f5676c69842a43ebc11e5785df72ec19ca9840a2
[deliverable/linux.git] / drivers / nvme / host / core.c
1 /*
2 * NVM Express device driver
3 * Copyright (c) 2011-2014, Intel Corporation.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 */
14
15 #include <linux/blkdev.h>
16 #include <linux/blk-mq.h>
17 #include <linux/delay.h>
18 #include <linux/errno.h>
19 #include <linux/hdreg.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/list_sort.h>
23 #include <linux/slab.h>
24 #include <linux/types.h>
25 #include <linux/pr.h>
26 #include <linux/ptrace.h>
27 #include <linux/nvme_ioctl.h>
28 #include <linux/t10-pi.h>
29 #include <scsi/sg.h>
30 #include <asm/unaligned.h>
31
32 #include "nvme.h"
33
34 #define NVME_MINORS (1U << MINORBITS)
35
36 unsigned char admin_timeout = 60;
37 module_param(admin_timeout, byte, 0644);
38 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
39 EXPORT_SYMBOL_GPL(admin_timeout);
40
41 unsigned char nvme_io_timeout = 30;
42 module_param_named(io_timeout, nvme_io_timeout, byte, 0644);
43 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
44 EXPORT_SYMBOL_GPL(nvme_io_timeout);
45
46 unsigned char shutdown_timeout = 5;
47 module_param(shutdown_timeout, byte, 0644);
48 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
49
50 static int nvme_major;
51 module_param(nvme_major, int, 0);
52
53 static int nvme_char_major;
54 module_param(nvme_char_major, int, 0);
55
56 static LIST_HEAD(nvme_ctrl_list);
57 static DEFINE_SPINLOCK(dev_list_lock);
58
59 static struct class *nvme_class;
60
61 void nvme_cancel_request(struct request *req, void *data, bool reserved)
62 {
63 int status;
64
65 if (!blk_mq_request_started(req))
66 return;
67
68 dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
69 "Cancelling I/O %d", req->tag);
70
71 status = NVME_SC_ABORT_REQ;
72 if (blk_queue_dying(req->q))
73 status |= NVME_SC_DNR;
74 blk_mq_complete_request(req, status);
75 }
76 EXPORT_SYMBOL_GPL(nvme_cancel_request);
77
78 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
79 enum nvme_ctrl_state new_state)
80 {
81 enum nvme_ctrl_state old_state = ctrl->state;
82 bool changed = false;
83
84 spin_lock_irq(&ctrl->lock);
85 switch (new_state) {
86 case NVME_CTRL_LIVE:
87 switch (old_state) {
88 case NVME_CTRL_NEW:
89 case NVME_CTRL_RESETTING:
90 changed = true;
91 /* FALLTHRU */
92 default:
93 break;
94 }
95 break;
96 case NVME_CTRL_RESETTING:
97 switch (old_state) {
98 case NVME_CTRL_NEW:
99 case NVME_CTRL_LIVE:
100 changed = true;
101 /* FALLTHRU */
102 default:
103 break;
104 }
105 break;
106 case NVME_CTRL_DELETING:
107 switch (old_state) {
108 case NVME_CTRL_LIVE:
109 case NVME_CTRL_RESETTING:
110 changed = true;
111 /* FALLTHRU */
112 default:
113 break;
114 }
115 break;
116 case NVME_CTRL_DEAD:
117 switch (old_state) {
118 case NVME_CTRL_DELETING:
119 changed = true;
120 /* FALLTHRU */
121 default:
122 break;
123 }
124 break;
125 default:
126 break;
127 }
128 spin_unlock_irq(&ctrl->lock);
129
130 if (changed)
131 ctrl->state = new_state;
132
133 return changed;
134 }
135 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);
136
137 static void nvme_free_ns(struct kref *kref)
138 {
139 struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
140
141 if (ns->type == NVME_NS_LIGHTNVM)
142 nvme_nvm_unregister(ns->queue, ns->disk->disk_name);
143
144 spin_lock(&dev_list_lock);
145 ns->disk->private_data = NULL;
146 spin_unlock(&dev_list_lock);
147
148 put_disk(ns->disk);
149 ida_simple_remove(&ns->ctrl->ns_ida, ns->instance);
150 nvme_put_ctrl(ns->ctrl);
151 kfree(ns);
152 }
153
154 static void nvme_put_ns(struct nvme_ns *ns)
155 {
156 kref_put(&ns->kref, nvme_free_ns);
157 }
158
159 static struct nvme_ns *nvme_get_ns_from_disk(struct gendisk *disk)
160 {
161 struct nvme_ns *ns;
162
163 spin_lock(&dev_list_lock);
164 ns = disk->private_data;
165 if (ns) {
166 if (!kref_get_unless_zero(&ns->kref))
167 goto fail;
168 if (!try_module_get(ns->ctrl->ops->module))
169 goto fail_put_ns;
170 }
171 spin_unlock(&dev_list_lock);
172
173 return ns;
174
175 fail_put_ns:
176 kref_put(&ns->kref, nvme_free_ns);
177 fail:
178 spin_unlock(&dev_list_lock);
179 return NULL;
180 }
181
182 void nvme_requeue_req(struct request *req)
183 {
184 unsigned long flags;
185
186 blk_mq_requeue_request(req);
187 spin_lock_irqsave(req->q->queue_lock, flags);
188 if (!blk_queue_stopped(req->q))
189 blk_mq_kick_requeue_list(req->q);
190 spin_unlock_irqrestore(req->q->queue_lock, flags);
191 }
192 EXPORT_SYMBOL_GPL(nvme_requeue_req);
193
194 struct request *nvme_alloc_request(struct request_queue *q,
195 struct nvme_command *cmd, unsigned int flags, int qid)
196 {
197 struct request *req;
198
199 if (qid == NVME_QID_ANY) {
200 req = blk_mq_alloc_request(q, nvme_is_write(cmd), flags);
201 } else {
202 req = blk_mq_alloc_request_hctx(q, nvme_is_write(cmd), flags,
203 qid ? qid - 1 : 0);
204 }
205 if (IS_ERR(req))
206 return req;
207
208 req->cmd_type = REQ_TYPE_DRV_PRIV;
209 req->cmd_flags |= REQ_FAILFAST_DRIVER;
210 req->__data_len = 0;
211 req->__sector = (sector_t) -1;
212 req->bio = req->biotail = NULL;
213
214 req->cmd = (unsigned char *)cmd;
215 req->cmd_len = sizeof(struct nvme_command);
216
217 return req;
218 }
219 EXPORT_SYMBOL_GPL(nvme_alloc_request);
220
221 static inline void nvme_setup_flush(struct nvme_ns *ns,
222 struct nvme_command *cmnd)
223 {
224 memset(cmnd, 0, sizeof(*cmnd));
225 cmnd->common.opcode = nvme_cmd_flush;
226 cmnd->common.nsid = cpu_to_le32(ns->ns_id);
227 }
228
229 static inline int nvme_setup_discard(struct nvme_ns *ns, struct request *req,
230 struct nvme_command *cmnd)
231 {
232 struct nvme_dsm_range *range;
233 struct page *page;
234 int offset;
235 unsigned int nr_bytes = blk_rq_bytes(req);
236
237 range = kmalloc(sizeof(*range), GFP_ATOMIC);
238 if (!range)
239 return BLK_MQ_RQ_QUEUE_BUSY;
240
241 range->cattr = cpu_to_le32(0);
242 range->nlb = cpu_to_le32(nr_bytes >> ns->lba_shift);
243 range->slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
244
245 memset(cmnd, 0, sizeof(*cmnd));
246 cmnd->dsm.opcode = nvme_cmd_dsm;
247 cmnd->dsm.nsid = cpu_to_le32(ns->ns_id);
248 cmnd->dsm.nr = 0;
249 cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
250
251 req->completion_data = range;
252 page = virt_to_page(range);
253 offset = offset_in_page(range);
254 blk_add_request_payload(req, page, offset, sizeof(*range));
255
256 /*
257 * we set __data_len back to the size of the area to be discarded
258 * on disk. This allows us to report completion on the full amount
259 * of blocks described by the request.
