nvme: move namespace scanning to common code
[deliverable/linux.git] / drivers / nvme / host / pci.c
1 /*
2 * NVM Express device driver
3 * Copyright (c) 2011-2014, Intel Corporation.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 */
14
15 #include <linux/bitops.h>
16 #include <linux/blkdev.h>
17 #include <linux/blk-mq.h>
18 #include <linux/cpu.h>
19 #include <linux/delay.h>
20 #include <linux/errno.h>
21 #include <linux/fs.h>
22 #include <linux/genhd.h>
23 #include <linux/hdreg.h>
24 #include <linux/idr.h>
25 #include <linux/init.h>
26 #include <linux/interrupt.h>
27 #include <linux/io.h>
28 #include <linux/kdev_t.h>
29 #include <linux/kthread.h>
30 #include <linux/kernel.h>
31 #include <linux/mm.h>
32 #include <linux/module.h>
33 #include <linux/moduleparam.h>
34 #include <linux/pci.h>
35 #include <linux/poison.h>
36 #include <linux/ptrace.h>
37 #include <linux/sched.h>
38 #include <linux/slab.h>
39 #include <linux/t10-pi.h>
40 #include <linux/types.h>
41 #include <linux/pr.h>
42 #include <scsi/sg.h>
43 #include <linux/io-64-nonatomic-lo-hi.h>
44 #include <asm/unaligned.h>
45
46 #include <uapi/linux/nvme_ioctl.h>
47 #include "nvme.h"
48
49 #define NVME_MINORS (1U << MINORBITS)
50 #define NVME_Q_DEPTH 1024
51 #define NVME_AQ_DEPTH 256
52 #define SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
53 #define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
54
55 unsigned char admin_timeout = 60;
56 module_param(admin_timeout, byte, 0644);
57 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
58
59 unsigned char nvme_io_timeout = 30;
60 module_param_named(io_timeout, nvme_io_timeout, byte, 0644);
61 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
62
63 unsigned char shutdown_timeout = 5;
64 module_param(shutdown_timeout, byte, 0644);
65 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
66
67 static int nvme_char_major;
68 module_param(nvme_char_major, int, 0);
69
70 static int use_threaded_interrupts;
71 module_param(use_threaded_interrupts, int, 0);
72
73 static bool use_cmb_sqes = true;
74 module_param(use_cmb_sqes, bool, 0644);
75 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
76
77 static LIST_HEAD(dev_list);
78 static struct task_struct *nvme_thread;
79 static struct workqueue_struct *nvme_workq;
80 static wait_queue_head_t nvme_kthread_wait;
81
82 static struct class *nvme_class;
83
84 struct nvme_dev;
85 struct nvme_queue;
86 struct nvme_iod;
87
88 static int __nvme_reset(struct nvme_dev *dev);
89 static int nvme_reset(struct nvme_dev *dev);
90 static void nvme_process_cq(struct nvme_queue *nvmeq);
91 static void nvme_unmap_data(struct nvme_dev *dev, struct nvme_iod *iod);
92 static void nvme_dead_ctrl(struct nvme_dev *dev);
93
94 struct async_cmd_info {
95 struct kthread_work work;
96 struct kthread_worker *worker;
97 struct request *req;
98 u32 result;
99 int status;
100 void *ctx;
101 };
102
103 /*
104 * Represents an NVM Express device. Each nvme_dev is a PCI function.
105 */
106 struct nvme_dev {
107 struct list_head node;
108 struct nvme_queue **queues;
109 struct blk_mq_tag_set tagset;
110 struct blk_mq_tag_set admin_tagset;
111 u32 __iomem *dbs;
112 struct device *dev;
113 struct dma_pool *prp_page_pool;
114 struct dma_pool *prp_small_pool;
115 unsigned queue_count;
116 unsigned online_queues;
117 unsigned max_qid;
118 int q_depth;
119 u32 db_stride;
120 struct msix_entry *entry;
121 void __iomem *bar;
122 struct work_struct reset_work;
123 struct work_struct probe_work;
124 struct work_struct scan_work;
125 bool subsystem;
126 void __iomem *cmb;
127 dma_addr_t cmb_dma_addr;
128 u64 cmb_size;
129 u32 cmbsz;
130
131 struct nvme_ctrl ctrl;
132 };
133
134 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
135 {
136 return container_of(ctrl, struct nvme_dev, ctrl);
137 }
138
139 /*
140 * An NVM Express queue. Each device has at least two (one for admin
141 * commands and one for I/O commands).
142 */
143 struct nvme_queue {
144 struct device *q_dmadev;
145 struct nvme_dev *dev;
146 char irqname[24]; /* nvme4294967295-65535\0 */
147 spinlock_t q_lock;
148 struct nvme_command *sq_cmds;
149 struct nvme_command __iomem *sq_cmds_io;
150 volatile struct nvme_completion *cqes;
151 struct blk_mq_tags **tags;
152 dma_addr_t sq_dma_addr;
153 dma_addr_t cq_dma_addr;
154 u32 __iomem *q_db;
155 u16 q_depth;
156 s16 cq_vector;
157 u16 sq_head;
158 u16 sq_tail;
159 u16 cq_head;
160 u16 qid;
161 u8 cq_phase;
162 u8 cqe_seen;
163 struct async_cmd_info cmdinfo;
164 };
165
166 /*
167 * The nvme_iod describes the data in an I/O, including the list of PRP
168 * entries. You can't see it in this data structure because C doesn't let
169 * me express that. Use nvme_alloc_iod to ensure there's enough space
170 * allocated to store the PRP list.
171 */
172 struct nvme_iod {
173 unsigned long private; /* For the use of the submitter of the I/O */
174 int npages; /* In the PRP list. 0 means small pool in use */
175 int offset; /* Of PRP list */
176 int nents; /* Used in scatterlist */
177 int length; /* Of data, in bytes */
178 dma_addr_t first_dma;
179 struct scatterlist meta_sg[1]; /* metadata requires single contiguous buffer */
180 struct scatterlist sg[0];
181 };
182
183 /*
184 * Check we didin't inadvertently grow the command struct
185 */
186 static inline void _nvme_check_size(void)
187 {
188 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
189 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
190 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
191 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
192 BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
193 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
194 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
195 BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
196 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
197 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
198 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
199 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
200 }
201
202 typedef void (*nvme_completion_fn)(struct nvme_queue *, void *,
203 struct nvme_completion *);
204
205 struct nvme_cmd_info {
206 nvme_completion_fn fn;
207 void *ctx;
208 int aborted;
209 struct nvme_queue *nvmeq;
210 struct nvme_iod iod[0];
211 };
212
213 /*
214 * Max size of iod being embedded in the request payload
215 */
216 #define NVME_INT_PAGES 2
217 #define NVME_INT_BYTES(dev) (NVME_INT_PAGES * (dev)->ctrl.page_size)
218 #define NVME_INT_MASK 0x01
219
220 /*
221 * Will slightly overestimate the number of pages needed. This is OK
222 * as it only leads to a small amount of wasted memory for the lifetime of
223 * the I/O.
224 */
225 static int nvme_npages(unsigned size, struct nvme_dev *dev)
226 {
227 unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
228 dev->ctrl.page_size);
229 return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
230 }
231
232 static unsigned int nvme_cmd_size(struct nvme_dev *dev)
233 {
234 unsigned int ret = sizeof(struct nvme_cmd_info);
235
236 ret += sizeof(struct nvme_iod);
237 ret += sizeof(__le64 *) * nvme_npages(NVME_INT_BYTES(dev), dev);
238 ret += sizeof(struct scatterlist) * NVME_INT_PAGES;
239
240 return ret;
241 }
242
243 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
244 unsigned int hctx_idx)
245 {
246 struct nvme_dev *dev = data;
247 struct nvme_queue *nvmeq = dev->queues[0];
248
249 WARN_ON(hctx_idx != 0);
250 WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
251 WARN_ON(nvmeq->tags);
252
253 hctx->driver_data = nvmeq;
254 nvmeq->tags = &dev->admin_tagset.tags[0];
255 return 0;
256 }
257
258 static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
259 {
260 struct nvme_queue *nvmeq = hctx->driver_data;
261
262 nvmeq->tags = NULL;
263 }
264
265 static int nvme_admin_init_request(void *data, struct request *req,
266 unsigned int hctx_idx, unsigned int rq_idx,
267 unsigned int numa_node)
268 {
269 struct nvme_dev *dev = data;
270 struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
271 struct nvme_queue *nvmeq = dev->queues[0];
272
273 BUG_ON(!nvmeq);
274 cmd->nvmeq = nvmeq;
275 return 0;
276 }
277
278 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
279 unsigned int hctx_idx)
280 {
281 struct nvme_dev *dev = data;
282 struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
283
284 if (!nvmeq->tags)
285 nvmeq->tags = &dev->tagset.tags[hctx_idx];
286
287 WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
288 hctx->driver_data = nvmeq;
289 return 0;
290 }
291
292 static int nvme_init_request(void *data, struct request *req,
293 unsigned int hctx_idx, unsigned int rq_idx,
294 unsigned int numa_node)
295 {
296 struct nvme_dev *dev = data;
297 struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
298 struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
299
300 BUG_ON(!nvmeq);
301 cmd->nvmeq = nvmeq;
302 return 0;
303 }
304
305 static void nvme_set_info(struct nvme_cmd_info *cmd, void *ctx,
306 nvme_completion_fn handler)
307 {
308 cmd->fn = handler;
309 cmd->ctx = ctx;
310 cmd->aborted = 0;
311 blk_mq_start_request(blk_mq_rq_from_pdu(cmd));
312 }
313
314 static void *iod_get_private(struct nvme_iod *iod)
315 {
316 return (void *) (iod->private & ~0x1UL);
317 }
318
319 /*
320 * If bit 0 is set, the iod is embedded in the request payload.
