of: Don't try to search when phandle == 0
[deliverable/linux.git] / drivers / of / base.c
1 /*
2 * Procedures for creating, accessing and interpreting the device tree.
3 *
4 * Paul Mackerras August 1996.
5 * Copyright (C) 1996-2005 Paul Mackerras.
6 *
7 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
8 * {engebret|bergner}@us.ibm.com
9 *
10 * Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net
11 *
12 * Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and
13 * Grant Likely.
14 *
15 * This program is free software; you can redistribute it and/or
16 * modify it under the terms of the GNU General Public License
17 * as published by the Free Software Foundation; either version
18 * 2 of the License, or (at your option) any later version.
19 */
20 #include <linux/console.h>
21 #include <linux/ctype.h>
22 #include <linux/cpu.h>
23 #include <linux/module.h>
24 #include <linux/of.h>
25 #include <linux/of_graph.h>
26 #include <linux/spinlock.h>
27 #include <linux/slab.h>
28 #include <linux/string.h>
29 #include <linux/proc_fs.h>
30
31 #include "of_private.h"
32
33 LIST_HEAD(aliases_lookup);
34
35 struct device_node *of_allnodes;
36 EXPORT_SYMBOL(of_allnodes);
37 struct device_node *of_chosen;
38 struct device_node *of_aliases;
39 struct device_node *of_stdout;
40
41 struct kset *of_kset;
42
43 /*
44 * Used to protect the of_aliases, to hold off addition of nodes to sysfs.
45 * This mutex must be held whenever modifications are being made to the
46 * device tree. The of_{attach,detach}_node() and
47 * of_{add,remove,update}_property() helpers make sure this happens.
48 */
49 DEFINE_MUTEX(of_mutex);
50
51 /* use when traversing tree through the allnext, child, sibling,
52 * or parent members of struct device_node.
53 */
54 DEFINE_RAW_SPINLOCK(devtree_lock);
55
56 int of_n_addr_cells(struct device_node *np)
57 {
58 const __be32 *ip;
59
60 do {
61 if (np->parent)
62 np = np->parent;
63 ip = of_get_property(np, "#address-cells", NULL);
64 if (ip)
65 return be32_to_cpup(ip);
66 } while (np->parent);
67 /* No #address-cells property for the root node */
68 return OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
69 }
70 EXPORT_SYMBOL(of_n_addr_cells);
71
72 int of_n_size_cells(struct device_node *np)
73 {
74 const __be32 *ip;
75
76 do {
77 if (np->parent)
78 np = np->parent;
79 ip = of_get_property(np, "#size-cells", NULL);
80 if (ip)
81 return be32_to_cpup(ip);
82 } while (np->parent);
83 /* No #size-cells property for the root node */
84 return OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
85 }
86 EXPORT_SYMBOL(of_n_size_cells);
87
88 #ifdef CONFIG_NUMA
89 int __weak of_node_to_nid(struct device_node *np)
90 {
91 return numa_node_id();
92 }
93 #endif
94
95 #ifndef CONFIG_OF_DYNAMIC
96 static void of_node_release(struct kobject *kobj)
97 {
98 /* Without CONFIG_OF_DYNAMIC, no nodes gets freed */
99 }
100 #endif /* CONFIG_OF_DYNAMIC */
101
102 struct kobj_type of_node_ktype = {
103 .release = of_node_release,
104 };
105
106 static ssize_t of_node_property_read(struct file *filp, struct kobject *kobj,
107 struct bin_attribute *bin_attr, char *buf,
108 loff_t offset, size_t count)
109 {
110 struct property *pp = container_of(bin_attr, struct property, attr);
111 return memory_read_from_buffer(buf, count, &offset, pp->value, pp->length);
112 }
113
114 static const char *safe_name(struct kobject *kobj, const char *orig_name)
115 {
116 const char *name = orig_name;
117 struct kernfs_node *kn;
118 int i = 0;
119
120 /* don't be a hero. After 16 tries give up */
121 while (i < 16 && (kn = sysfs_get_dirent(kobj->sd, name))) {
122 sysfs_put(kn);
123 if (name != orig_name)
124 kfree(name);
125 name = kasprintf(GFP_KERNEL, "%s#%i", orig_name, ++i);
126 }
127
128 if (name != orig_name)
129 pr_warn("device-tree: Duplicate name in %s, renamed to \"%s\"\n",
130 kobject_name(kobj), name);
131 return name;
132 }
133
134 int __of_add_property_sysfs(struct device_node *np, struct property *pp)
135 {
136 int rc;
137
138 /* Important: Don't leak passwords */
139 bool secure = strncmp(pp->name, "security-", 9) == 0;
140
141 if (!IS_ENABLED(CONFIG_SYSFS))
142 return 0;
143
144 if (!of_kset || !of_node_is_attached(np))
145 return 0;
146
147 sysfs_bin_attr_init(&pp->attr);
148 pp->attr.attr.name = safe_name(&np->kobj, pp->name);
149 pp->attr.attr.mode = secure ? S_IRUSR : S_IRUGO;
150 pp->attr.size = secure ? 0 : pp->length;
151 pp->attr.read = of_node_property_read;
152
153 rc = sysfs_create_bin_file(&np->kobj, &pp->attr);
154 WARN(rc, "error adding attribute %s to node %s\n", pp->name, np->full_name);
155 return rc;
156 }
157
158 int __of_attach_node_sysfs(struct device_node *np)
159 {
160 const char *name;
161 struct property *pp;
162 int rc;
163
164 if (!IS_ENABLED(CONFIG_SYSFS))
165 return 0;
166
167 if (!of_kset)
168 return 0;
169
170 np->kobj.kset = of_kset;
171 if (!np->parent) {
172 /* Nodes without parents are new top level trees */
173 rc = kobject_add(&np->kobj, NULL, "%s",
174 safe_name(&of_kset->kobj, "base"));
175 } else {
176 name = safe_name(&np->parent->kobj, kbasename(np->full_name));
177 if (!name || !name[0])
178 return -EINVAL;
179
180 rc = kobject_add(&np->kobj, &np->parent->kobj, "%s", name);
181 }
182 if (rc)
183 return rc;
184
185 for_each_property_of_node(np, pp)
186 __of_add_property_sysfs(np, pp);
187
188 return 0;
189 }
190
191 static int __init of_init(void)
192 {
193 struct device_node *np;
194
195 /* Create the kset, and register existing nodes */
196 mutex_lock(&of_mutex);
197 of_kset = kset_create_and_add("devicetree", NULL, firmware_kobj);
198 if (!of_kset) {
199 mutex_unlock(&of_mutex);
200 return -ENOMEM;
201 }
202 for_each_of_allnodes(np)
203 __of_attach_node_sysfs(np);
204 mutex_unlock(&of_mutex);
205
206 /* Symlink in /proc as required by userspace ABI */
207 if (of_allnodes)
208 proc_symlink("device-tree", NULL, "/sys/firmware/devicetree/base");
209
210 return 0;
211 }
212 core_initcall(of_init);
213
214 static struct property *__of_find_property(const struct device_node *np,
215 const char *name, int *lenp)
216 {
217 struct property *pp;
218
219 if (!np)
220 return NULL;
221
222 for (pp = np->properties; pp; pp = pp->next) {
223 if (of_prop_cmp(pp->name, name) == 0) {
224 if (lenp)
225 *lenp = pp->length;
226 break;
227 }
228 }
229
230 return pp;
231 }
232
233 struct property *of_find_property(const struct device_node *np,
234 const char *name,
235 int *lenp)
236 {
237 struct property *pp;
238 unsigned long flags;
239
240 raw_spin_lock_irqsave(&devtree_lock, flags);
241 pp = __of_find_property(np, name, lenp);
242 raw_spin_unlock_irqrestore(&devtree_lock, flags);
243
244 return pp;
245 }
246 EXPORT_SYMBOL(of_find_property);
247
248 /**
249 * of_find_all_nodes - Get next node in global list
250 * @prev: Previous node or NULL to start iteration
251 * of_node_put() will be called on it
252 *
253 * Returns a node pointer with refcount incremented, use
254 * of_node_put() on it when done.
255 */
256 struct device_node *of_find_all_nodes(struct device_node *prev)
257 {
258 struct device_node *np;
259 unsigned long flags;
260
261 raw_spin_lock_irqsave(&devtree_lock, flags);
262 np = prev ? prev->allnext : of_allnodes;
263 for (; np != NULL; np = np->allnext)
264 if (of_node_get(np))
265 break;
266 of_node_put(prev);
267 raw_spin_unlock_irqrestore(&devtree_lock, flags);
268 return np;
269 }
270 EXPORT_SYMBOL(of_find_all_nodes);
271
272 /*
273 * Find a property with a given name for a given node
274 * and return the value.
275 */
276 const void *__of_get_property(const struct device_node *np,
277 const char *name, int *lenp)
278 {
279 struct property *pp = __of_find_property(np, name, lenp);
280
281 return pp ? pp->value : NULL;
282 }
283
284 /*
285 * Find a property with a given name for a given node
286 * and return the value.
