Merge branch 'next' of git://git.kernel.org/pub/scm/linux/kernel/git/rzhang/linux
[deliverable/linux.git] / drivers / nvme / host / pci.c
1 /*
2 * NVM Express device driver
3 * Copyright (c) 2011-2014, Intel Corporation.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 */
14
15 #include <linux/aer.h>
16 #include <linux/bitops.h>
17 #include <linux/blkdev.h>
18 #include <linux/blk-mq.h>
19 #include <linux/cpu.h>
20 #include <linux/delay.h>
21 #include <linux/errno.h>
22 #include <linux/fs.h>
23 #include <linux/genhd.h>
24 #include <linux/hdreg.h>
25 #include <linux/idr.h>
26 #include <linux/init.h>
27 #include <linux/interrupt.h>
28 #include <linux/io.h>
29 #include <linux/kdev_t.h>
30 #include <linux/kernel.h>
31 #include <linux/mm.h>
32 #include <linux/module.h>
33 #include <linux/moduleparam.h>
34 #include <linux/mutex.h>
35 #include <linux/pci.h>
36 #include <linux/poison.h>
37 #include <linux/ptrace.h>
38 #include <linux/sched.h>
39 #include <linux/slab.h>
40 #include <linux/t10-pi.h>
41 #include <linux/timer.h>
42 #include <linux/types.h>
43 #include <linux/io-64-nonatomic-lo-hi.h>
44 #include <asm/unaligned.h>
45
46 #include "nvme.h"
47
48 #define NVME_Q_DEPTH 1024
49 #define NVME_AQ_DEPTH 256
50 #define SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
51 #define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
52
53 /*
54 * We handle AEN commands ourselves and don't even let the
55 * block layer know about them.
56 */
57 #define NVME_NR_AEN_COMMANDS 1
58 #define NVME_AQ_BLKMQ_DEPTH (NVME_AQ_DEPTH - NVME_NR_AEN_COMMANDS)
59
60 static int use_threaded_interrupts;
61 module_param(use_threaded_interrupts, int, 0);
62
63 static bool use_cmb_sqes = true;
64 module_param(use_cmb_sqes, bool, 0644);
65 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
66
67 static struct workqueue_struct *nvme_workq;
68
69 struct nvme_dev;
70 struct nvme_queue;
71
72 static int nvme_reset(struct nvme_dev *dev);
73 static void nvme_process_cq(struct nvme_queue *nvmeq);
74 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
75
76 /*
77 * Represents an NVM Express device. Each nvme_dev is a PCI function.
78 */
79 struct nvme_dev {
80 struct nvme_queue **queues;
81 struct blk_mq_tag_set tagset;
82 struct blk_mq_tag_set admin_tagset;
83 u32 __iomem *dbs;
84 struct device *dev;
85 struct dma_pool *prp_page_pool;
86 struct dma_pool *prp_small_pool;
87 unsigned queue_count;
88 unsigned online_queues;
89 unsigned max_qid;
90 int q_depth;
91 u32 db_stride;
92 struct msix_entry *entry;
93 void __iomem *bar;
94 struct work_struct reset_work;
95 struct work_struct scan_work;
96 struct work_struct remove_work;
97 struct work_struct async_work;
98 struct timer_list watchdog_timer;
99 struct mutex shutdown_lock;
100 bool subsystem;
101 void __iomem *cmb;
102 dma_addr_t cmb_dma_addr;
103 u64 cmb_size;
104 u32 cmbsz;
105 unsigned long flags;
106
107 #define NVME_CTRL_RESETTING 0
108 #define NVME_CTRL_REMOVING 1
109
110 struct nvme_ctrl ctrl;
111 struct completion ioq_wait;
112 };
113
114 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
115 {
116 return container_of(ctrl, struct nvme_dev, ctrl);
117 }
118
119 /*
120 * An NVM Express queue. Each device has at least two (one for admin
121 * commands and one for I/O commands).
122 */
123 struct nvme_queue {
124 struct device *q_dmadev;
125 struct nvme_dev *dev;
126 char irqname[24]; /* nvme4294967295-65535\0 */
127 spinlock_t q_lock;
128 struct nvme_command *sq_cmds;
129 struct nvme_command __iomem *sq_cmds_io;
130 volatile struct nvme_completion *cqes;
131 struct blk_mq_tags **tags;
132 dma_addr_t sq_dma_addr;
133 dma_addr_t cq_dma_addr;
134 u32 __iomem *q_db;
135 u16 q_depth;
136 s16 cq_vector;
137 u16 sq_tail;
138 u16 cq_head;
139 u16 qid;
140 u8 cq_phase;
141 u8 cqe_seen;
142 };
143
144 /*
145 * The nvme_iod describes the data in an I/O, including the list of PRP
146 * entries. You can't see it in this data structure because C doesn't let
147 * me express that. Use nvme_init_iod to ensure there's enough space
148 * allocated to store the PRP list.
149 */
150 struct nvme_iod {
151 struct nvme_queue *nvmeq;
152 int aborted;
153 int npages; /* In the PRP list. 0 means small pool in use */
154 int nents; /* Used in scatterlist */
155 int length; /* Of data, in bytes */
156 dma_addr_t first_dma;
157 struct scatterlist meta_sg; /* metadata requires single contiguous buffer */
158 struct scatterlist *sg;
159 struct scatterlist inline_sg[0];
160 };
161
162 /*
163 * Check we didin't inadvertently grow the command struct
164 */
165 static inline void _nvme_check_size(void)
166 {
167 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
168 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
169 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
170 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
171 BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
172 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
173 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
174 BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
175 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
176 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
177 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
178 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
179 }
180
181 /*
182 * Max size of iod being embedded in the request payload
183 */
184 #define NVME_INT_PAGES 2
185 #define NVME_INT_BYTES(dev) (NVME_INT_PAGES * (dev)->ctrl.page_size)
186
187 /*
188 * Will slightly overestimate the number of pages needed. This is OK
189 * as it only leads to a small amount of wasted memory for the lifetime of
190 * the I/O.
191 */
192 static int nvme_npages(unsigned size, struct nvme_dev *dev)
193 {
194 unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
195 dev->ctrl.page_size);
196 return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
197 }
198
199 static unsigned int nvme_iod_alloc_size(struct nvme_dev *dev,
200 unsigned int size, unsigned int nseg)
201 {
202 return sizeof(__le64 *) * nvme_npages(size, dev) +
203 sizeof(struct scatterlist) * nseg;
204 }
205
206 static unsigned int nvme_cmd_size(struct nvme_dev *dev)
207 {
208 return sizeof(struct nvme_iod) +
209 nvme_iod_alloc_size(dev, NVME_INT_BYTES(dev), NVME_INT_PAGES);
210 }
211
212 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
213 unsigned int hctx_idx)
214 {
215 struct nvme_dev *dev = data;
216 struct nvme_queue *nvmeq = dev->queues[0];
217
218 WARN_ON(hctx_idx != 0);
219 WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
220 WARN_ON(nvmeq->tags);
221
222 hctx->driver_data = nvmeq;
223 nvmeq->tags = &dev->admin_tagset.tags[0];
224 return 0;
225 }
226
227 static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
228 {
229 struct nvme_queue *nvmeq = hctx->driver_data;
230
231 nvmeq->tags = NULL;
232 }
233
234 static int nvme_admin_init_request(void *data, struct request *req,
235 unsigned int hctx_idx, unsigned int rq_idx,
236 unsigned int numa_node)
237 {
238 struct nvme_dev *dev = data;
239 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
240 struct nvme_queue *nvmeq = dev->queues[0];
241
242 BUG_ON(!nvmeq);
243 iod->nvmeq = nvmeq;
244 return 0;
245 }
246
247 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
248 unsigned int hctx_idx)
249 {
250 struct nvme_dev *dev = data;
251 struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
252
253 if (!nvmeq->tags)
254 nvmeq->tags = &dev->tagset.tags[hctx_idx];
255
256 WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
257 hctx->driver_data = nvmeq;
258 return 0;
259 }
260
261 static int nvme_init_request(void *data, struct request *req,
262 unsigned int hctx_idx, unsigned int rq_idx,
263 unsigned int numa_node)
264 {
265 struct nvme_dev *dev = data;
266 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
267 struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
268
269 BUG_ON(!nvmeq);
270 iod->nvmeq = nvmeq;
271 return 0;
272 }
273
274 static void nvme_queue_scan(struct nvme_dev *dev)
275 {
276 /*
277 * Do not queue new scan work when a controller is reset during
278 * removal.