321 */
322 static bool iod_should_kfree(struct nvme_iod *iod)
323 {
324 return (iod->private & NVME_INT_MASK) == 0;
325 }
326
327 /* Special values must be less than 0x1000 */
328 #define CMD_CTX_BASE ((void *)POISON_POINTER_DELTA)
329 #define CMD_CTX_CANCELLED (0x30C + CMD_CTX_BASE)
330 #define CMD_CTX_COMPLETED (0x310 + CMD_CTX_BASE)
331 #define CMD_CTX_INVALID (0x314 + CMD_CTX_BASE)
332
333 static void special_completion(struct nvme_queue *nvmeq, void *ctx,
334 struct nvme_completion *cqe)
335 {
336 if (ctx == CMD_CTX_CANCELLED)
337 return;
338 if (ctx == CMD_CTX_COMPLETED) {
339 dev_warn(nvmeq->q_dmadev,
340 "completed id %d twice on queue %d\n",
341 cqe->command_id, le16_to_cpup(&cqe->sq_id));
342 return;
343 }
344 if (ctx == CMD_CTX_INVALID) {
345 dev_warn(nvmeq->q_dmadev,
346 "invalid id %d completed on queue %d\n",
347 cqe->command_id, le16_to_cpup(&cqe->sq_id));
348 return;
349 }
350 dev_warn(nvmeq->q_dmadev, "Unknown special completion %p\n", ctx);
351 }
352
353 static void *cancel_cmd_info(struct nvme_cmd_info *cmd, nvme_completion_fn *fn)
354 {
355 void *ctx;
356
357 if (fn)
358 *fn = cmd->fn;
359 ctx = cmd->ctx;
360 cmd->fn = special_completion;
361 cmd->ctx = CMD_CTX_CANCELLED;
362 return ctx;
363 }
364
365 static void async_req_completion(struct nvme_queue *nvmeq, void *ctx,
366 struct nvme_completion *cqe)
367 {
368 u32 result = le32_to_cpup(&cqe->result);
369 u16 status = le16_to_cpup(&cqe->status) >> 1;
370
371 if (status == NVME_SC_SUCCESS || status == NVME_SC_ABORT_REQ)
372 ++nvmeq->dev->ctrl.event_limit;
373 if (status != NVME_SC_SUCCESS)
374 return;
375
376 switch (result & 0xff07) {
377 case NVME_AER_NOTICE_NS_CHANGED:
378 dev_info(nvmeq->q_dmadev, "rescanning\n");
379 schedule_work(&nvmeq->dev->scan_work);
380 default:
381 dev_warn(nvmeq->q_dmadev, "async event result %08x\n", result);
382 }
383 }
384
385 static void abort_completion(struct nvme_queue *nvmeq, void *ctx,
386 struct nvme_completion *cqe)
387 {
388 struct request *req = ctx;
389
390 u16 status = le16_to_cpup(&cqe->status) >> 1;
391 u32 result = le32_to_cpup(&cqe->result);
392
393 blk_mq_free_request(req);
394
395 dev_warn(nvmeq->q_dmadev, "Abort status:%x result:%x", status, result);
396 ++nvmeq->dev->ctrl.abort_limit;
397 }
398
399 static void async_completion(struct nvme_queue *nvmeq, void *ctx,
400 struct nvme_completion *cqe)
401 {
402 struct async_cmd_info *cmdinfo = ctx;
403 cmdinfo->result = le32_to_cpup(&cqe->result);
404 cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
405 queue_kthread_work(cmdinfo->worker, &cmdinfo->work);
406 blk_mq_free_request(cmdinfo->req);
407 }
408
409 static inline struct nvme_cmd_info *get_cmd_from_tag(struct nvme_queue *nvmeq,
410 unsigned int tag)
411 {
412 struct request *req = blk_mq_tag_to_rq(*nvmeq->tags, tag);
413
414 return blk_mq_rq_to_pdu(req);
415 }
416
417 /*
418 * Called with local interrupts disabled and the q_lock held. May not sleep.
419 */
420 static void *nvme_finish_cmd(struct nvme_queue *nvmeq, int tag,
421 nvme_completion_fn *fn)
422 {
423 struct nvme_cmd_info *cmd = get_cmd_from_tag(nvmeq, tag);
424 void *ctx;
425 if (tag >= nvmeq->q_depth) {
426 *fn = special_completion;
427 return CMD_CTX_INVALID;
428 }
429 if (fn)
430 *fn = cmd->fn;
431 ctx = cmd->ctx;
432 cmd->fn = special_completion;
433 cmd->ctx = CMD_CTX_COMPLETED;
434 return ctx;
435 }
436
437 /**
438 * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
439 * @nvmeq: The queue to use
440 * @cmd: The command to send
441 *
442 * Safe to use from interrupt context
443 */
444 static void __nvme_submit_cmd(struct nvme_queue *nvmeq,
445 struct nvme_command *cmd)
446 {
447 u16 tail = nvmeq->sq_tail;
448
449 if (nvmeq->sq_cmds_io)
450 memcpy_toio(&nvmeq->sq_cmds_io[tail], cmd, sizeof(*cmd));
451 else
452 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
453
454 if (++tail == nvmeq->q_depth)
455 tail = 0;
456 writel(tail, nvmeq->q_db);
457 nvmeq->sq_tail = tail;
458 }
459
460 static void nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
461 {
462 unsigned long flags;
463 spin_lock_irqsave(&nvmeq->q_lock, flags);
464 __nvme_submit_cmd(nvmeq, cmd);
465 spin_unlock_irqrestore(&nvmeq->q_lock, flags);
466 }
467
468 static __le64 **iod_list(struct nvme_iod *iod)
469 {
470 return ((void *)iod) + iod->offset;
471 }
472
473 static inline void iod_init(struct nvme_iod *iod, unsigned nbytes,
474 unsigned nseg, unsigned long private)
475 {
476 iod->private = private;
477 iod->offset = offsetof(struct nvme_iod, sg[nseg]);
478 iod->npages = -1;
479 iod->length = nbytes;
480 iod->nents = 0;
481 }
482
483 static struct nvme_iod *
484 __nvme_alloc_iod(unsigned nseg, unsigned bytes, struct nvme_dev *dev,
485 unsigned long priv, gfp_t gfp)
486 {
487 struct nvme_iod *iod = kmalloc(sizeof(struct nvme_iod) +
488 sizeof(__le64 *) * nvme_npages(bytes, dev) +
489 sizeof(struct scatterlist) * nseg, gfp);
490
491 if (iod)
492 iod_init(iod, bytes, nseg, priv);
493
494 return iod;
495 }
496
497 static struct nvme_iod *nvme_alloc_iod(struct request *rq, struct nvme_dev *dev,
498 gfp_t gfp)
499 {
500 unsigned size = !(rq->cmd_flags & REQ_DISCARD) ? blk_rq_bytes(rq) :
501 sizeof(struct nvme_dsm_range);
502 struct nvme_iod *iod;
503
504 if (rq->nr_phys_segments <= NVME_INT_PAGES &&
505 size <= NVME_INT_BYTES(dev)) {
506 struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(rq);
507
508 iod = cmd->iod;
509 iod_init(iod, size, rq->nr_phys_segments,
510 (unsigned long) rq | NVME_INT_MASK);
511 return iod;
512 }
513
514 return __nvme_alloc_iod(rq->nr_phys_segments, size, dev,
515 (unsigned long) rq, gfp);
516 }
517
518 static void nvme_free_iod(struct nvme_dev *dev, struct nvme_iod *iod)
519 {
520 const int last_prp = dev->ctrl.page_size / 8 - 1;
521 int i;
522 __le64 **list = iod_list(iod);
523 dma_addr_t prp_dma = iod->first_dma;
524
525 if (iod->npages == 0)
526 dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
527 for (i = 0; i < iod->npages; i++) {
528 __le64 *prp_list = list[i];
529 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
530 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
531 prp_dma = next_prp_dma;
532 }
533
534 if (iod_should_kfree(iod))
535 kfree(iod);
536 }
537
538 #ifdef CONFIG_BLK_DEV_INTEGRITY
539 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
540 {
541 if (be32_to_cpu(pi->ref_tag) == v)
542 pi->ref_tag = cpu_to_be32(p);
543 }
544
545 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
546 {
547 if (be32_to_cpu(pi->ref_tag) == p)
548 pi->ref_tag = cpu_to_be32(v);
549 }
550
551 /**
552 * nvme_dif_remap - remaps ref tags to bip seed and physical lba
553 *
554 * The virtual start sector is the one that was originally submitted by the
555 * block layer. Due to partitioning, MD/DM cloning, etc. the actual physical
556 * start sector may be different. Remap protection information to match the
557 * physical LBA on writes, and back to the original seed on reads.
558 *
559 * Type 0 and 3 do not have a ref tag, so no remapping required.
560 */
561 static void nvme_dif_remap(struct request *req,
562 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
563 {
564 struct nvme_ns *ns = req->rq_disk->private_data;
565 struct bio_integrity_payload *bip;
566 struct t10_pi_tuple *pi;
567 void *p, *pmap;
568 u32 i, nlb, ts, phys, virt;
569
570 if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3)
571 return;
572
573 bip = bio_integrity(req->bio);
574 if (!bip)
575 return;
576
577 pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset;
578
579 p = pmap;
580 virt = bip_get_seed(bip);
581 phys = nvme_block_nr(ns, blk_rq_pos(req));
582 nlb = (blk_rq_bytes(req) >> ns->lba_shift);
583 ts = ns->disk->queue->integrity.tuple_size;
584
585 for (i = 0; i < nlb; i++, virt++, phys++) {
586 pi = (struct t10_pi_tuple *)p;
587 dif_swap(phys, virt, pi);
588 p += ts;
589 }
590 kunmap_atomic(pmap);
591 }
592 #else /* CONFIG_BLK_DEV_INTEGRITY */
593 static void nvme_dif_remap(struct request *req,
594 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
595 {
596 }
597 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
598 {
599 }
600 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
601 {
602 }
603 #endif
604
605 static void req_completion(struct nvme_queue *nvmeq, void *ctx,
606 struct nvme_completion *cqe)
607 {
608 struct nvme_iod *iod = ctx;
609 struct request *req = iod_get_private(iod);
610 struct nvme_cmd_info *cmd_rq = blk_mq_rq_to_pdu(req);
611 u16 status = le16_to_cpup(&cqe->status) >> 1;
612 int error = 0;
613
614 if (unlikely(status)) {
615 if (!(status & NVME_SC_DNR || blk_noretry_request(req))
616 && (jiffies - req->start_time) < req->timeout) {
617 unsigned long flags;
618
619 nvme_unmap_data(nvmeq->dev, iod);
620
621 blk_mq_requeue_request(req);
622 spin_lock_irqsave(req->q->queue_lock, flags);
623 if (!blk_queue_stopped(req->q))
624 blk_mq_kick_requeue_list(req->q);
625 spin_unlock_irqrestore(req->q->queue_lock, flags);
626 return;
627 }
628
629 if (req->cmd_type == REQ_TYPE_DRV_PRIV) {
630 if (cmd_rq->ctx == CMD_CTX_CANCELLED)
631 error = -EINTR;
632 else
633 error = status;
634 } else {
635 error = nvme_error_status(status);
636 }
637 }
638
639 if (req->cmd_type == REQ_TYPE_DRV_PRIV) {
640 u32 result = le32_to_cpup(&cqe->result);
641 req->special = (void *)(uintptr_t)result;
642 }
643
644 if (cmd_rq->aborted)
645 dev_warn(nvmeq->dev->dev,
646 "completing aborted command with status:%04x\n",
647 error);
648
649 nvme_unmap_data(nvmeq->dev, iod);
650 blk_mq_complete_request(req, error);
651 }
652
653 static bool nvme_setup_prps(struct nvme_dev *dev, struct nvme_iod *iod,
654 int total_len)
655 {
656 struct dma_pool *pool;
657 int length = total_len;
658 struct scatterlist *sg = iod->sg;
659 int dma_len = sg_dma_len(sg);
660 u64 dma_addr = sg_dma_address(sg);
661 u32 page_size = dev->ctrl.page_size;
662 int offset = dma_addr & (page_size - 1);
663 __le64 *prp_list;
664 __le64 **list = iod_list(iod);
665 dma_addr_t prp_dma;
666 int nprps, i;
667
668 length -= (page_size - offset);
669 if (length <= 0)
670 return true;
671
672 dma_len -= (page_size - offset);
673 if (dma_len) {
674 dma_addr += (page_size - offset);
675 } else {
676 sg = sg_next(sg);
677 dma_addr = sg_dma_address(sg);
678 dma_len = sg_dma_len(sg);
679 }
680
681 if (length <= page_size) {
682 iod->first_dma = dma_addr;
683 return true;
684 }
685
686 nprps = DIV_ROUND_UP(length, page_size);
687 if (nprps <= (256 / 8)) {
688 pool = dev->prp_small_pool;
689 iod->npages = 0;
690 } else {
691 pool = dev->prp_page_pool;
692 iod->npages = 1;
693 }
694
695 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
696 if (!prp_list) {
697 iod->first_dma = dma_addr;
698 iod->npages = -1;
699 return false;
700 }
701 list[0] = prp_list;
702 iod->first_dma = prp_dma;
703 i = 0;
704 for (;;) {
705 if (i == page_size >> 3) {
706 __le64 *old_prp_list = prp_list;
707 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
708 if (!prp_list)
709 return false;
710 list[iod->npages++] = prp_list;
711 prp_list[0] = old_prp_list[i - 1];
712 old_prp_list[i - 1] = cpu_to_le64(prp_dma);
713 i = 1;
714 }
715 prp_list[i++] = cpu_to_le64(dma_addr);
716 dma_len -= page_size;
717 dma_addr += page_size;
718 length -= page_size;
719 if (length <= 0)
720 break;
721 if (dma_len > 0)
722 continue;
723 BUG_ON(dma_len < 0);
724 sg = sg_next(sg);
725 dma_addr = sg_dma_address(sg);
726 dma_len = sg_dma_len(sg);
727 }
728
729 return true;
730 }
731
732 static int nvme_map_data(struct nvme_dev *dev, struct nvme_iod *iod,
733 struct nvme_command *cmnd)
734 {
735 struct request *req = iod_get_private(iod);
736 struct request_queue *q = req->q;
737 enum dma_data_direction dma_dir = rq_data_dir(req) ?