287 */
288 const void *of_get_property(const struct device_node *np, const char *name,
289 int *lenp)
290 {
291 struct property *pp = of_find_property(np, name, lenp);
292
293 return pp ? pp->value : NULL;
294 }
295 EXPORT_SYMBOL(of_get_property);
296
297 /*
298 * arch_match_cpu_phys_id - Match the given logical CPU and physical id
299 *
300 * @cpu: logical cpu index of a core/thread
301 * @phys_id: physical identifier of a core/thread
302 *
303 * CPU logical to physical index mapping is architecture specific.
304 * However this __weak function provides a default match of physical
305 * id to logical cpu index. phys_id provided here is usually values read
306 * from the device tree which must match the hardware internal registers.
307 *
308 * Returns true if the physical identifier and the logical cpu index
309 * correspond to the same core/thread, false otherwise.
310 */
311 bool __weak arch_match_cpu_phys_id(int cpu, u64 phys_id)
312 {
313 return (u32)phys_id == cpu;
314 }
315
316 /**
317 * Checks if the given "prop_name" property holds the physical id of the
318 * core/thread corresponding to the logical cpu 'cpu'. If 'thread' is not
319 * NULL, local thread number within the core is returned in it.
320 */
321 static bool __of_find_n_match_cpu_property(struct device_node *cpun,
322 const char *prop_name, int cpu, unsigned int *thread)
323 {
324 const __be32 *cell;
325 int ac, prop_len, tid;
326 u64 hwid;
327
328 ac = of_n_addr_cells(cpun);
329 cell = of_get_property(cpun, prop_name, &prop_len);
330 if (!cell || !ac)
331 return false;
332 prop_len /= sizeof(*cell) * ac;
333 for (tid = 0; tid < prop_len; tid++) {
334 hwid = of_read_number(cell, ac);
335 if (arch_match_cpu_phys_id(cpu, hwid)) {
336 if (thread)
337 *thread = tid;
338 return true;
339 }
340 cell += ac;
341 }
342 return false;
343 }
344
345 /*
346 * arch_find_n_match_cpu_physical_id - See if the given device node is
347 * for the cpu corresponding to logical cpu 'cpu'. Return true if so,
348 * else false. If 'thread' is non-NULL, the local thread number within the
349 * core is returned in it.
350 */
351 bool __weak arch_find_n_match_cpu_physical_id(struct device_node *cpun,
352 int cpu, unsigned int *thread)
353 {
354 /* Check for non-standard "ibm,ppc-interrupt-server#s" property
355 * for thread ids on PowerPC. If it doesn't exist fallback to
356 * standard "reg" property.
357 */
358 if (IS_ENABLED(CONFIG_PPC) &&
359 __of_find_n_match_cpu_property(cpun,
360 "ibm,ppc-interrupt-server#s",
361 cpu, thread))
362 return true;
363
364 if (__of_find_n_match_cpu_property(cpun, "reg", cpu, thread))
365 return true;
366
367 return false;
368 }
369
370 /**
371 * of_get_cpu_node - Get device node associated with the given logical CPU
372 *
373 * @cpu: CPU number(logical index) for which device node is required
374 * @thread: if not NULL, local thread number within the physical core is
375 * returned
376 *
377 * The main purpose of this function is to retrieve the device node for the
378 * given logical CPU index. It should be used to initialize the of_node in
379 * cpu device. Once of_node in cpu device is populated, all the further
380 * references can use that instead.
381 *
382 * CPU logical to physical index mapping is architecture specific and is built
383 * before booting secondary cores. This function uses arch_match_cpu_phys_id
384 * which can be overridden by architecture specific implementation.
385 *
386 * Returns a node pointer for the logical cpu if found, else NULL.
387 */
388 struct device_node *of_get_cpu_node(int cpu, unsigned int *thread)
389 {
390 struct device_node *cpun;
391
392 for_each_node_by_type(cpun, "cpu") {
393 if (arch_find_n_match_cpu_physical_id(cpun, cpu, thread))
394 return cpun;
395 }
396 return NULL;
397 }
398 EXPORT_SYMBOL(of_get_cpu_node);
399
400 /**
401 * __of_device_is_compatible() - Check if the node matches given constraints
402 * @device: pointer to node
403 * @compat: required compatible string, NULL or "" for any match
404 * @type: required device_type value, NULL or "" for any match
405 * @name: required node name, NULL or "" for any match
406 *
407 * Checks if the given @compat, @type and @name strings match the
408 * properties of the given @device. A constraints can be skipped by
409 * passing NULL or an empty string as the constraint.
410 *
411 * Returns 0 for no match, and a positive integer on match. The return
412 * value is a relative score with larger values indicating better
413 * matches. The score is weighted for the most specific compatible value
414 * to get the highest score. Matching type is next, followed by matching
415 * name. Practically speaking, this results in the following priority
416 * order for matches:
417 *
418 * 1. specific compatible && type && name
419 * 2. specific compatible && type
420 * 3. specific compatible && name
421 * 4. specific compatible
422 * 5. general compatible && type && name
423 * 6. general compatible && type
424 * 7. general compatible && name
425 * 8. general compatible
426 * 9. type && name
427 * 10. type
428 * 11. name
429 */
430 static int __of_device_is_compatible(const struct device_node *device,
431 const char *compat, const char *type, const char *name)
432 {
433 struct property *prop;
434 const char *cp;
435 int index = 0, score = 0;
436
437 /* Compatible match has highest priority */
438 if (compat && compat[0]) {
439 prop = __of_find_property(device, "compatible", NULL);
440 for (cp = of_prop_next_string(prop, NULL); cp;
441 cp = of_prop_next_string(prop, cp), index++) {
442 if (of_compat_cmp(cp, compat, strlen(compat)) == 0) {
443 score = INT_MAX/2 - (index << 2);
444 break;
445 }
446 }
447 if (!score)
448 return 0;
449 }
450
451 /* Matching type is better than matching name */
452 if (type && type[0]) {
453 if (!device->type || of_node_cmp(type, device->type))
454 return 0;
455 score += 2;
456 }
457
458 /* Matching name is a bit better than not */
459 if (name && name[0]) {
460 if (!device->name || of_node_cmp(name, device->name))
461 return 0;
462 score++;
463 }
464
465 return score;
466 }
467
468 /** Checks if the given "compat" string matches one of the strings in
469 * the device's "compatible" property
470 */
471 int of_device_is_compatible(const struct device_node *device,
472 const char *compat)
473 {
474 unsigned long flags;
475 int res;
476
477 raw_spin_lock_irqsave(&devtree_lock, flags);
478 res = __of_device_is_compatible(device, compat, NULL, NULL);
479 raw_spin_unlock_irqrestore(&devtree_lock, flags);
480 return res;
481 }
482 EXPORT_SYMBOL(of_device_is_compatible);
483
484 /**
485 * of_machine_is_compatible - Test root of device tree for a given compatible value
486 * @compat: compatible string to look for in root node's compatible property.
487 *
488 * Returns true if the root node has the given value in its
489 * compatible property.
490 */
491 int of_machine_is_compatible(const char *compat)
492 {
493 struct device_node *root;
494 int rc = 0;
495
496 root = of_find_node_by_path("/");
497 if (root) {
498 rc = of_device_is_compatible(root, compat);
499 of_node_put(root);
500 }
501 return rc;
502 }
503 EXPORT_SYMBOL(of_machine_is_compatible);
504
505 /**
506 * __of_device_is_available - check if a device is available for use
507 *
508 * @device: Node to check for availability, with locks already held
509 *
510 * Returns 1 if the status property is absent or set to "okay" or "ok",
511 * 0 otherwise
512 */
513 static int __of_device_is_available(const struct device_node *device)
514 {
515 const char *status;
516 int statlen;
517
518 if (!device)
519 return 0;
520
521 status = __of_get_property(device, "status", &statlen);
522 if (status == NULL)
523 return 1;
524
525 if (statlen > 0) {
526 if (!strcmp(status, "okay") || !strcmp(status, "ok"))
527 return 1;
528 }
529
530 return 0;
531 }
532
533 /**
534 * of_device_is_available - check if a device is available for use
535 *
536 * @device: Node to check for availability
537 *
538 * Returns 1 if the status property is absent or set to "okay" or "ok",
539 * 0 otherwise
540 */
541 int of_device_is_available(const struct device_node *device)
542 {
543 unsigned long flags;
544 int res;
545
546 raw_spin_lock_irqsave(&devtree_lock, flags);
547 res = __of_device_is_available(device);
548 raw_spin_unlock_irqrestore(&devtree_lock, flags);
549 return res;
550
551 }
552 EXPORT_SYMBOL(of_device_is_available);
553
554 /**
555 * of_get_parent - Get a node's parent if any
556 * @node: Node to get parent
557 *
558 * Returns a node pointer with refcount incremented, use
559 * of_node_put() on it when done.
560 */
561 struct device_node *of_get_parent(const struct device_node *node)
562 {
563 struct device_node *np;
564 unsigned long flags;
565
566 if (!node)
567 return NULL;
568
569 raw_spin_lock_irqsave(&devtree_lock, flags);
570 np = of_node_get(node->parent);
571 raw_spin_unlock_irqrestore(&devtree_lock, flags);
572 return np;
573 }
574 EXPORT_SYMBOL(of_get_parent);
575
576 /**
577 * of_get_next_parent - Iterate to a node's parent
578 * @node: Node to get parent of
579 *
580 * This is like of_get_parent() except that it drops the
581 * refcount on the passed node, making it suitable for iterating
582 * through a node's parents.