279 */
280 if (test_bit(NVME_CTRL_REMOVING, &dev->flags))
281 return;
282 queue_work(nvme_workq, &dev->scan_work);
283 }
284
285 static void nvme_complete_async_event(struct nvme_dev *dev,
286 struct nvme_completion *cqe)
287 {
288 u16 status = le16_to_cpu(cqe->status) >> 1;
289 u32 result = le32_to_cpu(cqe->result);
290
291 if (status == NVME_SC_SUCCESS || status == NVME_SC_ABORT_REQ) {
292 ++dev->ctrl.event_limit;
293 queue_work(nvme_workq, &dev->async_work);
294 }
295
296 if (status != NVME_SC_SUCCESS)
297 return;
298
299 switch (result & 0xff07) {
300 case NVME_AER_NOTICE_NS_CHANGED:
301 dev_info(dev->ctrl.device, "rescanning\n");
302 nvme_queue_scan(dev);
303 default:
304 dev_warn(dev->ctrl.device, "async event result %08x\n", result);
305 }
306 }
307
308 /**
309 * __nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
310 * @nvmeq: The queue to use
311 * @cmd: The command to send
312 *
313 * Safe to use from interrupt context
314 */
315 static void __nvme_submit_cmd(struct nvme_queue *nvmeq,
316 struct nvme_command *cmd)
317 {
318 u16 tail = nvmeq->sq_tail;
319
320 if (nvmeq->sq_cmds_io)
321 memcpy_toio(&nvmeq->sq_cmds_io[tail], cmd, sizeof(*cmd));
322 else
323 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
324
325 if (++tail == nvmeq->q_depth)
326 tail = 0;
327 writel(tail, nvmeq->q_db);
328 nvmeq->sq_tail = tail;
329 }
330
331 static __le64 **iod_list(struct request *req)
332 {
333 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
334 return (__le64 **)(iod->sg + req->nr_phys_segments);
335 }
336
337 static int nvme_init_iod(struct request *rq, struct nvme_dev *dev)
338 {
339 struct nvme_iod *iod = blk_mq_rq_to_pdu(rq);
340 int nseg = rq->nr_phys_segments;
341 unsigned size;
342
343 if (rq->cmd_flags & REQ_DISCARD)
344 size = sizeof(struct nvme_dsm_range);
345 else
346 size = blk_rq_bytes(rq);
347
348 if (nseg > NVME_INT_PAGES || size > NVME_INT_BYTES(dev)) {
349 iod->sg = kmalloc(nvme_iod_alloc_size(dev, size, nseg), GFP_ATOMIC);
350 if (!iod->sg)
351 return BLK_MQ_RQ_QUEUE_BUSY;
352 } else {
353 iod->sg = iod->inline_sg;
354 }
355
356 iod->aborted = 0;
357 iod->npages = -1;
358 iod->nents = 0;
359 iod->length = size;
360 return 0;
361 }
362
363 static void nvme_free_iod(struct nvme_dev *dev, struct request *req)
364 {
365 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
366 const int last_prp = dev->ctrl.page_size / 8 - 1;
367 int i;
368 __le64 **list = iod_list(req);
369 dma_addr_t prp_dma = iod->first_dma;
370
371 if (iod->npages == 0)
372 dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
373 for (i = 0; i < iod->npages; i++) {
374 __le64 *prp_list = list[i];
375 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
376 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
377 prp_dma = next_prp_dma;
378 }
379
380 if (iod->sg != iod->inline_sg)
381 kfree(iod->sg);
382 }
383
384 #ifdef CONFIG_BLK_DEV_INTEGRITY
385 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
386 {
387 if (be32_to_cpu(pi->ref_tag) == v)
388 pi->ref_tag = cpu_to_be32(p);
389 }
390
391 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
392 {
393 if (be32_to_cpu(pi->ref_tag) == p)
394 pi->ref_tag = cpu_to_be32(v);
395 }
396
397 /**
398 * nvme_dif_remap - remaps ref tags to bip seed and physical lba
399 *
400 * The virtual start sector is the one that was originally submitted by the
401 * block layer. Due to partitioning, MD/DM cloning, etc. the actual physical
402 * start sector may be different. Remap protection information to match the
403 * physical LBA on writes, and back to the original seed on reads.
404 *
405 * Type 0 and 3 do not have a ref tag, so no remapping required.
406 */
407 static void nvme_dif_remap(struct request *req,
408 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
409 {
410 struct nvme_ns *ns = req->rq_disk->private_data;
411 struct bio_integrity_payload *bip;
412 struct t10_pi_tuple *pi;
413 void *p, *pmap;
414 u32 i, nlb, ts, phys, virt;
415
416 if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3)
417 return;
418
419 bip = bio_integrity(req->bio);
420 if (!bip)
421 return;
422
423 pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset;
424
425 p = pmap;
426 virt = bip_get_seed(bip);
427 phys = nvme_block_nr(ns, blk_rq_pos(req));
428 nlb = (blk_rq_bytes(req) >> ns->lba_shift);
429 ts = ns->disk->queue->integrity.tuple_size;
430
431 for (i = 0; i < nlb; i++, virt++, phys++) {
432 pi = (struct t10_pi_tuple *)p;
433 dif_swap(phys, virt, pi);
434 p += ts;
435 }
436 kunmap_atomic(pmap);
437 }
438 #else /* CONFIG_BLK_DEV_INTEGRITY */
439 static void nvme_dif_remap(struct request *req,
440 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
441 {
442 }
443 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
444 {
445 }
446 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
447 {
448 }
449 #endif
450
451 static bool nvme_setup_prps(struct nvme_dev *dev, struct request *req,
452 int total_len)
453 {
454 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
455 struct dma_pool *pool;
456 int length = total_len;
457 struct scatterlist *sg = iod->sg;
458 int dma_len = sg_dma_len(sg);
459 u64 dma_addr = sg_dma_address(sg);
460 u32 page_size = dev->ctrl.page_size;
461 int offset = dma_addr & (page_size - 1);
462 __le64 *prp_list;
463 __le64 **list = iod_list(req);
464 dma_addr_t prp_dma;
465 int nprps, i;
466
467 length -= (page_size - offset);
468 if (length <= 0)
469 return true;
470
471 dma_len -= (page_size - offset);
472 if (dma_len) {
473 dma_addr += (page_size - offset);
474 } else {
475 sg = sg_next(sg);
476 dma_addr = sg_dma_address(sg);
477 dma_len = sg_dma_len(sg);
478 }
479
480 if (length <= page_size) {
481 iod->first_dma = dma_addr;
482 return true;
483 }
484
485 nprps = DIV_ROUND_UP(length, page_size);
486 if (nprps <= (256 / 8)) {
487 pool = dev->prp_small_pool;
488 iod->npages = 0;
489 } else {
490 pool = dev->prp_page_pool;
491 iod->npages = 1;
492 }
493
494 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
495 if (!prp_list) {
496 iod->first_dma = dma_addr;
497 iod->npages = -1;
498 return false;
499 }
500 list[0] = prp_list;
501 iod->first_dma = prp_dma;
502 i = 0;
503 for (;;) {
504 if (i == page_size >> 3) {
505 __le64 *old_prp_list = prp_list;
506 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
507 if (!prp_list)
508 return false;
509 list[iod->npages++] = prp_list;
510 prp_list[0] = old_prp_list[i - 1];
511 old_prp_list[i - 1] = cpu_to_le64(prp_dma);
512 i = 1;
513 }
514 prp_list[i++] = cpu_to_le64(dma_addr);
515 dma_len -= page_size;
516 dma_addr += page_size;
517 length -= page_size;
518 if (length <= 0)
519 break;
520 if (dma_len > 0)
521 continue;
522 BUG_ON(dma_len < 0);
523 sg = sg_next(sg);
524 dma_addr = sg_dma_address(sg);
525 dma_len = sg_dma_len(sg);
526 }
527
528 return true;
529 }
530
531 static int nvme_map_data(struct nvme_dev *dev, struct request *req,
532 struct nvme_command *cmnd)
533 {
534 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
535 struct request_queue *q = req->q;
536 enum dma_data_direction dma_dir = rq_data_dir(req) ?
537 DMA_TO_DEVICE : DMA_FROM_DEVICE;
538 int ret = BLK_MQ_RQ_QUEUE_ERROR;
539
540 sg_init_table(iod->sg, req->nr_phys_segments);
541 iod->nents = blk_rq_map_sg(q, req, iod->sg);
542 if (!iod->nents)
543 goto out;
544
545 ret = BLK_MQ_RQ_QUEUE_BUSY;
546 if (!dma_map_sg(dev->dev, iod->sg, iod->nents, dma_dir))
547 goto out;
548
549 if (!nvme_setup_prps(dev, req, blk_rq_bytes(req)))
550 goto out_unmap;
551
552 ret = BLK_MQ_RQ_QUEUE_ERROR;
553 if (blk_integrity_rq(req)) {
554 if (blk_rq_count_integrity_sg(q, req->bio) != 1)
555 goto out_unmap;
556
557 sg_init_table(&iod->meta_sg, 1);
558 if (blk_rq_map_integrity_sg(q, req->bio, &iod->meta_sg) != 1)
559 goto out_unmap;
560
561 if (rq_data_dir(req))
562 nvme_dif_remap(req, nvme_dif_prep);
563
564 if (!dma_map_sg(dev->dev, &iod->meta_sg, 1, dma_dir))
565 goto out_unmap;
566 }
567
568 cmnd->rw.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
569 cmnd->rw.prp2 = cpu_to_le64(iod->first_dma);
570 if (blk_integrity_rq(req))
571 cmnd->rw.metadata = cpu_to_le64(sg_dma_address(&iod->meta_sg));
572 return BLK_MQ_RQ_QUEUE_OK;
573
574 out_unmap:
575 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
576 out:
577 return ret;
578 }
579
580 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
581 {
582 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
583 enum dma_data_direction dma_dir = rq_data_dir(req) ?