738 DMA_TO_DEVICE : DMA_FROM_DEVICE;
739 int ret = BLK_MQ_RQ_QUEUE_ERROR;
740
741 sg_init_table(iod->sg, req->nr_phys_segments);
742 iod->nents = blk_rq_map_sg(q, req, iod->sg);
743 if (!iod->nents)
744 goto out;
745
746 ret = BLK_MQ_RQ_QUEUE_BUSY;
747 if (!dma_map_sg(dev->dev, iod->sg, iod->nents, dma_dir))
748 goto out;
749
750 if (!nvme_setup_prps(dev, iod, blk_rq_bytes(req)))
751 goto out_unmap;
752
753 ret = BLK_MQ_RQ_QUEUE_ERROR;
754 if (blk_integrity_rq(req)) {
755 if (blk_rq_count_integrity_sg(q, req->bio) != 1)
756 goto out_unmap;
757
758 sg_init_table(iod->meta_sg, 1);
759 if (blk_rq_map_integrity_sg(q, req->bio, iod->meta_sg) != 1)
760 goto out_unmap;
761
762 if (rq_data_dir(req))
763 nvme_dif_remap(req, nvme_dif_prep);
764
765 if (!dma_map_sg(dev->dev, iod->meta_sg, 1, dma_dir))
766 goto out_unmap;
767 }
768
769 cmnd->rw.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
770 cmnd->rw.prp2 = cpu_to_le64(iod->first_dma);
771 if (blk_integrity_rq(req))
772 cmnd->rw.metadata = cpu_to_le64(sg_dma_address(iod->meta_sg));
773 return BLK_MQ_RQ_QUEUE_OK;
774
775 out_unmap:
776 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
777 out:
778 return ret;
779 }
780
781 static void nvme_unmap_data(struct nvme_dev *dev, struct nvme_iod *iod)
782 {
783 struct request *req = iod_get_private(iod);
784 enum dma_data_direction dma_dir = rq_data_dir(req) ?
785 DMA_TO_DEVICE : DMA_FROM_DEVICE;
786
787 if (iod->nents) {
788 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
789 if (blk_integrity_rq(req)) {
790 if (!rq_data_dir(req))
791 nvme_dif_remap(req, nvme_dif_complete);
792 dma_unmap_sg(dev->dev, iod->meta_sg, 1, dma_dir);
793 }
794 }
795
796 nvme_free_iod(dev, iod);
797 }
798
799 /*
800 * We reuse the small pool to allocate the 16-byte range here as it is not
801 * worth having a special pool for these or additional cases to handle freeing
802 * the iod.
803 */
804 static int nvme_setup_discard(struct nvme_queue *nvmeq, struct nvme_ns *ns,
805 struct nvme_iod *iod, struct nvme_command *cmnd)
806 {
807 struct request *req = iod_get_private(iod);
808 struct nvme_dsm_range *range;
809
810 range = dma_pool_alloc(nvmeq->dev->prp_small_pool, GFP_ATOMIC,
811 &iod->first_dma);
812 if (!range)
813 return BLK_MQ_RQ_QUEUE_BUSY;
814 iod_list(iod)[0] = (__le64 *)range;
815 iod->npages = 0;
816
817 range->cattr = cpu_to_le32(0);
818 range->nlb = cpu_to_le32(blk_rq_bytes(req) >> ns->lba_shift);
819 range->slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
820
821 memset(cmnd, 0, sizeof(*cmnd));
822 cmnd->dsm.opcode = nvme_cmd_dsm;
823 cmnd->dsm.nsid = cpu_to_le32(ns->ns_id);
824 cmnd->dsm.prp1 = cpu_to_le64(iod->first_dma);
825 cmnd->dsm.nr = 0;
826 cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
827 return BLK_MQ_RQ_QUEUE_OK;
828 }
829
830 /*
831 * NOTE: ns is NULL when called on the admin queue.
832 */
833 static int nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
834 const struct blk_mq_queue_data *bd)
835 {
836 struct nvme_ns *ns = hctx->queue->queuedata;
837 struct nvme_queue *nvmeq = hctx->driver_data;
838 struct nvme_dev *dev = nvmeq->dev;
839 struct request *req = bd->rq;
840 struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
841 struct nvme_iod *iod;
842 struct nvme_command cmnd;
843 int ret = BLK_MQ_RQ_QUEUE_OK;
844
845 /*
846 * If formated with metadata, require the block layer provide a buffer
847 * unless this namespace is formated such that the metadata can be
848 * stripped/generated by the controller with PRACT=1.
849 */
850 if (ns && ns->ms && !blk_integrity_rq(req)) {
851 if (!(ns->pi_type && ns->ms == 8) &&
852 req->cmd_type != REQ_TYPE_DRV_PRIV) {
853 blk_mq_complete_request(req, -EFAULT);
854 return BLK_MQ_RQ_QUEUE_OK;
855 }
856 }
857
858 iod = nvme_alloc_iod(req, dev, GFP_ATOMIC);
859 if (!iod)
860 return BLK_MQ_RQ_QUEUE_BUSY;
861
862 if (req->cmd_flags & REQ_DISCARD) {
863 ret = nvme_setup_discard(nvmeq, ns, iod, &cmnd);
864 } else {
865 if (req->cmd_type == REQ_TYPE_DRV_PRIV)
866 memcpy(&cmnd, req->cmd, sizeof(cmnd));
867 else if (req->cmd_flags & REQ_FLUSH)
868 nvme_setup_flush(ns, &cmnd);
869 else
870 nvme_setup_rw(ns, req, &cmnd);
871
872 if (req->nr_phys_segments)
873 ret = nvme_map_data(dev, iod, &cmnd);
874 }
875
876 if (ret)
877 goto out;
878
879 cmnd.common.command_id = req->tag;
880 nvme_set_info(cmd, iod, req_completion);
881
882 spin_lock_irq(&nvmeq->q_lock);
883 __nvme_submit_cmd(nvmeq, &cmnd);
884 nvme_process_cq(nvmeq);
885 spin_unlock_irq(&nvmeq->q_lock);
886 return BLK_MQ_RQ_QUEUE_OK;
887 out:
888 nvme_free_iod(dev, iod);
889 return ret;
890 }
891
892 static void __nvme_process_cq(struct nvme_queue *nvmeq, unsigned int *tag)
893 {
894 u16 head, phase;
895
896 head = nvmeq->cq_head;
897 phase = nvmeq->cq_phase;
898
899 for (;;) {
900 void *ctx;
901 nvme_completion_fn fn;
902 struct nvme_completion cqe = nvmeq->cqes[head];
903 if ((le16_to_cpu(cqe.status) & 1) != phase)
904 break;
905 nvmeq->sq_head = le16_to_cpu(cqe.sq_head);
906 if (++head == nvmeq->q_depth) {
907 head = 0;
908 phase = !phase;
909 }
910 if (tag && *tag == cqe.command_id)
911 *tag = -1;
912 ctx = nvme_finish_cmd(nvmeq, cqe.command_id, &fn);
913 fn(nvmeq, ctx, &cqe);
914 }
915
916 /* If the controller ignores the cq head doorbell and continuously
917 * writes to the queue, it is theoretically possible to wrap around
918 * the queue twice and mistakenly return IRQ_NONE. Linux only
919 * requires that 0.1% of your interrupts are handled, so this isn't
920 * a big problem.
921 */
922 if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
923 return;
924
925 if (likely(nvmeq->cq_vector >= 0))
926 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
927 nvmeq->cq_head = head;
928 nvmeq->cq_phase = phase;
929
930 nvmeq->cqe_seen = 1;
931 }
932
933 static void nvme_process_cq(struct nvme_queue *nvmeq)
934 {
935 __nvme_process_cq(nvmeq, NULL);
936 }
937
938 static irqreturn_t nvme_irq(int irq, void *data)
939 {
940 irqreturn_t result;
941 struct nvme_queue *nvmeq = data;
942 spin_lock(&nvmeq->q_lock);
943 nvme_process_cq(nvmeq);
944 result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
945 nvmeq->cqe_seen = 0;
946 spin_unlock(&nvmeq->q_lock);
947 return result;
948 }
949
950 static irqreturn_t nvme_irq_check(int irq, void *data)
951 {
952 struct nvme_queue *nvmeq = data;
953 struct nvme_completion cqe = nvmeq->cqes[nvmeq->cq_head];
954 if ((le16_to_cpu(cqe.status) & 1) != nvmeq->cq_phase)
955 return IRQ_NONE;
956 return IRQ_WAKE_THREAD;
957 }
958
959 static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
960 {
961 struct nvme_queue *nvmeq = hctx->driver_data;
962
963 if ((le16_to_cpu(nvmeq->cqes[nvmeq->cq_head].status) & 1) ==
964 nvmeq->cq_phase) {
965 spin_lock_irq(&nvmeq->q_lock);
966 __nvme_process_cq(nvmeq, &tag);
967 spin_unlock_irq(&nvmeq->q_lock);
968
969 if (tag == -1)
970 return 1;
971 }
972
973 return 0;
974 }
975
976 static int nvme_submit_async_admin_req(struct nvme_dev *dev)
977 {
978 struct nvme_queue *nvmeq = dev->queues[0];
979 struct nvme_command c;
980 struct nvme_cmd_info *cmd_info;
981 struct request *req;
982
983 req = blk_mq_alloc_request(dev->ctrl.admin_q, WRITE,
984 BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_RESERVED);
985 if (IS_ERR(req))
986 return PTR_ERR(req);
987
988 req->cmd_flags |= REQ_NO_TIMEOUT;
989 cmd_info = blk_mq_rq_to_pdu(req);
990 nvme_set_info(cmd_info, NULL, async_req_completion);
991
992 memset(&c, 0, sizeof(c));
993 c.common.opcode = nvme_admin_async_event;
994 c.common.command_id = req->tag;
995
996 blk_mq_free_request(req);
997 __nvme_submit_cmd(nvmeq, &c);
998 return 0;
999 }
1000
1001 static int nvme_submit_admin_async_cmd(struct nvme_dev *dev,
1002 struct nvme_command *cmd,
1003 struct async_cmd_info *cmdinfo, unsigned timeout)
1004 {
1005 struct nvme_queue *nvmeq = dev->queues[0];
1006 struct request *req;
1007 struct nvme_cmd_info *cmd_rq;
1008
1009 req = blk_mq_alloc_request(dev->ctrl.admin_q, WRITE, 0);
1010 if (IS_ERR(req))
1011 return PTR_ERR(req);
1012
1013 req->timeout = timeout;
1014 cmd_rq = blk_mq_rq_to_pdu(req);
1015 cmdinfo->req = req;
1016 nvme_set_info(cmd_rq, cmdinfo, async_completion);
1017 cmdinfo->status = -EINTR;
1018
1019 cmd->common.command_id = req->tag;
1020
1021 nvme_submit_cmd(nvmeq, cmd);
1022 return 0;
1023 }
1024
1025 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
1026 {
1027 struct nvme_command c;
1028
1029 memset(&c, 0, sizeof(c));
1030 c.delete_queue.opcode = opcode;
1031 c.delete_queue.qid = cpu_to_le16(id);
1032
1033 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1034 }
1035
1036 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
1037 struct nvme_queue *nvmeq)
1038 {
1039 struct nvme_command c;
1040 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
1041
1042 /*
1043 * Note: we (ab)use the fact the the prp fields survive if no data
1044 * is attached to the request.