583 *
584 * Returns a node pointer with refcount incremented, use
585 * of_node_put() on it when done.
586 */
587 struct device_node *of_get_next_parent(struct device_node *node)
588 {
589 struct device_node *parent;
590 unsigned long flags;
591
592 if (!node)
593 return NULL;
594
595 raw_spin_lock_irqsave(&devtree_lock, flags);
596 parent = of_node_get(node->parent);
597 of_node_put(node);
598 raw_spin_unlock_irqrestore(&devtree_lock, flags);
599 return parent;
600 }
601 EXPORT_SYMBOL(of_get_next_parent);
602
603 static struct device_node *__of_get_next_child(const struct device_node *node,
604 struct device_node *prev)
605 {
606 struct device_node *next;
607
608 if (!node)
609 return NULL;
610
611 next = prev ? prev->sibling : node->child;
612 for (; next; next = next->sibling)
613 if (of_node_get(next))
614 break;
615 of_node_put(prev);
616 return next;
617 }
618 #define __for_each_child_of_node(parent, child) \
619 for (child = __of_get_next_child(parent, NULL); child != NULL; \
620 child = __of_get_next_child(parent, child))
621
622 /**
623 * of_get_next_child - Iterate a node childs
624 * @node: parent node
625 * @prev: previous child of the parent node, or NULL to get first
626 *
627 * Returns a node pointer with refcount incremented, use
628 * of_node_put() on it when done.
629 */
630 struct device_node *of_get_next_child(const struct device_node *node,
631 struct device_node *prev)
632 {
633 struct device_node *next;
634 unsigned long flags;
635
636 raw_spin_lock_irqsave(&devtree_lock, flags);
637 next = __of_get_next_child(node, prev);
638 raw_spin_unlock_irqrestore(&devtree_lock, flags);
639 return next;
640 }
641 EXPORT_SYMBOL(of_get_next_child);
642
643 /**
644 * of_get_next_available_child - Find the next available child node
645 * @node: parent node
646 * @prev: previous child of the parent node, or NULL to get first
647 *
648 * This function is like of_get_next_child(), except that it
649 * automatically skips any disabled nodes (i.e. status = "disabled").
650 */
651 struct device_node *of_get_next_available_child(const struct device_node *node,
652 struct device_node *prev)
653 {
654 struct device_node *next;
655 unsigned long flags;
656
657 if (!node)
658 return NULL;
659
660 raw_spin_lock_irqsave(&devtree_lock, flags);
661 next = prev ? prev->sibling : node->child;
662 for (; next; next = next->sibling) {
663 if (!__of_device_is_available(next))
664 continue;
665 if (of_node_get(next))
666 break;
667 }
668 of_node_put(prev);
669 raw_spin_unlock_irqrestore(&devtree_lock, flags);
670 return next;
671 }
672 EXPORT_SYMBOL(of_get_next_available_child);
673
674 /**
675 * of_get_child_by_name - Find the child node by name for a given parent
676 * @node: parent node
677 * @name: child name to look for.
678 *
679 * This function looks for child node for given matching name
680 *
681 * Returns a node pointer if found, with refcount incremented, use
682 * of_node_put() on it when done.
683 * Returns NULL if node is not found.
684 */
685 struct device_node *of_get_child_by_name(const struct device_node *node,
686 const char *name)
687 {
688 struct device_node *child;
689
690 for_each_child_of_node(node, child)
691 if (child->name && (of_node_cmp(child->name, name) == 0))
692 break;
693 return child;
694 }
695 EXPORT_SYMBOL(of_get_child_by_name);
696
697 static struct device_node *__of_find_node_by_path(struct device_node *parent,
698 const char *path)
699 {
700 struct device_node *child;
701 int len = strchrnul(path, '/') - path;
702
703 if (!len)
704 return NULL;
705
706 __for_each_child_of_node(parent, child) {
707 const char *name = strrchr(child->full_name, '/');
708 if (WARN(!name, "malformed device_node %s\n", child->full_name))
709 continue;
710 name++;
711 if (strncmp(path, name, len) == 0 && (strlen(name) == len))
712 return child;
713 }
714 return NULL;
715 }
716
717 /**
718 * of_find_node_by_path - Find a node matching a full OF path
719 * @path: Either the full path to match, or if the path does not
720 * start with '/', the name of a property of the /aliases
721 * node (an alias). In the case of an alias, the node
722 * matching the alias' value will be returned.
723 *
724 * Valid paths:
725 * /foo/bar Full path
726 * foo Valid alias
727 * foo/bar Valid alias + relative path
728 *
729 * Returns a node pointer with refcount incremented, use
730 * of_node_put() on it when done.
731 */
732 struct device_node *of_find_node_by_path(const char *path)
733 {
734 struct device_node *np = NULL;
735 struct property *pp;
736 unsigned long flags;
737
738 if (strcmp(path, "/") == 0)
739 return of_node_get(of_allnodes);
740
741 /* The path could begin with an alias */
742 if (*path != '/') {
743 char *p = strchrnul(path, '/');
744 int len = p - path;
745
746 /* of_aliases must not be NULL */
747 if (!of_aliases)
748 return NULL;
749
750 for_each_property_of_node(of_aliases, pp) {
751 if (strlen(pp->name) == len && !strncmp(pp->name, path, len)) {
752 np = of_find_node_by_path(pp->value);
753 break;
754 }
755 }
756 if (!np)
757 return NULL;
758 path = p;
759 }
760
761 /* Step down the tree matching path components */
762 raw_spin_lock_irqsave(&devtree_lock, flags);
763 if (!np)
764 np = of_node_get(of_allnodes);
765 while (np && *path == '/') {
766 path++; /* Increment past '/' delimiter */
767 np = __of_find_node_by_path(np, path);
768 path = strchrnul(path, '/');
769 }
770 raw_spin_unlock_irqrestore(&devtree_lock, flags);
771 return np;
772 }
773 EXPORT_SYMBOL(of_find_node_by_path);
774
775 /**
776 * of_find_node_by_name - Find a node by its "name" property
777 * @from: The node to start searching from or NULL, the node
778 * you pass will not be searched, only the next one
779 * will; typically, you pass what the previous call
780 * returned. of_node_put() will be called on it
781 * @name: The name string to match against
782 *
783 * Returns a node pointer with refcount incremented, use
784 * of_node_put() on it when done.
785 */
786 struct device_node *of_find_node_by_name(struct device_node *from,
787 const char *name)
788 {
789 struct device_node *np;
790 unsigned long flags;
791
792 raw_spin_lock_irqsave(&devtree_lock, flags);
793 np = from ? from->allnext : of_allnodes;
794 for (; np; np = np->allnext)
795 if (np->name && (of_node_cmp(np->name, name) == 0)
796 && of_node_get(np))
797 break;
798 of_node_put(from);
799 raw_spin_unlock_irqrestore(&devtree_lock, flags);
800 return np;
801 }
802 EXPORT_SYMBOL(of_find_node_by_name);
803
804 /**
805 * of_find_node_by_type - Find a node by its "device_type" property
806 * @from: The node to start searching from, or NULL to start searching
807 * the entire device tree. The node you pass will not be
808 * searched, only the next one will; typically, you pass
809 * what the previous call returned. of_node_put() will be
810 * called on from for you.
811 * @type: The type string to match against
812 *
813 * Returns a node pointer with refcount incremented, use
814 * of_node_put() on it when done.
815 */
816 struct device_node *of_find_node_by_type(struct device_node *from,
817 const char *type)
818 {
819 struct device_node *np;
820 unsigned long flags;
821
822 raw_spin_lock_irqsave(&devtree_lock, flags);
823 np = from ? from->allnext : of_allnodes;
824 for (; np; np = np->allnext)
825 if (np->type && (of_node_cmp(np->type, type) == 0)
826 && of_node_get(np))
827 break;
828 of_node_put(from);
829 raw_spin_unlock_irqrestore(&devtree_lock, flags);
830 return np;
831 }
832 EXPORT_SYMBOL(of_find_node_by_type);
833
834 /**
835 * of_find_compatible_node - Find a node based on type and one of the
836 * tokens in its "compatible" property
837 * @from: The node to start searching from or NULL, the node
838 * you pass will not be searched, only the next one
839 * will; typically, you pass what the previous call
840 * returned. of_node_put() will be called on it
841 * @type: The type string to match "device_type" or NULL to ignore
842 * @compatible: The string to match to one of the tokens in the device
843 * "compatible" list.
844 *
845 * Returns a node pointer with refcount incremented, use
846 * of_node_put() on it when done.
