Merge tag 'staging-4.0-rc6' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh...
[deliverable/linux.git] / drivers / of / base.c
1 /*
2 * Procedures for creating, accessing and interpreting the device tree.
3 *
4 * Paul Mackerras August 1996.
5 * Copyright (C) 1996-2005 Paul Mackerras.
6 *
7 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
8 * {engebret|bergner}@us.ibm.com
9 *
10 * Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net
11 *
12 * Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and
13 * Grant Likely.
14 *
15 * This program is free software; you can redistribute it and/or
16 * modify it under the terms of the GNU General Public License
17 * as published by the Free Software Foundation; either version
18 * 2 of the License, or (at your option) any later version.
19 */
20 #include <linux/console.h>
21 #include <linux/ctype.h>
22 #include <linux/cpu.h>
23 #include <linux/module.h>
24 #include <linux/of.h>
25 #include <linux/of_graph.h>
26 #include <linux/spinlock.h>
27 #include <linux/slab.h>
28 #include <linux/string.h>
29 #include <linux/proc_fs.h>
30
31 #include "of_private.h"
32
33 LIST_HEAD(aliases_lookup);
34
35 struct device_node *of_root;
36 EXPORT_SYMBOL(of_root);
37 struct device_node *of_chosen;
38 struct device_node *of_aliases;
39 struct device_node *of_stdout;
40 static const char *of_stdout_options;
41
42 struct kset *of_kset;
43
44 /*
45 * Used to protect the of_aliases, to hold off addition of nodes to sysfs.
46 * This mutex must be held whenever modifications are being made to the
47 * device tree. The of_{attach,detach}_node() and
48 * of_{add,remove,update}_property() helpers make sure this happens.
49 */
50 DEFINE_MUTEX(of_mutex);
51
52 /* use when traversing tree through the child, sibling,
53 * or parent members of struct device_node.
54 */
55 DEFINE_RAW_SPINLOCK(devtree_lock);
56
57 int of_n_addr_cells(struct device_node *np)
58 {
59 const __be32 *ip;
60
61 do {
62 if (np->parent)
63 np = np->parent;
64 ip = of_get_property(np, "#address-cells", NULL);
65 if (ip)
66 return be32_to_cpup(ip);
67 } while (np->parent);
68 /* No #address-cells property for the root node */
69 return OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
70 }
71 EXPORT_SYMBOL(of_n_addr_cells);
72
73 int of_n_size_cells(struct device_node *np)
74 {
75 const __be32 *ip;
76
77 do {
78 if (np->parent)
79 np = np->parent;
80 ip = of_get_property(np, "#size-cells", NULL);
81 if (ip)
82 return be32_to_cpup(ip);
83 } while (np->parent);
84 /* No #size-cells property for the root node */
85 return OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
86 }
87 EXPORT_SYMBOL(of_n_size_cells);
88
89 #ifdef CONFIG_NUMA
90 int __weak of_node_to_nid(struct device_node *np)
91 {
92 return numa_node_id();
93 }
94 #endif
95
96 #ifndef CONFIG_OF_DYNAMIC
97 static void of_node_release(struct kobject *kobj)
98 {
99 /* Without CONFIG_OF_DYNAMIC, no nodes gets freed */
100 }
101 #endif /* CONFIG_OF_DYNAMIC */
102
103 struct kobj_type of_node_ktype = {
104 .release = of_node_release,
105 };
106
107 static ssize_t of_node_property_read(struct file *filp, struct kobject *kobj,
108 struct bin_attribute *bin_attr, char *buf,
109 loff_t offset, size_t count)
110 {
111 struct property *pp = container_of(bin_attr, struct property, attr);
112 return memory_read_from_buffer(buf, count, &offset, pp->value, pp->length);
113 }
114
115 static const char *safe_name(struct kobject *kobj, const char *orig_name)
116 {
117 const char *name = orig_name;
118 struct kernfs_node *kn;
119 int i = 0;
120
121 /* don't be a hero. After 16 tries give up */
122 while (i < 16 && (kn = sysfs_get_dirent(kobj->sd, name))) {
123 sysfs_put(kn);
124 if (name != orig_name)
125 kfree(name);
