of: Add helper for printing an of_phandle_args structure
[deliverable/linux.git] / drivers / of / base.c
1 /*
2 * Procedures for creating, accessing and interpreting the device tree.
3 *
4 * Paul Mackerras August 1996.
5 * Copyright (C) 1996-2005 Paul Mackerras.
6 *
7 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
8 * {engebret|bergner}@us.ibm.com
9 *
10 * Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net
11 *
12 * Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and
13 * Grant Likely.
14 *
15 * This program is free software; you can redistribute it and/or
16 * modify it under the terms of the GNU General Public License
17 * as published by the Free Software Foundation; either version
18 * 2 of the License, or (at your option) any later version.
19 */
20 #include <linux/ctype.h>
21 #include <linux/cpu.h>
22 #include <linux/module.h>
23 #include <linux/of.h>
24 #include <linux/spinlock.h>
25 #include <linux/slab.h>
26 #include <linux/proc_fs.h>
27
28 #include "of_private.h"
29
30 LIST_HEAD(aliases_lookup);
31
32 struct device_node *of_allnodes;
33 EXPORT_SYMBOL(of_allnodes);
34 struct device_node *of_chosen;
35 struct device_node *of_aliases;
36 static struct device_node *of_stdout;
37
38 DEFINE_MUTEX(of_aliases_mutex);
39
40 /* use when traversing tree through the allnext, child, sibling,
41 * or parent members of struct device_node.
42 */
43 DEFINE_RAW_SPINLOCK(devtree_lock);
44
45 int of_n_addr_cells(struct device_node *np)
46 {
47 const __be32 *ip;
48
49 do {
50 if (np->parent)
51 np = np->parent;
52 ip = of_get_property(np, "#address-cells", NULL);
53 if (ip)
54 return be32_to_cpup(ip);
55 } while (np->parent);
56 /* No #address-cells property for the root node */
57 return OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
58 }
59 EXPORT_SYMBOL(of_n_addr_cells);
60
61 int of_n_size_cells(struct device_node *np)
62 {
63 const __be32 *ip;
64
65 do {
66 if (np->parent)
67 np = np->parent;
68 ip = of_get_property(np, "#size-cells", NULL);
69 if (ip)
70 return be32_to_cpup(ip);
71 } while (np->parent);
72 /* No #size-cells property for the root node */
73 return OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
74 }
75 EXPORT_SYMBOL(of_n_size_cells);
76
77 #if defined(CONFIG_OF_DYNAMIC)
78 /**
79 * of_node_get - Increment refcount of a node
80 * @node: Node to inc refcount, NULL is supported to
81 * simplify writing of callers
82 *
83 * Returns node.
84 */
85 struct device_node *of_node_get(struct device_node *node)
86 {
87 if (node)
88 kref_get(&node->kref);
89 return node;
90 }
91 EXPORT_SYMBOL(of_node_get);
92
93 static inline struct device_node *kref_to_device_node(struct kref *kref)
94 {
95 return container_of(kref, struct device_node, kref);
96 }
97
98 /**
99 * of_node_release - release a dynamically allocated node
100 * @kref: kref element of the node to be released
101 *
102 * In of_node_put() this function is passed to kref_put()
103 * as the destructor.
104 */
105 static void of_node_release(struct kref *kref)
106 {
107 struct device_node *node = kref_to_device_node(kref);
108 struct property *prop = node->properties;
109
110 /* We should never be releasing nodes that haven't been detached. */
111 if (!of_node_check_flag(node, OF_DETACHED)) {
112 pr_err("ERROR: Bad of_node_put() on %s\n", node->full_name);
113 dump_stack();
114 kref_init(&node->kref);
115 return;
116 }
117
118 if (!of_node_check_flag(node, OF_DYNAMIC))
119 return;
120
121 while (prop) {
122 struct property *next = prop->next;
123 kfree(prop->name);
124 kfree(prop->value);
125 kfree(prop);
126 prop = next;
127
128 if (!prop) {
129 prop = node->deadprops;
130 node->deadprops = NULL;
131 }
132 }
133 kfree(node->full_name);
134 kfree(node->data);
135 kfree(node);
136 }
137
138 /**
139 * of_node_put - Decrement refcount of a node
140 * @node: Node to dec refcount, NULL is supported to
141 * simplify writing of callers
142 *
143 */
144 void of_node_put(struct device_node *node)
145 {
146 if (node)
147 kref_put(&node->kref, of_node_release);
148 }
149 EXPORT_SYMBOL(of_node_put);
150 #endif /* CONFIG_OF_DYNAMIC */
151
152 static struct property *__of_find_property(const struct device_node *np,
153 const char *name, int *lenp)
154 {
155 struct property *pp;
156
157 if (!np)
158 return NULL;
159
160 for (pp = np->properties; pp; pp = pp->next) {
161 if (of_prop_cmp(pp->name, name) == 0) {
162 if (lenp)
163 *lenp = pp->length;
164 break;
165 }
166 }
167
168 return pp;
169 }
170
171 struct property *of_find_property(const struct device_node *np,
172 const char *name,
173 int *lenp)
174 {
175 struct property *pp;
176 unsigned long flags;
177
178 raw_spin_lock_irqsave(&devtree_lock, flags);
179 pp = __of_find_property(np, name, lenp);
180 raw_spin_unlock_irqrestore(&devtree_lock, flags);
181
182 return pp;
183 }
184 EXPORT_SYMBOL(of_find_property);
185
186 /**
187 * of_find_all_nodes - Get next node in global list
188 * @prev: Previous node or NULL to start iteration
189 * of_node_put() will be called on it
190 *
191 * Returns a node pointer with refcount incremented, use
192 * of_node_put() on it when done.
193 */
194 struct device_node *of_find_all_nodes(struct device_node *prev)
195 {
196 struct device_node *np;
197 unsigned long flags;
198
199 raw_spin_lock_irqsave(&devtree_lock, flags);
200 np = prev ? prev->allnext : of_allnodes;
201 for (; np != NULL; np = np->allnext)
202 if (of_node_get(np))
203 break;
204 of_node_put(prev);
205 raw_spin_unlock_irqrestore(&devtree_lock, flags);
206 return np;
207 }
208 EXPORT_SYMBOL(of_find_all_nodes);
209
210 /*
211 * Find a property with a given name for a given node
212 * and return the value.
213 */
214 static const void *__of_get_property(const struct device_node *np,
215 const char *name, int *lenp)
216 {
217 struct property *pp = __of_find_property(np, name, lenp);
218
219 return pp ? pp->value : NULL;
220 }
221
222 /*
223 * Find a property with a given name for a given node
224 * and return the value.
225 */
226 const void *of_get_property(const struct device_node *np, const char *name,
227 int *lenp)
228 {
229 struct property *pp = of_find_property(np, name, lenp);
230
231 return pp ? pp->value : NULL;
232 }
233 EXPORT_SYMBOL(of_get_property);
234
235 /*
236 * arch_match_cpu_phys_id - Match the given logical CPU and physical id
237 *
238 * @cpu: logical cpu index of a core/thread
239 * @phys_id: physical identifier of a core/thread
240 *
241 * CPU logical to physical index mapping is architecture specific.
242 * However this __weak function provides a default match of physical
243 * id to logical cpu index. phys_id provided here is usually values read
244 * from the device tree which must match the hardware internal registers.
245 *
246 * Returns true if the physical identifier and the logical cpu index
247 * correspond to the same core/thread, false otherwise.
248 */
249 bool __weak arch_match_cpu_phys_id(int cpu, u64 phys_id)
250 {
251 return (u32)phys_id == cpu;
252 }
253
254 /**
255 * Checks if the given "prop_name" property holds the physical id of the
256 * core/thread corresponding to the logical cpu 'cpu'. If 'thread' is not
257 * NULL, local thread number within the core is returned in it.