847 */
848 struct device_node *of_find_compatible_node(struct device_node *from,
849 const char *type, const char *compatible)
850 {
851 struct device_node *np;
852 unsigned long flags;
853
854 raw_spin_lock_irqsave(&devtree_lock, flags);
855 np = from ? from->allnext : of_allnodes;
856 for (; np; np = np->allnext) {
857 if (__of_device_is_compatible(np, compatible, type, NULL) &&
858 of_node_get(np))
859 break;
860 }
861 of_node_put(from);
862 raw_spin_unlock_irqrestore(&devtree_lock, flags);
863 return np;
864 }
865 EXPORT_SYMBOL(of_find_compatible_node);
866
867 /**
868 * of_find_node_with_property - Find a node which has a property with
869 * the given name.
870 * @from: The node to start searching from or NULL, the node
871 * you pass will not be searched, only the next one
872 * will; typically, you pass what the previous call
873 * returned. of_node_put() will be called on it
874 * @prop_name: The name of the property to look for.
875 *
876 * Returns a node pointer with refcount incremented, use
877 * of_node_put() on it when done.
878 */
879 struct device_node *of_find_node_with_property(struct device_node *from,
880 const char *prop_name)
881 {
882 struct device_node *np;
883 struct property *pp;
884 unsigned long flags;
885
886 raw_spin_lock_irqsave(&devtree_lock, flags);
887 np = from ? from->allnext : of_allnodes;
888 for (; np; np = np->allnext) {
889 for (pp = np->properties; pp; pp = pp->next) {
890 if (of_prop_cmp(pp->name, prop_name) == 0) {
891 of_node_get(np);
892 goto out;
893 }
894 }
895 }
896 out:
897 of_node_put(from);
898 raw_spin_unlock_irqrestore(&devtree_lock, flags);
899 return np;
900 }
901 EXPORT_SYMBOL(of_find_node_with_property);
902
903 static
904 const struct of_device_id *__of_match_node(const struct of_device_id *matches,
905 const struct device_node *node)
906 {
907 const struct of_device_id *best_match = NULL;
908 int score, best_score = 0;
909
910 if (!matches)
911 return NULL;
912
913 for (; matches->name[0] || matches->type[0] || matches->compatible[0]; matches++) {
914 score = __of_device_is_compatible(node, matches->compatible,
915 matches->type, matches->name);
916 if (score > best_score) {
917 best_match = matches;
918 best_score = score;
919 }
920 }
921
922 return best_match;
923 }
924
925 /**
926 * of_match_node - Tell if an device_node has a matching of_match structure
927 * @matches: array of of device match structures to search in
928 * @node: the of device structure to match against
929 *
930 * Low level utility function used by device matching.
931 */
932 const struct of_device_id *of_match_node(const struct of_device_id *matches,
933 const struct device_node *node)
934 {
935 const struct of_device_id *match;
936 unsigned long flags;
937
938 raw_spin_lock_irqsave(&devtree_lock, flags);
939 match = __of_match_node(matches, node);
940 raw_spin_unlock_irqrestore(&devtree_lock, flags);
941 return match;
942 }
943 EXPORT_SYMBOL(of_match_node);
944
945 /**
946 * of_find_matching_node_and_match - Find a node based on an of_device_id
947 * match table.
948 * @from: The node to start searching from or NULL, the node
949 * you pass will not be searched, only the next one
950 * will; typically, you pass what the previous call
951 * returned. of_node_put() will be called on it
952 * @matches: array of of device match structures to search in
953 * @match Updated to point at the matches entry which matched
954 *
955 * Returns a node pointer with refcount incremented, use
956 * of_node_put() on it when done.
957 */
958 struct device_node *of_find_matching_node_and_match(struct device_node *from,
959 const struct of_device_id *matches,
960 const struct of_device_id **match)
961 {
962 struct device_node *np;
963 const struct of_device_id *m;
964 unsigned long flags;
965
966 if (match)
967 *match = NULL;
968
969 raw_spin_lock_irqsave(&devtree_lock, flags);
970 np = from ? from->allnext : of_allnodes;
971 for (; np; np = np->allnext) {
972 m = __of_match_node(matches, np);
973 if (m && of_node_get(np)) {
974 if (match)
975 *match = m;
976 break;
977 }
978 }
979 of_node_put(from);
980 raw_spin_unlock_irqrestore(&devtree_lock, flags);
981 return np;
982 }
983 EXPORT_SYMBOL(of_find_matching_node_and_match);
984
985 /**
986 * of_modalias_node - Lookup appropriate modalias for a device node
987 * @node: pointer to a device tree node
988 * @modalias: Pointer to buffer that modalias value will be copied into
989 * @len: Length of modalias value
990 *
991 * Based on the value of the compatible property, this routine will attempt
992 * to choose an appropriate modalias value for a particular device tree node.
993 * It does this by stripping the manufacturer prefix (as delimited by a ',')
994 * from the first entry in the compatible list property.
995 *
996 * This routine returns 0 on success, <0 on failure.
997 */
998 int of_modalias_node(struct device_node *node, char *modalias, int len)
999 {
1000 const char *compatible, *p;
1001 int cplen;
1002
1003 compatible = of_get_property(node, "compatible", &cplen);
1004 if (!compatible || strlen(compatible) > cplen)
1005 return -ENODEV;
1006 p = strchr(compatible, ',');
1007 strlcpy(modalias, p ? p + 1 : compatible, len);
1008 return 0;
1009 }
1010 EXPORT_SYMBOL_GPL(of_modalias_node);
1011
1012 /**
1013 * of_find_node_by_phandle - Find a node given a phandle
1014 * @handle: phandle of the node to find
1015 *
1016 * Returns a node pointer with refcount incremented, use
1017 * of_node_put() on it when done.
1018 */
1019 struct device_node *of_find_node_by_phandle(phandle handle)
1020 {
1021 struct device_node *np;
1022 unsigned long flags;
1023
1024 if (!handle)
1025 return NULL;
1026
1027 raw_spin_lock_irqsave(&devtree_lock, flags);
1028 for (np = of_allnodes; np; np = np->allnext)
1029 if (np->phandle == handle)
1030 break;
1031 of_node_get(np);
1032 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1033 return np;
1034 }
1035 EXPORT_SYMBOL(of_find_node_by_phandle);
1036
1037 /**
1038 * of_property_count_elems_of_size - Count the number of elements in a property
1039 *
1040 * @np: device node from which the property value is to be read.
1041 * @propname: name of the property to be searched.
1042 * @elem_size: size of the individual element
1043 *
1044 * Search for a property in a device node and count the number of elements of
1045 * size elem_size in it. Returns number of elements on sucess, -EINVAL if the
1046 * property does not exist or its length does not match a multiple of elem_size
1047 * and -ENODATA if the property does not have a value.
1048 */
1049 int of_property_count_elems_of_size(const struct device_node *np,
1050 const char *propname, int elem_size)
1051 {
1052 struct property *prop = of_find_property(np, propname, NULL);
1053
1054 if (!prop)
1055 return -EINVAL;
1056 if (!prop->value)
1057 return -ENODATA;
1058
1059 if (prop->length % elem_size != 0) {
1060 pr_err("size of %s in node %s is not a multiple of %d\n",
1061 propname, np->full_name, elem_size);
1062 return -EINVAL;
1063 }
1064
1065 return prop->length / elem_size;
1066 }
1067 EXPORT_SYMBOL_GPL(of_property_count_elems_of_size);
1068
1069 /**
1070 * of_find_property_value_of_size
1071 *
1072 * @np: device node from which the property value is to be read.
1073 * @propname: name of the property to be searched.
1074 * @len: requested length of property value
1075 *
1076 * Search for a property in a device node and valid the requested size.
1077 * Returns the property value on success, -EINVAL if the property does not
1078 * exist, -ENODATA if property does not have a value, and -EOVERFLOW if the
1079 * property data isn't large enough.
1080 *
1081 */
1082 static void *of_find_property_value_of_size(const struct device_node *np,
1083 const char *propname, u32 len)
1084 {
1085 struct property *prop = of_find_property(np, propname, NULL);
1086
1087 if (!prop)
1088 return ERR_PTR(-EINVAL);
1089 if (!prop->value)
1090 return ERR_PTR(-ENODATA);
1091 if (len > prop->length)
1092 return ERR_PTR(-EOVERFLOW);
1093
1094 return prop->value;
1095 }
1096
1097 /**
1098 * of_property_read_u32_index - Find and read a u32 from a multi-value property.
1099 *
1100 * @np: device node from which the property value is to be read.
1101 * @propname: name of the property to be searched.
1102 * @index: index of the u32 in the list of values
1103 * @out_value: pointer to return value, modified only if no error.
1104 *
1105 * Search for a property in a device node and read nth 32-bit value from
1106 * it. Returns 0 on success, -EINVAL if the property does not exist,
1107 * -ENODATA if property does not have a value, and -EOVERFLOW if the
1108 * property data isn't large enough.
1109 *
1110 * The out_value is modified only if a valid u32 value can be decoded.
1111 */
1112 int of_property_read_u32_index(const struct device_node *np,
1113 const char *propname,
1114 u32 index, u32 *out_value)
1115 {
1116 const u32 *val = of_find_property_value_of_size(np, propname,
1117 ((index + 1) * sizeof(*out_value)));
1118
1119 if (IS_ERR(val))
1120 return PTR_ERR(val);
1121
1122 *out_value = be32_to_cpup(((__be32 *)val) + index);
1123 return 0;
1124 }
1125 EXPORT_SYMBOL_GPL(of_property_read_u32_index);
1126
1127 /**
1128 * of_property_read_u8_array - Find and read an array of u8 from a property.