1045 */
1046 memset(&c, 0, sizeof(c));
1047 c.create_cq.opcode = nvme_admin_create_cq;
1048 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1049 c.create_cq.cqid = cpu_to_le16(qid);
1050 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1051 c.create_cq.cq_flags = cpu_to_le16(flags);
1052 c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
1053
1054 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1055 }
1056
1057 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1058 struct nvme_queue *nvmeq)
1059 {
1060 struct nvme_command c;
1061 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
1062
1063 /*
1064 * Note: we (ab)use the fact the the prp fields survive if no data
1065 * is attached to the request.
1066 */
1067 memset(&c, 0, sizeof(c));
1068 c.create_sq.opcode = nvme_admin_create_sq;
1069 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1070 c.create_sq.sqid = cpu_to_le16(qid);
1071 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1072 c.create_sq.sq_flags = cpu_to_le16(flags);
1073 c.create_sq.cqid = cpu_to_le16(qid);
1074
1075 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1076 }
1077
1078 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1079 {
1080 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1081 }
1082
1083 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1084 {
1085 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1086 }
1087
1088 /**
1089 * nvme_abort_req - Attempt aborting a request
1090 *
1091 * Schedule controller reset if the command was already aborted once before and
1092 * still hasn't been returned to the driver, or if this is the admin queue.
1093 */
1094 static void nvme_abort_req(struct request *req)
1095 {
1096 struct nvme_cmd_info *cmd_rq = blk_mq_rq_to_pdu(req);
1097 struct nvme_queue *nvmeq = cmd_rq->nvmeq;
1098 struct nvme_dev *dev = nvmeq->dev;
1099 struct request *abort_req;
1100 struct nvme_cmd_info *abort_cmd;
1101 struct nvme_command cmd;
1102
1103 if (!nvmeq->qid || cmd_rq->aborted) {
1104 spin_lock(&dev_list_lock);
1105 if (!__nvme_reset(dev)) {
1106 dev_warn(dev->dev,
1107 "I/O %d QID %d timeout, reset controller\n",
1108 req->tag, nvmeq->qid);
1109 }
1110 spin_unlock(&dev_list_lock);
1111 return;
1112 }
1113
1114 if (!dev->ctrl.abort_limit)
1115 return;
1116
1117 abort_req = blk_mq_alloc_request(dev->ctrl.admin_q, WRITE,
1118 BLK_MQ_REQ_NOWAIT);
1119 if (IS_ERR(abort_req))
1120 return;
1121
1122 abort_cmd = blk_mq_rq_to_pdu(abort_req);
1123 nvme_set_info(abort_cmd, abort_req, abort_completion);
1124
1125 memset(&cmd, 0, sizeof(cmd));
1126 cmd.abort.opcode = nvme_admin_abort_cmd;
1127 cmd.abort.cid = req->tag;
1128 cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1129 cmd.abort.command_id = abort_req->tag;
1130
1131 --dev->ctrl.abort_limit;
1132 cmd_rq->aborted = 1;
1133
1134 dev_warn(nvmeq->q_dmadev, "Aborting I/O %d QID %d\n", req->tag,
1135 nvmeq->qid);
1136 nvme_submit_cmd(dev->queues[0], &cmd);
1137 }
1138
1139 static void nvme_cancel_queue_ios(struct request *req, void *data, bool reserved)
1140 {
1141 struct nvme_queue *nvmeq = data;
1142 void *ctx;
1143 nvme_completion_fn fn;
1144 struct nvme_cmd_info *cmd;
1145 struct nvme_completion cqe;
1146
1147 if (!blk_mq_request_started(req))
1148 return;
1149
1150 cmd = blk_mq_rq_to_pdu(req);
1151
1152 if (cmd->ctx == CMD_CTX_CANCELLED)
1153 return;
1154
1155 if (blk_queue_dying(req->q))
1156 cqe.status = cpu_to_le16((NVME_SC_ABORT_REQ | NVME_SC_DNR) << 1);
1157 else
1158 cqe.status = cpu_to_le16(NVME_SC_ABORT_REQ << 1);
1159
1160
1161 dev_warn(nvmeq->q_dmadev, "Cancelling I/O %d QID %d\n",
1162 req->tag, nvmeq->qid);
1163 ctx = cancel_cmd_info(cmd, &fn);
1164 fn(nvmeq, ctx, &cqe);
1165 }
1166
1167 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
1168 {
1169 struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
1170 struct nvme_queue *nvmeq = cmd->nvmeq;
1171
1172 dev_warn(nvmeq->q_dmadev, "Timeout I/O %d QID %d\n", req->tag,
1173 nvmeq->qid);
1174 spin_lock_irq(&nvmeq->q_lock);
1175 nvme_abort_req(req);
1176 spin_unlock_irq(&nvmeq->q_lock);
1177
1178 /*
1179 * The aborted req will be completed on receiving the abort req.
1180 * We enable the timer again. If hit twice, it'll cause a device reset,
1181 * as the device then is in a faulty state.
1182 */
1183 return BLK_EH_RESET_TIMER;
1184 }
1185
1186 static void nvme_free_queue(struct nvme_queue *nvmeq)
1187 {
1188 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
1189 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1190 if (nvmeq->sq_cmds)
1191 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
1192 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1193 kfree(nvmeq);
1194 }
1195
1196 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1197 {
1198 int i;
1199
1200 for (i = dev->queue_count - 1; i >= lowest; i--) {
1201 struct nvme_queue *nvmeq = dev->queues[i];
1202 dev->queue_count--;
1203 dev->queues[i] = NULL;
1204 nvme_free_queue(nvmeq);
1205 }
1206 }
1207
1208 /**
1209 * nvme_suspend_queue - put queue into suspended state
1210 * @nvmeq - queue to suspend
1211 */
1212 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
1213 {
1214 int vector;
1215
1216 spin_lock_irq(&nvmeq->q_lock);
1217 if (nvmeq->cq_vector == -1) {
1218 spin_unlock_irq(&nvmeq->q_lock);
1219 return 1;
1220 }
1221 vector = nvmeq->dev->entry[nvmeq->cq_vector].vector;
1222 nvmeq->dev->online_queues--;
1223 nvmeq->cq_vector = -1;
1224 spin_unlock_irq(&nvmeq->q_lock);
1225
1226 if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1227 blk_mq_freeze_queue_start(nvmeq->dev->ctrl.admin_q);
1228
1229 irq_set_affinity_hint(vector, NULL);
1230 free_irq(vector, nvmeq);
1231
1232 return 0;
1233 }
1234
1235 static void nvme_clear_queue(struct nvme_queue *nvmeq)
1236 {
1237 spin_lock_irq(&nvmeq->q_lock);
1238 if (nvmeq->tags && *nvmeq->tags)
1239 blk_mq_all_tag_busy_iter(*nvmeq->tags, nvme_cancel_queue_ios, nvmeq);
1240 spin_unlock_irq(&nvmeq->q_lock);
1241 }
1242
1243 static void nvme_disable_queue(struct nvme_dev *dev, int qid)
1244 {
1245 struct nvme_queue *nvmeq = dev->queues[qid];
1246
1247 if (!nvmeq)
1248 return;
1249 if (nvme_suspend_queue(nvmeq))
1250 return;
1251
1252 /* Don't tell the adapter to delete the admin queue.
