 &dev_attr_cntlid.attr,
1192 NULL
1193 };
1194
1195 static struct attribute_group nvme_dev_attrs_group = {
1196 .attrs = nvme_dev_attrs,
1197 };
1198
1199 static const struct attribute_group *nvme_dev_attr_groups[] = {
1200 &nvme_dev_attrs_group,
1201 NULL,
1202 };
1203
1204 static int ns_cmp(void *priv, struct list_head *a, struct list_head *b)
1205 {
1206 struct nvme_ns *nsa = container_of(a, struct nvme_ns, list);
1207 struct nvme_ns *nsb = container_of(b, struct nvme_ns, list);
1208
1209 return nsa->ns_id - nsb->ns_id;
1210 }
1211
1212 static struct nvme_ns *nvme_find_ns(struct nvme_ctrl *ctrl, unsigned nsid)
1213 {
1214 struct nvme_ns *ns;
1215
1216 lockdep_assert_held(&ctrl->namespaces_mutex);
1217
1218 list_for_each_entry(ns, &ctrl->namespaces, list) {
1219 if (ns->ns_id == nsid)
1220 return ns;
1221 if (ns->ns_id > nsid)
1222 break;
1223 }
1224 return NULL;
1225 }
1226
1227 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid)
1228 {
1229 struct nvme_ns *ns;
1230 struct gendisk *disk;
1231 int node = dev_to_node(ctrl->dev);
1232
1233 lockdep_assert_held(&ctrl->namespaces_mutex);
1234
1235 ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
1236 if (!ns)
1237 return;
1238
1239 ns->instance = ida_simple_get(&ctrl->ns_ida, 1, 0, GFP_KERNEL);
1240 if (ns->instance < 0)
1241 goto out_free_ns;
1242
1243 ns->queue = blk_mq_init_queue(ctrl->tagset);
1244 if (IS_ERR(ns->queue))
1245 goto out_release_instance;
1246 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, ns->queue);
1247 ns->queue->queuedata = ns;
1248 ns->ctrl = ctrl;
1249
1250 disk = alloc_disk_node(0, node);
1251 if (!disk)
1252 goto out_free_queue;
1253
1254 kref_init(&ns->kref);
1255 ns->ns_id = nsid;
1256 ns->disk = disk;
1257 ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */
1258
1259
1260 blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
1261 nvme_set_queue_limits(ctrl, ns->queue);
1262
1263 disk->major = nvme_major;
1264 disk->first_minor = 0;
1265 disk->fops = &nvme_fops;
1266 disk->private_data = ns;
1267 disk->queue = ns->queue;
1268 disk->driverfs_dev = ctrl->device;
1269 disk->flags = GENHD_FL_EXT_DEVT;
1270 sprintf(disk->disk_name, "nvme%dn%d", ctrl->instance, ns->instance);
1271
1272 if (nvme_revalidate_disk(ns->disk))
1273 goto out_free_disk;
1274
1275 list_add_tail(&ns->list, &ctrl->namespaces);
1276 kref_get(&ctrl->kref);
1277 if (ns->type == NVME_NS_LIGHTNVM)
1278 return;
1279
1280 add_disk(ns->disk);
1281 if (sysfs_create_group(&disk_to_dev(ns->disk)->kobj,
1282 &nvme_ns_attr_group))
1283 pr_warn("%s: failed to create sysfs group for identification\n",
1284 ns->disk->disk_name);
1285 return;
1286 out_free_disk:
1287 kfree(disk);
1288 out_free_queue:
1289 blk_cleanup_queue(ns->queue);
1290 out_release_instance:
1291 ida_simple_remove(&ctrl->ns_ida, ns->instance);
1292 out_free_ns:
1293 kfree(ns);
1294 }
1295
1296 static void nvme_ns_remove(struct nvme_ns *ns)
1297 {