584 DMA_TO_DEVICE : DMA_FROM_DEVICE;
585
586 if (iod->nents) {
587 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
588 if (blk_integrity_rq(req)) {
589 if (!rq_data_dir(req))
590 nvme_dif_remap(req, nvme_dif_complete);
591 dma_unmap_sg(dev->dev, &iod->meta_sg, 1, dma_dir);
592 }
593 }
594
595 nvme_free_iod(dev, req);
596 }
597
598 /*
599 * We reuse the small pool to allocate the 16-byte range here as it is not
600 * worth having a special pool for these or additional cases to handle freeing
601 * the iod.
602 */
603 static int nvme_setup_discard(struct nvme_queue *nvmeq, struct nvme_ns *ns,
604 struct request *req, struct nvme_command *cmnd)
605 {
606 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
607 struct nvme_dsm_range *range;
608
609 range = dma_pool_alloc(nvmeq->dev->prp_small_pool, GFP_ATOMIC,
610 &iod->first_dma);
611 if (!range)
612 return BLK_MQ_RQ_QUEUE_BUSY;
613 iod_list(req)[0] = (__le64 *)range;
614 iod->npages = 0;
615
616 range->cattr = cpu_to_le32(0);
617 range->nlb = cpu_to_le32(blk_rq_bytes(req) >> ns->lba_shift);
618 range->slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
619
620 memset(cmnd, 0, sizeof(*cmnd));
621 cmnd->dsm.opcode = nvme_cmd_dsm;
622 cmnd->dsm.nsid = cpu_to_le32(ns->ns_id);
623 cmnd->dsm.prp1 = cpu_to_le64(iod->first_dma);
624 cmnd->dsm.nr = 0;
625 cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
626 return BLK_MQ_RQ_QUEUE_OK;
627 }
628
629 /*
630 * NOTE: ns is NULL when called on the admin queue.
631 */
632 static int nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
633 const struct blk_mq_queue_data *bd)
634 {
635 struct nvme_ns *ns = hctx->queue->queuedata;
636 struct nvme_queue *nvmeq = hctx->driver_data;
637 struct nvme_dev *dev = nvmeq->dev;
638 struct request *req = bd->rq;
639 struct nvme_command cmnd;
640 int ret = BLK_MQ_RQ_QUEUE_OK;
641
642 /*
643 * If formated with metadata, require the block layer provide a buffer
644 * unless this namespace is formated such that the metadata can be
645 * stripped/generated by the controller with PRACT=1.
646 */
647 if (ns && ns->ms && !blk_integrity_rq(req)) {
648 if (!(ns->pi_type && ns->ms == 8) &&
649 req->cmd_type != REQ_TYPE_DRV_PRIV) {
650 blk_mq_end_request(req, -EFAULT);
651 return BLK_MQ_RQ_QUEUE_OK;
652 }
653 }
654
655 ret = nvme_init_iod(req, dev);
656 if (ret)
657 return ret;
658
659 if (req->cmd_flags & REQ_DISCARD) {
660 ret = nvme_setup_discard(nvmeq, ns, req, &cmnd);
661 } else {
662 if (req->cmd_type == REQ_TYPE_DRV_PRIV)
663 memcpy(&cmnd, req->cmd, sizeof(cmnd));
664 else if (req->cmd_flags & REQ_FLUSH)
665 nvme_setup_flush(ns, &cmnd);
666 else
667 nvme_setup_rw(ns, req, &cmnd);
668
669 if (req->nr_phys_segments)
670 ret = nvme_map_data(dev, req, &cmnd);
671 }
672
673 if (ret)
674 goto out;
675
676 cmnd.common.command_id = req->tag;
677 blk_mq_start_request(req);
678
679 spin_lock_irq(&nvmeq->q_lock);
680 if (unlikely(nvmeq->cq_vector < 0)) {
681 if (ns && !test_bit(NVME_NS_DEAD, &ns->flags))
682 ret = BLK_MQ_RQ_QUEUE_BUSY;
683 else
684 ret = BLK_MQ_RQ_QUEUE_ERROR;
685 spin_unlock_irq(&nvmeq->q_lock);
686 goto out;
687 }
688 __nvme_submit_cmd(nvmeq, &cmnd);
689 nvme_process_cq(nvmeq);
690 spin_unlock_irq(&nvmeq->q_lock);
691 return BLK_MQ_RQ_QUEUE_OK;
692 out:
693 nvme_free_iod(dev, req);
694 return ret;
695 }
696
697 static void nvme_complete_rq(struct request *req)
698 {
699 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
700 struct nvme_dev *dev = iod->nvmeq->dev;
701 int error = 0;
702
703 nvme_unmap_data(dev, req);
704
705 if (unlikely(req->errors)) {
706 if (nvme_req_needs_retry(req, req->errors)) {
707 nvme_requeue_req(req);
708 return;
709 }
710
711 if (req->cmd_type == REQ_TYPE_DRV_PRIV)
712 error = req->errors;
713 else
714 error = nvme_error_status(req->errors);
715 }
716
717 if (unlikely(iod->aborted)) {
718 dev_warn(dev->ctrl.device,
719 "completing aborted command with status: %04x\n",
720 req->errors);
721 }
722
723 blk_mq_end_request(req, error);
724 }
725
726 static void __nvme_process_cq(struct nvme_queue *nvmeq, unsigned int *tag)
727 {
728 u16 head, phase;
729
730 head = nvmeq->cq_head;
731 phase = nvmeq->cq_phase;
732
733 for (;;) {
734 struct nvme_completion cqe = nvmeq->cqes[head];
735 u16 status = le16_to_cpu(cqe.status);
736 struct request *req;
737
738 if ((status & 1) != phase)
739 break;
740 if (++head == nvmeq->q_depth) {
741 head = 0;
742 phase = !phase;
743 }
744
745 if (tag && *tag == cqe.command_id)
746 *tag = -1;
747
748 if (unlikely(cqe.command_id >= nvmeq->q_depth)) {
749 dev_warn(nvmeq->dev->ctrl.device,
750 "invalid id %d completed on queue %d\n",
751 cqe.command_id, le16_to_cpu(cqe.sq_id));
752 continue;
753 }
754
755 /*
756 * AEN requests are special as they don't time out and can
757 * survive any kind of queue freeze and often don't respond to
758 * aborts. We don't even bother to allocate a struct request
759 * for them but rather special case them here.
760 */
761 if (unlikely(nvmeq->qid == 0 &&
762 cqe.command_id >= NVME_AQ_BLKMQ_DEPTH)) {
763 nvme_complete_async_event(nvmeq->dev, &cqe);
764 continue;
765 }
766
767 req = blk_mq_tag_to_rq(*nvmeq->tags, cqe.command_id);
768 if (req->cmd_type == REQ_TYPE_DRV_PRIV && req->special)
769 memcpy(req->special, &cqe, sizeof(cqe));
770 blk_mq_complete_request(req, status >> 1);
771
772 }
773
774 /* If the controller ignores the cq head doorbell and continuously
775 * writes to the queue, it is theoretically possible to wrap around
776 * the queue twice and mistakenly return IRQ_NONE. Linux only
777 * requires that 0.1% of your interrupts are handled, so this isn't
778 * a big problem.
779 */
780 if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
781 return;
782
783 if (likely(nvmeq->cq_vector >= 0))
784 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
785 nvmeq->cq_head = head;
786 nvmeq->cq_phase = phase;
787
788 nvmeq->cqe_seen = 1;
789 }
790
791 static void nvme_process_cq(struct nvme_queue *nvmeq)
792 {
793 __nvme_process_cq(nvmeq, NULL);
794 }
795
796 static irqreturn_t nvme_irq(int irq, void *data)
797 {
798 irqreturn_t result;
799 struct nvme_queue *nvmeq = data;
800 spin_lock(&nvmeq->q_lock);
801 nvme_process_cq(nvmeq);
802 result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
803 nvmeq->cqe_seen = 0;
804 spin_unlock(&nvmeq->q_lock);
805 return result;
806 }
807
808 static irqreturn_t nvme_irq_check(int irq, void *data)
809 {
810 struct nvme_queue *nvmeq = data;
811 struct nvme_completion cqe = nvmeq->cqes[nvmeq->cq_head];
812 if ((le16_to_cpu(cqe.status) & 1) != nvmeq->cq_phase)
813 return IRQ_NONE;
814 return IRQ_WAKE_THREAD;
815 }
816
817 static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
818 {
819 struct nvme_queue *nvmeq = hctx->driver_data;
820
821 if ((le16_to_cpu(nvmeq->cqes[nvmeq->cq_head].status) & 1) ==
822 nvmeq->cq_phase) {
823 spin_lock_irq(&nvmeq->q_lock);
824 __nvme_process_cq(nvmeq, &tag);
825 spin_unlock_irq(&nvmeq->q_lock);
826
827 if (tag == -1)
828 return 1;
829 }
830
831 return 0;
832 }
833
834 static void nvme_async_event_work(struct work_struct *work)
835 {
836 struct nvme_dev *dev = container_of(work, struct nvme_dev, async_work);
837 struct nvme_queue *nvmeq = dev->queues[0];
838 struct nvme_command c;
839
840 memset(&c, 0, sizeof(c));
841 c.common.opcode = nvme_admin_async_event;
842
843 spin_lock_irq(&nvmeq->q_lock);
844 while (dev->ctrl.event_limit > 0) {
845 c.common.command_id = NVME_AQ_BLKMQ_DEPTH +
846 --dev->ctrl.event_limit;
847 __nvme_submit_cmd(nvmeq, &c);
848 }
849 spin_unlock_irq(&nvmeq->q_lock);
850 }
851
852 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
853 {
854 struct nvme_command c;
855
856 memset(&c, 0, sizeof(c));
857 c.delete_queue.opcode = opcode;
858 c.delete_queue.qid = cpu_to_le16(id);
859
860 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
861 }
862
863 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
864 struct nvme_queue *nvmeq)
865 {
866 struct nvme_command c;
867 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
868
869 /*
870 * Note: we (ab)use the fact the the prp fields survive if no data
871 * is attached to the request.