258 */
259 static bool __of_find_n_match_cpu_property(struct device_node *cpun,
260 const char *prop_name, int cpu, unsigned int *thread)
261 {
262 const __be32 *cell;
263 int ac, prop_len, tid;
264 u64 hwid;
265
266 ac = of_n_addr_cells(cpun);
267 cell = of_get_property(cpun, prop_name, &prop_len);
268 if (!cell || !ac)
269 return false;
270 prop_len /= sizeof(*cell) * ac;
271 for (tid = 0; tid < prop_len; tid++) {
272 hwid = of_read_number(cell, ac);
273 if (arch_match_cpu_phys_id(cpu, hwid)) {
274 if (thread)
275 *thread = tid;
276 return true;
277 }
278 cell += ac;
279 }
280 return false;
281 }
282
283 /*
284 * arch_find_n_match_cpu_physical_id - See if the given device node is
285 * for the cpu corresponding to logical cpu 'cpu'. Return true if so,
286 * else false. If 'thread' is non-NULL, the local thread number within the
287 * core is returned in it.
288 */
289 bool __weak arch_find_n_match_cpu_physical_id(struct device_node *cpun,
290 int cpu, unsigned int *thread)
291 {
292 /* Check for non-standard "ibm,ppc-interrupt-server#s" property
293 * for thread ids on PowerPC. If it doesn't exist fallback to
294 * standard "reg" property.
295 */
296 if (IS_ENABLED(CONFIG_PPC) &&
297 __of_find_n_match_cpu_property(cpun,
298 "ibm,ppc-interrupt-server#s",
299 cpu, thread))
300 return true;
301
302 if (__of_find_n_match_cpu_property(cpun, "reg", cpu, thread))
303 return true;
304
305 return false;
306 }
307
308 /**
309 * of_get_cpu_node - Get device node associated with the given logical CPU
310 *
311 * @cpu: CPU number(logical index) for which device node is required
312 * @thread: if not NULL, local thread number within the physical core is
313 * returned
314 *
315 * The main purpose of this function is to retrieve the device node for the
316 * given logical CPU index. It should be used to initialize the of_node in
317 * cpu device. Once of_node in cpu device is populated, all the further
318 * references can use that instead.
319 *
320 * CPU logical to physical index mapping is architecture specific and is built
321 * before booting secondary cores. This function uses arch_match_cpu_phys_id
322 * which can be overridden by architecture specific implementation.
323 *
324 * Returns a node pointer for the logical cpu if found, else NULL.
325 */
326 struct device_node *of_get_cpu_node(int cpu, unsigned int *thread)
327 {
328 struct device_node *cpun;
329
330 for_each_node_by_type(cpun, "cpu") {
331 if (arch_find_n_match_cpu_physical_id(cpun, cpu, thread))
332 return cpun;
333 }
334 return NULL;
335 }
336 EXPORT_SYMBOL(of_get_cpu_node);
337
338 /** Checks if the given "compat" string matches one of the strings in
339 * the device's "compatible" property
340 */
341 static int __of_device_is_compatible(const struct device_node *device,
342 const char *compat)
343 {
344 const char* cp;
345 int cplen, l;
346
347 cp = __of_get_property(device, "compatible", &cplen);
348 if (cp == NULL)
349 return 0;
350 while (cplen > 0) {
351 if (of_compat_cmp(cp, compat, strlen(compat)) == 0)
352 return 1;
353 l = strlen(cp) + 1;
354 cp += l;
355 cplen -= l;
356 }
357
358 return 0;
359 }
360
361 /** Checks if the given "compat" string matches one of the strings in
362 * the device's "compatible" property
363 */
364 int of_device_is_compatible(const struct device_node *device,
365 const char *compat)
366 {
367 unsigned long flags;
368 int res;
369
370 raw_spin_lock_irqsave(&devtree_lock, flags);
371 res = __of_device_is_compatible(device, compat);
372 raw_spin_unlock_irqrestore(&devtree_lock, flags);
373 return res;
374 }
375 EXPORT_SYMBOL(of_device_is_compatible);
376
377 /**
378 * of_machine_is_compatible - Test root of device tree for a given compatible value
379 * @compat: compatible string to look for in root node's compatible property.
380 *
381 * Returns true if the root node has the given value in its
382 * compatible property.
383 */
384 int of_machine_is_compatible(const char *compat)
385 {
386 struct device_node *root;
387 int rc = 0;
388
389 root = of_find_node_by_path("/");
390 if (root) {
391 rc = of_device_is_compatible(root, compat);
392 of_node_put(root);
393 }
394 return rc;
395 }
396 EXPORT_SYMBOL(of_machine_is_compatible);
397
398 /**
399 * __of_device_is_available - check if a device is available for use
400 *
401 * @device: Node to check for availability, with locks already held
402 *
403 * Returns 1 if the status property is absent or set to "okay" or "ok",
404 * 0 otherwise
405 */
406 static int __of_device_is_available(const struct device_node *device)
407 {
408 const char *status;
409 int statlen;
410
411 status = __of_get_property(device, "status", &statlen);
412 if (status == NULL)
413 return 1;
414
415 if (statlen > 0) {
416 if (!strcmp(status, "okay") || !strcmp(status, "ok"))
417 return 1;
418 }
419
420 return 0;
421 }
422
423 /**
424 * of_device_is_available - check if a device is available for use
425 *
426 * @device: Node to check for availability
427 *
428 * Returns 1 if the status property is absent or set to "okay" or "ok",
429 * 0 otherwise
430 */
431 int of_device_is_available(const struct device_node *device)
432 {
433 unsigned long flags;
434 int res;
435
436 raw_spin_lock_irqsave(&devtree_lock, flags);
437 res = __of_device_is_available(device);
438 raw_spin_unlock_irqrestore(&devtree_lock, flags);
439 return res;
440
441 }
442 EXPORT_SYMBOL(of_device_is_available);
443
444 /**
445 * of_get_parent - Get a node's parent if any
446 * @node: Node to get parent
447 *
448 * Returns a node pointer with refcount incremented, use
449 * of_node_put() on it when done.
450 */
451 struct device_node *of_get_parent(const struct device_node *node)
452 {
453 struct device_node *np;
454 unsigned long flags;
455
456 if (!node)
457 return NULL;
458
459 raw_spin_lock_irqsave(&devtree_lock, flags);
460 np = of_node_get(node->parent);
461 raw_spin_unlock_irqrestore(&devtree_lock, flags);
462 return np;
463 }
464 EXPORT_SYMBOL(of_get_parent);
465
466 /**
467 * of_get_next_parent - Iterate to a node's parent
468 * @node: Node to get parent of
469 *
470 * This is like of_get_parent() except that it drops the
471 * refcount on the passed node, making it suitable for iterating
472 * through a node's parents.
473 *
474 * Returns a node pointer with refcount incremented, use
475 * of_node_put() on it when done.
476 */
477 struct device_node *of_get_next_parent(struct device_node *node)
478 {
479 struct device_node *parent;
480 unsigned long flags;
481
482 if (!node)
483 return NULL;
484
485 raw_spin_lock_irqsave(&devtree_lock, flags);
486 parent = of_node_get(node->parent);
487 of_node_put(node);
488 raw_spin_unlock_irqrestore(&devtree_lock, flags);
489 return parent;
490 }
491 EXPORT_SYMBOL(of_get_next_parent);
492
493 /**
494 * of_get_next_child - Iterate a node childs
495 * @node: parent node
496 * @prev: previous child of the parent node, or NULL to get first
497 *
498 * Returns a node pointer with refcount incremented, use
499 * of_node_put() on it when done.