1253 * Don't tell a removed adapter to delete IO queues. */
1254 if (qid && readl(dev->bar + NVME_REG_CSTS) != -1) {
1255 adapter_delete_sq(dev, qid);
1256 adapter_delete_cq(dev, qid);
1257 }
1258
1259 spin_lock_irq(&nvmeq->q_lock);
1260 nvme_process_cq(nvmeq);
1261 spin_unlock_irq(&nvmeq->q_lock);
1262 }
1263
1264 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1265 int entry_size)
1266 {
1267 int q_depth = dev->q_depth;
1268 unsigned q_size_aligned = roundup(q_depth * entry_size,
1269 dev->ctrl.page_size);
1270
1271 if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1272 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1273 mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
1274 q_depth = div_u64(mem_per_q, entry_size);
1275
1276 /*
1277 * Ensure the reduced q_depth is above some threshold where it
1278 * would be better to map queues in system memory with the
1279 * original depth
1280 */
1281 if (q_depth < 64)
1282 return -ENOMEM;
1283 }
1284
1285 return q_depth;
1286 }
1287
1288 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1289 int qid, int depth)
1290 {
1291 if (qid && dev->cmb && use_cmb_sqes && NVME_CMB_SQS(dev->cmbsz)) {
1292 unsigned offset = (qid - 1) * roundup(SQ_SIZE(depth),
1293 dev->ctrl.page_size);
1294 nvmeq->sq_dma_addr = dev->cmb_dma_addr + offset;
1295 nvmeq->sq_cmds_io = dev->cmb + offset;
1296 } else {
1297 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
1298 &nvmeq->sq_dma_addr, GFP_KERNEL);
1299 if (!nvmeq->sq_cmds)
1300 return -ENOMEM;
1301 }
1302
1303 return 0;
1304 }
1305
1306 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
1307 int depth)
1308 {
1309 struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq), GFP_KERNEL);
1310 if (!nvmeq)
1311 return NULL;
1312
1313 nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth),
1314 &nvmeq->cq_dma_addr, GFP_KERNEL);
1315 if (!nvmeq->cqes)
1316 goto free_nvmeq;
1317
1318 if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
1319 goto free_cqdma;
1320
1321 nvmeq->q_dmadev = dev->dev;
1322 nvmeq->dev = dev;
1323 snprintf(nvmeq->irqname, sizeof(nvmeq->irqname), "nvme%dq%d",
1324 dev->ctrl.instance, qid);
1325 spin_lock_init(&nvmeq->q_lock);
1326 nvmeq->cq_head = 0;
1327 nvmeq->cq_phase = 1;
1328 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1329 nvmeq->q_depth = depth;
1330 nvmeq->qid = qid;
1331 nvmeq->cq_vector = -1;
1332 dev->queues[qid] = nvmeq;
1333
1334 /* make sure queue descriptor is set before queue count, for kthread */
1335 mb();
1336 dev->queue_count++;
1337
1338 return nvmeq;
1339
1340 free_cqdma:
1341 dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
1342 nvmeq->cq_dma_addr);
1343 free_nvmeq:
1344 kfree(nvmeq);
1345 return NULL;
1346 }
1347
1348 static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1349 const char *name)
1350 {
1351 if (use_threaded_interrupts)
1352 return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
1353 nvme_irq_check, nvme_irq, IRQF_SHARED,
1354 name, nvmeq);
1355 return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
1356 IRQF_SHARED, name, nvmeq);
1357 }
1358
1359 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1360 {
1361 struct nvme_dev *dev = nvmeq->dev;
1362
1363 spin_lock_irq(&nvmeq->q_lock);
1364 nvmeq->sq_tail = 0;
1365 nvmeq->cq_head = 0;
1366 nvmeq->cq_phase = 1;
1367 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1368 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
1369 dev->online_queues++;
1370 spin_unlock_irq(&nvmeq->q_lock);
1371 }
1372
1373 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1374 {
1375 struct nvme_dev *dev = nvmeq->dev;
1376 int result;
1377
1378 nvmeq->cq_vector = qid - 1;
1379 result = adapter_alloc_cq(dev, qid, nvmeq);
1380 if (result < 0)
1381 return result;
1382
1383 result = adapter_alloc_sq(dev, qid, nvmeq);
1384 if (result < 0)
1385 goto release_cq;
1386
1387 result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
1388 if (result < 0)
1389 goto release_sq;
1390
1391 nvme_init_queue(nvmeq, qid);
1392 return result;
1393
1394 release_sq:
1395 adapter_delete_sq(dev, qid);
1396 release_cq:
1397 adapter_delete_cq(dev, qid);
1398 return result;
1399 }
1400
1401 static struct blk_mq_ops nvme_mq_admin_ops = {
1402 .queue_rq = nvme_queue_rq,
1403 .map_queue = blk_mq_map_queue,
1404 .init_hctx = nvme_admin_init_hctx,
1405 .exit_hctx = nvme_admin_exit_hctx,
1406 .init_request = nvme_admin_init_request,
1407 .timeout = nvme_timeout,
1408 };
1409
1410 static struct blk_mq_ops nvme_mq_ops = {
1411 .queue_rq = nvme_queue_rq,
1412 .map_queue = blk_mq_map_queue,
1413 .init_hctx = nvme_init_hctx,
1414 .init_request = nvme_init_request,
1415 .timeout = nvme_timeout,
1416 .poll = nvme_poll,
1417 };
1418
1419 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1420 {
1421 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1422 blk_cleanup_queue(dev->ctrl.admin_q);
1423 blk_mq_free_tag_set(&dev->admin_tagset);
1424 }
1425 }
1426
1427 static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1428 {
1429 if (!dev->ctrl.admin_q) {
1430 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1431 dev->admin_tagset.nr_hw_queues = 1;
1432 dev->admin_tagset.queue_depth = NVME_AQ_DEPTH - 1;
1433 dev->admin_tagset.reserved_tags = 1;
1434 dev->admin_tagset.timeout = ADMIN_TIMEOUT;
1435 dev->admin_tagset.numa_node = dev_to_node(dev->dev);
1436 dev->admin_tagset.cmd_size = nvme_cmd_size(dev);
1437 dev->admin_tagset.driver_data = dev;
1438
1439 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1440 return -ENOMEM;
1441
1442 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1443 if (IS_ERR(dev->ctrl.admin_q)) {
1444 blk_mq_free_tag_set(&dev->admin_tagset);
1445 return -ENOMEM;
1446 }
1447 if (!blk_get_queue(dev->ctrl.admin_q)) {
1448 nvme_dev_remove_admin(dev);
1449 dev->ctrl.admin_q = NULL;
1450 return -ENODEV;
1451 }
1452 } else
1453 blk_mq_unfreeze_queue(dev->ctrl.admin_q);
1454
1455 return 0;
1456 }
1457
1458 static int nvme_configure_admin_queue(struct nvme_dev *dev)
1459 {
1460 int result;
1461 u32 aqa;
1462 u64 cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
1463 struct nvme_queue *nvmeq;
1464
1465 dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1) ?
1466 NVME_CAP_NSSRC(cap) : 0;
1467
1468 if (dev->subsystem &&
1469 (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1470 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1471
1472 result = nvme_disable_ctrl(&dev->ctrl, cap);
1473 if (result < 0)
1474 return result;
1475
1476 nvmeq = dev->queues[0];
1477 if (!nvmeq) {
1478 nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1479 if (!nvmeq)
1480 return -ENOMEM;
1481 }
1482
1483 aqa = nvmeq->q_depth - 1;
1484 aqa |= aqa << 16;
1485
1486 writel(aqa, dev->bar + NVME_REG_AQA);
1487 lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1488 lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1489
1490 result = nvme_enable_ctrl(&dev->ctrl, cap);
1491 if (result)
1492 goto free_nvmeq;
1493
1494 nvmeq->cq_vector = 0;
1495 result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
1496 if (result) {
1497 nvmeq->cq_vector = -1;
1498 goto free_nvmeq;
1499 }
1500
1501 return result;
1502
1503 free_nvmeq:
1504 nvme_free_queues(dev, 0);
1505 return result;
1506 }
1507
1508 static int nvme_subsys_reset(struct nvme_dev *dev)
1509 {
1510 if (!dev->subsystem)
1511 return -ENOTTY;
1512
1513 writel(0x4E564D65, dev->bar + NVME_REG_NSSR); /* "NVMe" */
1514 return 0;
1515 }
1516
1517 static int nvme_kthread(void *data)
1518 {
1519 struct nvme_dev *dev, *next;
1520
1521 while (!kthread_should_stop()) {
1522 set_current_state(TASK_INTERRUPTIBLE);
1523 spin_lock(&dev_list_lock);
1524 list_for_each_entry_safe(dev, next, &dev_list, node) {
1525 int i;
1526 u32 csts = readl(dev->bar + NVME_REG_CSTS);
1527
1528 if ((dev->subsystem && (csts & NVME_CSTS_NSSRO)) ||
1529 csts & NVME_CSTS_CFS) {
1530 if (!__nvme_reset(dev)) {
1531 dev_warn(dev->dev,
1532 "Failed status: %x, reset controller\n",
1533 readl(dev->bar + NVME_REG_CSTS));
1534 }
1535 continue;
1536 }
1537 for (i = 0; i < dev->queue_count; i++) {
1538 struct nvme_queue *nvmeq = dev->queues[i];
1539 if (!nvmeq)
1540 continue;
1541 spin_lock_irq(&nvmeq->q_lock);
1542 nvme_process_cq(nvmeq);
1543
1544 while (i == 0 && dev->ctrl.event_limit > 0) {
1545 if (nvme_submit_async_admin_req(dev))
1546 break;
1547 dev->ctrl.event_limit--;
1548 }
1549 spin_unlock_irq(&nvmeq->q_lock);
1550 }
1551 }
1552 spin_unlock(&dev_list_lock);
1553 schedule_timeout(round_jiffies_relative(HZ));
1554 }
1555 return 0;
1556 }
1557
1558 /*
1559 * Create I/O queues. Failing to create an I/O queue is not an issue,
1560 * we can continue with less than the desired amount of queues, and
1561 * even a controller without I/O queues an still be used to issue
1562 * admin commands. This might be useful to upgrade a buggy firmware
1563 * for example.
1564 */
1565 static void nvme_create_io_queues(struct nvme_dev *dev)
1566 {
1567 unsigned i;
1568
1569 for (i = dev->queue_count; i <= dev->max_qid; i++)
1570 if (!nvme_alloc_queue(dev, i, dev->q_depth))
1571 break;
1572
1573 for (i = dev->online_queues; i <= dev->queue_count - 1; i++)
1574 if (nvme_create_queue(dev->queues[i], i)) {
1575 nvme_free_queues(dev, i);
1576 break;
1577 }
1578 }
1579
1580 static int set_queue_count(struct nvme_dev *dev, int count)
1581 {
1582 int status;
1583 u32 result;
1584 u32 q_count = (count - 1) | ((count - 1) << 16);
1585
1586 status = nvme_set_features(&dev->ctrl, NVME_FEAT_NUM_QUEUES, q_count, 0,
1587 &result);
1588 if (status < 0)
1589 return status;
1590 if (status > 0) {
1591 dev_err(dev->dev, "Could not set queue count (%d)\n", status);
1592 return 0;
1593 }
1594 return min(result & 0xffff, result >> 16) + 1;
1595 }
1596
1597 static void __iomem *nvme_map_cmb(struct nvme_dev *dev)
1598 {
1599 u64 szu, size, offset;
1600 u32 cmbloc;
1601 resource_size_t bar_size;
1602 struct pci_dev *pdev = to_pci_dev(dev->dev);
1603 void __iomem *cmb;
1604 dma_addr_t dma_addr;
1605
1606 if (!use_cmb_sqes)
1607 return NULL;
1608
1609 dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1610 if (!(NVME_CMB_SZ(dev->cmbsz)))
1611 return NULL;
1612
1613 cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1614
1615 szu = (u64)1 << (12 + 4 * NVME_CMB_SZU(dev->cmbsz));
1616 size = szu * NVME_CMB_SZ(dev->cmbsz);
1617 offset = szu * NVME_CMB_OFST(cmbloc);
1618 bar_size = pci_resource_len(pdev, NVME_CMB_BIR(cmbloc));
1619
1620 if (offset > bar_size)
1621 return NULL;
1622
1623 /*
1624 * Controllers may support a CMB size larger than their BAR,
1625 * for example, due to being behind a bridge. Reduce the CMB to
1626 * the reported size of the BAR
1627 */
1628 if (size > bar_size - offset)
1629 size = bar_size - offset;
1630
1631 dma_addr = pci_resource_start(pdev, NVME_CMB_BIR(cmbloc)) + offset;
1632 cmb = ioremap_wc(dma_addr, size);
1633 if (!cmb)
1634 return NULL;
1635
1636 dev->cmb_dma_addr = dma_addr;
1637 dev->cmb_size = size;
1638 return cmb;
1639 }
1640
1641 static inline void nvme_release_cmb(struct nvme_dev *dev)
1642 {
1643 if (dev->cmb) {
1644 iounmap(dev->cmb);
1645 dev->cmb = NULL;
1646 }
1647 }
1648
1649 static size_t db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1650 {
1651 return 4096 + ((nr_io_queues + 1) * 8 * dev->db_stride);
1652 }
1653
1654 static int nvme_setup_io_queues(struct nvme_dev *dev)
1655 {
1656 struct nvme_queue *adminq = dev->queues[0];
1657 struct pci_dev *pdev = to_pci_dev(dev->dev);
1658 int result, i, vecs, nr_io_queues, size;
1659
1660 nr_io_queues = num_possible_cpus();
1661 result = set_queue_count(dev, nr_io_queues);
1662 if (result <= 0)
1663 return result;
1664 if (result < nr_io_queues)
1665 nr_io_queues = result;
1666
1667 if (dev->cmb && NVME_CMB_SQS(dev->cmbsz)) {
1668 result = nvme_cmb_qdepth(dev, nr_io_queues,
1669 sizeof(struct nvme_command));
1670 if (result > 0)
1671 dev->q_depth = result;
1672 else
1673 nvme_release_cmb(dev);
1674 }
1675
1676 size = db_bar_size(dev, nr_io_queues);
1677 if (size > 8192) {
1678 iounmap(dev->bar);
1679 do {
1680 dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1681 if (dev->bar)
1682 break;
1683 if (!--nr_io_queues)
1684 return -ENOMEM;
1685 size = db_bar_size(dev, nr_io_queues);
1686 } while (1);
1687 dev->dbs = dev->bar + 4096;
1688 adminq->q_db = dev->dbs;
1689 }
1690
1691 /* Deregister the admin queue's interrupt */
1692 free_irq(dev->entry[0].vector, adminq);
1693
1694 /*
1695 * If we enable msix early due to not intx, disable it again before
1696 * setting up the full range we need.