872 */
873 memset(&c, 0, sizeof(c));
874 c.create_cq.opcode = nvme_admin_create_cq;
875 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
876 c.create_cq.cqid = cpu_to_le16(qid);
877 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
878 c.create_cq.cq_flags = cpu_to_le16(flags);
879 c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
880
881 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
882 }
883
884 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
885 struct nvme_queue *nvmeq)
886 {
887 struct nvme_command c;
888 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
889
890 /*
891 * Note: we (ab)use the fact the the prp fields survive if no data
892 * is attached to the request.
893 */
894 memset(&c, 0, sizeof(c));
895 c.create_sq.opcode = nvme_admin_create_sq;
896 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
897 c.create_sq.sqid = cpu_to_le16(qid);
898 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
899 c.create_sq.sq_flags = cpu_to_le16(flags);
900 c.create_sq.cqid = cpu_to_le16(qid);
901
902 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
903 }
904
905 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
906 {
907 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
908 }
909
910 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
911 {
912 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
913 }
914
915 static void abort_endio(struct request *req, int error)
916 {
917 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
918 struct nvme_queue *nvmeq = iod->nvmeq;
919 u16 status = req->errors;
920
921 dev_warn(nvmeq->dev->ctrl.device, "Abort status: 0x%x", status);
922 atomic_inc(&nvmeq->dev->ctrl.abort_limit);
923 blk_mq_free_request(req);
924 }
925
926 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
927 {
928 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
929 struct nvme_queue *nvmeq = iod->nvmeq;
930 struct nvme_dev *dev = nvmeq->dev;
931 struct request *abort_req;
932 struct nvme_command cmd;
933
934 /*
935 * Shutdown immediately if controller times out while starting. The
936 * reset work will see the pci device disabled when it gets the forced
937 * cancellation error. All outstanding requests are completed on
938 * shutdown, so we return BLK_EH_HANDLED.
939 */
940 if (test_bit(NVME_CTRL_RESETTING, &dev->flags)) {
941 dev_warn(dev->ctrl.device,
942 "I/O %d QID %d timeout, disable controller\n",
943 req->tag, nvmeq->qid);
944 nvme_dev_disable(dev, false);
945 req->errors = NVME_SC_CANCELLED;
946 return BLK_EH_HANDLED;
947 }
948
949 /*
950 * Shutdown the controller immediately and schedule a reset if the
951 * command was already aborted once before and still hasn't been
952 * returned to the driver, or if this is the admin queue.
953 */
954 if (!nvmeq->qid || iod->aborted) {
955 dev_warn(dev->ctrl.device,
956 "I/O %d QID %d timeout, reset controller\n",
957 req->tag, nvmeq->qid);
958 nvme_dev_disable(dev, false);
959 queue_work(nvme_workq, &dev->reset_work);
960
961 /*
962 * Mark the request as handled, since the inline shutdown
963 * forces all outstanding requests to complete.
964 */
965 req->errors = NVME_SC_CANCELLED;
966 return BLK_EH_HANDLED;
967 }
968
969 iod->aborted = 1;
970
971 if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
972 atomic_inc(&dev->ctrl.abort_limit);
973 return BLK_EH_RESET_TIMER;
974 }
975
976 memset(&cmd, 0, sizeof(cmd));
977 cmd.abort.opcode = nvme_admin_abort_cmd;
978 cmd.abort.cid = req->tag;
979 cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
980
981 dev_warn(nvmeq->dev->ctrl.device,
982 "I/O %d QID %d timeout, aborting\n",
983 req->tag, nvmeq->qid);
984
985 abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
986 BLK_MQ_REQ_NOWAIT);
987 if (IS_ERR(abort_req)) {
988 atomic_inc(&dev->ctrl.abort_limit);
989 return BLK_EH_RESET_TIMER;
990 }
991
992 abort_req->timeout = ADMIN_TIMEOUT;
993 abort_req->end_io_data = NULL;
994 blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
995
996 /*
997 * The aborted req will be completed on receiving the abort req.
998 * We enable the timer again. If hit twice, it'll cause a device reset,
999 * as the device then is in a faulty state.
1000 */
1001 return BLK_EH_RESET_TIMER;
1002 }
1003
1004 static void nvme_cancel_queue_ios(struct request *req, void *data, bool reserved)
1005 {
1006 struct nvme_queue *nvmeq = data;
1007 int status;
1008
1009 if (!blk_mq_request_started(req))
1010 return;
1011
1012 dev_dbg_ratelimited(nvmeq->dev->ctrl.device,
1013 "Cancelling I/O %d QID %d\n", req->tag, nvmeq->qid);
1014
1015 status = NVME_SC_ABORT_REQ;
1016 if (blk_queue_dying(req->q))
1017 status |= NVME_SC_DNR;
1018 blk_mq_complete_request(req, status);
1019 }
1020
1021 static void nvme_free_queue(struct nvme_queue *nvmeq)
1022 {
1023 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
1024 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1025 if (nvmeq->sq_cmds)
1026 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
1027 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1028 kfree(nvmeq);
1029 }
1030
1031 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1032 {
1033 int i;
1034
1035 for (i = dev->queue_count - 1; i >= lowest; i--) {
1036 struct nvme_queue *nvmeq = dev->queues[i];
1037 dev->queue_count--;
1038 dev->queues[i] = NULL;
1039 nvme_free_queue(nvmeq);
1040 }
1041 }
1042
1043 /**
1044 * nvme_suspend_queue - put queue into suspended state
1045 * @nvmeq - queue to suspend
1046 */
1047 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
1048 {
1049 int vector;
1050
1051 spin_lock_irq(&nvmeq->q_lock);
1052 if (nvmeq->cq_vector == -1) {
1053 spin_unlock_irq(&nvmeq->q_lock);
1054 return 1;
1055 }
1056 vector = nvmeq->dev->entry[nvmeq->cq_vector].vector;
1057 nvmeq->dev->online_queues--;
1058 nvmeq->cq_vector = -1;
1059 spin_unlock_irq(&nvmeq->q_lock);
1060
1061 if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1062 blk_mq_stop_hw_queues(nvmeq->dev->ctrl.admin_q);
1063
1064 irq_set_affinity_hint(vector, NULL);
1065 free_irq(vector, nvmeq);
1066
1067 return 0;
1068 }
1069
1070 static void nvme_clear_queue(struct nvme_queue *nvmeq)
1071 {
1072 spin_lock_irq(&nvmeq->q_lock);
1073 if (nvmeq->tags && *nvmeq->tags)
1074 blk_mq_all_tag_busy_iter(*nvmeq->tags, nvme_cancel_queue_ios, nvmeq);
1075 spin_unlock_irq(&nvmeq->q_lock);
1076 }
1077
1078 static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
1079 {
1080 struct nvme_queue *nvmeq = dev->queues[0];
1081
1082 if (!nvmeq)
1083 return;
1084 if (nvme_suspend_queue(nvmeq))
1085 return;
1086
1087 if (shutdown)
1088 nvme_shutdown_ctrl(&dev->ctrl);
1089 else
1090 nvme_disable_ctrl(&dev->ctrl, lo_hi_readq(
1091 dev->bar + NVME_REG_CAP));
1092
1093 spin_lock_irq(&nvmeq->q_lock);
1094 nvme_process_cq(nvmeq);
1095 spin_unlock_irq(&nvmeq->q_lock);
1096 }
1097
1098 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1099 int entry_size)
1100 {
1101 int q_depth = dev->q_depth;
1102 unsigned q_size_aligned = roundup(q_depth * entry_size,
1103 dev->ctrl.page_size);
1104
1105 if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1106 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1107 mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
1108 q_depth = div_u64(mem_per_q, entry_size);
1109
1110 /*
1111 * Ensure the reduced q_depth is above some threshold where it
1112 * would be better to map queues in system memory with the
1113 * original depth
1114 */
1115 if (q_depth < 64)
1116 return -ENOMEM;
1117 }
1118
1119 return q_depth;
1120 }
1121
1122 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1123 int qid, int depth)
1124 {
1125 if (qid && dev->cmb && use_cmb_sqes && NVME_CMB_SQS(dev->cmbsz)) {
1126 unsigned offset = (qid - 1) * roundup(SQ_SIZE(depth),
1127 dev->ctrl.page_size);