260 */
261 req->__data_len = nr_bytes;
262
263 return 0;
264 }
265
266 static inline void nvme_setup_rw(struct nvme_ns *ns, struct request *req,
267 struct nvme_command *cmnd)
268 {
269 u16 control = 0;
270 u32 dsmgmt = 0;
271
272 if (req->cmd_flags & REQ_FUA)
273 control |= NVME_RW_FUA;
274 if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
275 control |= NVME_RW_LR;
276
277 if (req->cmd_flags & REQ_RAHEAD)
278 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
279
280 memset(cmnd, 0, sizeof(*cmnd));
281 cmnd->rw.opcode = (rq_data_dir(req) ? nvme_cmd_write : nvme_cmd_read);
282 cmnd->rw.command_id = req->tag;
283 cmnd->rw.nsid = cpu_to_le32(ns->ns_id);
284 cmnd->rw.slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
285 cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
286
287 if (ns->ms) {
288 switch (ns->pi_type) {
289 case NVME_NS_DPS_PI_TYPE3:
290 control |= NVME_RW_PRINFO_PRCHK_GUARD;
291 break;
292 case NVME_NS_DPS_PI_TYPE1:
293 case NVME_NS_DPS_PI_TYPE2:
294 control |= NVME_RW_PRINFO_PRCHK_GUARD |
295 NVME_RW_PRINFO_PRCHK_REF;
296 cmnd->rw.reftag = cpu_to_le32(
297 nvme_block_nr(ns, blk_rq_pos(req)));
298 break;
299 }
300 if (!blk_integrity_rq(req))
301 control |= NVME_RW_PRINFO_PRACT;
302 }
303
304 cmnd->rw.control = cpu_to_le16(control);
305 cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
306 }
307
308 int nvme_setup_cmd(struct nvme_ns *ns, struct request *req,
309 struct nvme_command *cmd)
310 {
311 int ret = 0;
312
313 if (req->cmd_type == REQ_TYPE_DRV_PRIV)
314 memcpy(cmd, req->cmd, sizeof(*cmd));
315 else if (req_op(req) == REQ_OP_FLUSH)
316 nvme_setup_flush(ns, cmd);
317 else if (req_op(req) == REQ_OP_DISCARD)
318 ret = nvme_setup_discard(ns, req, cmd);
319 else
320 nvme_setup_rw(ns, req, cmd);
321
322 return ret;
323 }
324 EXPORT_SYMBOL_GPL(nvme_setup_cmd);
325
326 /*
327 * Returns 0 on success. If the result is negative, it's a Linux error code;
328 * if the result is positive, it's an NVM Express status code
329 */
330 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
331 struct nvme_completion *cqe, void *buffer, unsigned bufflen,
332 unsigned timeout, int qid, int at_head, int flags)
333 {
334 struct request *req;
335 int ret;
336
337 req = nvme_alloc_request(q, cmd, flags, qid);
338 if (IS_ERR(req))
339 return PTR_ERR(req);
340
341 req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
342 req->special = cqe;
343
344 if (buffer && bufflen) {
345 ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
346 if (ret)
347 goto out;
348 }
349
350 blk_execute_rq(req->q, NULL, req, at_head);
351 ret = req->errors;
352 out:
353 blk_mq_free_request(req);
354 return ret;
355 }
356 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
357
358 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
359 void *buffer, unsigned bufflen)
360 {
361 return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0,
362 NVME_QID_ANY, 0, 0);
363 }
364 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
365
366 int __nvme_submit_user_cmd(struct request_queue *q, struct nvme_command *cmd,
367 void __user *ubuffer, unsigned bufflen,
368 void __user *meta_buffer, unsigned meta_len, u32 meta_seed,
369 u32 *result, unsigned timeout)
370 {
371 bool write = nvme_is_write(cmd);
372 struct nvme_completion cqe;
373 struct nvme_ns *ns = q->queuedata;
374 struct gendisk *disk = ns ? ns->disk : NULL;
375 struct request *req;
376 struct bio *bio = NULL;
377 void *meta = NULL;
378 int ret;
379
380 req = nvme_alloc_request(q, cmd, 0, NVME_QID_ANY);
381 if (IS_ERR(req))
382 return PTR_ERR(req);
383
384 req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
385 req->special = &cqe;
386
387 if (ubuffer && bufflen) {
388 ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen,
389 GFP_KERNEL);
390 if (ret)
391 goto out;
392 bio = req->bio;
393
394 if (!disk)
395 goto submit;
396 bio->bi_bdev = bdget_disk(disk, 0);
397 if (!bio->bi_bdev) {
398 ret = -ENODEV;
399 goto out_unmap;
400 }
401
402 if (meta_buffer && meta_len) {
403 struct bio_integrity_payload *bip;
404
405 meta = kmalloc(meta_len, GFP_KERNEL);
406 if (!meta) {
407 ret = -ENOMEM;
408 goto out_unmap;
409 }
410
411 if (write) {
412 if (copy_from_user(meta, meta_buffer,
413 meta_len)) {
414 ret = -EFAULT;
415 goto out_free_meta;
416 }
417 }
418
419 bip = bio_integrity_alloc(bio, GFP_KERNEL, 1);
420 if (IS_ERR(bip)) {
421 ret = PTR_ERR(bip);
422 goto out_free_meta;
423 }
424
425 bip->bip_iter.bi_size = meta_len;
426 bip->bip_iter.bi_sector = meta_seed;
427
428 ret = bio_integrity_add_page(bio, virt_to_page(meta),
429 meta_len, offset_in_page(meta));
430 if (ret != meta_len) {
431 ret = -ENOMEM;
432 goto out_free_meta;
433 }
434 }
435 }
436 submit:
437 blk_execute_rq(req->q, disk, req, 0);
438 ret = req->errors;
439 if (result)
440 *result = le32_to_cpu(cqe.result);
441 if (meta && !ret && !write) {
442 if (copy_to_user(meta_buffer, meta, meta_len))
443 ret = -EFAULT;
444 }
445 out_free_meta:
446 kfree(meta);
447 out_unmap:
448 if (bio) {
449 if (disk && bio->bi_bdev)
450 bdput(bio->bi_bdev);
451 blk_rq_unmap_user(bio);
452 }
453 out:
454 blk_mq_free_request(req);
455 return ret;
456 }
457
458 int nvme_submit_user_cmd(struct request_queue *q, struct nvme_command *cmd,
459 void __user *ubuffer, unsigned bufflen, u32 *result,
460 unsigned timeout)
461 {
462 return __nvme_submit_user_cmd(q, cmd, ubuffer, bufflen, NULL, 0, 0,
463 result, timeout);
464 }
465
466 int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
467 {
468 struct nvme_command c = { };
469 int error;
470
471 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
472 c.identify.opcode = nvme_admin_identify;
473 c.identify.cns = cpu_to_le32(1);
474
475 *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
476 if (!*id)
477 return -ENOMEM;
478
479 error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
480 sizeof(struct nvme_id_ctrl));
481 if (error)
482 kfree(*id);
483 return error;
484 }
485
486 static int nvme_identify_ns_list(struct nvme_ctrl *dev, unsigned nsid, __le32 *ns_list)
487 {
488 struct nvme_command c = { };
489
490 c.identify.opcode = nvme_admin_identify;
491 c.identify.cns = cpu_to_le32(2);
492 c.identify.nsid = cpu_to_le32(nsid);
493 return nvme_submit_sync_cmd(dev->admin_q, &c, ns_list, 0x1000);
494 }
495
496 int nvme_identify_ns(struct nvme_ctrl *dev, unsigned nsid,
497 struct nvme_id_ns **id)
498 {
499 struct nvme_command c = { };
500 int error;
501
502 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
503 c.identify.opcode = nvme_admin_identify,
504 c.identify.nsid = cpu_to_le32(nsid),
505
506 *id = kmalloc(sizeof(struct nvme_id_ns), GFP_KERNEL);
507 if (!*id)
508 return -ENOMEM;
509
510 error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
511 sizeof(struct nvme_id_ns));
512 if (error)
513 kfree(*id);
514 return error;
515 }
516
517 int nvme_get_features(struct nvme_ctrl *dev, unsigned fid, unsigned nsid,
518 dma_addr_t dma_addr, u32 *result)
519 {
520 struct nvme_command c;
521 struct nvme_completion cqe;
522 int ret;
523
524 memset(&c, 0, sizeof(c));
525 c.features.opcode = nvme_admin_get_features;
526 c.features.nsid = cpu_to_le32(nsid);
527 c.features.prp1 = cpu_to_le64(dma_addr);
528 c.features.fid = cpu_to_le32(fid);
529
530 ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &cqe, NULL, 0, 0,
531 NVME_QID_ANY, 0, 0);
532 if (ret >= 0)
533 *result = le32_to_cpu(cqe.result);
534 return ret;
535 }
536
537 int nvme_set_features(struct nvme_ctrl *dev, unsigned fid, unsigned dword11,
538 dma_addr_t dma_addr, u32 *result)
539 {
540 struct nvme_command c;
541 struct nvme_completion cqe;
542 int ret;
543
544 memset(&c, 0, sizeof(c));
545 c.features.opcode = nvme_admin_set_features;
546 c.features.prp1 = cpu_to_le64(dma_addr);
547 c.features.fid = cpu_to_le32(fid);
548 c.features.dword11 = cpu_to_le32(dword11);
549
550 ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &cqe, NULL, 0, 0,
551 NVME_QID_ANY, 0, 0);
552 if (ret >= 0)
553 *result = le32_to_cpu(cqe.result);
554 return ret;
555 }
556
557 int nvme_get_log_page(struct nvme_ctrl *dev, struct nvme_smart_log **log)
558 {
559 struct nvme_command c = { };
560 int error;
561
562 c.common.opcode = nvme_admin_get_log_page,
563 c.common.nsid = cpu_to_le32(0xFFFFFFFF),
564 c.common.cdw10[0] = cpu_to_le32(
565 (((sizeof(struct nvme_smart_log) / 4) - 1) << 16) |
566 NVME_LOG_SMART),
567
568 *log = kmalloc(sizeof(struct nvme_smart_log), GFP_KERNEL);
569 if (!*log)
570 return -ENOMEM;
571
572 error = nvme_submit_sync_cmd(dev->admin_q, &c, *log,
573 sizeof(struct nvme_smart_log));
574 if (error)
575 kfree(*log);
576 return error;
577 }
578
579 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
580 {
581 u32 q_count = (*count - 1) | ((*count - 1) << 16);
582 u32 result;
583 int status, nr_io_queues;
584
585 status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, 0,
586 &result);
587 if (status < 0)
588 return status;
589
590 /*
591 * Degraded controllers might return an error when setting the queue
592 * count. We still want to be able to bring them online and offer
593 * access to the admin queue, as that might be only way to fix them up.