500 */
501 struct device_node *of_get_next_child(const struct device_node *node,
502 struct device_node *prev)
503 {
504 struct device_node *next;
505 unsigned long flags;
506
507 raw_spin_lock_irqsave(&devtree_lock, flags);
508 next = prev ? prev->sibling : node->child;
509 for (; next; next = next->sibling)
510 if (of_node_get(next))
511 break;
512 of_node_put(prev);
513 raw_spin_unlock_irqrestore(&devtree_lock, flags);
514 return next;
515 }
516 EXPORT_SYMBOL(of_get_next_child);
517
518 /**
519 * of_get_next_available_child - Find the next available child node
520 * @node: parent node
521 * @prev: previous child of the parent node, or NULL to get first
522 *
523 * This function is like of_get_next_child(), except that it
524 * automatically skips any disabled nodes (i.e. status = "disabled").
525 */
526 struct device_node *of_get_next_available_child(const struct device_node *node,
527 struct device_node *prev)
528 {
529 struct device_node *next;
530 unsigned long flags;
531
532 raw_spin_lock_irqsave(&devtree_lock, flags);
533 next = prev ? prev->sibling : node->child;
534 for (; next; next = next->sibling) {
535 if (!__of_device_is_available(next))
536 continue;
537 if (of_node_get(next))
538 break;
539 }
540 of_node_put(prev);
541 raw_spin_unlock_irqrestore(&devtree_lock, flags);
542 return next;
543 }
544 EXPORT_SYMBOL(of_get_next_available_child);
545
546 /**
547 * of_get_child_by_name - Find the child node by name for a given parent
548 * @node: parent node
549 * @name: child name to look for.
550 *
551 * This function looks for child node for given matching name
552 *
553 * Returns a node pointer if found, with refcount incremented, use
554 * of_node_put() on it when done.
555 * Returns NULL if node is not found.
556 */
557 struct device_node *of_get_child_by_name(const struct device_node *node,
558 const char *name)
559 {
560 struct device_node *child;
561
562 for_each_child_of_node(node, child)
563 if (child->name && (of_node_cmp(child->name, name) == 0))
564 break;
565 return child;
566 }
567 EXPORT_SYMBOL(of_get_child_by_name);
568
569 /**
570 * of_find_node_by_path - Find a node matching a full OF path
571 * @path: The full path to match
572 *
573 * Returns a node pointer with refcount incremented, use
574 * of_node_put() on it when done.
575 */
576 struct device_node *of_find_node_by_path(const char *path)
577 {
578 struct device_node *np = of_allnodes;
579 unsigned long flags;
580
581 raw_spin_lock_irqsave(&devtree_lock, flags);
582 for (; np; np = np->allnext) {
583 if (np->full_name && (of_node_cmp(np->full_name, path) == 0)
584 && of_node_get(np))
585 break;
586 }
587 raw_spin_unlock_irqrestore(&devtree_lock, flags);
588 return np;
589 }
590 EXPORT_SYMBOL(of_find_node_by_path);
591
592 /**
593 * of_find_node_by_name - Find a node by its "name" property
594 * @from: The node to start searching from or NULL, the node
595 * you pass will not be searched, only the next one
596 * will; typically, you pass what the previous call
597 * returned. of_node_put() will be called on it
598 * @name: The name string to match against
599 *
600 * Returns a node pointer with refcount incremented, use
601 * of_node_put() on it when done.
602 */
603 struct device_node *of_find_node_by_name(struct device_node *from,
604 const char *name)
605 {
606 struct device_node *np;
607 unsigned long flags;
608
609 raw_spin_lock_irqsave(&devtree_lock, flags);
610 np = from ? from->allnext : of_allnodes;
611 for (; np; np = np->allnext)
612 if (np->name && (of_node_cmp(np->name, name) == 0)
613 && of_node_get(np))
614 break;
615 of_node_put(from);
616 raw_spin_unlock_irqrestore(&devtree_lock, flags);
617 return np;
618 }
619 EXPORT_SYMBOL(of_find_node_by_name);
620
621 /**
622 * of_find_node_by_type - Find a node by its "device_type" property
623 * @from: The node to start searching from, or NULL to start searching
624 * the entire device tree. The node you pass will not be
625 * searched, only the next one will; typically, you pass
626 * what the previous call returned. of_node_put() will be
627 * called on from for you.
628 * @type: The type string to match against
629 *
630 * Returns a node pointer with refcount incremented, use
631 * of_node_put() on it when done.
632 */
633 struct device_node *of_find_node_by_type(struct device_node *from,
634 const char *type)
635 {
636 struct device_node *np;
637 unsigned long flags;
638
639 raw_spin_lock_irqsave(&devtree_lock, flags);
640 np = from ? from->allnext : of_allnodes;
641 for (; np; np = np->allnext)
642 if (np->type && (of_node_cmp(np->type, type) == 0)
643 && of_node_get(np))
644 break;
645 of_node_put(from);
646 raw_spin_unlock_irqrestore(&devtree_lock, flags);
647 return np;
648 }
649 EXPORT_SYMBOL(of_find_node_by_type);
650
651 /**
652 * of_find_compatible_node - Find a node based on type and one of the
653 * tokens in its "compatible" property
654 * @from: The node to start searching from or NULL, the node
655 * you pass will not be searched, only the next one
656 * will; typically, you pass what the previous call
657 * returned. of_node_put() will be called on it
658 * @type: The type string to match "device_type" or NULL to ignore
659 * @compatible: The string to match to one of the tokens in the device
660 * "compatible" list.
661 *
662 * Returns a node pointer with refcount incremented, use
663 * of_node_put() on it when done.
664 */
665 struct device_node *of_find_compatible_node(struct device_node *from,
666 const char *type, const char *compatible)
667 {
668 struct device_node *np;
669 unsigned long flags;
670
671 raw_spin_lock_irqsave(&devtree_lock, flags);
672 np = from ? from->allnext : of_allnodes;
673 for (; np; np = np->allnext) {
674 if (type
675 && !(np->type && (of_node_cmp(np->type, type) == 0)))
676 continue;
677 if (__of_device_is_compatible(np, compatible) &&
678 of_node_get(np))
679 break;
680 }
681 of_node_put(from);
682 raw_spin_unlock_irqrestore(&devtree_lock, flags);
683 return np;
684 }
685 EXPORT_SYMBOL(of_find_compatible_node);
686
687 /**
688 * of_find_node_with_property - Find a node which has a property with
689 * the given name.
690 * @from: The node to start searching from or NULL, the node
691 * you pass will not be searched, only the next one
692 * will; typically, you pass what the previous call
693 * returned. of_node_put() will be called on it
694 * @prop_name: The name of the property to look for.
695 *
696 * Returns a node pointer with refcount incremented, use
697 * of_node_put() on it when done.
698 */
699 struct device_node *of_find_node_with_property(struct device_node *from,
700 const char *prop_name)
701 {
702 struct device_node *np;
703 struct property *pp;
704 unsigned long flags;
705
706 raw_spin_lock_irqsave(&devtree_lock, flags);
707 np = from ? from->allnext : of_allnodes;
708 for (; np; np = np->allnext) {
709 for (pp = np->properties; pp; pp = pp->next) {
710 if (of_prop_cmp(pp->name, prop_name) == 0) {
711 of_node_get(np);
712 goto out;
713 }
714 }
715 }
716 out:
717 of_node_put(from);
718 raw_spin_unlock_irqrestore(&devtree_lock, flags);
719 return np;
720 }
721 EXPORT_SYMBOL(of_find_node_with_property);
722
723 static
724 const struct of_device_id *__of_match_node(const struct of_device_id *matches,
725 const struct device_node *node)
726 {
727 if (!matches)
728 return NULL;
729
730 while (matches->name[0] || matches->type[0] || matches->compatible[0]) {
731 int match = 1;
732 if (matches->name[0])
733 match &= node->name
734 && !strcmp(matches->name, node->name);
735 if (matches->type[0])
736 match &= node->type
737 && !strcmp(matches->type, node->type);
738 if (matches->compatible[0])
739 match &= __of_device_is_compatible(node,
740 matches->compatible);
741 if (match)
742 return matches;
743 matches++;
744 }
745 return NULL;
746 }
747
748 /**
749 * of_match_node - Tell if an device_node has a matching of_match structure
750 * @matches: array of of device match structures to search in
751 * @node: the of device structure to match against
752 *
753 * Low level utility function used by device matching.