1129 *
1130 * @np: device node from which the property value is to be read.
1131 * @propname: name of the property to be searched.
1132 * @out_values: pointer to return value, modified only if return value is 0.
1133 * @sz: number of array elements to read
1134 *
1135 * Search for a property in a device node and read 8-bit value(s) from
1136 * it. Returns 0 on success, -EINVAL if the property does not exist,
1137 * -ENODATA if property does not have a value, and -EOVERFLOW if the
1138 * property data isn't large enough.
1139 *
1140 * dts entry of array should be like:
1141 * property = /bits/ 8 <0x50 0x60 0x70>;
1142 *
1143 * The out_values is modified only if a valid u8 value can be decoded.
1144 */
1145 int of_property_read_u8_array(const struct device_node *np,
1146 const char *propname, u8 *out_values, size_t sz)
1147 {
1148 const u8 *val = of_find_property_value_of_size(np, propname,
1149 (sz * sizeof(*out_values)));
1150
1151 if (IS_ERR(val))
1152 return PTR_ERR(val);
1153
1154 while (sz--)
1155 *out_values++ = *val++;
1156 return 0;
1157 }
1158 EXPORT_SYMBOL_GPL(of_property_read_u8_array);
1159
1160 /**
1161 * of_property_read_u16_array - Find and read an array of u16 from a property.
1162 *
1163 * @np: device node from which the property value is to be read.
1164 * @propname: name of the property to be searched.
1165 * @out_values: pointer to return value, modified only if return value is 0.
1166 * @sz: number of array elements to read
1167 *
1168 * Search for a property in a device node and read 16-bit value(s) from
1169 * it. Returns 0 on success, -EINVAL if the property does not exist,
1170 * -ENODATA if property does not have a value, and -EOVERFLOW if the
1171 * property data isn't large enough.
1172 *
1173 * dts entry of array should be like:
1174 * property = /bits/ 16 <0x5000 0x6000 0x7000>;
1175 *
1176 * The out_values is modified only if a valid u16 value can be decoded.
1177 */
1178 int of_property_read_u16_array(const struct device_node *np,
1179 const char *propname, u16 *out_values, size_t sz)
1180 {
1181 const __be16 *val = of_find_property_value_of_size(np, propname,
1182 (sz * sizeof(*out_values)));
1183
1184 if (IS_ERR(val))
1185 return PTR_ERR(val);
1186
1187 while (sz--)
1188 *out_values++ = be16_to_cpup(val++);
1189 return 0;
1190 }
1191 EXPORT_SYMBOL_GPL(of_property_read_u16_array);
1192
1193 /**
1194 * of_property_read_u32_array - Find and read an array of 32 bit integers
1195 * from a property.
1196 *
1197 * @np: device node from which the property value is to be read.
1198 * @propname: name of the property to be searched.
1199 * @out_values: pointer to return value, modified only if return value is 0.
1200 * @sz: number of array elements to read
1201 *
1202 * Search for a property in a device node and read 32-bit value(s) from
1203 * it. Returns 0 on success, -EINVAL if the property does not exist,
1204 * -ENODATA if property does not have a value, and -EOVERFLOW if the
1205 * property data isn't large enough.
1206 *
1207 * The out_values is modified only if a valid u32 value can be decoded.
1208 */
1209 int of_property_read_u32_array(const struct device_node *np,
1210 const char *propname, u32 *out_values,
1211 size_t sz)
1212 {
1213 const __be32 *val = of_find_property_value_of_size(np, propname,
1214 (sz * sizeof(*out_values)));
1215
1216 if (IS_ERR(val))
1217 return PTR_ERR(val);
1218
1219 while (sz--)
1220 *out_values++ = be32_to_cpup(val++);
1221 return 0;
1222 }
1223 EXPORT_SYMBOL_GPL(of_property_read_u32_array);
1224
1225 /**
1226 * of_property_read_u64 - Find and read a 64 bit integer from a property
1227 * @np: device node from which the property value is to be read.
1228 * @propname: name of the property to be searched.
1229 * @out_value: pointer to return value, modified only if return value is 0.
1230 *
1231 * Search for a property in a device node and read a 64-bit value from
1232 * it. Returns 0 on success, -EINVAL if the property does not exist,
1233 * -ENODATA if property does not have a value, and -EOVERFLOW if the
1234 * property data isn't large enough.
1235 *
1236 * The out_value is modified only if a valid u64 value can be decoded.
1237 */
1238 int of_property_read_u64(const struct device_node *np, const char *propname,
1239 u64 *out_value)
1240 {
1241 const __be32 *val = of_find_property_value_of_size(np, propname,
1242 sizeof(*out_value));
1243
1244 if (IS_ERR(val))
1245 return PTR_ERR(val);
1246
1247 *out_value = of_read_number(val, 2);
1248 return 0;
1249 }
1250 EXPORT_SYMBOL_GPL(of_property_read_u64);
1251
1252 /**
1253 * of_property_read_string - Find and read a string from a property
1254 * @np: device node from which the property value is to be read.
1255 * @propname: name of the property to be searched.
1256 * @out_string: pointer to null terminated return string, modified only if
1257 * return value is 0.
1258 *
1259 * Search for a property in a device tree node and retrieve a null
1260 * terminated string value (pointer to data, not a copy). Returns 0 on
1261 * success, -EINVAL if the property does not exist, -ENODATA if property
1262 * does not have a value, and -EILSEQ if the string is not null-terminated
1263 * within the length of the property data.
1264 *
1265 * The out_string pointer is modified only if a valid string can be decoded.
1266 */
1267 int of_property_read_string(struct device_node *np, const char *propname,
1268 const char **out_string)
1269 {
1270 struct property *prop = of_find_property(np, propname, NULL);
1271 if (!prop)
1272 return -EINVAL;
1273 if (!prop->value)
1274 return -ENODATA;
1275 if (strnlen(prop->value, prop->length) >= prop->length)
1276 return -EILSEQ;
1277 *out_string = prop->value;
1278 return 0;
1279 }
1280 EXPORT_SYMBOL_GPL(of_property_read_string);
1281
1282 /**
1283 * of_property_read_string_index - Find and read a string from a multiple
1284 * strings property.
1285 * @np: device node from which the property value is to be read.
1286 * @propname: name of the property to be searched.
1287 * @index: index of the string in the list of strings
1288 * @out_string: pointer to null terminated return string, modified only if
1289 * return value is 0.
1290 *
1291 * Search for a property in a device tree node and retrieve a null
1292 * terminated string value (pointer to data, not a copy) in the list of strings
1293 * contained in that property.
1294 * Returns 0 on success, -EINVAL if the property does not exist, -ENODATA if
1295 * property does not have a value, and -EILSEQ if the string is not
1296 * null-terminated within the length of the property data.
1297 *
1298 * The out_string pointer is modified only if a valid string can be decoded.
1299 */
1300 int of_property_read_string_index(struct device_node *np, const char *propname,
1301 int index, const char **output)
1302 {
1303 struct property *prop = of_find_property(np, propname, NULL);
1304 int i = 0;
1305 size_t l = 0, total = 0;
1306 const char *p;
1307
1308 if (!prop)
1309 return -EINVAL;
1310 if (!prop->value)
1311 return -ENODATA;
1312 if (strnlen(prop->value, prop->length) >= prop->length)
1313 return -EILSEQ;
1314
1315 p = prop->value;
1316
1317 for (i = 0; total < prop->length; total += l, p += l) {
1318 l = strlen(p) + 1;
1319 if (i++ == index) {
1320 *output = p;
1321 return 0;
1322 }
1323 }
1324 return -ENODATA;
1325 }
1326 EXPORT_SYMBOL_GPL(of_property_read_string_index);
1327
1328 /**
1329 * of_property_match_string() - Find string in a list and return index
1330 * @np: pointer to node containing string list property
1331 * @propname: string list property name
1332 * @string: pointer to string to search for in string list
1333 *
1334 * This function searches a string list property and returns the index
1335 * of a specific string value.
1336 */
1337 int of_property_match_string(struct device_node *np, const char *propname,
1338 const char *string)
1339 {
1340 struct property *prop = of_find_property(np, propname, NULL);
1341 size_t l;
1342 int i;
1343 const char *p, *end;
1344
1345 if (!prop)
1346 return -EINVAL;
1347 if (!prop->value)
1348 return -ENODATA;
1349
1350 p = prop->value;
1351 end = p + prop->length;
1352
1353 for (i = 0; p < end; i++, p += l) {
1354 l = strlen(p) + 1;
1355 if (p + l > end)
1356 return -EILSEQ;
1357 pr_debug("comparing %s with %s\n", string, p);
1358 if (strcmp(string, p) == 0)
1359 return i; /* Found it; return index */
1360 }
1361 return -ENODATA;
1362 }
1363 EXPORT_SYMBOL_GPL(of_property_match_string);
1364
1365 /**
1366 * of_property_count_strings - Find and return the number of strings from a
1367 * multiple strings property.
1368 * @np: device node from which the property value is to be read.