594 */
595 if (status > 0) {
596 dev_err(ctrl->dev, "Could not set queue count (%d)\n", status);
597 *count = 0;
598 } else {
599 nr_io_queues = min(result & 0xffff, result >> 16) + 1;
600 *count = min(*count, nr_io_queues);
601 }
602
603 return 0;
604 }
605 EXPORT_SYMBOL_GPL(nvme_set_queue_count);
606
607 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
608 {
609 struct nvme_user_io io;
610 struct nvme_command c;
611 unsigned length, meta_len;
612 void __user *metadata;
613
614 if (copy_from_user(&io, uio, sizeof(io)))
615 return -EFAULT;
616 if (io.flags)
617 return -EINVAL;
618
619 switch (io.opcode) {
620 case nvme_cmd_write:
621 case nvme_cmd_read:
622 case nvme_cmd_compare:
623 break;
624 default:
625 return -EINVAL;
626 }
627
628 length = (io.nblocks + 1) << ns->lba_shift;
629 meta_len = (io.nblocks + 1) * ns->ms;
630 metadata = (void __user *)(uintptr_t)io.metadata;
631
632 if (ns->ext) {
633 length += meta_len;
634 meta_len = 0;
635 } else if (meta_len) {
636 if ((io.metadata & 3) || !io.metadata)
637 return -EINVAL;
638 }
639
640 memset(&c, 0, sizeof(c));
641 c.rw.opcode = io.opcode;
642 c.rw.flags = io.flags;
643 c.rw.nsid = cpu_to_le32(ns->ns_id);
644 c.rw.slba = cpu_to_le64(io.slba);
645 c.rw.length = cpu_to_le16(io.nblocks);
646 c.rw.control = cpu_to_le16(io.control);
647 c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
648 c.rw.reftag = cpu_to_le32(io.reftag);
649 c.rw.apptag = cpu_to_le16(io.apptag);
650 c.rw.appmask = cpu_to_le16(io.appmask);
651
652 return __nvme_submit_user_cmd(ns->queue, &c,
653 (void __user *)(uintptr_t)io.addr, length,
654 metadata, meta_len, io.slba, NULL, 0);
655 }
656
657 static int nvme_user_cmd(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
658 struct nvme_passthru_cmd __user *ucmd)
659 {
660 struct nvme_passthru_cmd cmd;
661 struct nvme_command c;
662 unsigned timeout = 0;
663 int status;
664
665 if (!capable(CAP_SYS_ADMIN))
666 return -EACCES;
667 if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
668 return -EFAULT;
669 if (cmd.flags)
670 return -EINVAL;
671
672 memset(&c, 0, sizeof(c));
673 c.common.opcode = cmd.opcode;
674 c.common.flags = cmd.flags;
675 c.common.nsid = cpu_to_le32(cmd.nsid);
676 c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
677 c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
678 c.common.cdw10[0] = cpu_to_le32(cmd.cdw10);
679 c.common.cdw10[1] = cpu_to_le32(cmd.cdw11);
680 c.common.cdw10[2] = cpu_to_le32(cmd.cdw12);
681 c.common.cdw10[3] = cpu_to_le32(cmd.cdw13);
682 c.common.cdw10[4] = cpu_to_le32(cmd.cdw14);
683 c.common.cdw10[5] = cpu_to_le32(cmd.cdw15);
684
685 if (cmd.timeout_ms)
686 timeout = msecs_to_jiffies(cmd.timeout_ms);
687
688 status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
689 (void __user *)(uintptr_t)cmd.addr, cmd.data_len,
690 &cmd.result, timeout);
691 if (status >= 0) {
692 if (put_user(cmd.result, &ucmd->result))
693 return -EFAULT;
694 }
695
696 return status;
697 }
698
699 static int nvme_ioctl(struct block_device *bdev, fmode_t mode,
700 unsigned int cmd, unsigned long arg)
701 {
702 struct nvme_ns *ns = bdev->bd_disk->private_data;
703
704 switch (cmd) {
705 case NVME_IOCTL_ID:
706 force_successful_syscall_return();
707 return ns->ns_id;
708 case NVME_IOCTL_ADMIN_CMD:
709 return nvme_user_cmd(ns->ctrl, NULL, (void __user *)arg);
710 case NVME_IOCTL_IO_CMD:
711 return nvme_user_cmd(ns->ctrl, ns, (void __user *)arg);
712 case NVME_IOCTL_SUBMIT_IO:
713 return nvme_submit_io(ns, (void __user *)arg);
714 #ifdef CONFIG_BLK_DEV_NVME_SCSI
715 case SG_GET_VERSION_NUM:
716 return nvme_sg_get_version_num((void __user *)arg);
717 case SG_IO:
718 return nvme_sg_io(ns, (void __user *)arg);
719 #endif
720 default:
721 return -ENOTTY;
722 }
723 }
724
725 #ifdef CONFIG_COMPAT
726 static int nvme_compat_ioctl(struct block_device *bdev, fmode_t mode,
727 unsigned int cmd, unsigned long arg)
728 {
729 switch (cmd) {
730 case SG_IO:
731 return -ENOIOCTLCMD;
732 }
733 return nvme_ioctl(bdev, mode, cmd, arg);
734 }
735 #else
736 #define nvme_compat_ioctl NULL
737 #endif
738
739 static int nvme_open(struct block_device *bdev, fmode_t mode)
740 {
741 return nvme_get_ns_from_disk(bdev->bd_disk) ? 0 : -ENXIO;
742 }
743
744 static void nvme_release(struct gendisk *disk, fmode_t mode)
745 {
746 struct nvme_ns *ns = disk->private_data;
747
748 module_put(ns->ctrl->ops->module);
749 nvme_put_ns(ns);
750 }
751
752 static int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
753 {
754 /* some standard values */
755 geo->heads = 1 << 6;
756 geo->sectors = 1 << 5;
757 geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
758 return 0;
759 }
760
761 #ifdef CONFIG_BLK_DEV_INTEGRITY
762 static void nvme_init_integrity(struct nvme_ns *ns)
763 {
764 struct blk_integrity integrity;
765
766 switch (ns->pi_type) {
767 case NVME_NS_DPS_PI_TYPE3:
768 integrity.profile = &t10_pi_type3_crc;
769 integrity.tag_size = sizeof(u16) + sizeof(u32);
770 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
771 break;
772 case NVME_NS_DPS_PI_TYPE1:
773 case NVME_NS_DPS_PI_TYPE2:
774 integrity.profile = &t10_pi_type1_crc;
775 integrity.tag_size = sizeof(u16);
776 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
777 break;
778 default:
779 integrity.profile = NULL;
780 break;
781 }
782 integrity.tuple_size = ns->ms;
783 blk_integrity_register(ns->disk, &integrity);
784 blk_queue_max_integrity_segments(ns->queue, 1);
785 }
786 #else
787 static void nvme_init_integrity(struct nvme_ns *ns)
788 {
789 }
790 #endif /* CONFIG_BLK_DEV_INTEGRITY */
791
792 static void nvme_config_discard(struct nvme_ns *ns)
793 {
794 struct nvme_ctrl *ctrl = ns->ctrl;
795 u32 logical_block_size = queue_logical_block_size(ns->queue);
796
797 if (ctrl->quirks & NVME_QUIRK_DISCARD_ZEROES)
798 ns->queue->limits.discard_zeroes_data = 1;
799 else
800 ns->queue->limits.discard_zeroes_data = 0;
801
802 ns->queue->limits.discard_alignment = logical_block_size;
803 ns->queue->limits.discard_granularity = logical_block_size;
804 blk_queue_max_discard_sectors(ns->queue, UINT_MAX);
805 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, ns->queue);
806 }
807
808 static int nvme_revalidate_disk(struct gendisk *disk)
809 {
810 struct nvme_ns *ns = disk->private_data;
811 struct nvme_id_ns *id;
812 u8 lbaf, pi_type;
813 u16 old_ms;
814 unsigned short bs;
815
816 if (test_bit(NVME_NS_DEAD, &ns->flags)) {
817 set_capacity(disk, 0);
818 return -ENODEV;
819 }
820 if (nvme_identify_ns(ns->ctrl, ns->ns_id, &id)) {
821 dev_warn(disk_to_dev(ns->disk), "%s: Identify failure\n",
822 __func__);
823 return -ENODEV;
824 }
825 if (id->ncap == 0) {
826 kfree(id);
827 return -ENODEV;
828 }
829
830 if (nvme_nvm_ns_supported(ns, id) && ns->type != NVME_NS_LIGHTNVM) {
831 if (nvme_nvm_register(ns->queue, disk->disk_name)) {
832 dev_warn(disk_to_dev(ns->disk),
833 "%s: LightNVM init failure\n", __func__);
834 kfree(id);
835 return -ENODEV;
836 }
837 ns->type = NVME_NS_LIGHTNVM;
838 }
839
840 if (ns->ctrl->vs >= NVME_VS(1, 1))
841 memcpy(ns->eui, id->eui64, sizeof(ns->eui));
842 if (ns->ctrl->vs >= NVME_VS(1, 2))
843 memcpy(ns->uuid, id->nguid, sizeof(ns->uuid));
844
845 old_ms = ns->ms;
846 lbaf = id->flbas & NVME_NS_FLBAS_LBA_MASK;
847 ns->lba_shift = id->lbaf[lbaf].ds;
848 ns->ms = le16_to_cpu(id->lbaf[lbaf].ms);
849 ns->ext = ns->ms && (id->flbas & NVME_NS_FLBAS_META_EXT);
850
851 /*
852 * If identify namespace failed, use default 512 byte block size so
853 * block layer can use before failing read/write for 0 capacity.