126 name = kasprintf(GFP_KERNEL, "%s#%i", orig_name, ++i);
127 }
128
129 if (name != orig_name)
130 pr_warn("device-tree: Duplicate name in %s, renamed to \"%s\"\n",
131 kobject_name(kobj), name);
132 return name;
133 }
134
135 int __of_add_property_sysfs(struct device_node *np, struct property *pp)
136 {
137 int rc;
138
139 /* Important: Don't leak passwords */
140 bool secure = strncmp(pp->name, "security-", 9) == 0;
141
142 if (!IS_ENABLED(CONFIG_SYSFS))
143 return 0;
144
145 if (!of_kset || !of_node_is_attached(np))
146 return 0;
147
148 sysfs_bin_attr_init(&pp->attr);
149 pp->attr.attr.name = safe_name(&np->kobj, pp->name);
150 pp->attr.attr.mode = secure ? S_IRUSR : S_IRUGO;
151 pp->attr.size = secure ? 0 : pp->length;
152 pp->attr.read = of_node_property_read;
153
154 rc = sysfs_create_bin_file(&np->kobj, &pp->attr);
155 WARN(rc, "error adding attribute %s to node %s\n", pp->name, np->full_name);
156 return rc;
157 }
158
159 int __of_attach_node_sysfs(struct device_node *np)
160 {
161 const char *name;
162 struct property *pp;
163 int rc;
164
165 if (!IS_ENABLED(CONFIG_SYSFS))
166 return 0;
167
168 if (!of_kset)
169 return 0;
170
171 np->kobj.kset = of_kset;
172 if (!np->parent) {
173 /* Nodes without parents are new top level trees */
174 rc = kobject_add(&np->kobj, NULL, "%s",
175 safe_name(&of_kset->kobj, "base"));
176 } else {
177 name = safe_name(&np->parent->kobj, kbasename(np->full_name));
178 if (!name || !name[0])
179 return -EINVAL;
180
181 rc = kobject_add(&np->kobj, &np->parent->kobj, "%s", name);
182 }
183 if (rc)
184 return rc;
185
186 for_each_property_of_node(np, pp)
187 __of_add_property_sysfs(np, pp);
188
189 return 0;
190 }
191
192 static int __init of_init(void)
193 {
194 struct device_node *np;
195
196 /* Create the kset, and register existing nodes */
197 mutex_lock(&of_mutex);
198 of_kset = kset_create_and_add("devicetree", NULL, firmware_kobj);
199 if (!of_kset) {
200 mutex_unlock(&of_mutex);
201 return -ENOMEM;
202 }
203 for_each_of_allnodes(np)
204 __of_attach_node_sysfs(np);
205 mutex_unlock(&of_mutex);
206
207 /* Symlink in /proc as required by userspace ABI */
208 if (of_root)
209 proc_symlink("device-tree", NULL, "/sys/firmware/devicetree/base");
210
211 return 0;
212 }
213 core_initcall(of_init);
214
215 static struct property *__of_find_property(const struct device_node *np,
216 const char *name, int *lenp)
217 {
218 struct property *pp;
219
220 if (!np)
221 return NULL;
222
223 for (pp = np->properties; pp; pp = pp->next) {
224 if (of_prop_cmp(pp->name, name) == 0) {
225 if (lenp)
226 *lenp = pp->length;
227 break;
228 }
229 }
230
231 return pp;
232 }
233
234 struct property *of_find_property(const struct device_node *np,
235 const char *name,
236 int *lenp)
237 {
238 struct property *pp;
239 unsigned long flags;
240
241 raw_spin_lock_irqsave(&devtree_lock, flags);
242 pp = __of_find_property(np, name, lenp);
243 raw_spin_unlock_irqrestore(&devtree_lock, flags);
244
245 return pp;
246 }
247 EXPORT_SYMBOL(of_find_property);
248
249 struct device_node *__of_find_all_nodes(struct device_node *prev)
250 {
251 struct device_node *np;
252 if (!prev) {
253 np = of_root;
254 } else if (prev->child) {
255 np = prev->child;
256 } else {
257 /* Walk back up looking for a sibling, or the end of the structure */
258 np = prev;
259 while (np->parent && !np->sibling)
260 np = np->parent;
261 np = np->sibling; /* Might be null at the end of the tree */
262 }
263 return np;
264 }
265
266 /**
267 * of_find_all_nodes - Get next node in global list
268 * @prev: Previous node or NULL to start iteration
269 * of_node_put() will be called on it
270 *
271 * Returns a node pointer with refcount incremented, use
272 * of_node_put() on it when done.