754 */
755 const struct of_device_id *of_match_node(const struct of_device_id *matches,
756 const struct device_node *node)
757 {
758 const struct of_device_id *match;
759 unsigned long flags;
760
761 raw_spin_lock_irqsave(&devtree_lock, flags);
762 match = __of_match_node(matches, node);
763 raw_spin_unlock_irqrestore(&devtree_lock, flags);
764 return match;
765 }
766 EXPORT_SYMBOL(of_match_node);
767
768 /**
769 * of_find_matching_node_and_match - Find a node based on an of_device_id
770 * match table.
771 * @from: The node to start searching from or NULL, the node
772 * you pass will not be searched, only the next one
773 * will; typically, you pass what the previous call
774 * returned. of_node_put() will be called on it
775 * @matches: array of of device match structures to search in
776 * @match Updated to point at the matches entry which matched
777 *
778 * Returns a node pointer with refcount incremented, use
779 * of_node_put() on it when done.
780 */
781 struct device_node *of_find_matching_node_and_match(struct device_node *from,
782 const struct of_device_id *matches,
783 const struct of_device_id **match)
784 {
785 struct device_node *np;
786 const struct of_device_id *m;
787 unsigned long flags;
788
789 if (match)
790 *match = NULL;
791
792 raw_spin_lock_irqsave(&devtree_lock, flags);
793 np = from ? from->allnext : of_allnodes;
794 for (; np; np = np->allnext) {
795 m = __of_match_node(matches, np);
796 if (m && of_node_get(np)) {
797 if (match)
798 *match = m;
799 break;
800 }
801 }
802 of_node_put(from);
803 raw_spin_unlock_irqrestore(&devtree_lock, flags);
804 return np;
805 }
806 EXPORT_SYMBOL(of_find_matching_node_and_match);
807
808 /**
809 * of_modalias_node - Lookup appropriate modalias for a device node
810 * @node: pointer to a device tree node
811 * @modalias: Pointer to buffer that modalias value will be copied into
812 * @len: Length of modalias value
813 *
814 * Based on the value of the compatible property, this routine will attempt
815 * to choose an appropriate modalias value for a particular device tree node.
816 * It does this by stripping the manufacturer prefix (as delimited by a ',')
817 * from the first entry in the compatible list property.
818 *
819 * This routine returns 0 on success, <0 on failure.
820 */
821 int of_modalias_node(struct device_node *node, char *modalias, int len)
822 {
823 const char *compatible, *p;
824 int cplen;
825
826 compatible = of_get_property(node, "compatible", &cplen);
827 if (!compatible || strlen(compatible) > cplen)
828 return -ENODEV;
829 p = strchr(compatible, ',');
830 strlcpy(modalias, p ? p + 1 : compatible, len);
831 return 0;
832 }
833 EXPORT_SYMBOL_GPL(of_modalias_node);
834
835 /**
836 * of_find_node_by_phandle - Find a node given a phandle
837 * @handle: phandle of the node to find
838 *
839 * Returns a node pointer with refcount incremented, use
840 * of_node_put() on it when done.
841 */
842 struct device_node *of_find_node_by_phandle(phandle handle)
843 {
844 struct device_node *np;
845 unsigned long flags;
846
847 raw_spin_lock_irqsave(&devtree_lock, flags);
848 for (np = of_allnodes; np; np = np->allnext)
849 if (np->phandle == handle)
850 break;
851 of_node_get(np);
852 raw_spin_unlock_irqrestore(&devtree_lock, flags);
853 return np;
854 }
855 EXPORT_SYMBOL(of_find_node_by_phandle);
856
857 /**
858 * of_find_property_value_of_size
859 *
860 * @np: device node from which the property value is to be read.
861 * @propname: name of the property to be searched.
862 * @len: requested length of property value
863 *
864 * Search for a property in a device node and valid the requested size.
865 * Returns the property value on success, -EINVAL if the property does not
866 * exist, -ENODATA if property does not have a value, and -EOVERFLOW if the
867 * property data isn't large enough.
868 *
869 */
870 static void *of_find_property_value_of_size(const struct device_node *np,
871 const char *propname, u32 len)
872 {
873 struct property *prop = of_find_property(np, propname, NULL);
874
875 if (!prop)
876 return ERR_PTR(-EINVAL);
877 if (!prop->value)
878 return ERR_PTR(-ENODATA);
879 if (len > prop->length)
880 return ERR_PTR(-EOVERFLOW);
881
882 return prop->value;
883 }
884
885 /**
886 * of_property_read_u32_index - Find and read a u32 from a multi-value property.
887 *
888 * @np: device node from which the property value is to be read.
889 * @propname: name of the property to be searched.
890 * @index: index of the u32 in the list of values
891 * @out_value: pointer to return value, modified only if no error.
892 *
893 * Search for a property in a device node and read nth 32-bit value from
894 * it. Returns 0 on success, -EINVAL if the property does not exist,
895 * -ENODATA if property does not have a value, and -EOVERFLOW if the
896 * property data isn't large enough.
897 *
898 * The out_value is modified only if a valid u32 value can be decoded.
899 */
900 int of_property_read_u32_index(const struct device_node *np,
901 const char *propname,
902 u32 index, u32 *out_value)
903 {
904 const u32 *val = of_find_property_value_of_size(np, propname,
905 ((index + 1) * sizeof(*out_value)));
906
907 if (IS_ERR(val))
908 return PTR_ERR(val);
909
910 *out_value = be32_to_cpup(((__be32 *)val) + index);
911 return 0;
912 }
913 EXPORT_SYMBOL_GPL(of_property_read_u32_index);
914
915 /**
916 * of_property_read_u8_array - Find and read an array of u8 from a property.
917 *
918 * @np: device node from which the property value is to be read.
919 * @propname: name of the property to be searched.
920 * @out_values: pointer to return value, modified only if return value is 0.
921 * @sz: number of array elements to read
922 *
923 * Search for a property in a device node and read 8-bit value(s) from
924 * it. Returns 0 on success, -EINVAL if the property does not exist,
925 * -ENODATA if property does not have a value, and -EOVERFLOW if the
926 * property data isn't large enough.
927 *
928 * dts entry of array should be like:
929 * property = /bits/ 8 <0x50 0x60 0x70>;
930 *
931 * The out_values is modified only if a valid u8 value can be decoded.
932 */
933 int of_property_read_u8_array(const struct device_node *np,
934 const char *propname, u8 *out_values, size_t sz)
935 {
936 const u8 *val = of_find_property_value_of_size(np, propname,
937 (sz * sizeof(*out_values)));
938
939 if (IS_ERR(val))
940 return PTR_ERR(val);
941
942 while (sz--)
943 *out_values++ = *val++;
944 return 0;
945 }
946 EXPORT_SYMBOL_GPL(of_property_read_u8_array);
947
948 /**
949 * of_property_read_u16_array - Find and read an array of u16 from a property.
950 *
951 * @np: device node from which the property value is to be read.
952 * @propname: name of the property to be searched.
953 * @out_values: pointer to return value, modified only if return value is 0.
954 * @sz: number of array elements to read
955 *
956 * Search for a property in a device node and read 16-bit value(s) from
957 * it. Returns 0 on success, -EINVAL if the property does not exist,
958 * -ENODATA if property does not have a value, and -EOVERFLOW if the
959 * property data isn't large enough.
960 *
961 * dts entry of array should be like:
962 * property = /bits/ 16 <0x5000 0x6000 0x7000>;
963 *
964 * The out_values is modified only if a valid u16 value can be decoded.