1697 */
1698 if (!pdev->irq)
1699 pci_disable_msix(pdev);
1700
1701 for (i = 0; i < nr_io_queues; i++)
1702 dev->entry[i].entry = i;
1703 vecs = pci_enable_msix_range(pdev, dev->entry, 1, nr_io_queues);
1704 if (vecs < 0) {
1705 vecs = pci_enable_msi_range(pdev, 1, min(nr_io_queues, 32));
1706 if (vecs < 0) {
1707 vecs = 1;
1708 } else {
1709 for (i = 0; i < vecs; i++)
1710 dev->entry[i].vector = i + pdev->irq;
1711 }
1712 }
1713
1714 /*
1715 * Should investigate if there's a performance win from allocating
1716 * more queues than interrupt vectors; it might allow the submission
1717 * path to scale better, even if the receive path is limited by the
1718 * number of interrupts.
1719 */
1720 nr_io_queues = vecs;
1721 dev->max_qid = nr_io_queues;
1722
1723 result = queue_request_irq(dev, adminq, adminq->irqname);
1724 if (result) {
1725 adminq->cq_vector = -1;
1726 goto free_queues;
1727 }
1728
1729 /* Free previously allocated queues that are no longer usable */
1730 nvme_free_queues(dev, nr_io_queues + 1);
1731 nvme_create_io_queues(dev);
1732
1733 return 0;
1734
1735 free_queues:
1736 nvme_free_queues(dev, 1);
1737 return result;
1738 }
1739
1740 static void nvme_set_irq_hints(struct nvme_dev *dev)
1741 {
1742 struct nvme_queue *nvmeq;
1743 int i;
1744
1745 for (i = 0; i < dev->online_queues; i++) {
1746 nvmeq = dev->queues[i];
1747
1748 if (!nvmeq->tags || !(*nvmeq->tags))
1749 continue;
1750
1751 irq_set_affinity_hint(dev->entry[nvmeq->cq_vector].vector,
1752 blk_mq_tags_cpumask(*nvmeq->tags));
1753 }
1754 }
1755
1756 static void nvme_dev_scan(struct work_struct *work)
1757 {
1758 struct nvme_dev *dev = container_of(work, struct nvme_dev, scan_work);
1759
1760 if (!dev->tagset.tags)
1761 return;
1762 nvme_scan_namespaces(&dev->ctrl);
1763 nvme_set_irq_hints(dev);
1764 }
1765
1766 /*
1767 * Return: error value if an error occurred setting up the queues or calling
1768 * Identify Device. 0 if these succeeded, even if adding some of the
1769 * namespaces failed. At the moment, these failures are silent. TBD which
1770 * failures should be reported.
1771 */
1772 static int nvme_dev_add(struct nvme_dev *dev)
1773 {
1774 if (!dev->ctrl.tagset) {
1775 dev->tagset.ops = &nvme_mq_ops;
1776 dev->tagset.nr_hw_queues = dev->online_queues - 1;
1777 dev->tagset.timeout = NVME_IO_TIMEOUT;
1778 dev->tagset.numa_node = dev_to_node(dev->dev);
1779 dev->tagset.queue_depth =
1780 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
1781 dev->tagset.cmd_size = nvme_cmd_size(dev);
1782 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
1783 dev->tagset.driver_data = dev;
1784
1785 if (blk_mq_alloc_tag_set(&dev->tagset))
1786 return 0;
1787 dev->ctrl.tagset = &dev->tagset;
1788 }
1789 schedule_work(&dev->scan_work);
1790 return 0;
1791 }
1792
1793 static int nvme_dev_map(struct nvme_dev *dev)
1794 {
1795 u64 cap;
1796 int bars, result = -ENOMEM;
1797 struct pci_dev *pdev = to_pci_dev(dev->dev);
1798
1799 if (pci_enable_device_mem(pdev))
1800 return result;
1801
1802 dev->entry[0].vector = pdev->irq;
1803 pci_set_master(pdev);
1804 bars = pci_select_bars(pdev, IORESOURCE_MEM);
1805 if (!bars)
1806 goto disable_pci;
1807
1808 if (pci_request_selected_regions(pdev, bars, "nvme"))
1809 goto disable_pci;
1810
1811 if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
1812 dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
1813 goto disable;
1814
1815 dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
1816 if (!dev->bar)
1817 goto disable;
1818
1819 if (readl(dev->bar + NVME_REG_CSTS) == -1) {
1820 result = -ENODEV;
1821 goto unmap;
1822 }
1823
1824 /*
1825 * Some devices don't advertse INTx interrupts, pre-enable a single
1826 * MSIX vec for setup. We'll adjust this later.
1827 */
1828 if (!pdev->irq) {
1829 result = pci_enable_msix(pdev, dev->entry, 1);
1830 if (result < 0)
1831 goto unmap;
1832 }
1833
1834 cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
1835
1836 dev->q_depth = min_t(int, NVME_CAP_MQES(cap) + 1, NVME_Q_DEPTH);
1837 dev->db_stride = 1 << NVME_CAP_STRIDE(cap);
1838 dev->dbs = dev->bar + 4096;
1839 if (readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 2))
1840 dev->cmb = nvme_map_cmb(dev);
1841
1842 return 0;
1843
1844 unmap:
1845 iounmap(dev->bar);
1846 dev->bar = NULL;
1847 disable:
1848 pci_release_regions(pdev);
1849 disable_pci:
1850 pci_disable_device(pdev);
1851 return result;
1852 }
1853
1854 static void nvme_dev_unmap(struct nvme_dev *dev)
1855 {
1856 struct pci_dev *pdev = to_pci_dev(dev->dev);
1857
1858 if (pdev->msi_enabled)
1859 pci_disable_msi(pdev);
1860 else if (pdev->msix_enabled)
1861 pci_disable_msix(pdev);
1862
1863 if (dev->bar) {
1864 iounmap(dev->bar);
1865 dev->bar = NULL;
1866 pci_release_regions(pdev);
1867 }
1868
1869 if (pci_is_enabled(pdev))
1870 pci_disable_device(pdev);
1871 }
1872
1873 struct nvme_delq_ctx {
1874 struct task_struct *waiter;
1875 struct kthread_worker *worker;
1876 atomic_t refcount;
1877 };
1878
1879 static void nvme_wait_dq(struct nvme_delq_ctx *dq, struct nvme_dev *dev)
1880 {
1881 dq->waiter = current;
1882 mb();
1883
1884 for (;;) {
1885 set_current_state(TASK_KILLABLE);
1886 if (!atomic_read(&dq->refcount))
1887 break;
1888 if (!schedule_timeout(ADMIN_TIMEOUT) ||
1889 fatal_signal_pending(current)) {
1890 /*
1891 * Disable the controller first since we can't trust it
1892 * at this point, but leave the admin queue enabled
1893 * until all queue deletion requests are flushed.
1894 * FIXME: This may take a while if there are more h/w
1895 * queues than admin tags.
1896 */
1897 set_current_state(TASK_RUNNING);
1898 nvme_disable_ctrl(&dev->ctrl,
1899 lo_hi_readq(dev->bar + NVME_REG_CAP));
1900 nvme_clear_queue(dev->queues[0]);
1901 flush_kthread_worker(dq->worker);
1902 nvme_disable_queue(dev, 0);
1903 return;
1904 }
1905 }
1906 set_current_state(TASK_RUNNING);
1907 }
1908
1909 static void nvme_put_dq(struct nvme_delq_ctx *dq)
1910 {
1911 atomic_dec(&dq->refcount);
1912 if (dq->waiter)
1913 wake_up_process(dq->waiter);
1914 }
1915
1916 static struct nvme_delq_ctx *nvme_get_dq(struct nvme_delq_ctx *dq)
1917 {
1918 atomic_inc(&dq->refcount);
1919 return dq;
1920 }
1921
1922 static void nvme_del_queue_end(struct nvme_queue *nvmeq)
1923 {
1924 struct nvme_delq_ctx *dq = nvmeq->cmdinfo.ctx;
1925 nvme_put_dq(dq);
1926
1927 spin_lock_irq(&nvmeq->q_lock);
1928 nvme_process_cq(nvmeq);
1929 spin_unlock_irq(&nvmeq->q_lock);
1930 }
1931
1932 static int adapter_async_del_queue(struct nvme_queue *nvmeq, u8 opcode,
1933 kthread_work_func_t fn)
1934 {
1935 struct nvme_command c;
1936
1937 memset(&c, 0, sizeof(c));
1938 c.delete_queue.opcode = opcode;
1939 c.delete_queue.qid = cpu_to_le16(nvmeq->qid);
1940
1941 init_kthread_work(&nvmeq->cmdinfo.work, fn);
1942 return nvme_submit_admin_async_cmd(nvmeq->dev, &c, &nvmeq->cmdinfo,
1943 ADMIN_TIMEOUT);
1944 }
1945
1946 static void nvme_del_cq_work_handler(struct kthread_work *work)
1947 {
1948 struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
1949 cmdinfo.work);
1950 nvme_del_queue_end(nvmeq);
1951 }
1952
1953 static int nvme_delete_cq(struct nvme_queue *nvmeq)
1954 {
1955 return adapter_async_del_queue(nvmeq, nvme_admin_delete_cq,
1956 nvme_del_cq_work_handler);
1957 }
1958
1959 static void nvme_del_sq_work_handler(struct kthread_work *work)
1960 {
1961 struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
1962 cmdinfo.work);
1963 int status = nvmeq->cmdinfo.status;
1964
1965 if (!status)
1966 status = nvme_delete_cq(nvmeq);
1967 if (status)
1968 nvme_del_queue_end(nvmeq);
1969 }
1970
1971 static int nvme_delete_sq(struct nvme_queue *nvmeq)
1972 {
1973 return adapter_async_del_queue(nvmeq, nvme_admin_delete_sq,
1974 nvme_del_sq_work_handler);
1975 }
1976
1977 static void nvme_del_queue_start(struct kthread_work *work)
1978 {
1979 struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
1980 cmdinfo.work);
1981 if (nvme_delete_sq(nvmeq))
1982 nvme_del_queue_end(nvmeq);
1983 }
1984
1985 static void nvme_disable_io_queues(struct nvme_dev *dev)
1986 {
1987 int i;
1988 DEFINE_KTHREAD_WORKER_ONSTACK(worker);
1989 struct nvme_delq_ctx dq;
1990 struct task_struct *kworker_task = kthread_run(kthread_worker_fn,
1991 &worker, "nvme%d", dev->ctrl.instance);
1992
1993 if (IS_ERR(kworker_task)) {
1994 dev_err(dev->dev,
1995 "Failed to create queue del task\n");
1996 for (i = dev->queue_count - 1; i > 0; i--)
1997 nvme_disable_queue(dev, i);
1998 return;
1999 }
2000
2001 dq.waiter = NULL;
2002 atomic_set(&dq.refcount, 0);
2003 dq.worker = &worker;
2004 for (i = dev->queue_count - 1; i > 0; i--) {
2005 struct nvme_queue *nvmeq = dev->queues[i];
2006
2007 if (nvme_suspend_queue(nvmeq))
2008 continue;
2009 nvmeq->cmdinfo.ctx = nvme_get_dq(&dq);
2010 nvmeq->cmdinfo.worker = dq.worker;
2011 init_kthread_work(&nvmeq->cmdinfo.work, nvme_del_queue_start);
2012 queue_kthread_work(dq.worker, &nvmeq->cmdinfo.work);
2013 }
2014 nvme_wait_dq(&dq, dev);
2015 kthread_stop(kworker_task);
2016 }
2017
2018 /*
2019 * Remove the node from the device list and check
2020 * for whether or not we need to stop the nvme_thread.