273 */
274 struct device_node *of_find_all_nodes(struct device_node *prev)
275 {
276 struct device_node *np;
277 unsigned long flags;
278
279 raw_spin_lock_irqsave(&devtree_lock, flags);
280 np = __of_find_all_nodes(prev);
281 of_node_get(np);
282 of_node_put(prev);
283 raw_spin_unlock_irqrestore(&devtree_lock, flags);
284 return np;
285 }
286 EXPORT_SYMBOL(of_find_all_nodes);
287
288 /*
289 * Find a property with a given name for a given node
290 * and return the value.
291 */
292 const void *__of_get_property(const struct device_node *np,
293 const char *name, int *lenp)
294 {
295 struct property *pp = __of_find_property(np, name, lenp);
296
297 return pp ? pp->value : NULL;
298 }
299
300 /*
301 * Find a property with a given name for a given node
302 * and return the value.
303 */
304 const void *of_get_property(const struct device_node *np, const char *name,
305 int *lenp)
306 {
307 struct property *pp = of_find_property(np, name, lenp);
308
309 return pp ? pp->value : NULL;
310 }
311 EXPORT_SYMBOL(of_get_property);
312
313 /*
314 * arch_match_cpu_phys_id - Match the given logical CPU and physical id
315 *
316 * @cpu: logical cpu index of a core/thread
317 * @phys_id: physical identifier of a core/thread
318 *
319 * CPU logical to physical index mapping is architecture specific.
320 * However this __weak function provides a default match of physical
321 * id to logical cpu index. phys_id provided here is usually values read
322 * from the device tree which must match the hardware internal registers.
323 *
324 * Returns true if the physical identifier and the logical cpu index
325 * correspond to the same core/thread, false otherwise.
326 */
327 bool __weak arch_match_cpu_phys_id(int cpu, u64 phys_id)
328 {
329 return (u32)phys_id == cpu;
330 }
331
332 /**
333 * Checks if the given "prop_name" property holds the physical id of the
334 * core/thread corresponding to the logical cpu 'cpu'. If 'thread' is not
335 * NULL, local thread number within the core is returned in it.
336 */
337 static bool __of_find_n_match_cpu_property(struct device_node *cpun,
338 const char *prop_name, int cpu, unsigned int *thread)
339 {
340 const __be32 *cell;
341 int ac, prop_len, tid;
342 u64 hwid;
343
344 ac = of_n_addr_cells(cpun);
345 cell = of_get_property(cpun, prop_name, &prop_len);
346 if (!cell || !ac)
347 return false;
348 prop_len /= sizeof(*cell) * ac;
349 for (tid = 0; tid < prop_len; tid++) {
350 hwid = of_read_number(cell, ac);
351 if (arch_match_cpu_phys_id(cpu, hwid)) {
352 if (thread)
353 *thread = tid;
354 return true;
355 }
356 cell += ac;
357 }
358 return false;
359 }
360
361 /*
362 * arch_find_n_match_cpu_physical_id - See if the given device node is
363 * for the cpu corresponding to logical cpu 'cpu'. Return true if so,
364 * else false. If 'thread' is non-NULL, the local thread number within the
365 * core is returned in it.
366 */
367 bool __weak arch_find_n_match_cpu_physical_id(struct device_node *cpun,
368 int cpu, unsigned int *thread)
369 {
370 /* Check for non-standard "ibm,ppc-interrupt-server#s" property
371 * for thread ids on PowerPC. If it doesn't exist fallback to
372 * standard "reg" property.
373 */
374 if (IS_ENABLED(CONFIG_PPC) &&
375 __of_find_n_match_cpu_property(cpun,
376 "ibm,ppc-interrupt-server#s",
377 cpu, thread))
378 return true;
379
380 if (__of_find_n_match_cpu_property(cpun, "reg", cpu, thread))
381 return true;
382
383 return false;
384 }
385
386 /**
387 * of_get_cpu_node - Get device node associated with the given logical CPU
388 *
389 * @cpu: CPU number(logical index) for which device node is required
390 * @thread: if not NULL, local thread number within the physical core is
391 * returned
392 *
393 * The main purpose of this function is to retrieve the device node for the
394 * given logical CPU index. It should be used to initialize the of_node in
395 * cpu device. Once of_node in cpu device is populated, all the further
396 * references can use that instead.