854 */
855 if (ns->lba_shift == 0)
856 ns->lba_shift = 9;
857 bs = 1 << ns->lba_shift;
858 /* XXX: PI implementation requires metadata equal t10 pi tuple size */
859 pi_type = ns->ms == sizeof(struct t10_pi_tuple) ?
860 id->dps & NVME_NS_DPS_PI_MASK : 0;
861
862 blk_mq_freeze_queue(disk->queue);
863 if (blk_get_integrity(disk) && (ns->pi_type != pi_type ||
864 ns->ms != old_ms ||
865 bs != queue_logical_block_size(disk->queue) ||
866 (ns->ms && ns->ext)))
867 blk_integrity_unregister(disk);
868
869 ns->pi_type = pi_type;
870 blk_queue_logical_block_size(ns->queue, bs);
871
872 if (ns->ms && !blk_get_integrity(disk) && !ns->ext)
873 nvme_init_integrity(ns);
874 if (ns->ms && !(ns->ms == 8 && ns->pi_type) && !blk_get_integrity(disk))
875 set_capacity(disk, 0);
876 else
877 set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
878
879 if (ns->ctrl->oncs & NVME_CTRL_ONCS_DSM)
880 nvme_config_discard(ns);
881 blk_mq_unfreeze_queue(disk->queue);
882
883 kfree(id);
884 return 0;
885 }
886
887 static char nvme_pr_type(enum pr_type type)
888 {
889 switch (type) {
890 case PR_WRITE_EXCLUSIVE:
891 return 1;
892 case PR_EXCLUSIVE_ACCESS:
893 return 2;
894 case PR_WRITE_EXCLUSIVE_REG_ONLY:
895 return 3;
896 case PR_EXCLUSIVE_ACCESS_REG_ONLY:
897 return 4;
898 case PR_WRITE_EXCLUSIVE_ALL_REGS:
899 return 5;
900 case PR_EXCLUSIVE_ACCESS_ALL_REGS:
901 return 6;
902 default:
903 return 0;
904 }
905 };
906
907 static int nvme_pr_command(struct block_device *bdev, u32 cdw10,
908 u64 key, u64 sa_key, u8 op)
909 {
910 struct nvme_ns *ns = bdev->bd_disk->private_data;
911 struct nvme_command c;
912 u8 data[16] = { 0, };
913
914 put_unaligned_le64(key, &data[0]);
915 put_unaligned_le64(sa_key, &data[8]);
916
917 memset(&c, 0, sizeof(c));
918 c.common.opcode = op;
919 c.common.nsid = cpu_to_le32(ns->ns_id);
920 c.common.cdw10[0] = cpu_to_le32(cdw10);
921
922 return nvme_submit_sync_cmd(ns->queue, &c, data, 16);
923 }
924
925 static int nvme_pr_register(struct block_device *bdev, u64 old,
926 u64 new, unsigned flags)
927 {
928 u32 cdw10;
929
930 if (flags & ~PR_FL_IGNORE_KEY)
931 return -EOPNOTSUPP;
932
933 cdw10 = old ? 2 : 0;
934 cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0;
935 cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */
936 return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register);
937 }
938
939 static int nvme_pr_reserve(struct block_device *bdev, u64 key,
940 enum pr_type type, unsigned flags)
941 {
942 u32 cdw10;
943
944 if (flags & ~PR_FL_IGNORE_KEY)
945 return -EOPNOTSUPP;
946
947 cdw10 = nvme_pr_type(type) << 8;
948 cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0);
949 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire);
950 }
951
952 static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new,
953 enum pr_type type, bool abort)
954 {
955 u32 cdw10 = nvme_pr_type(type) << 8 | abort ? 2 : 1;
956 return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire);
957 }
958
959 static int nvme_pr_clear(struct block_device *bdev, u64 key)
960 {
961 u32 cdw10 = 1 | (key ? 1 << 3 : 0);
962 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register);
963 }
964
965 static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
966 {
967 u32 cdw10 = nvme_pr_type(type) << 8 | key ? 1 << 3 : 0;
968 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
969 }
970
971 static const struct pr_ops nvme_pr_ops = {
972 .pr_register = nvme_pr_register,
973 .pr_reserve = nvme_pr_reserve,
974 .pr_release = nvme_pr_release,
975 .pr_preempt = nvme_pr_preempt,
976 .pr_clear = nvme_pr_clear,
977 };
978
979 static const struct block_device_operations nvme_fops = {
980 .owner = THIS_MODULE,
981 .ioctl = nvme_ioctl,
982 .compat_ioctl = nvme_compat_ioctl,
983 .open = nvme_open,
984 .release = nvme_release,
985 .getgeo = nvme_getgeo,
986 .revalidate_disk= nvme_revalidate_disk,
987 .pr_ops = &nvme_pr_ops,
988 };
989
990 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled)
991 {
992 unsigned long timeout =
993 ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
994 u32 csts, bit = enabled ? NVME_CSTS_RDY : 0;
995 int ret;
996
997 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
998 if ((csts & NVME_CSTS_RDY) == bit)
999 break;
1000
1001 msleep(100);
1002 if (fatal_signal_pending(current))
1003 return -EINTR;
1004 if (time_after(jiffies, timeout)) {
1005 dev_err(ctrl->device,
1006 "Device not ready; aborting %s\n", enabled ?
1007 "initialisation" : "reset");
1008 return -ENODEV;
1009 }
1010 }
1011
1012 return ret;
1013 }
1014
1015 /*
1016 * If the device has been passed off to us in an enabled state, just clear
1017 * the enabled bit. The spec says we should set the 'shutdown notification
1018 * bits', but doing so may cause the device to complete commands to the
1019 * admin queue ... and we don't know what memory that might be pointing at!
1020 */
1021 int nvme_disable_ctrl(struct nvme_ctrl *ctrl, u64 cap)
1022 {
1023 int ret;
1024
1025 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
1026 ctrl->ctrl_config &= ~NVME_CC_ENABLE;
1027
1028 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
1029 if (ret)
1030 return ret;
1031 return nvme_wait_ready(ctrl, cap, false);
1032 }
1033 EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
1034
1035 int nvme_enable_ctrl(struct nvme_ctrl *ctrl, u64 cap)
1036 {
1037 /*
1038 * Default to a 4K page size, with the intention to update this
1039 * path in the future to accomodate architectures with differing
1040 * kernel and IO page sizes.