2021 */
2022 static void nvme_dev_list_remove(struct nvme_dev *dev)
2023 {
2024 struct task_struct *tmp = NULL;
2025
2026 spin_lock(&dev_list_lock);
2027 list_del_init(&dev->node);
2028 if (list_empty(&dev_list) && !IS_ERR_OR_NULL(nvme_thread)) {
2029 tmp = nvme_thread;
2030 nvme_thread = NULL;
2031 }
2032 spin_unlock(&dev_list_lock);
2033
2034 if (tmp)
2035 kthread_stop(tmp);
2036 }
2037
2038 static void nvme_freeze_queues(struct nvme_dev *dev)
2039 {
2040 struct nvme_ns *ns;
2041
2042 list_for_each_entry(ns, &dev->ctrl.namespaces, list) {
2043 blk_mq_freeze_queue_start(ns->queue);
2044
2045 spin_lock_irq(ns->queue->queue_lock);
2046 queue_flag_set(QUEUE_FLAG_STOPPED, ns->queue);
2047 spin_unlock_irq(ns->queue->queue_lock);
2048
2049 blk_mq_cancel_requeue_work(ns->queue);
2050 blk_mq_stop_hw_queues(ns->queue);
2051 }
2052 }
2053
2054 static void nvme_unfreeze_queues(struct nvme_dev *dev)
2055 {
2056 struct nvme_ns *ns;
2057
2058 list_for_each_entry(ns, &dev->ctrl.namespaces, list) {
2059 queue_flag_clear_unlocked(QUEUE_FLAG_STOPPED, ns->queue);
2060 blk_mq_unfreeze_queue(ns->queue);
2061 blk_mq_start_stopped_hw_queues(ns->queue, true);
2062 blk_mq_kick_requeue_list(ns->queue);
2063 }
2064 }
2065
2066 static void nvme_dev_shutdown(struct nvme_dev *dev)
2067 {
2068 int i;
2069 u32 csts = -1;
2070
2071 nvme_dev_list_remove(dev);
2072
2073 if (dev->bar) {
2074 nvme_freeze_queues(dev);
2075 csts = readl(dev->bar + NVME_REG_CSTS);
2076 }
2077 if (csts & NVME_CSTS_CFS || !(csts & NVME_CSTS_RDY)) {
2078 for (i = dev->queue_count - 1; i >= 0; i--) {
2079 struct nvme_queue *nvmeq = dev->queues[i];
2080 nvme_suspend_queue(nvmeq);
2081 }
2082 } else {
2083 nvme_disable_io_queues(dev);
2084 nvme_shutdown_ctrl(&dev->ctrl);
2085 nvme_disable_queue(dev, 0);
2086 }
2087 nvme_dev_unmap(dev);
2088
2089 for (i = dev->queue_count - 1; i >= 0; i--)
2090 nvme_clear_queue(dev->queues[i]);
2091 }
2092
2093 static int nvme_setup_prp_pools(struct nvme_dev *dev)
2094 {
2095 dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
2096 PAGE_SIZE, PAGE_SIZE, 0);
2097 if (!dev->prp_page_pool)
2098 return -ENOMEM;
2099
2100 /* Optimisation for I/Os between 4k and 128k */
2101 dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
2102 256, 256, 0);
2103 if (!dev->prp_small_pool) {
2104 dma_pool_destroy(dev->prp_page_pool);
2105 return -ENOMEM;
2106 }
2107 return 0;
2108 }
2109
2110 static void nvme_release_prp_pools(struct nvme_dev *dev)
2111 {
2112 dma_pool_destroy(dev->prp_page_pool);
2113 dma_pool_destroy(dev->prp_small_pool);
2114 }
2115
2116 static DEFINE_IDA(nvme_instance_ida);
2117
2118 static int nvme_set_instance(struct nvme_dev *dev)
2119 {
2120 int instance, error;
2121
2122 do {
2123 if (!ida_pre_get(&nvme_instance_ida, GFP_KERNEL))
2124 return -ENODEV;
2125
2126 spin_lock(&dev_list_lock);
2127 error = ida_get_new(&nvme_instance_ida, &instance);
2128 spin_unlock(&dev_list_lock);
2129 } while (error == -EAGAIN);
2130
2131 if (error)
2132 return -ENODEV;
2133
2134 dev->ctrl.instance = instance;
2135 return 0;
2136 }
2137
2138 static void nvme_release_instance(struct nvme_dev *dev)
2139 {
2140 spin_lock(&dev_list_lock);
2141 ida_remove(&nvme_instance_ida, dev->ctrl.instance);
2142 spin_unlock(&dev_list_lock);
2143 }
2144
2145 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
2146 {
2147 struct nvme_dev *dev = to_nvme_dev(ctrl);
2148
2149 put_device(dev->dev);
2150 put_device(ctrl->device);
2151 nvme_release_instance(dev);
2152 if (dev->tagset.tags)
2153 blk_mq_free_tag_set(&dev->tagset);
2154 if (dev->ctrl.admin_q)
2155 blk_put_queue(dev->ctrl.admin_q);
2156 kfree(dev->queues);
2157 kfree(dev->entry);
2158 kfree(dev);
2159 }
2160
2161 static int nvme_dev_open(struct inode *inode, struct file *f)
2162 {
2163 struct nvme_dev *dev;
2164 int instance = iminor(inode);
2165 int ret = -ENODEV;
2166
2167 spin_lock(&dev_list_lock);
2168 list_for_each_entry(dev, &dev_list, node) {
2169 if (dev->ctrl.instance == instance) {
2170 if (!dev->ctrl.admin_q) {
2171 ret = -EWOULDBLOCK;
2172 break;
2173 }
2174 if (!kref_get_unless_zero(&dev->ctrl.kref))
2175 break;
2176 f->private_data = dev;
2177 ret = 0;
2178 break;
2179 }
2180 }
2181 spin_unlock(&dev_list_lock);
2182
2183 return ret;
2184 }
2185
2186 static int nvme_dev_release(struct inode *inode, struct file *f)
2187 {
2188 struct nvme_dev *dev = f->private_data;
2189 nvme_put_ctrl(&dev->ctrl);
2190 return 0;
2191 }
2192
2193 static long nvme_dev_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
2194 {
2195 struct nvme_dev *dev = f->private_data;
2196 struct nvme_ns *ns;
2197
2198 switch (cmd) {
2199 case NVME_IOCTL_ADMIN_CMD:
2200 return nvme_user_cmd(&dev->ctrl, NULL, (void __user *)arg);
2201 case NVME_IOCTL_IO_CMD:
2202 if (list_empty(&dev->ctrl.namespaces))
2203 return -ENOTTY;
2204 ns = list_first_entry(&dev->ctrl.namespaces, struct nvme_ns, list);
2205 return nvme_user_cmd(&dev->ctrl, ns, (void __user *)arg);
2206 case NVME_IOCTL_RESET:
2207 dev_warn(dev->dev, "resetting controller\n");
2208 return nvme_reset(dev);
2209 case NVME_IOCTL_SUBSYS_RESET:
2210 return nvme_subsys_reset(dev);
2211 default:
2212 return -ENOTTY;
2213 }
2214 }
2215
2216 static const struct file_operations nvme_dev_fops = {
2217 .owner = THIS_MODULE,
2218 .open = nvme_dev_open,
2219 .release = nvme_dev_release,
2220 .unlocked_ioctl = nvme_dev_ioctl,
2221 .compat_ioctl = nvme_dev_ioctl,
2222 };
2223
2224 static void nvme_probe_work(struct work_struct *work)
2225 {
2226 struct nvme_dev *dev = container_of(work, struct nvme_dev, probe_work);
2227 bool start_thread = false;
2228 int result;
2229
2230 result = nvme_dev_map(dev);
2231 if (result)
2232 goto out;
2233
2234 result = nvme_configure_admin_queue(dev);
2235 if (result)
2236 goto unmap;
2237
2238 spin_lock(&dev_list_lock);
2239 if (list_empty(&dev_list) && IS_ERR_OR_NULL(nvme_thread)) {
2240 start_thread = true;
2241 nvme_thread = NULL;
2242 }
2243 list_add(&dev->node, &dev_list);
2244 spin_unlock(&dev_list_lock);
2245
2246 if (start_thread) {
2247 nvme_thread = kthread_run(nvme_kthread, NULL, "nvme");
2248 wake_up_all(&nvme_kthread_wait);
2249 } else
2250 wait_event_killable(nvme_kthread_wait, nvme_thread);
2251
2252 if (IS_ERR_OR_NULL(nvme_thread)) {
2253 result = nvme_thread ? PTR_ERR(nvme_thread) : -EINTR;
2254 goto disable;
2255 }
2256
2257 nvme_init_queue(dev->queues[0], 0);
2258 result = nvme_alloc_admin_tags(dev);
2259 if (result)
2260 goto disable;
2261
2262 result = nvme_init_identify(&dev->ctrl);
2263 if (result)
2264 goto free_tags;
2265
2266 result = nvme_setup_io_queues(dev);
2267 if (result)
2268 goto free_tags;
2269
2270 dev->ctrl.event_limit = 1;
2271
2272 /*
2273 * Keep the controller around but remove all namespaces if we don't have
2274 * any working I/O queue.