397 *
398 * CPU logical to physical index mapping is architecture specific and is built
399 * before booting secondary cores. This function uses arch_match_cpu_phys_id
400 * which can be overridden by architecture specific implementation.
401 *
402 * Returns a node pointer for the logical cpu if found, else NULL.
403 */
404 struct device_node *of_get_cpu_node(int cpu, unsigned int *thread)
405 {
406 struct device_node *cpun;
407
408 for_each_node_by_type(cpun, "cpu") {
409 if (arch_find_n_match_cpu_physical_id(cpun, cpu, thread))
410 return cpun;
411 }
412 return NULL;
413 }
414 EXPORT_SYMBOL(of_get_cpu_node);
415
416 /**
417 * __of_device_is_compatible() - Check if the node matches given constraints
418 * @device: pointer to node
419 * @compat: required compatible string, NULL or "" for any match
420 * @type: required device_type value, NULL or "" for any match
421 * @name: required node name, NULL or "" for any match
422 *
423 * Checks if the given @compat, @type and @name strings match the
424 * properties of the given @device. A constraints can be skipped by
425 * passing NULL or an empty string as the constraint.
426 *
427 * Returns 0 for no match, and a positive integer on match. The return
428 * value is a relative score with larger values indicating better
429 * matches. The score is weighted for the most specific compatible value
430 * to get the highest score. Matching type is next, followed by matching
431 * name. Practically speaking, this results in the following priority
432 * order for matches:
433 *
434 * 1. specific compatible && type && name
435 * 2. specific compatible && type
436 * 3. specific compatible && name
437 * 4. specific compatible
438 * 5. general compatible && type && name
439 * 6. general compatible && type
440 * 7. general compatible && name
441 * 8. general compatible
442 * 9. type && name
443 * 10. type
444 * 11. name
445 */
446 static int __of_device_is_compatible(const struct device_node *device,
447 const char *compat, const char *type, const char *name)
448 {
449 struct property *prop;
450 const char *cp;
451 int index = 0, score = 0;
452
453 /* Compatible match has highest priority */
454 if (compat && compat[0]) {
455 prop = __of_find_property(device, "compatible", NULL);
456 for (cp = of_prop_next_string(prop, NULL); cp;
457 cp = of_prop_next_string(prop, cp), index++) {
458 if (of_compat_cmp(cp, compat, strlen(compat)) == 0) {
459 score = INT_MAX/2 - (index << 2);
460 break;
461 }
462 }
463 if (!score)
464 return 0;
465 }
466
467 /* Matching type is better than matching name */
468 if (type && type[0]) {
469 if (!device->type || of_node_cmp(type, device->type))
470 return 0;
471 score += 2;
472 }
473
474 /* Matching name is a bit better than not */
475 if (name && name[0]) {
476 if (!device->name || of_node_cmp(name, device->name))
477 return 0;
478 score++;
479 }
480
481 return score;
482 }
483
484 /** Checks if the given "compat" string matches one of the strings in
485 * the device's "compatible" property
486 */
487 int of_device_is_compatible(const struct device_node *device,
488 const char *compat)
489 {
490 unsigned long flags;
491 int res;
492
493 raw_spin_lock_irqsave(&devtree_lock, flags);
494 res = __of_device_is_compatible(device, compat, NULL, NULL);
495 raw_spin_unlock_irqrestore(&devtree_lock, flags);
496 return res;
497 }
498 EXPORT_SYMBOL(of_device_is_compatible);
499
500 /**
501 * of_machine_is_compatible - Test root of device tree for a given compatible value
502 * @compat: compatible string to look for in root node's compatible property.
503 *
504 * Returns a positive integer if the root node has the given value in its
505 * compatible property.