1041 */
1042 unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12, page_shift = 12;
1043 int ret;
1044
1045 if (page_shift < dev_page_min) {
1046 dev_err(ctrl->device,
1047 "Minimum device page size %u too large for host (%u)\n",
1048 1 << dev_page_min, 1 << page_shift);
1049 return -ENODEV;
1050 }
1051
1052 ctrl->page_size = 1 << page_shift;
1053
1054 ctrl->ctrl_config = NVME_CC_CSS_NVM;
1055 ctrl->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT;
1056 ctrl->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
1057 ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
1058 ctrl->ctrl_config |= NVME_CC_ENABLE;
1059
1060 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
1061 if (ret)
1062 return ret;
1063 return nvme_wait_ready(ctrl, cap, true);
1064 }
1065 EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
1066
1067 int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl)
1068 {
1069 unsigned long timeout = SHUTDOWN_TIMEOUT + jiffies;
1070 u32 csts;
1071 int ret;
1072
1073 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
1074 ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
1075
1076 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
1077 if (ret)
1078 return ret;
1079
1080 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
1081 if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT)
1082 break;
1083
1084 msleep(100);
1085 if (fatal_signal_pending(current))
1086 return -EINTR;
1087 if (time_after(jiffies, timeout)) {
1088 dev_err(ctrl->device,
1089 "Device shutdown incomplete; abort shutdown\n");
1090 return -ENODEV;
1091 }
1092 }
1093
1094 return ret;
1095 }
1096 EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl);
1097
1098 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl,
1099 struct request_queue *q)
1100 {
1101 bool vwc = false;
1102
1103 if (ctrl->max_hw_sectors) {
1104 u32 max_segments =
1105 (ctrl->max_hw_sectors / (ctrl->page_size >> 9)) + 1;
1106
1107 blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors);
1108 blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX));
1109 }
1110 if (ctrl->stripe_size)
1111 blk_queue_chunk_sectors(q, ctrl->stripe_size >> 9);
1112 blk_queue_virt_boundary(q, ctrl->page_size - 1);
1113 if (ctrl->vwc & NVME_CTRL_VWC_PRESENT)
1114 vwc = true;
1115 blk_queue_write_cache(q, vwc, vwc);
1116 }
1117
1118 /*
1119 * Initialize the cached copies of the Identify data and various controller
1120 * register in our nvme_ctrl structure. This should be called as soon as
1121 * the admin queue is fully up and running.
1122 */
1123 int nvme_init_identify(struct nvme_ctrl *ctrl)
1124 {
1125 struct nvme_id_ctrl *id;
1126 u64 cap;
1127 int ret, page_shift;
1128 u32 max_hw_sectors;
1129
1130 ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
1131 if (ret) {
1132 dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
1133 return ret;
1134 }
1135
1136 ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &cap);
1137 if (ret) {
1138 dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
1139 return ret;
1140 }
1141 page_shift = NVME_CAP_MPSMIN(cap) + 12;
1142
1143 if (ctrl->vs >= NVME_VS(1, 1))
1144 ctrl->subsystem = NVME_CAP_NSSRC(cap);
1145
1146 ret = nvme_identify_ctrl(ctrl, &id);
1147 if (ret) {
1148 dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
1149 return -EIO;
1150 }
1151
1152 ctrl->vid = le16_to_cpu(id->vid);
1153 ctrl->oncs = le16_to_cpup(&id->oncs);
1154 atomic_set(&ctrl->abort_limit, id->acl + 1);
1155 ctrl->vwc = id->vwc;
1156 ctrl->cntlid = le16_to_cpup(&id->cntlid);
1157 memcpy(ctrl->serial, id->sn, sizeof(id->sn));
1158 memcpy(ctrl->model, id->mn, sizeof(id->mn));
1159 memcpy(ctrl->firmware_rev, id->fr, sizeof(id->fr));
1160 if (id->mdts)
1161 max_hw_sectors = 1 << (id->mdts + page_shift - 9);
1162 else
1163 max_hw_sectors = UINT_MAX;
1164 ctrl->max_hw_sectors =
1165 min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
1166
1167 if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) && id->vs[3]) {
1168 unsigned int max_hw_sectors;
1169
1170 ctrl->stripe_size = 1 << (id->vs[3] + page_shift);
1171 max_hw_sectors = ctrl->stripe_size >> (page_shift - 9);
1172 if (ctrl->max_hw_sectors) {
1173 ctrl->max_hw_sectors = min(max_hw_sectors,
1174 ctrl->max_hw_sectors);
1175 } else {
1176 ctrl->max_hw_sectors = max_hw_sectors;
1177 }
1178 }
1179
1180 nvme_set_queue_limits(ctrl, ctrl->admin_q);
1181
1182 kfree(id);
1183 return 0;
1184 }
1185 EXPORT_SYMBOL_GPL(nvme_init_identify);
1186
1187 static int nvme_dev_open(struct inode *inode, struct file *file)
1188 {
1189 struct nvme_ctrl *ctrl;
1190 int instance = iminor(inode);
1191 int ret = -ENODEV;
1192
1193 spin_lock(&dev_list_lock);
1194 list_for_each_entry(ctrl, &nvme_ctrl_list, node) {
1195 if (ctrl->instance != instance)
1196 continue;
1197
1198 if (!ctrl->admin_q) {
1199 ret = -EWOULDBLOCK;
1200 break;
1201 }
1202 if (!kref_get_unless_zero(&ctrl->kref))
1203 break;
1204 file->private_data = ctrl;
1205 ret = 0;
1206 break;
1207 }
1208 spin_unlock(&dev_list_lock);
1209
1210 return ret;
1211 }
1212
1213 static int nvme_dev_release(struct inode *inode, struct file *file)
1214 {
1215 nvme_put_ctrl(file->private_data);
1216 return 0;
1217 }
1218
1219 static int nvme_dev_user_cmd(struct nvme_ctrl *ctrl, void __user *argp)
1220 {
1221 struct nvme_ns *ns;
1222 int ret;
1223
1224 mutex_lock(&ctrl->namespaces_mutex);
1225 if (list_empty(&ctrl->namespaces)) {
1226 ret = -ENOTTY;
1227 goto out_unlock;
1228 }
1229
1230 ns = list_first_entry(&ctrl->namespaces, struct nvme_ns, list);
1231 if (ns != list_last_entry(&ctrl->namespaces, struct nvme_ns, list)) {
1232 dev_warn(ctrl->device,
1233 "NVME_IOCTL_IO_CMD not supported when multiple namespaces present!\n");
1234 ret = -EINVAL;
1235 goto out_unlock;
1236 }
1237
1238 dev_warn(ctrl->device,
1239 "using deprecated NVME_IOCTL_IO_CMD ioctl on the char device!\n");
1240 kref_get(&ns->kref);
1241 mutex_unlock(&ctrl->namespaces_mutex);
1242
1243 ret = nvme_user_cmd(ctrl, ns, argp);
1244 nvme_put_ns(ns);
1245 return ret;
1246
1247 out_unlock:
1248 mutex_unlock(&ctrl->namespaces_mutex);
1249 return ret;
1250 }
1251
1252 static long nvme_dev_ioctl(struct file *file, unsigned int cmd,
1253 unsigned long arg)
1254 {
1255 struct nvme_ctrl *ctrl = file->private_data;
1256 void __user *argp = (void __user *)arg;
1257
1258 switch (cmd) {
1259 case NVME_IOCTL_ADMIN_CMD:
1260 return nvme_user_cmd(ctrl, NULL, argp);
1261 case NVME_IOCTL_IO_CMD:
1262 return nvme_dev_user_cmd(ctrl, argp);
1263 case NVME_IOCTL_RESET:
1264 dev_warn(ctrl->device, "resetting controller\n");
1265 return ctrl->ops->reset_ctrl(ctrl);
1266 case NVME_IOCTL_SUBSYS_RESET:
1267 return nvme_reset_subsystem(ctrl);
1268 case NVME_IOCTL_RESCAN:
1269 nvme_queue_scan(ctrl);
1270 return 0;
1271 default:
1272 return -ENOTTY;
1273 }
1274 }
1275
1276 static const struct file_operations nvme_dev_fops = {
1277 .owner = THIS_MODULE,
1278 .open = nvme_dev_open,
1279 .release = nvme_dev_release,
1280 .unlocked_ioctl = nvme_dev_ioctl,
1281 .compat_ioctl = nvme_dev_ioctl,
1282 };
1283
1284 static ssize_t nvme_sysfs_reset(struct device *dev,
1285 struct device_attribute *attr, const char *buf,
1286 size_t count)
1287 {
1288 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1289 int ret;
1290
1291 ret = ctrl->ops->reset_ctrl(ctrl);
1292 if (ret < 0)
1293 return ret;
1294 return count;
1295 }
1296 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
1297
1298 static ssize_t nvme_sysfs_rescan(struct device *dev,
1299 struct device_attribute *attr, const char *buf,
1300 size_t count)
1301 {
1302 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1303
1304 nvme_queue_scan(ctrl);
1305 return count;
1306 }
1307 static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan);
1308
1309 static ssize_t wwid_show(struct device *dev, struct device_attribute *attr,
1310 char *buf)
1311 {
1312 struct nvme_ns *ns = dev_to_disk(dev)->private_data;
1313 struct nvme_ctrl *ctrl = ns->ctrl;
1314 int serial_len = sizeof(ctrl->serial);
1315 int model_len = sizeof(ctrl->model);
1316
1317 if (memchr_inv(ns->uuid, 0, sizeof(ns->uuid)))
1318 return sprintf(buf, "eui.%16phN\n", ns->uuid);
1319
1320 if (memchr_inv(ns->eui, 0, sizeof(ns->eui)))
1321 return sprintf(buf, "eui.%8phN\n", ns->eui);
1322
1323 while (ctrl->serial[serial_len - 1] == ' ')
1324 serial_len--;
1325 while (ctrl->model[model_len - 1] == ' ')
1326 model_len--;
1327
1328 return sprintf(buf, "nvme.%04x-%*phN-%*phN-%08x\n", ctrl->vid,
1329 serial_len, ctrl->serial, model_len, ctrl->model, ns->ns_id);
1330 }
1331 static DEVICE_ATTR(wwid, S_IRUGO, wwid_show, NULL);
1332
1333 static ssize_t uuid_show(struct device *dev, struct device_attribute *attr,
1334 char *buf)
1335 {
1336 struct nvme_ns *ns = dev_to_disk(dev)->private_data;
1337 return sprintf(buf, "%pU\n", ns->uuid);
1338 }
1339 static DEVICE_ATTR(uuid, S_IRUGO, uuid_show, NULL);
1340
1341 static ssize_t eui_show(struct device *dev, struct device_attribute *attr,
1342 char *buf)
1343 {
1344 struct nvme_ns *ns = dev_to_disk(dev)->private_data;
1345 return sprintf(buf, "%8phd\n", ns->eui);
1346 }
1347 static DEVICE_ATTR(eui, S_IRUGO, eui_show, NULL);
1348
1349 static ssize_t nsid_show(struct device *dev, struct device_attribute *attr,
1350 char *buf)
1351 {
1352 struct nvme_ns *ns = dev_to_disk(dev)->private_data;
1353 return sprintf(buf, "%d\n", ns->ns_id);
1354 }
1355 static DEVICE_ATTR(nsid, S_IRUGO, nsid_show, NULL);
1356
1357 static struct attribute *nvme_ns_attrs[] = {
1358 &dev_attr_wwid.attr,
1359 &dev_attr_uuid.attr,
1360 &dev_attr_eui.attr,
1361 &dev_attr_nsid.attr,
1362 NULL,
1363 };
1364
1365 static umode_t nvme_ns_attrs_are_visible(struct kobject *kobj,
1366 struct attribute *a, int n)
1367 {
1368 struct device *dev = container_of(kobj, struct device, kobj);
1369 struct nvme_ns *ns = dev_to_disk(dev)->private_data;
1370
1371 if (a == &dev_attr_uuid.attr) {
1372 if (!memchr_inv(ns->uuid, 0, sizeof(ns->uuid)))
1373 return 0;
1374 }
1375 if (a == &dev_attr_eui.attr) {
1376 if (!memchr_inv(ns->eui, 0, sizeof(ns->eui)))
1377 return 0;
1378 }
1379 return a->mode;
1380 }
1381
1382 static const struct attribute_group nvme_ns_attr_group = {
1383 .attrs = nvme_ns_attrs,
1384 .is_visible = nvme_ns_attrs_are_visible,
1385 };
1386
1387 #define nvme_show_str_function(field) \
1388 static ssize_t field##_show(struct device *dev, \
1389 struct device_attribute *attr, char *buf) \
1390 { \
1391 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \
1392 return sprintf(buf, "%.*s\n", (int)sizeof(ctrl->field), ctrl->field); \
1393 } \
1394 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
1395
1396 #define nvme_show_int_function(field) \
1397 static ssize_t field##_show(struct device *dev, \
1398 struct device_attribute *attr, char *buf) \
1399 { \
1400 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \
1401 return sprintf(buf, "%d\n", ctrl->field); \
1402 } \
1403 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
1404
1405 nvme_show_str_function(model);
1406 nvme_show_str_function(serial);
1407 nvme_show_str_function(firmware_rev);
1408 nvme_show_int_function(cntlid);
1409
1410 static ssize_t nvme_sysfs_delete(struct device *dev,
1411 struct device_attribute *attr, const char *buf,
1412 size_t count)
1413 {
1414 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1415
1416 if (device_remove_file_self(dev, attr))
1417 ctrl->ops->delete_ctrl(ctrl);
1418 return count;
1419 }
1420 static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete);
1421
1422 static ssize_t nvme_sysfs_show_transport(struct device *dev,
1423 struct device_attribute *attr,
1424 char *buf)
1425 {
1426 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1427
1428 return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->ops->name);
1429 }
1430 static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL);
1431
1432 static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev,
1433 struct device_attribute *attr,
1434 char *buf)
1435 {
1436 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1437
1438 return snprintf(buf, PAGE_SIZE, "%s\n",
1439 ctrl->ops->get_subsysnqn(ctrl));
1440 }
1441 static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL);
1442
1443 static ssize_t nvme_sysfs_show_address(struct device *dev,
1444 struct device_attribute *attr,
1445 char *buf)
1446 {
1447 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1448
1449 return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE);
1450 }
1451 static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL);
1452
1453 static struct attribute *nvme_dev_attrs[] = {
1454 &dev_attr_reset_controller.attr,
1455 &dev_attr_rescan_controller.attr,
1456 &dev_attr_model.attr,
1457 &dev_attr_serial.attr,
1458 &dev_attr_firmware_rev.attr,
1459 &dev_attr_cntlid.attr,
1460 &dev_attr_delete_controller.attr,
1461 &dev_attr_transport.attr,
1462 &dev_attr_subsysnqn.attr,
1463 &dev_attr_address.attr,
1464 NULL
1465 };
1466
1467 #define CHECK_ATTR(ctrl, a, name) \
1468 if ((a) == &dev_attr_##name.attr && \
1469 !(ctrl)->ops->get_##name) \
1470 return 0
1471
1472 static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj,
1473 struct attribute *a, int n)
1474 {
1475 struct device *dev = container_of(kobj, struct device, kobj);
1476 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1477
1478 if (a == &dev_attr_delete_controller.attr) {
1479 if (!ctrl->ops->delete_ctrl)
1480 return 0;
1481 }
1482
1483 CHECK_ATTR(ctrl, a, subsysnqn);