1128 nvmeq->sq_dma_addr = dev->cmb_dma_addr + offset;
1129 nvmeq->sq_cmds_io = dev->cmb + offset;
1130 } else {
1131 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
1132 &nvmeq->sq_dma_addr, GFP_KERNEL);
1133 if (!nvmeq->sq_cmds)
1134 return -ENOMEM;
1135 }
1136
1137 return 0;
1138 }
1139
1140 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
1141 int depth)
1142 {
1143 struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq), GFP_KERNEL);
1144 if (!nvmeq)
1145 return NULL;
1146
1147 nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth),
1148 &nvmeq->cq_dma_addr, GFP_KERNEL);
1149 if (!nvmeq->cqes)
1150 goto free_nvmeq;
1151
1152 if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
1153 goto free_cqdma;
1154
1155 nvmeq->q_dmadev = dev->dev;
1156 nvmeq->dev = dev;
1157 snprintf(nvmeq->irqname, sizeof(nvmeq->irqname), "nvme%dq%d",
1158 dev->ctrl.instance, qid);
1159 spin_lock_init(&nvmeq->q_lock);
1160 nvmeq->cq_head = 0;
1161 nvmeq->cq_phase = 1;
1162 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1163 nvmeq->q_depth = depth;
1164 nvmeq->qid = qid;
1165 nvmeq->cq_vector = -1;
1166 dev->queues[qid] = nvmeq;
1167 dev->queue_count++;
1168
1169 return nvmeq;
1170
1171 free_cqdma:
1172 dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
1173 nvmeq->cq_dma_addr);
1174 free_nvmeq:
1175 kfree(nvmeq);
1176 return NULL;
1177 }
1178
1179 static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1180 const char *name)
1181 {
1182 if (use_threaded_interrupts)
1183 return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
1184 nvme_irq_check, nvme_irq, IRQF_SHARED,
1185 name, nvmeq);
1186 return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
1187 IRQF_SHARED, name, nvmeq);
1188 }
1189
1190 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1191 {
1192 struct nvme_dev *dev = nvmeq->dev;
1193
1194 spin_lock_irq(&nvmeq->q_lock);
1195 nvmeq->sq_tail = 0;
1196 nvmeq->cq_head = 0;
1197 nvmeq->cq_phase = 1;
1198 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1199 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
1200 dev->online_queues++;
1201 spin_unlock_irq(&nvmeq->q_lock);
1202 }
1203
1204 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1205 {
1206 struct nvme_dev *dev = nvmeq->dev;
1207 int result;
1208
1209 nvmeq->cq_vector = qid - 1;
1210 result = adapter_alloc_cq(dev, qid, nvmeq);
1211 if (result < 0)
1212 return result;
1213
1214 result = adapter_alloc_sq(dev, qid, nvmeq);
1215 if (result < 0)
1216 goto release_cq;
1217
1218 result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
1219 if (result < 0)
1220 goto release_sq;
1221
1222 nvme_init_queue(nvmeq, qid);
1223 return result;
1224
1225 release_sq:
1226 adapter_delete_sq(dev, qid);
1227 release_cq:
1228 adapter_delete_cq(dev, qid);
1229 return result;
1230 }
1231
1232 static struct blk_mq_ops nvme_mq_admin_ops = {
1233 .queue_rq = nvme_queue_rq,
1234 .complete = nvme_complete_rq,
1235 .map_queue = blk_mq_map_queue,
1236 .init_hctx = nvme_admin_init_hctx,
1237 .exit_hctx = nvme_admin_exit_hctx,
1238 .init_request = nvme_admin_init_request,
1239 .timeout = nvme_timeout,
1240 };
1241
1242 static struct blk_mq_ops nvme_mq_ops = {
1243 .queue_rq = nvme_queue_rq,
1244 .complete = nvme_complete_rq,
1245 .map_queue = blk_mq_map_queue,
1246 .init_hctx = nvme_init_hctx,
1247 .init_request = nvme_init_request,
1248 .timeout = nvme_timeout,
1249 .poll = nvme_poll,
1250 };
1251
1252 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1253 {
1254 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1255 /*
1256 * If the controller was reset during removal, it's possible
1257 * user requests may be waiting on a stopped queue. Start the
1258 * queue to flush these to completion.
1259 */
1260 blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true);
1261 blk_cleanup_queue(dev->ctrl.admin_q);
1262 blk_mq_free_tag_set(&dev->admin_tagset);
1263 }
1264 }
1265
1266 static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1267 {
1268 if (!dev->ctrl.admin_q) {
1269 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1270 dev->admin_tagset.nr_hw_queues = 1;
1271
1272 /*
1273 * Subtract one to leave an empty queue entry for 'Full Queue'
1274 * condition. See NVM-Express 1.2 specification, section 4.1.2.
1275 */
1276 dev->admin_tagset.queue_depth = NVME_AQ_BLKMQ_DEPTH - 1;
1277 dev->admin_tagset.timeout = ADMIN_TIMEOUT;
1278 dev->admin_tagset.numa_node = dev_to_node(dev->dev);
1279 dev->admin_tagset.cmd_size = nvme_cmd_size(dev);
1280 dev->admin_tagset.driver_data = dev;
1281
1282 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1283 return -ENOMEM;
1284
1285 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1286 if (IS_ERR(dev->ctrl.admin_q)) {
1287 blk_mq_free_tag_set(&dev->admin_tagset);
1288 return -ENOMEM;
1289 }
1290 if (!blk_get_queue(dev->ctrl.admin_q)) {
1291 nvme_dev_remove_admin(dev);
1292 dev->ctrl.admin_q = NULL;
1293 return -ENODEV;
1294 }
1295 } else
1296 blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true);
1297
1298 return 0;
1299 }
1300
1301 static int nvme_configure_admin_queue(struct nvme_dev *dev)
1302 {
1303 int result;
1304 u32 aqa;
1305 u64 cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
1306 struct nvme_queue *nvmeq;
1307
1308 dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1) ?
1309 NVME_CAP_NSSRC(cap) : 0;
1310
1311 if (dev->subsystem &&
1312 (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1313 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1314
1315 result = nvme_disable_ctrl(&dev->ctrl, cap);
1316 if (result < 0)
1317 return result;
1318
1319 nvmeq = dev->queues[0];
1320 if (!nvmeq) {
1321 nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1322 if (!nvmeq)
1323 return -ENOMEM;
1324 }
1325
1326 aqa = nvmeq->q_depth - 1;
1327 aqa |= aqa << 16;
1328
1329 writel(aqa, dev->bar + NVME_REG_AQA);
1330 lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1331 lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1332
1333 result = nvme_enable_ctrl(&dev->ctrl, cap);
1334 if (result)
1335 goto free_nvmeq;
1336
1337 nvmeq->cq_vector = 0;
1338 result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
1339 if (result) {
1340 nvmeq->cq_vector = -1;
1341 goto free_nvmeq;
1342 }
1343
1344 return result;
1345
1346 free_nvmeq:
1347 nvme_free_queues(dev, 0);
1348 return result;
1349 }
1350
1351 static void nvme_watchdog_timer(unsigned long data)
1352 {
1353 struct nvme_dev *dev = (struct nvme_dev *)data;
1354 u32 csts = readl(dev->bar + NVME_REG_CSTS);
1355
1356 /*
1357 * Skip controllers currently under reset.
1358 */
1359 if (!work_pending(&dev->reset_work) && !work_busy(&dev->reset_work) &&
1360 ((csts & NVME_CSTS_CFS) ||
1361 (dev->subsystem && (csts & NVME_CSTS_NSSRO)))) {
1362 if (queue_work(nvme_workq, &dev->reset_work)) {
1363 dev_warn(dev->dev,
1364 "Failed status: 0x%x, reset controller.\n",
1365 csts);
1366 }
1367 return;
1368 }
1369
1370 mod_timer(&dev->watchdog_timer, round_jiffies(jiffies + HZ));
1371 }
1372
1373 static int nvme_create_io_queues(struct nvme_dev *dev)
1374 {
1375 unsigned i, max;
1376 int ret = 0;
1377
1378 for (i = dev->queue_count; i <= dev->max_qid; i++) {
1379 if (!nvme_alloc_queue(dev, i, dev->q_depth)) {
1380 ret = -ENOMEM;
1381 break;
1382 }
1383 }
1384
1385 max = min(dev->max_qid, dev->queue_count - 1);
1386 for (i = dev->online_queues; i <= max; i++) {
1387 ret = nvme_create_queue(dev->queues[i], i);
1388 if (ret) {
1389 nvme_free_queues(dev, i);
1390 break;
1391 }
1392 }
1393
1394 /*
1395 * Ignore failing Create SQ/CQ commands, we can continue with less
1396 * than the desired aount of queues, and even a controller without
1397 * I/O queues an still be used to issue admin commands. This might
1398 * be useful to upgrade a buggy firmware for example.