506 */
507 int of_machine_is_compatible(const char *compat)
508 {
509 struct device_node *root;
510 int rc = 0;
511
512 root = of_find_node_by_path("/");
513 if (root) {
514 rc = of_device_is_compatible(root, compat);
515 of_node_put(root);
516 }
517 return rc;
518 }
519 EXPORT_SYMBOL(of_machine_is_compatible);
520
521 /**
522 * __of_device_is_available - check if a device is available for use
523 *
524 * @device: Node to check for availability, with locks already held
525 *
526 * Returns true if the status property is absent or set to "okay" or "ok",
527 * false otherwise
528 */
529 static bool __of_device_is_available(const struct device_node *device)
530 {
531 const char *status;
532 int statlen;
533
534 if (!device)
535 return false;
536
537 status = __of_get_property(device, "status", &statlen);
538 if (status == NULL)
539 return true;
540
541 if (statlen > 0) {
542 if (!strcmp(status, "okay") || !strcmp(status, "ok"))
543 return true;
544 }
545
546 return false;
547 }
548
549 /**
550 * of_device_is_available - check if a device is available for use
551 *
552 * @device: Node to check for availability
553 *
554 * Returns true if the status property is absent or set to "okay" or "ok",
555 * false otherwise
556 */
557 bool of_device_is_available(const struct device_node *device)
558 {
559 unsigned long flags;
560 bool res;
561
562 raw_spin_lock_irqsave(&devtree_lock, flags);
563 res = __of_device_is_available(device);
564 raw_spin_unlock_irqrestore(&devtree_lock, flags);
565 return res;
566
567 }
568 EXPORT_SYMBOL(of_device_is_available);
569
570 /**
571 * of_get_parent - Get a node's parent if any
572 * @node: Node to get parent
573 *
574 * Returns a node pointer with refcount incremented, use
575 * of_node_put() on it when done.
576 */
577 struct device_node *of_get_parent(const struct device_node *node)
578 {
579 struct device_node *np;
580 unsigned long flags;
581
582 if (!node)
583 return NULL;
584
585 raw_spin_lock_irqsave(&devtree_lock, flags);
586 np = of_node_get(node->parent);
587 raw_spin_unlock_irqrestore(&devtree_lock, flags);
588 return np;
589 }
590 EXPORT_SYMBOL(of_get_parent);
591
592 /**
593 * of_get_next_parent - Iterate to a node's parent
594 * @node: Node to get parent of
595 *
596 * This is like of_get_parent() except that it drops the
597 * refcount on the passed node, making it suitable for iterating
598 * through a node's parents.
599 *
600 * Returns a node pointer with refcount incremented, use
601 * of_node_put() on it when done.
602 */
603 struct device_node *of_get_next_parent(struct device_node *node)
604 {
605 struct device_node *parent;
606 unsigned long flags;
607
608 if (!node)
609 return NULL;
610
611 raw_spin_lock_irqsave(&devtree_lock, flags);
612 parent = of_node_get(node->parent);
613 of_node_put(node);
614 raw_spin_unlock_irqrestore(&devtree_lock, flags);
615 return parent;
616 }
617 EXPORT_SYMBOL(of_get_next_parent);
618
619 static struct device_node *__of_get_next_child(const struct device_node *node,
620 struct device_node *prev)
621 {
622 struct device_node *next;
623
624 if (!node)
625 return NULL;
626
627 next = prev ? prev->sibling : node->child;
628 for (; next; next = next->sibling)
629 if (of_node_get(next))
630 break;
631 of_node_put(prev);
632 return next;
633 }
634 #define __for_each_child_of_node(parent, child) \
635 for (child = __of_get_next_child(parent, NULL); child != NULL; \
636 child = __of_get_next_child(parent, child))
637
638 /**
639 * of_get_next_child - Iterate a node childs
640 * @node: parent node
641 * @prev: previous child of the parent node, or NULL to get first
642 *
643 * Returns a node pointer with refcount incremented, use
644 * of_node_put() on it when done.
645 */
646 struct device_node *of_get_next_child(const struct device_node *node,
647 struct device_node *prev)
648 {
649 struct device_node *next;
650 unsigned long flags;
651
652 raw_spin_lock_irqsave(&devtree_lock, flags);
653 next = __of_get_next_child(node, prev);
654 raw_spin_unlock_irqrestore(&devtree_lock, flags);
655 return next;
656 }
657 EXPORT_SYMBOL(of_get_next_child);
658
659 /**
660 * of_get_next_available_child - Find the next available child node
661 * @node: parent node
662 * @prev: previous child of the parent node, or NULL to get first
663 *
664 * This function is like of_get_next_child(), except that it
665 * automatically skips any disabled nodes (i.e. status = "disabled").