1484 CHECK_ATTR(ctrl, a, address);
1485
1486 return a->mode;
1487 }
1488
1489 static struct attribute_group nvme_dev_attrs_group = {
1490 .attrs = nvme_dev_attrs,
1491 .is_visible = nvme_dev_attrs_are_visible,
1492 };
1493
1494 static const struct attribute_group *nvme_dev_attr_groups[] = {
1495 &nvme_dev_attrs_group,
1496 NULL,
1497 };
1498
1499 static int ns_cmp(void *priv, struct list_head *a, struct list_head *b)
1500 {
1501 struct nvme_ns *nsa = container_of(a, struct nvme_ns, list);
1502 struct nvme_ns *nsb = container_of(b, struct nvme_ns, list);
1503
1504 return nsa->ns_id - nsb->ns_id;
1505 }
1506
1507 static struct nvme_ns *nvme_find_ns(struct nvme_ctrl *ctrl, unsigned nsid)
1508 {
1509 struct nvme_ns *ns;
1510
1511 lockdep_assert_held(&ctrl->namespaces_mutex);
1512
1513 list_for_each_entry(ns, &ctrl->namespaces, list) {
1514 if (ns->ns_id == nsid)
1515 return ns;
1516 if (ns->ns_id > nsid)
1517 break;
1518 }
1519 return NULL;
1520 }
1521
1522 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid)
1523 {
1524 struct nvme_ns *ns;
1525 struct gendisk *disk;
1526 int node = dev_to_node(ctrl->dev);
1527
1528 lockdep_assert_held(&ctrl->namespaces_mutex);
1529
1530 ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
1531 if (!ns)
1532 return;
1533
1534 ns->instance = ida_simple_get(&ctrl->ns_ida, 1, 0, GFP_KERNEL);
1535 if (ns->instance < 0)
1536 goto out_free_ns;
1537
1538 ns->queue = blk_mq_init_queue(ctrl->tagset);
1539 if (IS_ERR(ns->queue))
1540 goto out_release_instance;
1541 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, ns->queue);
1542 ns->queue->queuedata = ns;
1543 ns->ctrl = ctrl;
1544
1545 disk = alloc_disk_node(0, node);
1546 if (!disk)
1547 goto out_free_queue;
1548
1549 kref_init(&ns->kref);
1550 ns->ns_id = nsid;
1551 ns->disk = disk;
1552 ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */
1553
1554
1555 blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
1556 nvme_set_queue_limits(ctrl, ns->queue);
1557
1558 disk->major = nvme_major;
1559 disk->first_minor = 0;
1560 disk->fops = &nvme_fops;
1561 disk->private_data = ns;
1562 disk->queue = ns->queue;
1563 disk->driverfs_dev = ctrl->device;
1564 disk->flags = GENHD_FL_EXT_DEVT;
1565 sprintf(disk->disk_name, "nvme%dn%d", ctrl->instance, ns->instance);
1566
1567 if (nvme_revalidate_disk(ns->disk))
1568 goto out_free_disk;
1569
1570 list_add_tail_rcu(&ns->list, &ctrl->namespaces);
1571 kref_get(&ctrl->kref);
1572 if (ns->type == NVME_NS_LIGHTNVM)
1573 return;
1574
1575 add_disk(ns->disk);
1576 if (sysfs_create_group(&disk_to_dev(ns->disk)->kobj,
1577 &nvme_ns_attr_group))
1578 pr_warn("%s: failed to create sysfs group for identification\n",
1579 ns->disk->disk_name);
1580 return;
1581 out_free_disk:
1582 kfree(disk);
1583 out_free_queue:
1584 blk_cleanup_queue(ns->queue);
1585 out_release_instance:
1586 ida_simple_remove(&ctrl->ns_ida, ns->instance);
1587 out_free_ns:
1588 kfree(ns);
1589 }
1590
1591 static void nvme_ns_remove(struct nvme_ns *ns)
1592 {
1593 lockdep_assert_held(&ns->ctrl->namespaces_mutex);
1594
1595 if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
1596 return;
1597
1598 if (ns->disk->flags & GENHD_FL_UP) {
1599 if (blk_get_integrity(ns->disk))
1600 blk_integrity_unregister(ns->disk);
1601 sysfs_remove_group(&disk_to_dev(ns->disk)->kobj,
1602 &nvme_ns_attr_group);
1603 del_gendisk(ns->disk);
1604 blk_mq_abort_requeue_list(ns->queue);
1605 blk_cleanup_queue(ns->queue);
1606 }
1607 list_del_init(&ns->list);
1608 synchronize_rcu();
1609 nvme_put_ns(ns);
1610 }
1611
1612 static void nvme_validate_ns(struct nvme_ctrl *ctrl, unsigned nsid)
1613 {
1614 struct nvme_ns *ns;
1615
1616 ns = nvme_find_ns(ctrl, nsid);
1617 if (ns) {
1618 if (revalidate_disk(ns->disk))
1619 nvme_ns_remove(ns);
1620 } else
1621 nvme_alloc_ns(ctrl, nsid);
1622 }
1623
1624 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
1625 unsigned nsid)
1626 {
1627 struct nvme_ns *ns, *next;
1628
1629 list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
1630 if (ns->ns_id > nsid)
1631 nvme_ns_remove(ns);
1632 }
1633 }
1634
1635 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl, unsigned nn)
1636 {
1637 struct nvme_ns *ns;
1638 __le32 *ns_list;
1639 unsigned i, j, nsid, prev = 0, num_lists = DIV_ROUND_UP(nn, 1024);
1640 int ret = 0;
1641
1642 ns_list = kzalloc(0x1000, GFP_KERNEL);
1643 if (!ns_list)
1644 return -ENOMEM;
1645
1646 for (i = 0; i < num_lists; i++) {
1647 ret = nvme_identify_ns_list(ctrl, prev, ns_list);
1648 if (ret)
1649 goto free;
1650
1651 for (j = 0; j < min(nn, 1024U); j++) {
1652 nsid = le32_to_cpu(ns_list[j]);
1653 if (!nsid)
1654 goto out;
1655
1656 nvme_validate_ns(ctrl, nsid);
1657
1658 while (++prev < nsid) {
1659 ns = nvme_find_ns(ctrl, prev);
1660 if (ns)
1661 nvme_ns_remove(ns);
1662 }
1663 }
1664 nn -= j;
1665 }
1666 out:
1667 nvme_remove_invalid_namespaces(ctrl, prev);
1668 free:
1669 kfree(ns_list);
1670 return ret;
1671 }
1672
1673 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl, unsigned nn)
1674 {
1675 unsigned i;
1676
1677 lockdep_assert_held(&ctrl->namespaces_mutex);
1678
1679 for (i = 1; i <= nn; i++)
1680 nvme_validate_ns(ctrl, i);
1681
1682 nvme_remove_invalid_namespaces(ctrl, nn);
1683 }
1684
1685 static void nvme_scan_work(struct work_struct *work)
1686 {
1687 struct nvme_ctrl *ctrl =
1688 container_of(work, struct nvme_ctrl, scan_work);
1689 struct nvme_id_ctrl *id;
1690 unsigned nn;
1691
1692 if (ctrl->state != NVME_CTRL_LIVE)
1693 return;
1694
1695 if (nvme_identify_ctrl(ctrl, &id))
1696 return;
1697
1698 mutex_lock(&ctrl->namespaces_mutex);
1699 nn = le32_to_cpu(id->nn);
1700 if (ctrl->vs >= NVME_VS(1, 1) &&
1701 !(ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)) {
1702 if (!nvme_scan_ns_list(ctrl, nn))
1703 goto done;
1704 }
1705 nvme_scan_ns_sequential(ctrl, nn);
1706 done:
1707 list_sort(NULL, &ctrl->namespaces, ns_cmp);
1708 mutex_unlock(&ctrl->namespaces_mutex);
1709 kfree(id);
1710
1711 if (ctrl->ops->post_scan)
1712 ctrl->ops->post_scan(ctrl);
1713 }
1714
1715 void nvme_queue_scan(struct nvme_ctrl *ctrl)
1716 {
1717 /*
1718 * Do not queue new scan work when a controller is reset during
1719 * removal.
1720 */
1721 if (ctrl->state == NVME_CTRL_LIVE)
1722 schedule_work(&ctrl->scan_work);
1723 }
1724 EXPORT_SYMBOL_GPL(nvme_queue_scan);
1725
1726 void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
1727 {
1728 struct nvme_ns *ns, *next;
1729
1730 /*
1731 * The dead states indicates the controller was not gracefully
1732 * disconnected. In that case, we won't be able to flush any data while
1733 * removing the namespaces' disks; fail all the queues now to avoid
1734 * potentially having to clean up the failed sync later.