1369 * @propname: name of the property to be searched.
1370 *
1371 * Search for a property in a device tree node and retrieve the number of null
1372 * terminated string contain in it. Returns the number of strings on
1373 * success, -EINVAL if the property does not exist, -ENODATA if property
1374 * does not have a value, and -EILSEQ if the string is not null-terminated
1375 * within the length of the property data.
1376 */
1377 int of_property_count_strings(struct device_node *np, const char *propname)
1378 {
1379 struct property *prop = of_find_property(np, propname, NULL);
1380 int i = 0;
1381 size_t l = 0, total = 0;
1382 const char *p;
1383
1384 if (!prop)
1385 return -EINVAL;
1386 if (!prop->value)
1387 return -ENODATA;
1388 if (strnlen(prop->value, prop->length) >= prop->length)
1389 return -EILSEQ;
1390
1391 p = prop->value;
1392
1393 for (i = 0; total < prop->length; total += l, p += l, i++)
1394 l = strlen(p) + 1;
1395
1396 return i;
1397 }
1398 EXPORT_SYMBOL_GPL(of_property_count_strings);
1399
1400 void of_print_phandle_args(const char *msg, const struct of_phandle_args *args)
1401 {
1402 int i;
1403 printk("%s %s", msg, of_node_full_name(args->np));
1404 for (i = 0; i < args->args_count; i++)
1405 printk(i ? ",%08x" : ":%08x", args->args[i]);
1406 printk("\n");
1407 }
1408
1409 static int __of_parse_phandle_with_args(const struct device_node *np,
1410 const char *list_name,
1411 const char *cells_name,
1412 int cell_count, int index,
1413 struct of_phandle_args *out_args)
1414 {
1415 const __be32 *list, *list_end;
1416 int rc = 0, size, cur_index = 0;
1417 uint32_t count = 0;
1418 struct device_node *node = NULL;
1419 phandle phandle;
1420
1421 /* Retrieve the phandle list property */
1422 list = of_get_property(np, list_name, &size);
1423 if (!list)
1424 return -ENOENT;
1425 list_end = list + size / sizeof(*list);
1426
1427 /* Loop over the phandles until all the requested entry is found */
1428 while (list < list_end) {
1429 rc = -EINVAL;
1430 count = 0;
1431
1432 /*
1433 * If phandle is 0, then it is an empty entry with no
1434 * arguments. Skip forward to the next entry.
1435 */
1436 phandle = be32_to_cpup(list++);
1437 if (phandle) {
1438 /*
1439 * Find the provider node and parse the #*-cells
1440 * property to determine the argument length.
1441 *
1442 * This is not needed if the cell count is hard-coded
1443 * (i.e. cells_name not set, but cell_count is set),
1444 * except when we're going to return the found node
1445 * below.
1446 */
1447 if (cells_name || cur_index == index) {
1448 node = of_find_node_by_phandle(phandle);
1449 if (!node) {
1450 pr_err("%s: could not find phandle\n",
1451 np->full_name);
1452 goto err;
1453 }
1454 }
1455
1456 if (cells_name) {
1457 if (of_property_read_u32(node, cells_name,
1458 &count)) {
1459 pr_err("%s: could not get %s for %s\n",
1460 np->full_name, cells_name,
1461 node->full_name);
1462 goto err;
1463 }
1464 } else {
1465 count = cell_count;
1466 }
1467
1468 /*
1469 * Make sure that the arguments actually fit in the
1470 * remaining property data length
1471 */
1472 if (list + count > list_end) {
1473 pr_err("%s: arguments longer than property\n",
1474 np->full_name);
1475 goto err;
1476 }
1477 }
1478
1479 /*
1480 * All of the error cases above bail out of the loop, so at
1481 * this point, the parsing is successful. If the requested
1482 * index matches, then fill the out_args structure and return,
1483 * or return -ENOENT for an empty entry.
1484 */
1485 rc = -ENOENT;
1486 if (cur_index == index) {
1487 if (!phandle)
1488 goto err;
1489
1490 if (out_args) {
1491 int i;
1492 if (WARN_ON(count > MAX_PHANDLE_ARGS))
1493 count = MAX_PHANDLE_ARGS;
1494 out_args->np = node;
1495 out_args->args_count = count;
1496 for (i = 0; i < count; i++)
1497 out_args->args[i] = be32_to_cpup(list++);
1498 } else {
1499 of_node_put(node);
1500 }
1501
1502 /* Found it! return success */
1503 return 0;
1504 }
1505
1506 of_node_put(node);
1507 node = NULL;
1508 list += count;
1509 cur_index++;
1510 }
1511
1512 /*
1513 * Unlock node before returning result; will be one of:
1514 * -ENOENT : index is for empty phandle
1515 * -EINVAL : parsing error on data
1516 * [1..n] : Number of phandle (count mode; when index = -1)
1517 */
1518 rc = index < 0 ? cur_index : -ENOENT;
1519 err:
1520 if (node)
1521 of_node_put(node);
1522 return rc;
1523 }
1524
1525 /**
1526 * of_parse_phandle - Resolve a phandle property to a device_node pointer
1527 * @np: Pointer to device node holding phandle property
1528 * @phandle_name: Name of property holding a phandle value
1529 * @index: For properties holding a table of phandles, this is the index into
1530 * the table
1531 *
1532 * Returns the device_node pointer with refcount incremented. Use
1533 * of_node_put() on it when done.
1534 */
1535 struct device_node *of_parse_phandle(const struct device_node *np,
1536 const char *phandle_name, int index)
1537 {
1538 struct of_phandle_args args;
1539
1540 if (index < 0)
1541 return NULL;
1542
1543 if (__of_parse_phandle_with_args(np, phandle_name, NULL, 0,
1544 index, &args))
1545 return NULL;
1546
1547 return args.np;
1548 }
1549 EXPORT_SYMBOL(of_parse_phandle);
1550
1551 /**
1552 * of_parse_phandle_with_args() - Find a node pointed by phandle in a list
1553 * @np: pointer to a device tree node containing a list
1554 * @list_name: property name that contains a list
1555 * @cells_name: property name that specifies phandles' arguments count
1556 * @index: index of a phandle to parse out
1557 * @out_args: optional pointer to output arguments structure (will be filled)
1558 *
1559 * This function is useful to parse lists of phandles and their arguments.
1560 * Returns 0 on success and fills out_args, on error returns appropriate
1561 * errno value.
1562 *
1563 * Caller is responsible to call of_node_put() on the returned out_args->node
1564 * pointer.
1565 *
1566 * Example:
1567 *
1568 * phandle1: node1 {
1569 * #list-cells = <2>;
1570 * }
1571 *
1572 * phandle2: node2 {
1573 * #list-cells = <1>;
1574 * }
1575 *
1576 * node3 {
1577 * list = <&phandle1 1 2 &phandle2 3>;
1578 * }
1579 *
1580 * To get a device_node of the `node2' node you may call this:
1581 * of_parse_phandle_with_args(node3, "list", "#list-cells", 1, &args);
1582 */
1583 int of_parse_phandle_with_args(const struct device_node *np, const char *list_name,
1584 const char *cells_name, int index,
1585 struct of_phandle_args *out_args)
1586 {
1587 if (index < 0)
1588 return -EINVAL;
1589 return __of_parse_phandle_with_args(np, list_name, cells_name, 0,
1590 index, out_args);
1591 }
1592 EXPORT_SYMBOL(of_parse_phandle_with_args);
1593
1594 /**
1595 * of_parse_phandle_with_fixed_args() - Find a node pointed by phandle in a list
1596 * @np: pointer to a device tree node containing a list
1597 * @list_name: property name that contains a list
1598 * @cell_count: number of argument cells following the phandle
1599 * @index: index of a phandle to parse out
1600 * @out_args: optional pointer to output arguments structure (will be filled)
1601 *
1602 * This function is useful to parse lists of phandles and their arguments.
1603 * Returns 0 on success and fills out_args, on error returns appropriate
1604 * errno value.
1605 *
1606 * Caller is responsible to call of_node_put() on the returned out_args->node
1607 * pointer.
1608 *
1609 * Example:
1610 *
1611 * phandle1: node1 {
1612 * }
1613 *
1614 * phandle2: node2 {
1615 * }
1616 *
1617 * node3 {
1618 * list = <&phandle1 0 2 &phandle2 2 3>;
1619 * }
1620 *
1621 * To get a device_node of the `node2' node you may call this:
1622 * of_parse_phandle_with_fixed_args(node3, "list", 2, 1, &args);
1623 */
1624 int of_parse_phandle_with_fixed_args(const struct device_node *np,
1625 const char *list_name, int cell_count,
1626 int index, struct of_phandle_args *out_args)
1627 {
1628 if (index < 0)
1629 return -EINVAL;
1630 return __of_parse_phandle_with_args(np, list_name, NULL, cell_count,
1631 index, out_args);
1632 }
1633 EXPORT_SYMBOL(of_parse_phandle_with_fixed_args);
1634
1635 /**
1636 * of_count_phandle_with_args() - Find the number of phandles references in a property
1637 * @np: pointer to a device tree node containing a list
1638 * @list_name: property name that contains a list
1639 * @cells_name: property name that specifies phandles' arguments count
1640 *
1641 * Returns the number of phandle + argument tuples within a property. It
1642 * is a typical pattern to encode a list of phandle and variable
1643 * arguments into a single property. The number of arguments is encoded
1644 * by a property in the phandle-target node. For example, a gpios
1645 * property would contain a list of GPIO specifies consisting of a
1646 * phandle and 1 or more arguments. The number of arguments are
1647 * determined by the #gpio-cells property in the node pointed to by the
1648 * phandle.