666 */
667 struct device_node *of_get_next_available_child(const struct device_node *node,
668 struct device_node *prev)
669 {
670 struct device_node *next;
671 unsigned long flags;
672
673 if (!node)
674 return NULL;
675
676 raw_spin_lock_irqsave(&devtree_lock, flags);
677 next = prev ? prev->sibling : node->child;
678 for (; next; next = next->sibling) {
679 if (!__of_device_is_available(next))
680 continue;
681 if (of_node_get(next))
682 break;
683 }
684 of_node_put(prev);
685 raw_spin_unlock_irqrestore(&devtree_lock, flags);
686 return next;
687 }
688 EXPORT_SYMBOL(of_get_next_available_child);
689
690 /**
691 * of_get_child_by_name - Find the child node by name for a given parent
692 * @node: parent node
693 * @name: child name to look for.
694 *
695 * This function looks for child node for given matching name
696 *
697 * Returns a node pointer if found, with refcount incremented, use
698 * of_node_put() on it when done.
699 * Returns NULL if node is not found.
700 */
701 struct device_node *of_get_child_by_name(const struct device_node *node,
702 const char *name)
703 {
704 struct device_node *child;
705
706 for_each_child_of_node(node, child)
707 if (child->name && (of_node_cmp(child->name, name) == 0))
708 break;
709 return child;
710 }
711 EXPORT_SYMBOL(of_get_child_by_name);
712
713 static struct device_node *__of_find_node_by_path(struct device_node *parent,
714 const char *path)
715 {
716 struct device_node *child;
717 int len;
718
719 len = strcspn(path, "/:");
720 if (!len)
721 return NULL;
722
723 __for_each_child_of_node(parent, child) {
724 const char *name = strrchr(child->full_name, '/');
725 if (WARN(!name, "malformed device_node %s\n", child->full_name))
726 continue;
727 name++;
728 if (strncmp(path, name, len) == 0 && (strlen(name) == len))
729 return child;
730 }
731 return NULL;
732 }
733
734 /**
735 * of_find_node_opts_by_path - Find a node matching a full OF path
736 * @path: Either the full path to match, or if the path does not
737 * start with '/', the name of a property of the /aliases
738 * node (an alias). In the case of an alias, the node
739 * matching the alias' value will be returned.
740 * @opts: Address of a pointer into which to store the start of
741 * an options string appended to the end of the path with
742 * a ':' separator.
743 *
744 * Valid paths:
745 * /foo/bar Full path
746 * foo Valid alias
747 * foo/bar Valid alias + relative path
748 *
749 * Returns a node pointer with refcount incremented, use
750 * of_node_put() on it when done.
751 */
752 struct device_node *of_find_node_opts_by_path(const char *path, const char **opts)
753 {
754 struct device_node *np = NULL;
755 struct property *pp;
756 unsigned long flags;
757 const char *separator = strchr(path, ':');
758
759 if (opts)
760 *opts = separator ? separator + 1 : NULL;
761
762 if (strcmp(path, "/") == 0)
763 return of_node_get(of_root);
764
765 /* The path could begin with an alias */
766 if (*path != '/') {
767 int len;
768 const char *p = separator;
769
770 if (!p)
771 p = strchrnul(path, '/');
772 len = p - path;
773
774 /* of_aliases must not be NULL */
775 if (!of_aliases)
776 return NULL;
777
778 for_each_property_of_node(of_aliases, pp) {
779 if (strlen(pp->name) == len && !strncmp(pp->name, path, len)) {
780 np = of_find_node_by_path(pp->value);
781 break;
782 }
783 }
784 if (!np)
785 return NULL;
786 path = p;
787 }
788
789 /* Step down the tree matching path components */
790 raw_spin_lock_irqsave(&devtree_lock, flags);
791 if (!np)
792 np = of_node_get(of_root);
793 while (np && *path == '/') {
794 path++; /* Increment past '/' delimiter */
795 np = __of_find_node_by_path(np, path);
796 path = strchrnul(path, '/');
797 if (separator && separator < path)
798 break;
799 }
800 raw_spin_unlock_irqrestore(&devtree_lock, flags);
801 return np;
802 }
803 EXPORT_SYMBOL(of_find_node_opts_by_path);
804
805 /**
806 * of_find_node_by_name - Find a node by its "name" property
807 * @from: The node to start searching from or NULL, the node
808 * you pass will not be searched, only the next one
809 * will; typically, you pass what the previous call
810 * returned. of_node_put() will be called on it
811 * @name: The name string to match against
812 *
813 * Returns a node pointer with refcount incremented, use
814 * of_node_put() on it when done.