1298 if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
1299 return;
1300
1301 if (ns->disk->flags & GENHD_FL_UP) {
1302 if (blk_get_integrity(ns->disk))
1303 blk_integrity_unregister(ns->disk);
1304 sysfs_remove_group(&disk_to_dev(ns->disk)->kobj,
1305 &nvme_ns_attr_group);
1306 del_gendisk(ns->disk);
1307 blk_mq_abort_requeue_list(ns->queue);
1308 blk_cleanup_queue(ns->queue);
1309 }
1310 mutex_lock(&ns->ctrl->namespaces_mutex);
1311 list_del_init(&ns->list);
1312 mutex_unlock(&ns->ctrl->namespaces_mutex);
1313 nvme_put_ns(ns);
1314 }
1315
1316 static void nvme_validate_ns(struct nvme_ctrl *ctrl, unsigned nsid)
1317 {
1318 struct nvme_ns *ns;
1319
1320 ns = nvme_find_ns(ctrl, nsid);
1321 if (ns) {
1322 if (revalidate_disk(ns->disk))
1323 nvme_ns_remove(ns);
1324 } else
1325 nvme_alloc_ns(ctrl, nsid);
1326 }
1327
1328 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl, unsigned nn)
1329 {
1330 struct nvme_ns *ns;
1331 __le32 *ns_list;
1332 unsigned i, j, nsid, prev = 0, num_lists = DIV_ROUND_UP(nn, 1024);
1333 int ret = 0;
1334
1335 ns_list = kzalloc(0x1000, GFP_KERNEL);
1336 if (!ns_list)
1337 return -ENOMEM;
1338
1339 for (i = 0; i < num_lists; i++) {
1340 ret = nvme_identify_ns_list(ctrl, prev, ns_list);
1341 if (ret)
1342 goto out;
1343
1344 for (j = 0; j < min(nn, 1024U); j++) {
1345 nsid = le32_to_cpu(ns_list[j]);
1346 if (!nsid)
1347 goto out;
1348
1349 nvme_validate_ns(ctrl, nsid);
1350
1351 while (++prev < nsid) {
1352 ns = nvme_find_ns(ctrl, prev);
1353 if (ns)
1354 nvme_ns_remove(ns);
1355 }
1356 }
1357 nn -= j;
1358 }
1359 out:
1360 kfree(ns_list);
1361 return ret;
1362 }
1363
1364 static void __nvme_scan_namespaces(struct nvme_ctrl *ctrl, unsigned nn)
1365 {
1366 struct nvme_ns *ns, *next;
1367 unsigned i;
1368
1369 lockdep_assert_held(&ctrl->namespaces_mutex);
1370
1371 for (i = 1; i <= nn; i++)
1372 nvme_validate_ns(ctrl, i);
1373
1374 list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
1375 if (ns->ns_id > nn)
1376 nvme_ns_remove(ns);
1377 }
1378 }
1379
1380 void nvme_scan_namespaces(struct nvme_ctrl *ctrl)
1381 {
1382 struct nvme_id_ctrl *id;
1383 unsigned nn;
1384
1385 if (nvme_identify_ctrl(ctrl, &id))
1386 return;
1387
1388 mutex_lock(&ctrl->namespaces_mutex);
1389 nn = le32_to_cpu(id->nn);
1390 if (ctrl->vs >= NVME_VS(1, 1) &&
1391 !(ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)) {
1392 if (!nvme_scan_ns_list(ctrl, nn))
1393 goto done;
1394 }
1395 __nvme_scan_namespaces(ctrl, le32_to_cpup(&id->nn));
1396 done:
1397 list_sort(NULL, &ctrl->namespaces, ns_cmp);
1398 mutex_unlock(&ctrl->namespaces_mutex);
1399 kfree(id);
1400 }
1401 EXPORT_SYMBOL_GPL(nvme_scan_namespaces);
1402
1403 void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
1404 {
1405 struct nvme_ns *ns, *next;
1406
1407 list_for_each_entry_safe(ns, next, &ctrl->namespaces, list)
1408 nvme_ns_remove(ns);
1409 }
1410 EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