1735 */
1736 if (ctrl->state == NVME_CTRL_DEAD)
1737 nvme_kill_queues(ctrl);
1738
1739 mutex_lock(&ctrl->namespaces_mutex);
1740 list_for_each_entry_safe(ns, next, &ctrl->namespaces, list)
1741 nvme_ns_remove(ns);
1742 mutex_unlock(&ctrl->namespaces_mutex);
1743 }
1744 EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
1745
1746 static void nvme_async_event_work(struct work_struct *work)
1747 {
1748 struct nvme_ctrl *ctrl =
1749 container_of(work, struct nvme_ctrl, async_event_work);
1750
1751 spin_lock_irq(&ctrl->lock);
1752 while (ctrl->event_limit > 0) {
1753 int aer_idx = --ctrl->event_limit;
1754
1755 spin_unlock_irq(&ctrl->lock);
1756 ctrl->ops->submit_async_event(ctrl, aer_idx);
1757 spin_lock_irq(&ctrl->lock);
1758 }
1759 spin_unlock_irq(&ctrl->lock);
1760 }
1761
1762 void nvme_complete_async_event(struct nvme_ctrl *ctrl,
1763 struct nvme_completion *cqe)
1764 {
1765 u16 status = le16_to_cpu(cqe->status) >> 1;
1766 u32 result = le32_to_cpu(cqe->result);
1767
1768 if (status == NVME_SC_SUCCESS || status == NVME_SC_ABORT_REQ) {
1769 ++ctrl->event_limit;
1770 schedule_work(&ctrl->async_event_work);
1771 }
1772
1773 if (status != NVME_SC_SUCCESS)
1774 return;
1775
1776 switch (result & 0xff07) {
1777 case NVME_AER_NOTICE_NS_CHANGED:
1778 dev_info(ctrl->device, "rescanning\n");
1779 nvme_queue_scan(ctrl);
1780 break;
1781 default:
1782 dev_warn(ctrl->device, "async event result %08x\n", result);
1783 }
1784 }
1785 EXPORT_SYMBOL_GPL(nvme_complete_async_event);
1786
1787 void nvme_queue_async_events(struct nvme_ctrl *ctrl)
1788 {
1789 ctrl->event_limit = NVME_NR_AERS;
1790 schedule_work(&ctrl->async_event_work);
1791 }
1792 EXPORT_SYMBOL_GPL(nvme_queue_async_events);
1793
1794 static DEFINE_IDA(nvme_instance_ida);
1795
1796 static int nvme_set_instance(struct nvme_ctrl *ctrl)
1797 {
1798 int instance, error;
1799
1800 do {
1801 if (!ida_pre_get(&nvme_instance_ida, GFP_KERNEL))
1802 return -ENODEV;
1803
1804 spin_lock(&dev_list_lock);
1805 error = ida_get_new(&nvme_instance_ida, &instance);
1806 spin_unlock(&dev_list_lock);
1807 } while (error == -EAGAIN);
1808
1809 if (error)
1810 return -ENODEV;
1811
1812 ctrl->instance = instance;
1813 return 0;
1814 }
1815
1816 static void nvme_release_instance(struct nvme_ctrl *ctrl)
1817 {
1818 spin_lock(&dev_list_lock);
1819 ida_remove(&nvme_instance_ida, ctrl->instance);
1820 spin_unlock(&dev_list_lock);
1821 }
1822
1823 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
1824 {
1825 flush_work(&ctrl->async_event_work);
1826 flush_work(&ctrl->scan_work);
1827 nvme_remove_namespaces(ctrl);
1828
1829 device_destroy(nvme_class, MKDEV(nvme_char_major, ctrl->instance));
1830
1831 spin_lock(&dev_list_lock);
1832 list_del(&ctrl->node);
1833 spin_unlock(&dev_list_lock);
1834 }
1835 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
1836
1837 static void nvme_free_ctrl(struct kref *kref)
1838 {
1839 struct nvme_ctrl *ctrl = container_of(kref, struct nvme_ctrl, kref);
1840
1841 put_device(ctrl->device);
1842 nvme_release_instance(ctrl);
1843 ida_destroy(&ctrl->ns_ida);
1844
1845 ctrl->ops->free_ctrl(ctrl);
1846 }
1847
1848 void nvme_put_ctrl(struct nvme_ctrl *ctrl)
1849 {
1850 kref_put(&ctrl->kref, nvme_free_ctrl);
1851 }
1852 EXPORT_SYMBOL_GPL(nvme_put_ctrl);
1853
1854 /*
1855 * Initialize a NVMe controller structures. This needs to be called during
1856 * earliest initialization so that we have the initialized structured around
1857 * during probing.
1858 */
1859 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
1860 const struct nvme_ctrl_ops *ops, unsigned long quirks)
1861 {
1862 int ret;
1863
1864 ctrl->state = NVME_CTRL_NEW;
1865 spin_lock_init(&ctrl->lock);
1866 INIT_LIST_HEAD(&ctrl->namespaces);
1867 mutex_init(&ctrl->namespaces_mutex);
1868 kref_init(&ctrl->kref);
1869 ctrl->dev = dev;
1870 ctrl->ops = ops;
1871 ctrl->quirks = quirks;
1872 INIT_WORK(&ctrl->scan_work, nvme_scan_work);
1873 INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
1874
1875 ret = nvme_set_instance(ctrl);
1876 if (ret)
1877 goto out;
1878
1879 ctrl->device = device_create_with_groups(nvme_class, ctrl->dev,
1880 MKDEV(nvme_char_major, ctrl->instance),
1881 ctrl, nvme_dev_attr_groups,
1882 "nvme%d", ctrl->instance);
1883 if (IS_ERR(ctrl->device)) {
1884 ret = PTR_ERR(ctrl->device);
1885 goto out_release_instance;
1886 }
1887 get_device(ctrl->device);
1888 ida_init(&ctrl->ns_ida);
1889
1890 spin_lock(&dev_list_lock);
1891 list_add_tail(&ctrl->node, &nvme_ctrl_list);
1892 spin_unlock(&dev_list_lock);
1893
1894 return 0;
1895 out_release_instance:
1896 nvme_release_instance(ctrl);
1897 out:
1898 return ret;
1899 }
1900 EXPORT_SYMBOL_GPL(nvme_init_ctrl);
1901
1902 /**
1903 * nvme_kill_queues(): Ends all namespace queues
1904 * @ctrl: the dead controller that needs to end
1905 *
1906 * Call this function when the driver determines it is unable to get the
1907 * controller in a state capable of servicing IO.
1908 */
1909 void nvme_kill_queues(struct nvme_ctrl *ctrl)
1910 {
1911 struct nvme_ns *ns;
1912
1913 rcu_read_lock();
1914 list_for_each_entry_rcu(ns, &ctrl->namespaces, list) {
1915 if (!kref_get_unless_zero(&ns->kref))
1916 continue;
1917
1918 /*
1919 * Revalidating a dead namespace sets capacity to 0. This will
1920 * end buffered writers dirtying pages that can't be synced.
1921 */
1922 if (!test_and_set_bit(NVME_NS_DEAD, &ns->flags))
1923 revalidate_disk(ns->disk);
1924
1925 blk_set_queue_dying(ns->queue);
1926 blk_mq_abort_requeue_list(ns->queue);
1927 blk_mq_start_stopped_hw_queues(ns->queue, true);
1928
1929 nvme_put_ns(ns);
1930 }
1931 rcu_read_unlock();
1932 }
1933 EXPORT_SYMBOL_GPL(nvme_kill_queues);
1934
1935 void nvme_stop_queues(struct nvme_ctrl *ctrl)
1936 {
1937 struct nvme_ns *ns;
1938
1939 rcu_read_lock();
1940 list_for_each_entry_rcu(ns, &ctrl->namespaces, list) {
1941 spin_lock_irq(ns->queue->queue_lock);
1942 queue_flag_set(QUEUE_FLAG_STOPPED, ns->queue);
1943 spin_unlock_irq(ns->queue->queue_lock);
1944
1945 blk_mq_cancel_requeue_work(ns->queue);
1946 blk_mq_stop_hw_queues(ns->queue);
1947 }
1948 rcu_read_unlock();
1949 }
1950 EXPORT_SYMBOL_GPL(nvme_stop_queues);
1951
1952 void nvme_start_queues(struct nvme_ctrl *ctrl)
1953 {
1954 struct nvme_ns *ns;
1955
1956 rcu_read_lock();
1957 list_for_each_entry_rcu(ns, &ctrl->namespaces, list) {
1958 queue_flag_clear_unlocked(QUEUE_FLAG_STOPPED, ns->queue);
1959 blk_mq_start_stopped_hw_queues(ns->queue, true);
1960 blk_mq_kick_requeue_list(ns->queue);
1961 }
1962 rcu_read_unlock();
1963 }
1964 EXPORT_SYMBOL_GPL(nvme_start_queues);
1965
1966 int __init nvme_core_init(void)
1967 {
1968 int result;
1969
1970 result = register_blkdev(nvme_major, "nvme");
1971 if (result < 0)
1972 return result;
1973 else if (result > 0)
1974 nvme_major = result;
1975
1976 result = __register_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme",
1977 &nvme_dev_fops);
1978 if (result < 0)
1979 goto unregister_blkdev;
1980 else if (result > 0)
1981 nvme_char_major = result;
1982
1983 nvme_class = class_create(THIS_MODULE, "nvme");
1984 if (IS_ERR(nvme_class)) {
1985 result = PTR_ERR(nvme_class);
1986 goto unregister_chrdev;
1987 }
1988
1989 return 0;
1990
1991 unregister_chrdev:
1992 __unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
1993 unregister_blkdev:
1994 unregister_blkdev(nvme_major, "nvme");
1995 return result;
1996 }
1997
1998 void nvme_core_exit(void)
1999 {
2000 class_destroy(nvme_class);
2001 __unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
2002 unregister_blkdev(nvme_major, "nvme");
2003 }
2004
2005 MODULE_LICENSE("GPL");
2006 MODULE_VERSION("1.0");
2007 module_init(nvme_core_init);
2008 module_exit(nvme_core_exit);
This page took 0.090339 seconds and 4 git commands to generate.