1649 */
1650 int of_count_phandle_with_args(const struct device_node *np, const char *list_name,
1651 const char *cells_name)
1652 {
1653 return __of_parse_phandle_with_args(np, list_name, cells_name, 0, -1,
1654 NULL);
1655 }
1656 EXPORT_SYMBOL(of_count_phandle_with_args);
1657
1658 /**
1659 * __of_add_property - Add a property to a node without lock operations
1660 */
1661 int __of_add_property(struct device_node *np, struct property *prop)
1662 {
1663 struct property **next;
1664
1665 prop->next = NULL;
1666 next = &np->properties;
1667 while (*next) {
1668 if (strcmp(prop->name, (*next)->name) == 0)
1669 /* duplicate ! don't insert it */
1670 return -EEXIST;
1671
1672 next = &(*next)->next;
1673 }
1674 *next = prop;
1675
1676 return 0;
1677 }
1678
1679 /**
1680 * of_add_property - Add a property to a node
1681 */
1682 int of_add_property(struct device_node *np, struct property *prop)
1683 {
1684 unsigned long flags;
1685 int rc;
1686
1687 mutex_lock(&of_mutex);
1688
1689 raw_spin_lock_irqsave(&devtree_lock, flags);
1690 rc = __of_add_property(np, prop);
1691 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1692
1693 if (!rc)
1694 __of_add_property_sysfs(np, prop);
1695
1696 mutex_unlock(&of_mutex);
1697
1698 if (!rc)
1699 of_property_notify(OF_RECONFIG_ADD_PROPERTY, np, prop, NULL);
1700
1701 return rc;
1702 }
1703
1704 int __of_remove_property(struct device_node *np, struct property *prop)
1705 {
1706 struct property **next;
1707
1708 for (next = &np->properties; *next; next = &(*next)->next) {
1709 if (*next == prop)
1710 break;
1711 }
1712 if (*next == NULL)
1713 return -ENODEV;
1714
1715 /* found the node */
1716 *next = prop->next;
1717 prop->next = np->deadprops;
1718 np->deadprops = prop;
1719
1720 return 0;
1721 }
1722
1723 void __of_remove_property_sysfs(struct device_node *np, struct property *prop)
1724 {
1725 if (!IS_ENABLED(CONFIG_SYSFS))
1726 return;
1727
1728 /* at early boot, bail here and defer setup to of_init() */
1729 if (of_kset && of_node_is_attached(np))
1730 sysfs_remove_bin_file(&np->kobj, &prop->attr);
1731 }
1732
1733 /**
1734 * of_remove_property - Remove a property from a node.
1735 *
1736 * Note that we don't actually remove it, since we have given out
1737 * who-knows-how-many pointers to the data using get-property.
1738 * Instead we just move the property to the "dead properties"
1739 * list, so it won't be found any more.
1740 */
1741 int of_remove_property(struct device_node *np, struct property *prop)
1742 {
1743 unsigned long flags;
1744 int rc;
1745
1746 mutex_lock(&of_mutex);
1747
1748 raw_spin_lock_irqsave(&devtree_lock, flags);
1749 rc = __of_remove_property(np, prop);
1750 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1751
1752 if (!rc)
1753 __of_remove_property_sysfs(np, prop);
1754
1755 mutex_unlock(&of_mutex);
1756
1757 if (!rc)
1758 of_property_notify(OF_RECONFIG_REMOVE_PROPERTY, np, prop, NULL);
1759
1760 return rc;
1761 }
1762
1763 int __of_update_property(struct device_node *np, struct property *newprop,
1764 struct property **oldpropp)
1765 {
1766 struct property **next, *oldprop;
1767
1768 for (next = &np->properties; *next; next = &(*next)->next) {
1769 if (of_prop_cmp((*next)->name, newprop->name) == 0)
1770 break;
1771 }
1772 *oldpropp = oldprop = *next;
1773
1774 if (oldprop) {
1775 /* replace the node */
1776 newprop->next = oldprop->next;
1777 *next = newprop;
1778 oldprop->next = np->deadprops;
1779 np->deadprops = oldprop;
1780 } else {
1781 /* new node */
1782 newprop->next = NULL;
1783 *next = newprop;
1784 }
1785
1786 return 0;
1787 }
1788
1789 void __of_update_property_sysfs(struct device_node *np, struct property *newprop,
1790 struct property *oldprop)
1791 {
1792 if (!IS_ENABLED(CONFIG_SYSFS))
1793 return;
1794
1795 /* At early boot, bail out and defer setup to of_init() */
1796 if (!of_kset)
1797 return;
1798
1799 if (oldprop)
1800 sysfs_remove_bin_file(&np->kobj, &oldprop->attr);
1801 __of_add_property_sysfs(np, newprop);
1802 }
1803
1804 /*
1805 * of_update_property - Update a property in a node, if the property does
1806 * not exist, add it.
1807 *
1808 * Note that we don't actually remove it, since we have given out
1809 * who-knows-how-many pointers to the data using get-property.
1810 * Instead we just move the property to the "dead properties" list,
1811 * and add the new property to the property list
1812 */
1813 int of_update_property(struct device_node *np, struct property *newprop)
1814 {
1815 struct property *oldprop;
1816 unsigned long flags;
1817 int rc;
1818
1819 if (!newprop->name)
1820 return -EINVAL;
1821
1822 mutex_lock(&of_mutex);
1823
1824 raw_spin_lock_irqsave(&devtree_lock, flags);
1825 rc = __of_update_property(np, newprop, &oldprop);
1826 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1827
1828 if (!rc)
1829 __of_update_property_sysfs(np, newprop, oldprop);
1830
1831 mutex_unlock(&of_mutex);
1832
1833 if (!rc)
1834 of_property_notify(OF_RECONFIG_UPDATE_PROPERTY, np, newprop, oldprop);
1835
1836 return rc;
1837 }
1838
1839 static void of_alias_add(struct alias_prop *ap, struct device_node *np,
1840 int id, const char *stem, int stem_len)
1841 {
1842 ap->np = np;
1843 ap->id = id;
1844 strncpy(ap->stem, stem, stem_len);
1845 ap->stem[stem_len] = 0;
1846 list_add_tail(&ap->link, &aliases_lookup);
1847 pr_debug("adding DT alias:%s: stem=%s id=%i node=%s\n",
1848 ap->alias, ap->stem, ap->id, of_node_full_name(np));
1849 }
1850
1851 /**
1852 * of_alias_scan - Scan all properties of 'aliases' node
1853 *
1854 * The function scans all the properties of 'aliases' node and populate
1855 * the the global lookup table with the properties. It returns the
1856 * number of alias_prop found, or error code in error case.
1857 *
1858 * @dt_alloc: An allocator that provides a virtual address to memory
1859 * for the resulting tree
1860 */
1861 void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align))
1862 {
1863 struct property *pp;
1864
1865 of_aliases = of_find_node_by_path("/aliases");
1866 of_chosen = of_find_node_by_path("/chosen");
1867 if (of_chosen == NULL)
1868 of_chosen = of_find_node_by_path("/chosen@0");
1869
1870 if (of_chosen) {
1871 /* linux,stdout-path and /aliases/stdout are for legacy compatibility */
1872 const char *name = of_get_property(of_chosen, "stdout-path", NULL);
1873 if (!name)
1874 name = of_get_property(of_chosen, "linux,stdout-path", NULL);
1875 if (IS_ENABLED(CONFIG_PPC) && !name)
1876 name = of_get_property(of_aliases, "stdout", NULL);
1877 if (name)
1878 of_stdout = of_find_node_by_path(name);
1879 }
1880
1881 if (!of_aliases)
1882 return;
1883
1884 for_each_property_of_node(of_aliases, pp) {
1885 const char *start = pp->name;
1886 const char *end = start + strlen(start);
1887 struct device_node *np;
1888 struct alias_prop *ap;
1889 int id, len;
1890
1891 /* Skip those we do not want to proceed */
1892 if (!strcmp(pp->name, "name") ||
1893 !strcmp(pp->name, "phandle") ||
1894 !strcmp(pp->name, "linux,phandle"))
1895 continue;
1896
1897 np = of_find_node_by_path(pp->value);
1898 if (!np)
1899 continue;
1900
1901 /* walk the alias backwards to extract the id and work out
1902 * the 'stem' string */
1903 while (isdigit(*(end-1)) && end > start)
1904 end--;
1905 len = end - start;
1906
1907 if (kstrtoint(end, 10, &id) < 0)
1908 continue;
1909
1910 /* Allocate an alias_prop with enough space for the stem */
1911 ap = dt_alloc(sizeof(*ap) + len + 1, 4);
1912 if (!ap)
1913 continue;
1914 memset(ap, 0, sizeof(*ap) + len + 1);
1915 ap->alias = start;
1916 of_alias_add(ap, np, id, start, len);
1917 }
1918 }
1919
1920 /**
1921 * of_alias_get_id - Get alias id for the given device_node
1922 * @np: Pointer to the given device_node
1923 * @stem: Alias stem of the given device_node
1924 *
1925 * The function travels the lookup table to get the alias id for the given
1926 * device_node and alias stem. It returns the alias id if found.