1411
1412 static DEFINE_IDA(nvme_instance_ida);
1413
1414 static int nvme_set_instance(struct nvme_ctrl *ctrl)
1415 {
1416 int instance, error;
1417
1418 do {
1419 if (!ida_pre_get(&nvme_instance_ida, GFP_KERNEL))
1420 return -ENODEV;
1421
1422 spin_lock(&dev_list_lock);
1423 error = ida_get_new(&nvme_instance_ida, &instance);
1424 spin_unlock(&dev_list_lock);
1425 } while (error == -EAGAIN);
1426
1427 if (error)
1428 return -ENODEV;
1429
1430 ctrl->instance = instance;
1431 return 0;
1432 }
1433
1434 static void nvme_release_instance(struct nvme_ctrl *ctrl)
1435 {
1436 spin_lock(&dev_list_lock);
1437 ida_remove(&nvme_instance_ida, ctrl->instance);
1438 spin_unlock(&dev_list_lock);
1439 }
1440
1441 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
1442 {
1443 device_destroy(nvme_class, MKDEV(nvme_char_major, ctrl->instance));
1444
1445 spin_lock(&dev_list_lock);
1446 list_del(&ctrl->node);
1447 spin_unlock(&dev_list_lock);
1448 }
1449 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
1450
1451 static void nvme_free_ctrl(struct kref *kref)
1452 {
1453 struct nvme_ctrl *ctrl = container_of(kref, struct nvme_ctrl, kref);
1454
1455 put_device(ctrl->device);
1456 nvme_release_instance(ctrl);
1457 ida_destroy(&ctrl->ns_ida);
1458
1459 ctrl->ops->free_ctrl(ctrl);
1460 }
1461
1462 void nvme_put_ctrl(struct nvme_ctrl *ctrl)
1463 {
1464 kref_put(&ctrl->kref, nvme_free_ctrl);
1465 }
1466 EXPORT_SYMBOL_GPL(nvme_put_ctrl);
1467
1468 /*
1469 * Initialize a NVMe controller structures. This needs to be called during
1470 * earliest initialization so that we have the initialized structured around
1471 * during probing.
1472 */
1473 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
1474 const struct nvme_ctrl_ops *ops, unsigned long quirks)
1475 {
1476 int ret;
1477
1478 INIT_LIST_HEAD(&ctrl->namespaces);
1479 mutex_init(&ctrl->namespaces_mutex);
1480 kref_init(&ctrl->kref);
1481 ctrl->dev = dev;
1482 ctrl->ops = ops;
1483 ctrl->quirks = quirks;
1484
1485 ret = nvme_set_instance(ctrl);
1486 if (ret)
1487 goto out;
1488
1489 ctrl->device = device_create_with_groups(nvme_class, ctrl->dev,
1490 MKDEV(nvme_char_major, ctrl->instance),
1491 ctrl, nvme_dev_attr_groups,
1492 "nvme%d", ctrl->instance);
1493 if (IS_ERR(ctrl->device)) {
1494 ret = PTR_ERR(ctrl->device);
1495 goto out_release_instance;
1496 }
1497 get_device(ctrl->device);
1498 ida_init(&ctrl->ns_ida);
1499
1500 spin_lock(&dev_list_lock);
1501 list_add_tail(&ctrl->node, &nvme_ctrl_list);
1502 spin_unlock(&dev_list_lock);
1503
1504 return 0;
1505 out_release_instance:
1506 nvme_release_instance(ctrl);
1507 out:
1508 return ret;
1509 }
1510 EXPORT_SYMBOL_GPL(nvme_init_ctrl);
1511
1512 /**
1513 * nvme_kill_queues(): Ends all namespace queues
1514 * @ctrl: the dead controller that needs to end
1515 *
1516 * Call this function when the driver determines it is unable to get the
1517 * controller in a state capable of servicing IO.