2275 */
2276 if (dev->online_queues < 2) {
2277 dev_warn(dev->dev, "IO queues not created\n");
2278 nvme_remove_namespaces(&dev->ctrl);
2279 } else {
2280 nvme_unfreeze_queues(dev);
2281 nvme_dev_add(dev);
2282 }
2283
2284 return;
2285
2286 free_tags:
2287 nvme_dev_remove_admin(dev);
2288 blk_put_queue(dev->ctrl.admin_q);
2289 dev->ctrl.admin_q = NULL;
2290 dev->queues[0]->tags = NULL;
2291 disable:
2292 nvme_disable_queue(dev, 0);
2293 nvme_dev_list_remove(dev);
2294 unmap:
2295 nvme_dev_unmap(dev);
2296 out:
2297 if (!work_busy(&dev->reset_work))
2298 nvme_dead_ctrl(dev);
2299 }
2300
2301 static int nvme_remove_dead_ctrl(void *arg)
2302 {
2303 struct nvme_dev *dev = (struct nvme_dev *)arg;
2304 struct pci_dev *pdev = to_pci_dev(dev->dev);
2305
2306 if (pci_get_drvdata(pdev))
2307 pci_stop_and_remove_bus_device_locked(pdev);
2308 nvme_put_ctrl(&dev->ctrl);
2309 return 0;
2310 }
2311
2312 static void nvme_dead_ctrl(struct nvme_dev *dev)
2313 {
2314 dev_warn(dev->dev, "Device failed to resume\n");
2315 kref_get(&dev->ctrl.kref);
2316 if (IS_ERR(kthread_run(nvme_remove_dead_ctrl, dev, "nvme%d",
2317 dev->ctrl.instance))) {
2318 dev_err(dev->dev,
2319 "Failed to start controller remove task\n");
2320 nvme_put_ctrl(&dev->ctrl);
2321 }
2322 }
2323
2324 static void nvme_reset_work(struct work_struct *ws)
2325 {
2326 struct nvme_dev *dev = container_of(ws, struct nvme_dev, reset_work);
2327 bool in_probe = work_busy(&dev->probe_work);
2328
2329 nvme_dev_shutdown(dev);
2330
2331 /* Synchronize with device probe so that work will see failure status
2332 * and exit gracefully without trying to schedule another reset */
2333 flush_work(&dev->probe_work);
2334
2335 /* Fail this device if reset occured during probe to avoid
2336 * infinite initialization loops. */
2337 if (in_probe) {
2338 nvme_dead_ctrl(dev);
2339 return;
2340 }
2341 /* Schedule device resume asynchronously so the reset work is available
2342 * to cleanup errors that may occur during reinitialization */
2343 schedule_work(&dev->probe_work);
2344 }
2345
2346 static int __nvme_reset(struct nvme_dev *dev)
2347 {
2348 if (work_pending(&dev->reset_work))
2349 return -EBUSY;
2350 list_del_init(&dev->node);
2351 queue_work(nvme_workq, &dev->reset_work);
2352 return 0;
2353 }
2354
2355 static int nvme_reset(struct nvme_dev *dev)
2356 {
2357 int ret;
2358
2359 if (!dev->ctrl.admin_q || blk_queue_dying(dev->ctrl.admin_q))
2360 return -ENODEV;
2361
2362 spin_lock(&dev_list_lock);
2363 ret = __nvme_reset(dev);
2364 spin_unlock(&dev_list_lock);
2365
2366 if (!ret) {
2367 flush_work(&dev->reset_work);
2368 flush_work(&dev->probe_work);
2369 return 0;
2370 }
2371
2372 return ret;
2373 }
2374
2375 static ssize_t nvme_sysfs_reset(struct device *dev,
2376 struct device_attribute *attr, const char *buf,
2377 size_t count)
2378 {
2379 struct nvme_dev *ndev = dev_get_drvdata(dev);
2380 int ret;
2381
2382 ret = nvme_reset(ndev);
2383 if (ret < 0)
2384 return ret;
2385
2386 return count;
2387 }
2388 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
2389
2390 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
2391 {
2392 *val = readl(to_nvme_dev(ctrl)->bar + off);
2393 return 0;
2394 }
2395
2396 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
2397 {
2398 writel(val, to_nvme_dev(ctrl)->bar + off);
2399 return 0;
2400 }
2401
2402 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2403 {
2404 *val = readq(to_nvme_dev(ctrl)->bar + off);
2405 return 0;
2406 }
2407
2408 static bool nvme_pci_io_incapable(struct nvme_ctrl *ctrl)
2409 {
2410 struct nvme_dev *dev = to_nvme_dev(ctrl);
2411
2412 return !dev->bar || dev->online_queues < 2;
2413 }
2414
2415 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
2416 .reg_read32 = nvme_pci_reg_read32,
2417 .reg_write32 = nvme_pci_reg_write32,
2418 .reg_read64 = nvme_pci_reg_read64,
2419 .io_incapable = nvme_pci_io_incapable,
2420 .free_ctrl = nvme_pci_free_ctrl,
2421 };
2422
2423 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2424 {
2425 int node, result = -ENOMEM;
2426 struct nvme_dev *dev;
2427
2428 node = dev_to_node(&pdev->dev);
2429 if (node == NUMA_NO_NODE)
2430 set_dev_node(&pdev->dev, 0);
2431
2432 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
2433 if (!dev)
2434 return -ENOMEM;
2435 dev->entry = kzalloc_node(num_possible_cpus() * sizeof(*dev->entry),
2436 GFP_KERNEL, node);
2437 if (!dev->entry)
2438 goto free;
2439 dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *),
2440 GFP_KERNEL, node);
2441 if (!dev->queues)
2442 goto free;
2443
2444 INIT_LIST_HEAD(&dev->ctrl.namespaces);
2445 INIT_WORK(&dev->reset_work, nvme_reset_work);
2446 dev->dev = get_device(&pdev->dev);
2447 pci_set_drvdata(pdev, dev);
2448
2449 dev->ctrl.ops = &nvme_pci_ctrl_ops;
2450 dev->ctrl.dev = dev->dev;
2451 dev->ctrl.quirks = id->driver_data;
2452
2453 result = nvme_set_instance(dev);
2454 if (result)
2455 goto put_pci;
2456
2457 result = nvme_setup_prp_pools(dev);
2458 if (result)
2459 goto release;
2460
2461 kref_init(&dev->ctrl.kref);
2462 dev->ctrl.device = device_create(nvme_class, &pdev->dev,
2463 MKDEV(nvme_char_major, dev->ctrl.instance),
2464 dev, "nvme%d", dev->ctrl.instance);
2465 if (IS_ERR(dev->ctrl.device)) {
2466 result = PTR_ERR(dev->ctrl.device);
2467 goto release_pools;
2468 }
2469 get_device(dev->ctrl.device);
2470 dev_set_drvdata(dev->ctrl.device, dev);
2471
2472 result = device_create_file(dev->ctrl.device, &dev_attr_reset_controller);
2473 if (result)
2474 goto put_dev;
2475
2476 INIT_LIST_HEAD(&dev->node);
2477 INIT_WORK(&dev->scan_work, nvme_dev_scan);
2478 INIT_WORK(&dev->probe_work, nvme_probe_work);
2479 schedule_work(&dev->probe_work);
2480 return 0;
2481
2482 put_dev:
2483 device_destroy(nvme_class, MKDEV(nvme_char_major, dev->ctrl.instance));
2484 put_device(dev->ctrl.device);
2485 release_pools:
2486 nvme_release_prp_pools(dev);
2487 release:
2488 nvme_release_instance(dev);
2489 put_pci:
2490 put_device(dev->dev);
2491 free:
2492 kfree(dev->queues);
2493 kfree(dev->entry);
2494 kfree(dev);
2495 return result;
2496 }
2497
2498 static void nvme_reset_notify(struct pci_dev *pdev, bool prepare)
2499 {
2500 struct nvme_dev *dev = pci_get_drvdata(pdev);
2501
2502 if (prepare)
2503 nvme_dev_shutdown(dev);
2504 else
2505 schedule_work(&dev->probe_work);
2506 }
2507
2508 static void nvme_shutdown(struct pci_dev *pdev)
2509 {
2510 struct nvme_dev *dev = pci_get_drvdata(pdev);
2511 nvme_dev_shutdown(dev);
2512 }
2513
2514 static void nvme_remove(struct pci_dev *pdev)
2515 {
2516 struct nvme_dev *dev = pci_get_drvdata(pdev);
2517
2518 spin_lock(&dev_list_lock);
2519 list_del_init(&dev->node);
2520 spin_unlock(&dev_list_lock);
2521
2522 pci_set_drvdata(pdev, NULL);
2523 flush_work(&dev->probe_work);
2524 flush_work(&dev->reset_work);
2525 flush_work(&dev->scan_work);
2526 device_remove_file(dev->ctrl.device, &dev_attr_reset_controller);
2527 nvme_remove_namespaces(&dev->ctrl);
2528 nvme_dev_shutdown(dev);
2529 nvme_dev_remove_admin(dev);
2530 device_destroy(nvme_class, MKDEV(nvme_char_major, dev->ctrl.instance));
2531 nvme_free_queues(dev, 0);
2532 nvme_release_cmb(dev);
2533 nvme_release_prp_pools(dev);
2534 nvme_put_ctrl(&dev->ctrl);
2535 }
2536
2537 /* These functions are yet to be implemented */
2538 #define nvme_error_detected NULL
2539 #define nvme_dump_registers NULL
2540 #define nvme_link_reset NULL
2541 #define nvme_slot_reset NULL
2542 #define nvme_error_resume NULL
2543
2544 #ifdef CONFIG_PM_SLEEP
2545 static int nvme_suspend(struct device *dev)
2546 {
2547 struct pci_dev *pdev = to_pci_dev(dev);
2548 struct nvme_dev *ndev = pci_get_drvdata(pdev);
2549
2550 nvme_dev_shutdown(ndev);
2551 return 0;
2552 }
2553
2554 static int nvme_resume(struct device *dev)
2555 {
2556 struct pci_dev *pdev = to_pci_dev(dev);
2557 struct nvme_dev *ndev = pci_get_drvdata(pdev);
2558
2559 schedule_work(&ndev->probe_work);
2560 return 0;
2561 }
2562 #endif
2563
2564 static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
2565
2566 static const struct pci_error_handlers nvme_err_handler = {
2567 .error_detected = nvme_error_detected,
2568 .mmio_enabled = nvme_dump_registers,
2569 .link_reset = nvme_link_reset,
2570 .slot_reset = nvme_slot_reset,
2571 .resume = nvme_error_resume,
2572 .reset_notify = nvme_reset_notify,
2573 };
2574
2575 /* Move to pci_ids.h later */
2576 #define PCI_CLASS_STORAGE_EXPRESS 0x010802
2577
2578 static const struct pci_device_id nvme_id_table[] = {
2579 { PCI_VDEVICE(INTEL, 0x0953),
2580 .driver_data = NVME_QUIRK_STRIPE_SIZE, },
2581 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
2582 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) },
2583 { 0, }
2584 };
2585 MODULE_DEVICE_TABLE(pci, nvme_id_table);
2586
2587 static struct pci_driver nvme_driver = {
2588 .name = "nvme",
2589 .id_table = nvme_id_table,
2590 .probe = nvme_probe,
2591 .remove = nvme_remove,
2592 .shutdown = nvme_shutdown,
2593 .driver = {
2594 .pm = &nvme_dev_pm_ops,
2595 },
2596 .err_handler = &nvme_err_handler,
2597 };
2598
2599 static int __init nvme_init(void)
2600 {
2601 int result;
2602
2603 init_waitqueue_head(&nvme_kthread_wait);
2604
2605 nvme_workq = create_singlethread_workqueue("nvme");
2606 if (!nvme_workq)
2607 return -ENOMEM;
2608
2609 result = nvme_core_init();
2610 if (result < 0)
2611 goto kill_workq;
2612
2613 result = __register_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme",
2614 &nvme_dev_fops);
2615 if (result < 0)
2616 goto unregister_blkdev;
2617 else if (result > 0)
2618 nvme_char_major = result;
2619
2620 nvme_class = class_create(THIS_MODULE, "nvme");
2621 if (IS_ERR(nvme_class)) {
2622 result = PTR_ERR(nvme_class);
2623 goto unregister_chrdev;
2624 }
2625
2626 result = pci_register_driver(&nvme_driver);
2627 if (result)
2628 goto destroy_class;
2629 return 0;
2630
2631 destroy_class:
2632 class_destroy(nvme_class);
2633 unregister_chrdev:
2634 __unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
2635 unregister_blkdev:
2636 nvme_core_exit();
2637 kill_workq:
2638 destroy_workqueue(nvme_workq);
2639 return result;
2640 }
2641
2642 static void __exit nvme_exit(void)
2643 {
2644 pci_unregister_driver(&nvme_driver);
2645 nvme_core_exit();
2646 destroy_workqueue(nvme_workq);
2647 class_destroy(nvme_class);
2648 __unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
2649 BUG_ON(nvme_thread && !IS_ERR(nvme_thread));
2650 _nvme_check_size();
2651 }
2652
2653 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
2654 MODULE_LICENSE("GPL");
2655 MODULE_VERSION("1.0");
2656 module_init(nvme_init);
2657 module_exit(nvme_exit);
This page took 0.083866 seconds and 5 git commands to generate.