965 */
966 int of_property_read_u16_array(const struct device_node *np,
967 const char *propname, u16 *out_values, size_t sz)
968 {
969 const __be16 *val = of_find_property_value_of_size(np, propname,
970 (sz * sizeof(*out_values)));
971
972 if (IS_ERR(val))
973 return PTR_ERR(val);
974
975 while (sz--)
976 *out_values++ = be16_to_cpup(val++);
977 return 0;
978 }
979 EXPORT_SYMBOL_GPL(of_property_read_u16_array);
980
981 /**
982 * of_property_read_u32_array - Find and read an array of 32 bit integers
983 * from a property.
984 *
985 * @np: device node from which the property value is to be read.
986 * @propname: name of the property to be searched.
987 * @out_values: pointer to return value, modified only if return value is 0.
988 * @sz: number of array elements to read
989 *
990 * Search for a property in a device node and read 32-bit value(s) from
991 * it. Returns 0 on success, -EINVAL if the property does not exist,
992 * -ENODATA if property does not have a value, and -EOVERFLOW if the
993 * property data isn't large enough.
994 *
995 * The out_values is modified only if a valid u32 value can be decoded.
996 */
997 int of_property_read_u32_array(const struct device_node *np,
998 const char *propname, u32 *out_values,
999 size_t sz)
1000 {
1001 const __be32 *val = of_find_property_value_of_size(np, propname,
1002 (sz * sizeof(*out_values)));
1003
1004 if (IS_ERR(val))
1005 return PTR_ERR(val);
1006
1007 while (sz--)
1008 *out_values++ = be32_to_cpup(val++);
1009 return 0;
1010 }
1011 EXPORT_SYMBOL_GPL(of_property_read_u32_array);
1012
1013 /**
1014 * of_property_read_u64 - Find and read a 64 bit integer from a property
1015 * @np: device node from which the property value is to be read.
1016 * @propname: name of the property to be searched.
1017 * @out_value: pointer to return value, modified only if return value is 0.
1018 *
1019 * Search for a property in a device node and read a 64-bit value from
1020 * it. Returns 0 on success, -EINVAL if the property does not exist,
1021 * -ENODATA if property does not have a value, and -EOVERFLOW if the
1022 * property data isn't large enough.
1023 *
1024 * The out_value is modified only if a valid u64 value can be decoded.
1025 */
1026 int of_property_read_u64(const struct device_node *np, const char *propname,
1027 u64 *out_value)
1028 {
1029 const __be32 *val = of_find_property_value_of_size(np, propname,
1030 sizeof(*out_value));
1031
1032 if (IS_ERR(val))
1033 return PTR_ERR(val);
1034
1035 *out_value = of_read_number(val, 2);
1036 return 0;
1037 }
1038 EXPORT_SYMBOL_GPL(of_property_read_u64);
1039
1040 /**
1041 * of_property_read_string - Find and read a string from a property
1042 * @np: device node from which the property value is to be read.
1043 * @propname: name of the property to be searched.
1044 * @out_string: pointer to null terminated return string, modified only if
1045 * return value is 0.
1046 *
1047 * Search for a property in a device tree node and retrieve a null
1048 * terminated string value (pointer to data, not a copy). Returns 0 on
1049 * success, -EINVAL if the property does not exist, -ENODATA if property
1050 * does not have a value, and -EILSEQ if the string is not null-terminated
1051 * within the length of the property data.
1052 *
1053 * The out_string pointer is modified only if a valid string can be decoded.
1054 */
1055 int of_property_read_string(struct device_node *np, const char *propname,
1056 const char **out_string)
1057 {
1058 struct property *prop = of_find_property(np, propname, NULL);
1059 if (!prop)
1060 return -EINVAL;
1061 if (!prop->value)
1062 return -ENODATA;
1063 if (strnlen(prop->value, prop->length) >= prop->length)
1064 return -EILSEQ;
1065 *out_string = prop->value;
1066 return 0;
1067 }
1068 EXPORT_SYMBOL_GPL(of_property_read_string);
1069
1070 /**
1071 * of_property_read_string_index - Find and read a string from a multiple
1072 * strings property.
1073 * @np: device node from which the property value is to be read.
1074 * @propname: name of the property to be searched.
1075 * @index: index of the string in the list of strings
1076 * @out_string: pointer to null terminated return string, modified only if
1077 * return value is 0.
1078 *
1079 * Search for a property in a device tree node and retrieve a null
1080 * terminated string value (pointer to data, not a copy) in the list of strings
1081 * contained in that property.
1082 * Returns 0 on success, -EINVAL if the property does not exist, -ENODATA if
1083 * property does not have a value, and -EILSEQ if the string is not
1084 * null-terminated within the length of the property data.
1085 *
1086 * The out_string pointer is modified only if a valid string can be decoded.
1087 */
1088 int of_property_read_string_index(struct device_node *np, const char *propname,
1089 int index, const char **output)
1090 {
1091 struct property *prop = of_find_property(np, propname, NULL);
1092 int i = 0;
1093 size_t l = 0, total = 0;
1094 const char *p;
1095
1096 if (!prop)
1097 return -EINVAL;
1098 if (!prop->value)
1099 return -ENODATA;
1100 if (strnlen(prop->value, prop->length) >= prop->length)
1101 return -EILSEQ;
1102
1103 p = prop->value;
1104
1105 for (i = 0; total < prop->length; total += l, p += l) {
1106 l = strlen(p) + 1;
1107 if (i++ == index) {
1108 *output = p;
1109 return 0;
1110 }
1111 }
1112 return -ENODATA;
1113 }
1114 EXPORT_SYMBOL_GPL(of_property_read_string_index);
1115
1116 /**
1117 * of_property_match_string() - Find string in a list and return index
1118 * @np: pointer to node containing string list property
1119 * @propname: string list property name
1120 * @string: pointer to string to search for in string list
1121 *
1122 * This function searches a string list property and returns the index
1123 * of a specific string value.
1124 */
1125 int of_property_match_string(struct device_node *np, const char *propname,
1126 const char *string)
1127 {
1128 struct property *prop = of_find_property(np, propname, NULL);
1129 size_t l;
1130 int i;
1131 const char *p, *end;
1132
1133 if (!prop)
1134 return -EINVAL;
1135 if (!prop->value)
1136 return -ENODATA;
1137
1138 p = prop->value;
1139 end = p + prop->length;
1140
1141 for (i = 0; p < end; i++, p += l) {
1142 l = strlen(p) + 1;
1143 if (p + l > end)
1144 return -EILSEQ;
1145 pr_debug("comparing %s with %s\n", string, p);
1146 if (strcmp(string, p) == 0)
1147 return i; /* Found it; return index */
1148 }
1149 return -ENODATA;
1150 }
1151 EXPORT_SYMBOL_GPL(of_property_match_string);
1152
1153 /**
1154 * of_property_count_strings - Find and return the number of strings from a
1155 * multiple strings property.
1156 * @np: device node from which the property value is to be read.
1157 * @propname: name of the property to be searched.
1158 *
1159 * Search for a property in a device tree node and retrieve the number of null
1160 * terminated string contain in it. Returns the number of strings on
1161 * success, -EINVAL if the property does not exist, -ENODATA if property
1162 * does not have a value, and -EILSEQ if the string is not null-terminated
1163 * within the length of the property data.