815 */
816 struct device_node *of_find_node_by_name(struct device_node *from,
817 const char *name)
818 {
819 struct device_node *np;
820 unsigned long flags;
821
822 raw_spin_lock_irqsave(&devtree_lock, flags);
823 for_each_of_allnodes_from(from, np)
824 if (np->name && (of_node_cmp(np->name, name) == 0)
825 && of_node_get(np))
826 break;
827 of_node_put(from);
828 raw_spin_unlock_irqrestore(&devtree_lock, flags);
829 return np;
830 }
831 EXPORT_SYMBOL(of_find_node_by_name);
832
833 /**
834 * of_find_node_by_type - Find a node by its "device_type" property
835 * @from: The node to start searching from, or NULL to start searching
836 * the entire device tree. The node you pass will not be
837 * searched, only the next one will; typically, you pass
838 * what the previous call returned. of_node_put() will be
839 * called on from for you.
840 * @type: The type string to match against
841 *
842 * Returns a node pointer with refcount incremented, use
843 * of_node_put() on it when done.
844 */
845 struct device_node *of_find_node_by_type(struct device_node *from,
846 const char *type)
847 {
848 struct device_node *np;
849 unsigned long flags;
850
851 raw_spin_lock_irqsave(&devtree_lock, flags);
852 for_each_of_allnodes_from(from, np)
853 if (np->type && (of_node_cmp(np->type, type) == 0)
854 && of_node_get(np))
855 break;
856 of_node_put(from);
857 raw_spin_unlock_irqrestore(&devtree_lock, flags);
858 return np;
859 }
860 EXPORT_SYMBOL(of_find_node_by_type);
861
862 /**
863 * of_find_compatible_node - Find a node based on type and one of the
864 * tokens in its "compatible" property
865 * @from: The node to start searching from or NULL, the node
866 * you pass will not be searched, only the next one
867 * will; typically, you pass what the previous call
868 * returned. of_node_put() will be called on it
869 * @type: The type string to match "device_type" or NULL to ignore
870 * @compatible: The string to match to one of the tokens in the device
871 * "compatible" list.
872 *
873 * Returns a node pointer with refcount incremented, use
874 * of_node_put() on it when done.
875 */
876 struct device_node *of_find_compatible_node(struct device_node *from,
877 const char *type, const char *compatible)
878 {
879 struct device_node *np;
880 unsigned long flags;
881
882 raw_spin_lock_irqsave(&devtree_lock, flags);
883 for_each_of_allnodes_from(from, np)
884 if (__of_device_is_compatible(np, compatible, type, NULL) &&
885 of_node_get(np))
886 break;
887 of_node_put(from);
888 raw_spin_unlock_irqrestore(&devtree_lock, flags);
889 return np;
890 }
891 EXPORT_SYMBOL(of_find_compatible_node);
892
893 /**
894 * of_find_node_with_property - Find a node which has a property with
895 * the given name.
896 * @from: The node to start searching from or NULL, the node
897 * you pass will not be searched, only the next one
898 * will; typically, you pass what the previous call
899 * returned. of_node_put() will be called on it
900 * @prop_name: The name of the property to look for.
901 *
902 * Returns a node pointer with refcount incremented, use
903 * of_node_put() on it when done.