1927 */
1928 int of_alias_get_id(struct device_node *np, const char *stem)
1929 {
1930 struct alias_prop *app;
1931 int id = -ENODEV;
1932
1933 mutex_lock(&of_mutex);
1934 list_for_each_entry(app, &aliases_lookup, link) {
1935 if (strcmp(app->stem, stem) != 0)
1936 continue;
1937
1938 if (np == app->np) {
1939 id = app->id;
1940 break;
1941 }
1942 }
1943 mutex_unlock(&of_mutex);
1944
1945 return id;
1946 }
1947 EXPORT_SYMBOL_GPL(of_alias_get_id);
1948
1949 const __be32 *of_prop_next_u32(struct property *prop, const __be32 *cur,
1950 u32 *pu)
1951 {
1952 const void *curv = cur;
1953
1954 if (!prop)
1955 return NULL;
1956
1957 if (!cur) {
1958 curv = prop->value;
1959 goto out_val;
1960 }
1961
1962 curv += sizeof(*cur);
1963 if (curv >= prop->value + prop->length)
1964 return NULL;
1965
1966 out_val:
1967 *pu = be32_to_cpup(curv);
1968 return curv;
1969 }
1970 EXPORT_SYMBOL_GPL(of_prop_next_u32);
1971
1972 const char *of_prop_next_string(struct property *prop, const char *cur)
1973 {
1974 const void *curv = cur;
1975
1976 if (!prop)
1977 return NULL;
1978
1979 if (!cur)
1980 return prop->value;
1981
1982 curv += strlen(cur) + 1;
1983 if (curv >= prop->value + prop->length)
1984 return NULL;
1985
1986 return curv;
1987 }
1988 EXPORT_SYMBOL_GPL(of_prop_next_string);
1989
1990 /**
1991 * of_console_check() - Test and setup console for DT setup
1992 * @dn - Pointer to device node
1993 * @name - Name to use for preferred console without index. ex. "ttyS"
1994 * @index - Index to use for preferred console.
1995 *
1996 * Check if the given device node matches the stdout-path property in the
1997 * /chosen node. If it does then register it as the preferred console and return
1998 * TRUE. Otherwise return FALSE.
1999 */
2000 bool of_console_check(struct device_node *dn, char *name, int index)
2001 {
2002 if (!dn || dn != of_stdout || console_set_on_cmdline)
2003 return false;
2004 return !add_preferred_console(name, index, NULL);
2005 }
2006 EXPORT_SYMBOL_GPL(of_console_check);
2007
2008 /**
2009 * of_find_next_cache_node - Find a node's subsidiary cache
2010 * @np: node of type "cpu" or "cache"
2011 *
2012 * Returns a node pointer with refcount incremented, use
2013 * of_node_put() on it when done. Caller should hold a reference
2014 * to np.
2015 */
2016 struct device_node *of_find_next_cache_node(const struct device_node *np)
2017 {
2018 struct device_node *child;
2019 const phandle *handle;
2020
2021 handle = of_get_property(np, "l2-cache", NULL);
2022 if (!handle)
2023 handle = of_get_property(np, "next-level-cache", NULL);
2024
2025 if (handle)
2026 return of_find_node_by_phandle(be32_to_cpup(handle));
2027
2028 /* OF on pmac has nodes instead of properties named "l2-cache"
2029 * beneath CPU nodes.
2030 */
2031 if (!strcmp(np->type, "cpu"))
2032 for_each_child_of_node(np, child)
2033 if (!strcmp(child->type, "cache"))
2034 return child;
2035
2036 return NULL;
2037 }
2038
2039 /**
2040 * of_graph_parse_endpoint() - parse common endpoint node properties
2041 * @node: pointer to endpoint device_node
2042 * @endpoint: pointer to the OF endpoint data structure
2043 *
2044 * The caller should hold a reference to @node.
2045 */
2046 int of_graph_parse_endpoint(const struct device_node *node,
2047 struct of_endpoint *endpoint)
2048 {
2049 struct device_node *port_node = of_get_parent(node);
2050
2051 WARN_ONCE(!port_node, "%s(): endpoint %s has no parent node\n",
2052 __func__, node->full_name);
2053
2054 memset(endpoint, 0, sizeof(*endpoint));
2055
2056 endpoint->local_node = node;
2057 /*
2058 * It doesn't matter whether the two calls below succeed.
2059 * If they don't then the default value 0 is used.
2060 */
2061 of_property_read_u32(port_node, "reg", &endpoint->port);
2062 of_property_read_u32(node, "reg", &endpoint->id);
2063
2064 of_node_put(port_node);
2065
2066 return 0;
2067 }
2068 EXPORT_SYMBOL(of_graph_parse_endpoint);
2069
2070 /**
2071 * of_graph_get_next_endpoint() - get next endpoint node
2072 * @parent: pointer to the parent device node
2073 * @prev: previous endpoint node, or NULL to get first
2074 *
2075 * Return: An 'endpoint' node pointer with refcount incremented. Refcount
2076 * of the passed @prev node is not decremented, the caller have to use
2077 * of_node_put() on it when done.
2078 */
2079 struct device_node *of_graph_get_next_endpoint(const struct device_node *parent,
2080 struct device_node *prev)
2081 {
2082 struct device_node *endpoint;
2083 struct device_node *port;
2084
2085 if (!parent)
2086 return NULL;
2087
2088 /*
2089 * Start by locating the port node. If no previous endpoint is specified
2090 * search for the first port node, otherwise get the previous endpoint
2091 * parent port node.
2092 */
2093 if (!prev) {
2094 struct device_node *node;
2095
2096 node = of_get_child_by_name(parent, "ports");
2097 if (node)
2098 parent = node;
2099
2100 port = of_get_child_by_name(parent, "port");
2101 of_node_put(node);
2102
2103 if (!port) {
2104 pr_err("%s(): no port node found in %s\n",
2105 __func__, parent->full_name);
2106 return NULL;
2107 }
2108 } else {
2109 port = of_get_parent(prev);
2110 if (WARN_ONCE(!port, "%s(): endpoint %s has no parent node\n",
2111 __func__, prev->full_name))
2112 return NULL;
2113
2114 /*
2115 * Avoid dropping prev node refcount to 0 when getting the next
2116 * child below.
2117 */
2118 of_node_get(prev);
2119 }
2120
2121 while (1) {
2122 /*
2123 * Now that we have a port node, get the next endpoint by
2124 * getting the next child. If the previous endpoint is NULL this
2125 * will return the first child.
2126 */
2127 endpoint = of_get_next_child(port, prev);
2128 if (endpoint) {
2129 of_node_put(port);
2130 return endpoint;
2131 }
2132
2133 /* No more endpoints under this port, try the next one. */
2134 prev = NULL;
2135
2136 do {
2137 port = of_get_next_child(parent, port);
2138 if (!port)
2139 return NULL;
2140 } while (of_node_cmp(port->name, "port"));
2141 }
2142 }
2143 EXPORT_SYMBOL(of_graph_get_next_endpoint);
2144
2145 /**
2146 * of_graph_get_remote_port_parent() - get remote port's parent node
2147 * @node: pointer to a local endpoint device_node
2148 *
2149 * Return: Remote device node associated with remote endpoint node linked
2150 * to @node. Use of_node_put() on it when done.
2151 */
2152 struct device_node *of_graph_get_remote_port_parent(
2153 const struct device_node *node)
2154 {
2155 struct device_node *np;
2156 unsigned int depth;
2157
2158 /* Get remote endpoint node. */
2159 np = of_parse_phandle(node, "remote-endpoint", 0);
2160
2161 /* Walk 3 levels up only if there is 'ports' node. */
2162 for (depth = 3; depth && np; depth--) {
2163 np = of_get_next_parent(np);
2164 if (depth == 2 && of_node_cmp(np->name, "ports"))
2165 break;
2166 }
2167 return np;
2168 }
2169 EXPORT_SYMBOL(of_graph_get_remote_port_parent);
2170
2171 /**
2172 * of_graph_get_remote_port() - get remote port node
2173 * @node: pointer to a local endpoint device_node
2174 *
2175 * Return: Remote port node associated with remote endpoint node linked
2176 * to @node. Use of_node_put() on it when done.
2177 */
2178 struct device_node *of_graph_get_remote_port(const struct device_node *node)
2179 {
2180 struct device_node *np;
2181
2182 /* Get remote endpoint node. */
2183 np = of_parse_phandle(node, "remote-endpoint", 0);
2184 if (!np)
2185 return NULL;
2186 return of_get_next_parent(np);
2187 }
2188 EXPORT_SYMBOL(of_graph_get_remote_port);
This page took 0.077494 seconds and 5 git commands to generate.