1164 */
1165 int of_property_count_strings(struct device_node *np, const char *propname)
1166 {
1167 struct property *prop = of_find_property(np, propname, NULL);
1168 int i = 0;
1169 size_t l = 0, total = 0;
1170 const char *p;
1171
1172 if (!prop)
1173 return -EINVAL;
1174 if (!prop->value)
1175 return -ENODATA;
1176 if (strnlen(prop->value, prop->length) >= prop->length)
1177 return -EILSEQ;
1178
1179 p = prop->value;
1180
1181 for (i = 0; total < prop->length; total += l, p += l, i++)
1182 l = strlen(p) + 1;
1183
1184 return i;
1185 }
1186 EXPORT_SYMBOL_GPL(of_property_count_strings);
1187
1188 void of_print_phandle_args(const char *msg, const struct of_phandle_args *args)
1189 {
1190 int i;
1191 printk("%s %s", msg, of_node_full_name(args->np));
1192 for (i = 0; i < args->args_count; i++)
1193 printk(i ? ",%08x" : ":%08x", args->args[i]);
1194 printk("\n");
1195 }
1196
1197 static int __of_parse_phandle_with_args(const struct device_node *np,
1198 const char *list_name,
1199 const char *cells_name,
1200 int cell_count, int index,
1201 struct of_phandle_args *out_args)
1202 {
1203 const __be32 *list, *list_end;
1204 int rc = 0, size, cur_index = 0;
1205 uint32_t count = 0;
1206 struct device_node *node = NULL;
1207 phandle phandle;
1208
1209 /* Retrieve the phandle list property */
1210 list = of_get_property(np, list_name, &size);
1211 if (!list)
1212 return -ENOENT;
1213 list_end = list + size / sizeof(*list);
1214
1215 /* Loop over the phandles until all the requested entry is found */
1216 while (list < list_end) {
1217 rc = -EINVAL;
1218 count = 0;
1219
1220 /*
1221 * If phandle is 0, then it is an empty entry with no
1222 * arguments. Skip forward to the next entry.
1223 */
1224 phandle = be32_to_cpup(list++);
1225 if (phandle) {
1226 /*
1227 * Find the provider node and parse the #*-cells
1228 * property to determine the argument length.
1229 *
1230 * This is not needed if the cell count is hard-coded
1231 * (i.e. cells_name not set, but cell_count is set),
1232 * except when we're going to return the found node
1233 * below.
1234 */
1235 if (cells_name || cur_index == index) {
1236 node = of_find_node_by_phandle(phandle);
1237 if (!node) {
1238 pr_err("%s: could not find phandle\n",
1239 np->full_name);
1240 goto err;
1241 }
1242 }
1243
1244 if (cells_name) {
1245 if (of_property_read_u32(node, cells_name,
1246 &count)) {
1247 pr_err("%s: could not get %s for %s\n",
1248 np->full_name, cells_name,
1249 node->full_name);
1250 goto err;
1251 }
1252 } else {
1253 count = cell_count;
1254 }
1255
1256 /*
1257 * Make sure that the arguments actually fit in the
1258 * remaining property data length
1259 */
1260 if (list + count > list_end) {
1261 pr_err("%s: arguments longer than property\n",
1262 np->full_name);
1263 goto err;
1264 }
1265 }
1266
1267 /*
1268 * All of the error cases above bail out of the loop, so at
1269 * this point, the parsing is successful. If the requested
1270 * index matches, then fill the out_args structure and return,
1271 * or return -ENOENT for an empty entry.
1272 */
1273 rc = -ENOENT;
1274 if (cur_index == index) {
1275 if (!phandle)
1276 goto err;
1277
1278 if (out_args) {
1279 int i;
1280 if (WARN_ON(count > MAX_PHANDLE_ARGS))
1281 count = MAX_PHANDLE_ARGS;
1282 out_args->np = node;
1283 out_args->args_count = count;
1284 for (i = 0; i < count; i++)
1285 out_args->args[i] = be32_to_cpup(list++);
1286 } else {
1287 of_node_put(node);
1288 }
1289
1290 /* Found it! return success */
1291 return 0;
1292 }
1293
1294 of_node_put(node);
1295 node = NULL;
1296 list += count;
1297 cur_index++;
1298 }
1299
1300 /*
1301 * Unlock node before returning result; will be one of:
1302 * -ENOENT : index is for empty phandle
1303 * -EINVAL : parsing error on data
1304 * [1..n] : Number of phandle (count mode; when index = -1)
1305 */
1306 rc = index < 0 ? cur_index : -ENOENT;
1307 err:
1308 if (node)
1309 of_node_put(node);
1310 return rc;
1311 }
1312
1313 /**
1314 * of_parse_phandle - Resolve a phandle property to a device_node pointer
1315 * @np: Pointer to device node holding phandle property
1316 * @phandle_name: Name of property holding a phandle value
1317 * @index: For properties holding a table of phandles, this is the index into
1318 * the table
1319 *
1320 * Returns the device_node pointer with refcount incremented. Use
1321 * of_node_put() on it when done.
1322 */
1323 struct device_node *of_parse_phandle(const struct device_node *np,
1324 const char *phandle_name, int index)
1325 {
1326 struct of_phandle_args args;
1327
1328 if (index < 0)
1329 return NULL;
1330
1331 if (__of_parse_phandle_with_args(np, phandle_name, NULL, 0,
1332 index, &args))
1333 return NULL;
1334
1335 return args.np;
1336 }
1337 EXPORT_SYMBOL(of_parse_phandle);
1338
1339 /**
1340 * of_parse_phandle_with_args() - Find a node pointed by phandle in a list
1341 * @np: pointer to a device tree node containing a list
1342 * @list_name: property name that contains a list
1343 * @cells_name: property name that specifies phandles' arguments count
1344 * @index: index of a phandle to parse out
1345 * @out_args: optional pointer to output arguments structure (will be filled)
1346 *
1347 * This function is useful to parse lists of phandles and their arguments.
1348 * Returns 0 on success and fills out_args, on error returns appropriate
1349 * errno value.
1350 *
1351 * Caller is responsible to call of_node_put() on the returned out_args->node
1352 * pointer.
1353 *
1354 * Example:
1355 *
1356 * phandle1: node1 {
1357 * #list-cells = <2>;
1358 * }
1359 *
1360 * phandle2: node2 {
1361 * #list-cells = <1>;
1362 * }
1363 *
1364 * node3 {
1365 * list = <&phandle1 1 2 &phandle2 3>;
1366 * }
1367 *
1368 * To get a device_node of the `node2' node you may call this:
1369 * of_parse_phandle_with_args(node3, "list", "#list-cells", 1, &args);
1370 */
1371 int of_parse_phandle_with_args(const struct device_node *np, const char *list_name,
1372 const char *cells_name, int index,
1373 struct of_phandle_args *out_args)
1374 {
1375 if (index < 0)
1376 return -EINVAL;
1377 return __of_parse_phandle_with_args(np, list_name, cells_name, 0,
1378 index, out_args);
1379 }
1380 EXPORT_SYMBOL(of_parse_phandle_with_args);
1381
1382 /**
1383 * of_parse_phandle_with_fixed_args() - Find a node pointed by phandle in a list
1384 * @np: pointer to a device tree node containing a list
1385 * @list_name: property name that contains a list
1386 * @cell_count: number of argument cells following the phandle
1387 * @index: index of a phandle to parse out
1388 * @out_args: optional pointer to output arguments structure (will be filled)
1389 *
1390 * This function is useful to parse lists of phandles and their arguments.
1391 * Returns 0 on success and fills out_args, on error returns appropriate
1392 * errno value.
1393 *
1394 * Caller is responsible to call of_node_put() on the returned out_args->node
1395 * pointer.
1396 *
1397 * Example:
1398 *
1399 * phandle1: node1 {
1400 * }
1401 *
1402 * phandle2: node2 {
1403 * }
1404 *
1405 * node3 {
1406 * list = <&phandle1 0 2 &phandle2 2 3>;
1407 * }
1408 *
1409 * To get a device_node of the `node2' node you may call this:
1410 * of_parse_phandle_with_fixed_args(node3, "list", 2, 1, &args);
1411 */
1412 int of_parse_phandle_with_fixed_args(const struct device_node *np,
1413 const char *list_name, int cell_count,
1414 int index, struct of_phandle_args *out_args)
1415 {
1416 if (index < 0)
1417 return -EINVAL;
1418 return __of_parse_phandle_with_args(np, list_name, NULL, cell_count,
1419 index, out_args);
1420 }
1421 EXPORT_SYMBOL(of_parse_phandle_with_fixed_args);
1422
1423 /**
1424 * of_count_phandle_with_args() - Find the number of phandles references in a property
1425 * @np: pointer to a device tree node containing a list
1426 * @list_name: property name that contains a list
1427 * @cells_name: property name that specifies phandles' arguments count
1428 *
1429 * Returns the number of phandle + argument tuples within a property. It
1430 * is a typical pattern to encode a list of phandle and variable
1431 * arguments into a single property. The number of arguments is encoded
1432 * by a property in the phandle-target node. For example, a gpios
1433 * property would contain a list of GPIO specifies consisting of a
1434 * phandle and 1 or more arguments. The number of arguments are
1435 * determined by the #gpio-cells property in the node pointed to by the
1436 * phandle.