1518 */
1519 void nvme_kill_queues(struct nvme_ctrl *ctrl)
1520 {
1521 struct nvme_ns *ns;
1522
1523 mutex_lock(&ctrl->namespaces_mutex);
1524 list_for_each_entry(ns, &ctrl->namespaces, list) {
1525 if (!kref_get_unless_zero(&ns->kref))
1526 continue;
1527
1528 /*
1529 * Revalidating a dead namespace sets capacity to 0. This will
1530 * end buffered writers dirtying pages that can't be synced.
1531 */
1532 if (!test_and_set_bit(NVME_NS_DEAD, &ns->flags))
1533 revalidate_disk(ns->disk);
1534
1535 blk_set_queue_dying(ns->queue);
1536 blk_mq_abort_requeue_list(ns->queue);
1537 blk_mq_start_stopped_hw_queues(ns->queue, true);
1538
1539 nvme_put_ns(ns);
1540 }
1541 mutex_unlock(&ctrl->namespaces_mutex);
1542 }
1543 EXPORT_SYMBOL_GPL(nvme_kill_queues);
1544
1545 void nvme_stop_queues(struct nvme_ctrl *ctrl)
1546 {
1547 struct nvme_ns *ns;
1548
1549 mutex_lock(&ctrl->namespaces_mutex);
1550 list_for_each_entry(ns, &ctrl->namespaces, list) {
1551 spin_lock_irq(ns->queue->queue_lock);
1552 queue_flag_set(QUEUE_FLAG_STOPPED, ns->queue);
1553 spin_unlock_irq(ns->queue->queue_lock);
1554
1555 blk_mq_cancel_requeue_work(ns->queue);
1556 blk_mq_stop_hw_queues(ns->queue);
1557 }
1558 mutex_unlock(&ctrl->namespaces_mutex);
1559 }
1560 EXPORT_SYMBOL_GPL(nvme_stop_queues);
1561
1562 void nvme_start_queues(struct nvme_ctrl *ctrl)
1563 {
1564 struct nvme_ns *ns;
1565
1566 mutex_lock(&ctrl->namespaces_mutex);
1567 list_for_each_entry(ns, &ctrl->namespaces, list) {
1568 queue_flag_clear_unlocked(QUEUE_FLAG_STOPPED, ns->queue);
1569 blk_mq_start_stopped_hw_queues(ns->queue, true);
1570 blk_mq_kick_requeue_list(ns->queue);
1571 }
1572 mutex_unlock(&ctrl->namespaces_mutex);
1573 }
1574 EXPORT_SYMBOL_GPL(nvme_start_queues);
1575
1576 int __init nvme_core_init(void)
1577 {
1578 int result;
1579
1580 result = register_blkdev(nvme_major, "nvme");
1581 if (result < 0)
1582 return result;
1583 else if (result > 0)
1584 nvme_major = result;
1585
1586 result = __register_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme",
1587 &nvme_dev_fops);
1588 if (result < 0)
1589 goto unregister_blkdev;
1590 else if (result > 0)
1591 nvme_char_major = result;
1592
1593 nvme_class = class_create(THIS_MODULE, "nvme");
1594 if (IS_ERR(nvme_class)) {
1595 result = PTR_ERR(nvme_class);
1596 goto unregister_chrdev;
1597 }
1598
1599 return 0;
1600
1601 unregister_chrdev:
1602 __unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
1603 unregister_blkdev:
1604 unregister_blkdev(nvme_major, "nvme");
1605 return result;
1606 }
1607
1608 void nvme_core_exit(void)
1609 {
1610 unregister_blkdev(nvme_major, "nvme");
1611 class_destroy(nvme_class);
1612 __unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
1613 }
1614
1615 MODULE_LICENSE("GPL");
1616 MODULE_VERSION("1.0");
1617 module_init(nvme_core_init);
1618 module_exit(nvme_core_exit);
This page took 0.300506 seconds and 5 git commands to generate.