1399 */
1400 return ret >= 0 ? 0 : ret;
1401 }
1402
1403 static void __iomem *nvme_map_cmb(struct nvme_dev *dev)
1404 {
1405 u64 szu, size, offset;
1406 u32 cmbloc;
1407 resource_size_t bar_size;
1408 struct pci_dev *pdev = to_pci_dev(dev->dev);
1409 void __iomem *cmb;
1410 dma_addr_t dma_addr;
1411
1412 if (!use_cmb_sqes)
1413 return NULL;
1414
1415 dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1416 if (!(NVME_CMB_SZ(dev->cmbsz)))
1417 return NULL;
1418
1419 cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1420
1421 szu = (u64)1 << (12 + 4 * NVME_CMB_SZU(dev->cmbsz));
1422 size = szu * NVME_CMB_SZ(dev->cmbsz);
1423 offset = szu * NVME_CMB_OFST(cmbloc);
1424 bar_size = pci_resource_len(pdev, NVME_CMB_BIR(cmbloc));
1425
1426 if (offset > bar_size)
1427 return NULL;
1428
1429 /*
1430 * Controllers may support a CMB size larger than their BAR,
1431 * for example, due to being behind a bridge. Reduce the CMB to
1432 * the reported size of the BAR
1433 */
1434 if (size > bar_size - offset)
1435 size = bar_size - offset;
1436
1437 dma_addr = pci_resource_start(pdev, NVME_CMB_BIR(cmbloc)) + offset;
1438 cmb = ioremap_wc(dma_addr, size);
1439 if (!cmb)
1440 return NULL;
1441
1442 dev->cmb_dma_addr = dma_addr;
1443 dev->cmb_size = size;
1444 return cmb;
1445 }
1446
1447 static inline void nvme_release_cmb(struct nvme_dev *dev)
1448 {
1449 if (dev->cmb) {
1450 iounmap(dev->cmb);
1451 dev->cmb = NULL;
1452 }
1453 }
1454
1455 static size_t db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1456 {
1457 return 4096 + ((nr_io_queues + 1) * 8 * dev->db_stride);
1458 }
1459
1460 static int nvme_setup_io_queues(struct nvme_dev *dev)
1461 {
1462 struct nvme_queue *adminq = dev->queues[0];
1463 struct pci_dev *pdev = to_pci_dev(dev->dev);
1464 int result, i, vecs, nr_io_queues, size;
1465
1466 nr_io_queues = num_possible_cpus();
1467 result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
1468 if (result < 0)
1469 return result;
1470
1471 /*
1472 * Degraded controllers might return an error when setting the queue
1473 * count. We still want to be able to bring them online and offer
1474 * access to the admin queue, as that might be only way to fix them up.
1475 */
1476 if (result > 0) {
1477 dev_err(dev->ctrl.device,
1478 "Could not set queue count (%d)\n", result);
1479 nr_io_queues = 0;
1480 result = 0;
1481 }
1482
1483 if (dev->cmb && NVME_CMB_SQS(dev->cmbsz)) {
1484 result = nvme_cmb_qdepth(dev, nr_io_queues,
1485 sizeof(struct nvme_command));
1486 if (result > 0)
1487 dev->q_depth = result;
1488 else
1489 nvme_release_cmb(dev);
1490 }
1491
1492 size = db_bar_size(dev, nr_io_queues);
1493 if (size > 8192) {
1494 iounmap(dev->bar);
1495 do {
1496 dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1497 if (dev->bar)
1498 break;
1499 if (!--nr_io_queues)
1500 return -ENOMEM;
1501 size = db_bar_size(dev, nr_io_queues);
1502 } while (1);
1503 dev->dbs = dev->bar + 4096;
1504 adminq->q_db = dev->dbs;
1505 }
1506
1507 /* Deregister the admin queue's interrupt */
1508 free_irq(dev->entry[0].vector, adminq);
1509
1510 /*
1511 * If we enable msix early due to not intx, disable it again before
1512 * setting up the full range we need.
1513 */
1514 if (!pdev->irq)
1515 pci_disable_msix(pdev);
1516
1517 for (i = 0; i < nr_io_queues; i++)
1518 dev->entry[i].entry = i;
1519 vecs = pci_enable_msix_range(pdev, dev->entry, 1, nr_io_queues);
1520 if (vecs < 0) {
1521 vecs = pci_enable_msi_range(pdev, 1, min(nr_io_queues, 32));
1522 if (vecs < 0) {
1523 vecs = 1;
1524 } else {
1525 for (i = 0; i < vecs; i++)
1526 dev->entry[i].vector = i + pdev->irq;
1527 }
1528 }
1529
1530 /*
1531 * Should investigate if there's a performance win from allocating
1532 * more queues than interrupt vectors; it might allow the submission
1533 * path to scale better, even if the receive path is limited by the
1534 * number of interrupts.
1535 */
1536 nr_io_queues = vecs;
1537 dev->max_qid = nr_io_queues;
1538
1539 result = queue_request_irq(dev, adminq, adminq->irqname);
1540 if (result) {
1541 adminq->cq_vector = -1;
1542 goto free_queues;
1543 }
1544 return nvme_create_io_queues(dev);
1545
1546 free_queues:
1547 nvme_free_queues(dev, 1);
1548 return result;
1549 }
1550
1551 static void nvme_set_irq_hints(struct nvme_dev *dev)
1552 {
1553 struct nvme_queue *nvmeq;
1554 int i;
1555
1556 for (i = 0; i < dev->online_queues; i++) {
1557 nvmeq = dev->queues[i];
1558
1559 if (!nvmeq->tags || !(*nvmeq->tags))
1560 continue;
1561
1562 irq_set_affinity_hint(dev->entry[nvmeq->cq_vector].vector,
1563 blk_mq_tags_cpumask(*nvmeq->tags));
1564 }
1565 }
1566
1567 static void nvme_dev_scan(struct work_struct *work)
1568 {
1569 struct nvme_dev *dev = container_of(work, struct nvme_dev, scan_work);
1570
1571 if (!dev->tagset.tags)
1572 return;
1573 nvme_scan_namespaces(&dev->ctrl);
1574 nvme_set_irq_hints(dev);
1575 }
1576
1577 static void nvme_del_queue_end(struct request *req, int error)
1578 {
1579 struct nvme_queue *nvmeq = req->end_io_data;
1580
1581 blk_mq_free_request(req);
1582 complete(&nvmeq->dev->ioq_wait);
1583 }
1584
1585 static void nvme_del_cq_end(struct request *req, int error)
1586 {
1587 struct nvme_queue *nvmeq = req->end_io_data;
1588
1589 if (!error) {
1590 unsigned long flags;
1591
1592 spin_lock_irqsave(&nvmeq->q_lock, flags);
1593 nvme_process_cq(nvmeq);
1594 spin_unlock_irqrestore(&nvmeq->q_lock, flags);
1595 }
1596
1597 nvme_del_queue_end(req, error);
1598 }
1599
1600 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
1601 {
1602 struct request_queue *q = nvmeq->dev->ctrl.admin_q;
1603 struct request *req;
1604 struct nvme_command cmd;
1605
1606 memset(&cmd, 0, sizeof(cmd));
1607 cmd.delete_queue.opcode = opcode;
1608 cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
1609
1610 req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT);
1611 if (IS_ERR(req))
1612 return PTR_ERR(req);
1613
1614 req->timeout = ADMIN_TIMEOUT;
1615 req->end_io_data = nvmeq;
1616
1617 blk_execute_rq_nowait(q, NULL, req, false,
1618 opcode == nvme_admin_delete_cq ?
1619 nvme_del_cq_end : nvme_del_queue_end);
1620 return 0;
1621 }
1622
1623 static void nvme_disable_io_queues(struct nvme_dev *dev)
1624 {
1625 int pass;
1626 unsigned long timeout;
1627 u8 opcode = nvme_admin_delete_sq;
1628
1629 for (pass = 0; pass < 2; pass++) {
1630 int sent = 0, i = dev->queue_count - 1;
1631
1632 reinit_completion(&dev->ioq_wait);
1633 retry:
1634 timeout = ADMIN_TIMEOUT;
1635 for (; i > 0; i--) {
1636 struct nvme_queue *nvmeq = dev->queues[i];
1637
1638 if (!pass)
1639 nvme_suspend_queue(nvmeq);
1640 if (nvme_delete_queue(nvmeq, opcode))
1641 break;
1642 ++sent;
1643 }
1644 while (sent--) {
1645 timeout = wait_for_completion_io_timeout(&dev->ioq_wait, timeout);
1646 if (timeout == 0)
1647 return;
1648 if (i)
1649 goto retry;
1650 }
1651 opcode = nvme_admin_delete_cq;
1652 }
1653 }
1654
1655 /*
1656 * Return: error value if an error occurred setting up the queues or calling
1657 * Identify Device. 0 if these succeeded, even if adding some of the
1658 * namespaces failed. At the moment, these failures are silent. TBD which
1659 * failures should be reported.