1437 */
1438 int of_count_phandle_with_args(const struct device_node *np, const char *list_name,
1439 const char *cells_name)
1440 {
1441 return __of_parse_phandle_with_args(np, list_name, cells_name, 0, -1,
1442 NULL);
1443 }
1444 EXPORT_SYMBOL(of_count_phandle_with_args);
1445
1446 #if defined(CONFIG_OF_DYNAMIC)
1447 static int of_property_notify(int action, struct device_node *np,
1448 struct property *prop)
1449 {
1450 struct of_prop_reconfig pr;
1451
1452 pr.dn = np;
1453 pr.prop = prop;
1454 return of_reconfig_notify(action, &pr);
1455 }
1456 #else
1457 static int of_property_notify(int action, struct device_node *np,
1458 struct property *prop)
1459 {
1460 return 0;
1461 }
1462 #endif
1463
1464 /**
1465 * of_add_property - Add a property to a node
1466 */
1467 int of_add_property(struct device_node *np, struct property *prop)
1468 {
1469 struct property **next;
1470 unsigned long flags;
1471 int rc;
1472
1473 rc = of_property_notify(OF_RECONFIG_ADD_PROPERTY, np, prop);
1474 if (rc)
1475 return rc;
1476
1477 prop->next = NULL;
1478 raw_spin_lock_irqsave(&devtree_lock, flags);
1479 next = &np->properties;
1480 while (*next) {
1481 if (strcmp(prop->name, (*next)->name) == 0) {
1482 /* duplicate ! don't insert it */
1483 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1484 return -1;
1485 }
1486 next = &(*next)->next;
1487 }
1488 *next = prop;
1489 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1490
1491 #ifdef CONFIG_PROC_DEVICETREE
1492 /* try to add to proc as well if it was initialized */
1493 if (np->pde)
1494 proc_device_tree_add_prop(np->pde, prop);
1495 #endif /* CONFIG_PROC_DEVICETREE */
1496
1497 return 0;
1498 }
1499
1500 /**
1501 * of_remove_property - Remove a property from a node.
1502 *
1503 * Note that we don't actually remove it, since we have given out
1504 * who-knows-how-many pointers to the data using get-property.
1505 * Instead we just move the property to the "dead properties"
1506 * list, so it won't be found any more.
1507 */
1508 int of_remove_property(struct device_node *np, struct property *prop)
1509 {
1510 struct property **next;
1511 unsigned long flags;
1512 int found = 0;
1513 int rc;
1514
1515 rc = of_property_notify(OF_RECONFIG_REMOVE_PROPERTY, np, prop);
1516 if (rc)
1517 return rc;
1518
1519 raw_spin_lock_irqsave(&devtree_lock, flags);
1520 next = &np->properties;
1521 while (*next) {
1522 if (*next == prop) {
1523 /* found the node */
1524 *next = prop->next;
1525 prop->next = np->deadprops;
1526 np->deadprops = prop;
1527 found = 1;
1528 break;
1529 }
1530 next = &(*next)->next;
1531 }
1532 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1533
1534 if (!found)
1535 return -ENODEV;
1536
1537 #ifdef CONFIG_PROC_DEVICETREE
1538 /* try to remove the proc node as well */
1539 if (np->pde)
1540 proc_device_tree_remove_prop(np->pde, prop);
1541 #endif /* CONFIG_PROC_DEVICETREE */
1542
1543 return 0;
1544 }
1545
1546 /*
1547 * of_update_property - Update a property in a node, if the property does
1548 * not exist, add it.
1549 *
1550 * Note that we don't actually remove it, since we have given out
1551 * who-knows-how-many pointers to the data using get-property.
1552 * Instead we just move the property to the "dead properties" list,
1553 * and add the new property to the property list
1554 */
1555 int of_update_property(struct device_node *np, struct property *newprop)
1556 {
1557 struct property **next, *oldprop;
1558 unsigned long flags;
1559 int rc, found = 0;
1560
1561 rc = of_property_notify(OF_RECONFIG_UPDATE_PROPERTY, np, newprop);
1562 if (rc)
1563 return rc;
1564
1565 if (!newprop->name)
1566 return -EINVAL;
1567
1568 oldprop = of_find_property(np, newprop->name, NULL);
1569 if (!oldprop)
1570 return of_add_property(np, newprop);
1571
1572 raw_spin_lock_irqsave(&devtree_lock, flags);
1573 next = &np->properties;
1574 while (*next) {
1575 if (*next == oldprop) {
1576 /* found the node */
1577 newprop->next = oldprop->next;
1578 *next = newprop;
1579 oldprop->next = np->deadprops;
1580 np->deadprops = oldprop;
1581 found = 1;
1582 break;
1583 }
1584 next = &(*next)->next;
1585 }
1586 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1587
1588 if (!found)
1589 return -ENODEV;
1590
1591 #ifdef CONFIG_PROC_DEVICETREE
1592 /* try to add to proc as well if it was initialized */
1593 if (np->pde)
1594 proc_device_tree_update_prop(np->pde, newprop, oldprop);
1595 #endif /* CONFIG_PROC_DEVICETREE */
1596
1597 return 0;
1598 }
1599
1600 #if defined(CONFIG_OF_DYNAMIC)
1601 /*
1602 * Support for dynamic device trees.
1603 *
1604 * On some platforms, the device tree can be manipulated at runtime.
1605 * The routines in this section support adding, removing and changing
1606 * device tree nodes.
1607 */
1608
1609 static BLOCKING_NOTIFIER_HEAD(of_reconfig_chain);
1610
1611 int of_reconfig_notifier_register(struct notifier_block *nb)
1612 {
1613 return blocking_notifier_chain_register(&of_reconfig_chain, nb);
1614 }
1615 EXPORT_SYMBOL_GPL(of_reconfig_notifier_register);
1616
1617 int of_reconfig_notifier_unregister(struct notifier_block *nb)
1618 {
1619 return blocking_notifier_chain_unregister(&of_reconfig_chain, nb);
1620 }
1621 EXPORT_SYMBOL_GPL(of_reconfig_notifier_unregister);
1622
1623 int of_reconfig_notify(unsigned long action, void *p)
1624 {
1625 int rc;
1626
1627 rc = blocking_notifier_call_chain(&of_reconfig_chain, action, p);
1628 return notifier_to_errno(rc);
1629 }
1630
1631 #ifdef CONFIG_PROC_DEVICETREE
1632 static void of_add_proc_dt_entry(struct device_node *dn)
1633 {
1634 struct proc_dir_entry *ent;
1635
1636 ent = proc_mkdir(strrchr(dn->full_name, '/') + 1, dn->parent->pde);
1637 if (ent)
1638 proc_device_tree_add_node(dn, ent);
1639 }
1640 #else
1641 static void of_add_proc_dt_entry(struct device_node *dn)
1642 {
1643 return;
1644 }
1645 #endif
1646
1647 /**
1648 * of_attach_node - Plug a device node into the tree and global list.