1660 */
1661 static int nvme_dev_add(struct nvme_dev *dev)
1662 {
1663 if (!dev->ctrl.tagset) {
1664 dev->tagset.ops = &nvme_mq_ops;
1665 dev->tagset.nr_hw_queues = dev->online_queues - 1;
1666 dev->tagset.timeout = NVME_IO_TIMEOUT;
1667 dev->tagset.numa_node = dev_to_node(dev->dev);
1668 dev->tagset.queue_depth =
1669 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
1670 dev->tagset.cmd_size = nvme_cmd_size(dev);
1671 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
1672 dev->tagset.driver_data = dev;
1673
1674 if (blk_mq_alloc_tag_set(&dev->tagset))
1675 return 0;
1676 dev->ctrl.tagset = &dev->tagset;
1677 } else {
1678 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
1679
1680 /* Free previously allocated queues that are no longer usable */
1681 nvme_free_queues(dev, dev->online_queues);
1682 }
1683
1684 nvme_queue_scan(dev);
1685 return 0;
1686 }
1687
1688 static int nvme_pci_enable(struct nvme_dev *dev)
1689 {
1690 u64 cap;
1691 int result = -ENOMEM;
1692 struct pci_dev *pdev = to_pci_dev(dev->dev);
1693
1694 if (pci_enable_device_mem(pdev))
1695 return result;
1696
1697 dev->entry[0].vector = pdev->irq;
1698 pci_set_master(pdev);
1699
1700 if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
1701 dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
1702 goto disable;
1703
1704 if (readl(dev->bar + NVME_REG_CSTS) == -1) {
1705 result = -ENODEV;
1706 goto disable;
1707 }
1708
1709 /*
1710 * Some devices don't advertse INTx interrupts, pre-enable a single
1711 * MSIX vec for setup. We'll adjust this later.
1712 */
1713 if (!pdev->irq) {
1714 result = pci_enable_msix(pdev, dev->entry, 1);
1715 if (result < 0)
1716 goto disable;
1717 }
1718
1719 cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
1720
1721 dev->q_depth = min_t(int, NVME_CAP_MQES(cap) + 1, NVME_Q_DEPTH);
1722 dev->db_stride = 1 << NVME_CAP_STRIDE(cap);
1723 dev->dbs = dev->bar + 4096;
1724
1725 /*
1726 * Temporary fix for the Apple controller found in the MacBook8,1 and
1727 * some MacBook7,1 to avoid controller resets and data loss.
1728 */
1729 if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
1730 dev->q_depth = 2;
1731 dev_warn(dev->dev, "detected Apple NVMe controller, set "
1732 "queue depth=%u to work around controller resets\n",
1733 dev->q_depth);
1734 }
1735
1736 if (readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 2))
1737 dev->cmb = nvme_map_cmb(dev);
1738
1739 pci_enable_pcie_error_reporting(pdev);
1740 pci_save_state(pdev);
1741 return 0;
1742
1743 disable:
1744 pci_disable_device(pdev);
1745 return result;
1746 }
1747
1748 static void nvme_dev_unmap(struct nvme_dev *dev)
1749 {
1750 if (dev->bar)
1751 iounmap(dev->bar);
1752 pci_release_regions(to_pci_dev(dev->dev));
1753 }
1754
1755 static void nvme_pci_disable(struct nvme_dev *dev)
1756 {
1757 struct pci_dev *pdev = to_pci_dev(dev->dev);
1758
1759 if (pdev->msi_enabled)
1760 pci_disable_msi(pdev);
1761 else if (pdev->msix_enabled)
1762 pci_disable_msix(pdev);
1763
1764 if (pci_is_enabled(pdev)) {
1765 pci_disable_pcie_error_reporting(pdev);
1766 pci_disable_device(pdev);
1767 }
1768 }
1769
1770 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
1771 {
1772 int i;
1773 u32 csts = -1;
1774
1775 del_timer_sync(&dev->watchdog_timer);
1776
1777 mutex_lock(&dev->shutdown_lock);
1778 if (pci_is_enabled(to_pci_dev(dev->dev))) {
1779 nvme_stop_queues(&dev->ctrl);
1780 csts = readl(dev->bar + NVME_REG_CSTS);
1781 }
1782 if (csts & NVME_CSTS_CFS || !(csts & NVME_CSTS_RDY)) {
1783 for (i = dev->queue_count - 1; i >= 0; i--) {
1784 struct nvme_queue *nvmeq = dev->queues[i];
1785 nvme_suspend_queue(nvmeq);
1786 }
1787 } else {
1788 nvme_disable_io_queues(dev);
1789 nvme_disable_admin_queue(dev, shutdown);
1790 }
1791 nvme_pci_disable(dev);
1792
1793 for (i = dev->queue_count - 1; i >= 0; i--)
1794 nvme_clear_queue(dev->queues[i]);
1795 mutex_unlock(&dev->shutdown_lock);
1796 }
1797
1798 static int nvme_setup_prp_pools(struct nvme_dev *dev)
1799 {
1800 dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
1801 PAGE_SIZE, PAGE_SIZE, 0);
1802 if (!dev->prp_page_pool)
1803 return -ENOMEM;
1804
1805 /* Optimisation for I/Os between 4k and 128k */
1806 dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
1807 256, 256, 0);
1808 if (!dev->prp_small_pool) {
1809 dma_pool_destroy(dev->prp_page_pool);
1810 return -ENOMEM;
1811 }
1812 return 0;
1813 }
1814
1815 static void nvme_release_prp_pools(struct nvme_dev *dev)
1816 {
1817 dma_pool_destroy(dev->prp_page_pool);
1818 dma_pool_destroy(dev->prp_small_pool);
1819 }
1820
1821 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
1822 {
1823 struct nvme_dev *dev = to_nvme_dev(ctrl);
1824
1825 put_device(dev->dev);
1826 if (dev->tagset.tags)
1827 blk_mq_free_tag_set(&dev->tagset);
1828 if (dev->ctrl.admin_q)
1829 blk_put_queue(dev->ctrl.admin_q);
1830 kfree(dev->queues);
1831 kfree(dev->entry);
1832 kfree(dev);
1833 }
1834
1835 static void nvme_remove_dead_ctrl(struct nvme_dev *dev, int status)
1836 {
1837 dev_warn(dev->ctrl.device, "Removing after probe failure status: %d\n", status);
1838
1839 kref_get(&dev->ctrl.kref);
1840 nvme_dev_disable(dev, false);
1841 if (!schedule_work(&dev->remove_work))
1842 nvme_put_ctrl(&dev->ctrl);
1843 }
1844
1845 static void nvme_reset_work(struct work_struct *work)
1846 {
1847 struct nvme_dev *dev = container_of(work, struct nvme_dev, reset_work);
1848 int result = -ENODEV;
1849
1850 if (WARN_ON(test_bit(NVME_CTRL_RESETTING, &dev->flags)))
1851 goto out;
1852
1853 /*
1854 * If we're called to reset a live controller first shut it down before
1855 * moving on.
1856 */
1857 if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
1858 nvme_dev_disable(dev, false);
1859
1860 set_bit(NVME_CTRL_RESETTING, &dev->flags);
1861
1862 result = nvme_pci_enable(dev);
1863 if (result)
1864 goto out;
1865
1866 result = nvme_configure_admin_queue(dev);
1867 if (result)
1868 goto out;
1869
1870 nvme_init_queue(dev->queues[0], 0);
1871 result = nvme_alloc_admin_tags(dev);
1872 if (result)
1873 goto out;
1874
1875 result = nvme_init_identify(&dev->ctrl);
1876 if (result)
1877 goto out;
1878
1879 result = nvme_setup_io_queues(dev);
1880 if (result)
1881 goto out;
1882
1883 dev->ctrl.event_limit = NVME_NR_AEN_COMMANDS;
1884 queue_work(nvme_workq, &dev->async_work);
1885
1886 mod_timer(&dev->watchdog_timer, round_jiffies(jiffies + HZ));
1887
1888 /*
1889 * Keep the controller around but remove all namespaces if we don't have
1890 * any working I/O queue.
1891 */
1892 if (dev->online_queues < 2) {
1893 dev_warn(dev->ctrl.device, "IO queues not created\n");
1894 nvme_remove_namespaces(&dev->ctrl);
1895 } else {
1896 nvme_start_queues(&dev->ctrl);
1897 nvme_dev_add(dev);
1898 }
1899
1900 clear_bit(NVME_CTRL_RESETTING, &dev->flags);
1901 return;
1902
1903 out:
1904 nvme_remove_dead_ctrl(dev, result);
1905 }
1906
1907 static void nvme_remove_dead_ctrl_work(struct work_struct *work)
1908 {
1909 struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
1910 struct pci_dev *pdev = to_pci_dev(dev->dev);
1911
1912 nvme_kill_queues(&dev->ctrl);
1913 if (pci_get_drvdata(pdev))
1914 pci_stop_and_remove_bus_device_locked(pdev);
1915 nvme_put_ctrl(&dev->ctrl);
1916 }
1917
1918 static int nvme_reset(struct nvme_dev *dev)
1919 {
1920 if (!dev->ctrl.admin_q || blk_queue_dying(dev->ctrl.admin_q))
1921 return -ENODEV;
1922
1923 if (!queue_work(nvme_workq, &dev->reset_work))
1924 return -EBUSY;
1925
1926 flush_work(&dev->reset_work);
1927 return 0;
1928 }
1929
1930 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
1931 {
1932 *val = readl(to_nvme_dev(ctrl)->bar + off);
1933 return 0;
1934 }
1935
1936 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
1937 {
1938 writel(val, to_nvme_dev(ctrl)->bar + off);
1939 return 0;
1940 }
1941
1942 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
1943 {
1944 *val = readq(to_nvme_dev(ctrl)->bar + off);
1945 return 0;
1946 }
1947
1948 static bool nvme_pci_io_incapable(struct nvme_ctrl *ctrl)
1949 {
1950 struct nvme_dev *dev = to_nvme_dev(ctrl);
1951
1952 return !dev->bar || dev->online_queues < 2;
1953 }
1954
1955 static int nvme_pci_reset_ctrl(struct nvme_ctrl *ctrl)
1956 {
1957 return nvme_reset(to_nvme_dev(ctrl));
1958 }
1959
1960 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
1961 .module = THIS_MODULE,
1962 .reg_read32 = nvme_pci_reg_read32,
1963 .reg_write32 = nvme_pci_reg_write32,
1964 .reg_read64 = nvme_pci_reg_read64,
1965 .io_incapable = nvme_pci_io_incapable,
1966 .reset_ctrl = nvme_pci_reset_ctrl,
1967 .free_ctrl = nvme_pci_free_ctrl,
1968 };
1969
1970 static int nvme_dev_map(struct nvme_dev *dev)
1971 {
1972 int bars;
1973 struct pci_dev *pdev = to_pci_dev(dev->dev);
1974
1975 bars = pci_select_bars(pdev, IORESOURCE_MEM);
1976 if (!bars)
1977 return -ENODEV;
1978 if (pci_request_selected_regions(pdev, bars, "nvme"))
1979 return -ENODEV;
1980
1981 dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
1982 if (!dev->bar)
1983 goto release;
1984
1985 return 0;
1986 release:
1987 pci_release_regions(pdev);
1988 return -ENODEV;
1989 }
1990
1991 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
1992 {
1993 int node, result = -ENOMEM;
1994 struct nvme_dev *dev;
1995
1996 node = dev_to_node(&pdev->dev);
1997 if (node == NUMA_NO_NODE)
1998 set_dev_node(&pdev->dev, 0);
1999
2000 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
2001 if (!dev)
2002 return -ENOMEM;
2003 dev->entry = kzalloc_node(num_possible_cpus() * sizeof(*dev->entry),
2004 GFP_KERNEL, node);
2005 if (!dev->entry)
2006 goto free;
2007 dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *),
2008 GFP_KERNEL, node);
2009 if (!dev->queues)
2010 goto free;
2011
2012 dev->dev = get_device(&pdev->dev);
2013 pci_set_drvdata(pdev, dev);
2014
2015 result = nvme_dev_map(dev);
2016 if (result)
2017 goto free;
2018
2019 INIT_WORK(&dev->scan_work, nvme_dev_scan);
2020 INIT_WORK(&dev->reset_work, nvme_reset_work);
2021 INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
2022 INIT_WORK(&dev->async_work, nvme_async_event_work);
2023 setup_timer(&dev->watchdog_timer, nvme_watchdog_timer,
2024 (unsigned long)dev);
2025 mutex_init(&dev->shutdown_lock);
2026 init_completion(&dev->ioq_wait);
2027
2028 result = nvme_setup_prp_pools(dev);
2029 if (result)
2030 goto put_pci;
2031
2032 result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
2033 id->driver_data);
2034 if (result)
2035 goto release_pools;
2036
2037 dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
2038
2039 queue_work(nvme_workq, &dev->reset_work);
2040 return 0;
2041
2042 release_pools:
2043 nvme_release_prp_pools(dev);
2044 put_pci:
2045 put_device(dev->dev);
2046 nvme_dev_unmap(dev);
2047 free:
2048 kfree(dev->queues);
2049 kfree(dev->entry);
2050 kfree(dev);
2051 return result;
2052 }
2053
2054 static void nvme_reset_notify(struct pci_dev *pdev, bool prepare)
2055 {
2056 struct nvme_dev *dev = pci_get_drvdata(pdev);
2057
2058 if (prepare)
2059 nvme_dev_disable(dev, false);
2060 else
2061 queue_work(nvme_workq, &dev->reset_work);
2062 }
2063
2064 static void nvme_shutdown(struct pci_dev *pdev)
2065 {
2066 struct nvme_dev *dev = pci_get_drvdata(pdev);
2067 nvme_dev_disable(dev, true);
2068 }
2069
2070 /*
2071 * The driver's remove may be called on a device in a partially initialized
2072 * state. This function must not have any dependencies on the device state in
2073 * order to proceed.
2074 */
2075 static void nvme_remove(struct pci_dev *pdev)
2076 {
2077 struct nvme_dev *dev = pci_get_drvdata(pdev);
2078
2079 del_timer_sync(&dev->watchdog_timer);
2080
2081 set_bit(NVME_CTRL_REMOVING, &dev->flags);
2082 pci_set_drvdata(pdev, NULL);
2083 flush_work(&dev->async_work);
2084 flush_work(&dev->scan_work);
2085 nvme_remove_namespaces(&dev->ctrl);
2086 nvme_uninit_ctrl(&dev->ctrl);
2087 nvme_dev_disable(dev, true);
2088 flush_work(&dev->reset_work);
2089 nvme_dev_remove_admin(dev);
2090 nvme_free_queues(dev, 0);
2091 nvme_release_cmb(dev);
2092 nvme_release_prp_pools(dev);
2093 nvme_dev_unmap(dev);
2094 nvme_put_ctrl(&dev->ctrl);
2095 }
2096
2097 #ifdef CONFIG_PM_SLEEP
2098 static int nvme_suspend(struct device *dev)
2099 {
2100 struct pci_dev *pdev = to_pci_dev(dev);
2101 struct nvme_dev *ndev = pci_get_drvdata(pdev);
2102
2103 nvme_dev_disable(ndev, true);
2104 return 0;
2105 }
2106
2107 static int nvme_resume(struct device *dev)
2108 {
2109 struct pci_dev *pdev = to_pci_dev(dev);
2110 struct nvme_dev *ndev = pci_get_drvdata(pdev);
2111
2112 queue_work(nvme_workq, &ndev->reset_work);
2113 return 0;
2114 }
2115 #endif
2116
2117 static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
2118
2119 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
2120 pci_channel_state_t state)
2121 {
2122 struct nvme_dev *dev = pci_get_drvdata(pdev);
2123
2124 /*
2125 * A frozen channel requires a reset. When detected, this method will
2126 * shutdown the controller to quiesce. The controller will be restarted
2127 * after the slot reset through driver's slot_reset callback.
2128 */
2129 dev_warn(dev->ctrl.device, "error detected: state:%d\n", state);
2130 switch (state) {
2131 case pci_channel_io_normal:
2132 return PCI_ERS_RESULT_CAN_RECOVER;
2133 case pci_channel_io_frozen:
2134 nvme_dev_disable(dev, false);
2135 return PCI_ERS_RESULT_NEED_RESET;
2136 case pci_channel_io_perm_failure:
2137 return PCI_ERS_RESULT_DISCONNECT;
2138 }
2139 return PCI_ERS_RESULT_NEED_RESET;
2140 }
2141
2142 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
2143 {
2144 struct nvme_dev *dev = pci_get_drvdata(pdev);
2145
2146 dev_info(dev->ctrl.device, "restart after slot reset\n");
2147 pci_restore_state(pdev);
2148 queue_work(nvme_workq, &dev->reset_work);
2149 return PCI_ERS_RESULT_RECOVERED;
2150 }
2151
2152 static void nvme_error_resume(struct pci_dev *pdev)
2153 {
2154 pci_cleanup_aer_uncorrect_error_status(pdev);
2155 }
2156
2157 static const struct pci_error_handlers nvme_err_handler = {
2158 .error_detected = nvme_error_detected,
2159 .slot_reset = nvme_slot_reset,
2160 .resume = nvme_error_resume,
2161 .reset_notify = nvme_reset_notify,
2162 };
2163
2164 /* Move to pci_ids.h later */
2165 #define PCI_CLASS_STORAGE_EXPRESS 0x010802
2166
2167 static const struct pci_device_id nvme_id_table[] = {
2168 { PCI_VDEVICE(INTEL, 0x0953),
2169 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2170 NVME_QUIRK_DISCARD_ZEROES, },
2171 { PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */
2172 .driver_data = NVME_QUIRK_IDENTIFY_CNS, },
2173 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
2174 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) },
2175 { 0, }
2176 };
2177 MODULE_DEVICE_TABLE(pci, nvme_id_table);
2178
2179 static struct pci_driver nvme_driver = {
2180 .name = "nvme",
2181 .id_table = nvme_id_table,
2182 .probe = nvme_probe,
2183 .remove = nvme_remove,
2184 .shutdown = nvme_shutdown,
2185 .driver = {
2186 .pm = &nvme_dev_pm_ops,
2187 },
2188 .err_handler = &nvme_err_handler,
2189 };
2190
2191 static int __init nvme_init(void)
2192 {
2193 int result;
2194
2195 nvme_workq = alloc_workqueue("nvme", WQ_UNBOUND | WQ_MEM_RECLAIM, 0);
2196 if (!nvme_workq)
2197 return -ENOMEM;
2198
2199 result = pci_register_driver(&nvme_driver);
2200 if (result)
2201 destroy_workqueue(nvme_workq);
2202 return result;
2203 }
2204
2205 static void __exit nvme_exit(void)
2206 {
2207 pci_unregister_driver(&nvme_driver);
2208 destroy_workqueue(nvme_workq);
2209 _nvme_check_size();
2210 }
2211
2212 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
2213 MODULE_LICENSE("GPL");
2214 MODULE_VERSION("1.0");
2215 module_init(nvme_init);
2216 module_exit(nvme_exit);
This page took 0.080723 seconds and 5 git commands to generate.