1649 */
1650 int of_attach_node(struct device_node *np)
1651 {
1652 unsigned long flags;
1653 int rc;
1654
1655 rc = of_reconfig_notify(OF_RECONFIG_ATTACH_NODE, np);
1656 if (rc)
1657 return rc;
1658
1659 raw_spin_lock_irqsave(&devtree_lock, flags);
1660 np->sibling = np->parent->child;
1661 np->allnext = of_allnodes;
1662 np->parent->child = np;
1663 of_allnodes = np;
1664 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1665
1666 of_add_proc_dt_entry(np);
1667 return 0;
1668 }
1669
1670 #ifdef CONFIG_PROC_DEVICETREE
1671 static void of_remove_proc_dt_entry(struct device_node *dn)
1672 {
1673 proc_remove(dn->pde);
1674 }
1675 #else
1676 static void of_remove_proc_dt_entry(struct device_node *dn)
1677 {
1678 return;
1679 }
1680 #endif
1681
1682 /**
1683 * of_detach_node - "Unplug" a node from the device tree.
1684 *
1685 * The caller must hold a reference to the node. The memory associated with
1686 * the node is not freed until its refcount goes to zero.
1687 */
1688 int of_detach_node(struct device_node *np)
1689 {
1690 struct device_node *parent;
1691 unsigned long flags;
1692 int rc = 0;
1693
1694 rc = of_reconfig_notify(OF_RECONFIG_DETACH_NODE, np);
1695 if (rc)
1696 return rc;
1697
1698 raw_spin_lock_irqsave(&devtree_lock, flags);
1699
1700 if (of_node_check_flag(np, OF_DETACHED)) {
1701 /* someone already detached it */
1702 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1703 return rc;
1704 }
1705
1706 parent = np->parent;
1707 if (!parent) {
1708 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1709 return rc;
1710 }
1711
1712 if (of_allnodes == np)
1713 of_allnodes = np->allnext;
1714 else {
1715 struct device_node *prev;
1716 for (prev = of_allnodes;
1717 prev->allnext != np;
1718 prev = prev->allnext)
1719 ;
1720 prev->allnext = np->allnext;
1721 }
1722
1723 if (parent->child == np)
1724 parent->child = np->sibling;
1725 else {
1726 struct device_node *prevsib;
1727 for (prevsib = np->parent->child;
1728 prevsib->sibling != np;
1729 prevsib = prevsib->sibling)
1730 ;
1731 prevsib->sibling = np->sibling;
1732 }
1733
1734 of_node_set_flag(np, OF_DETACHED);
1735 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1736
1737 of_remove_proc_dt_entry(np);
1738 return rc;
1739 }
1740 #endif /* defined(CONFIG_OF_DYNAMIC) */
1741
1742 static void of_alias_add(struct alias_prop *ap, struct device_node *np,
1743 int id, const char *stem, int stem_len)
1744 {
1745 ap->np = np;
1746 ap->id = id;
1747 strncpy(ap->stem, stem, stem_len);
1748 ap->stem[stem_len] = 0;
1749 list_add_tail(&ap->link, &aliases_lookup);
1750 pr_debug("adding DT alias:%s: stem=%s id=%i node=%s\n",
1751 ap->alias, ap->stem, ap->id, of_node_full_name(np));
1752 }
1753
1754 /**
1755 * of_alias_scan - Scan all properties of 'aliases' node
1756 *
1757 * The function scans all the properties of 'aliases' node and populate
1758 * the the global lookup table with the properties. It returns the
1759 * number of alias_prop found, or error code in error case.
1760 *
1761 * @dt_alloc: An allocator that provides a virtual address to memory
1762 * for the resulting tree
1763 */
1764 void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align))
1765 {
1766 struct property *pp;
1767
1768 of_chosen = of_find_node_by_path("/chosen");
1769 if (of_chosen == NULL)
1770 of_chosen = of_find_node_by_path("/chosen@0");
1771
1772 if (of_chosen) {
1773 const char *name;
1774
1775 name = of_get_property(of_chosen, "linux,stdout-path", NULL);
1776 if (name)
1777 of_stdout = of_find_node_by_path(name);
1778 }
1779
1780 of_aliases = of_find_node_by_path("/aliases");
1781 if (!of_aliases)
1782 return;
1783
1784 for_each_property_of_node(of_aliases, pp) {
1785 const char *start = pp->name;
1786 const char *end = start + strlen(start);
1787 struct device_node *np;
1788 struct alias_prop *ap;
1789 int id, len;
1790
1791 /* Skip those we do not want to proceed */
1792 if (!strcmp(pp->name, "name") ||
1793 !strcmp(pp->name, "phandle") ||
1794 !strcmp(pp->name, "linux,phandle"))
1795 continue;
1796
1797 np = of_find_node_by_path(pp->value);
1798 if (!np)
1799 continue;
1800
1801 /* walk the alias backwards to extract the id and work out
1802 * the 'stem' string */
1803 while (isdigit(*(end-1)) && end > start)
1804 end--;
1805 len = end - start;
1806
1807 if (kstrtoint(end, 10, &id) < 0)
1808 continue;
1809
1810 /* Allocate an alias_prop with enough space for the stem */
1811 ap = dt_alloc(sizeof(*ap) + len + 1, 4);
1812 if (!ap)
1813 continue;
1814 memset(ap, 0, sizeof(*ap) + len + 1);
1815 ap->alias = start;
1816 of_alias_add(ap, np, id, start, len);
1817 }
1818 }
1819
1820 /**
1821 * of_alias_get_id - Get alias id for the given device_node
1822 * @np: Pointer to the given device_node
1823 * @stem: Alias stem of the given device_node
1824 *
1825 * The function travels the lookup table to get alias id for the given
1826 * device_node and alias stem. It returns the alias id if find it.
1827 */
1828 int of_alias_get_id(struct device_node *np, const char *stem)
1829 {
1830 struct alias_prop *app;
1831 int id = -ENODEV;
1832
1833 mutex_lock(&of_aliases_mutex);
1834 list_for_each_entry(app, &aliases_lookup, link) {
1835 if (strcmp(app->stem, stem) != 0)
1836 continue;
1837
1838 if (np == app->np) {
1839 id = app->id;
1840 break;
1841 }
1842 }
1843 mutex_unlock(&of_aliases_mutex);
1844
1845 return id;
1846 }
1847 EXPORT_SYMBOL_GPL(of_alias_get_id);
1848
1849 const __be32 *of_prop_next_u32(struct property *prop, const __be32 *cur,
1850 u32 *pu)
1851 {
1852 const void *curv = cur;
1853
1854 if (!prop)
1855 return NULL;
1856
1857 if (!cur) {
1858 curv = prop->value;
1859 goto out_val;
1860 }
1861
1862 curv += sizeof(*cur);
1863 if (curv >= prop->value + prop->length)
1864 return NULL;
1865
1866 out_val:
1867 *pu = be32_to_cpup(curv);
1868 return curv;
1869 }
1870 EXPORT_SYMBOL_GPL(of_prop_next_u32);
1871
1872 const char *of_prop_next_string(struct property *prop, const char *cur)
1873 {
1874 const void *curv = cur;
1875
1876 if (!prop)
1877 return NULL;
1878
1879 if (!cur)
1880 return prop->value;
1881
1882 curv += strlen(cur) + 1;
1883 if (curv >= prop->value + prop->length)
1884 return NULL;
1885
1886 return curv;
1887 }
1888 EXPORT_SYMBOL_GPL(of_prop_next_string);
1889
1890 /**
1891 * of_device_is_stdout_path - check if a device node matches the
1892 * linux,stdout-path property
1893 *
1894 * Check if this device node matches the linux,stdout-path property
1895 * in the chosen node. return true if yes, false otherwise.
1896 */
1897 int of_device_is_stdout_path(struct device_node *dn)
1898 {
1899 if (!of_stdout)
1900 return false;
1901
1902 return of_stdout == dn;
1903 }
1904 EXPORT_SYMBOL_GPL(of_device_is_stdout_path);
This page took 0.06965 seconds and 5 git commands to generate.