904 */
905 struct device_node *of_find_node_with_property(struct device_node *from,
906 const char *prop_name)
907 {
908 struct device_node *np;
909 struct property *pp;
910 unsigned long flags;
911
912 raw_spin_lock_irqsave(&devtree_lock, flags);
913 for_each_of_allnodes_from(from, np) {
914 for (pp = np->properties; pp; pp = pp->next) {
915 if (of_prop_cmp(pp->name, prop_name) == 0) {
916 of_node_get(np);
917 goto out;
918 }
919 }
920 }
921 out:
922 of_node_put(from);
923 raw_spin_unlock_irqrestore(&devtree_lock, flags);
924 return np;
925 }
926 EXPORT_SYMBOL(of_find_node_with_property);
927
928 static
929 const struct of_device_id *__of_match_node(const struct of_device_id *matches,
930 const struct device_node *node)
931 {
932 const struct of_device_id *best_match = NULL;
933 int score, best_score = 0;
934
935 if (!matches)
936 return NULL;
937
938 for (; matches->name[0] || matches->type[0] || matches->compatible[0]; matches++) {
939 score = __of_device_is_compatible(node, matches->compatible,
940 matches->type, matches->name);
941 if (score > best_score) {
942 best_match = matches;
943 best_score = score;
944 }
945 }
946
947 return best_match;
948 }
949
950 /**
951 * of_match_node - Tell if a device_node has a matching of_match structure
952 * @matches: array of of device match structures to search in
953 * @node: the of device structure to match against
954 *
955 * Low level utility function used by device matching.
956 */
957 const struct of_device_id *of_match_node(const struct of_device_id *matches,
958 const struct device_node *node)
959 {
960 const struct of_device_id *match;
961 unsigned long flags;
962
963 raw_spin_lock_irqsave(&devtree_lock, flags);
964 match = __of_match_node(matches, node);
965 raw_spin_unlock_irqrestore(&devtree_lock, flags);
966 return match;
967 }
968 EXPORT_SYMBOL(of_match_node);
969
970 /**
971 * of_find_matching_node_and_match - Find a node based on an of_device_id
972 * match table.
973 * @from: The node to start searching from or NULL, the node
974 * you pass will not be searched, only the next one
975 * will; typically, you pass what the previous call
976 * returned. of_node_put() will be called on it
977 * @matches: array of of device match structures to search in
978 * @match Updated to point at the matches entry which matched
979 *
980 * Returns a node pointer with refcount incremented, use
981 * of_node_put() on it when done.
982 */
983 struct device_node *of_find_matching_node_and_match(struct device_node *from,
984 const struct of_device_id *matches,
985 const struct of_device_id **match)
986 {
987 struct device_node *np;
988 const struct of_device_id *m;
989 unsigned long flags;
990
991 if (match)
992 *match = NULL;
993
994 raw_spin_lock_irqsave(&devtree_lock, flags);
995 for_each_of_allnodes_from(from, np) {
996 m = __of_match_node(matches, np);
997 if (m && of_node_get(np)) {
998 if (match)
999 *match = m;
1000 break;
1001 }
1002 }
1003 of_node_put(from);
1004 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1005 return np;
1006 }
1007 EXPORT_SYMBOL(of_find_matching_node_and_match);
1008
1009 /**
1010 * of_modalias_node - Lookup appropriate modalias for a device node
1011 * @node: pointer to a device tree node
1012 * @modalias: Pointer to buffer that modalias value will be copied into
1013 * @len: Length of modalias value
1014 *
1015 * Based on the value of the compatible property, this routine will attempt
1016 * to choose an appropriate modalias value for a particular device tree node.
1017 * It does this by stripping the manufacturer prefix (as delimited by a ',')
1018 * from the first entry in the compatible list property.
1019 *
1020 * This routine returns 0 on success, <0 on failure.
1021 */
1022 int of_modalias_node(struct device_node *node, char *modalias, int len)
1023 {
1024 const char *compatible, *p;
1025 int cplen;
1026
1027 compatible = of_get_property(node, "compatible", &cplen);
1028 if (!compatible || strlen(compatible) > cplen)
1029 return -ENODEV;
1030 p = strchr(compatible, ',');
1031 strlcpy(modalias, p ? p + 1 : compatible, len);
1032 return 0;
1033 }
1034 EXPORT_SYMBOL_GPL(of_modalias_node);
1035
1036 /**
1037 * of_find_node_by_phandle - Find a node given a phandle
1038 * @handle: phandle of the node to find
1039 *
1040 * Returns a node pointer with refcount incremented, use
1041 * of_node_put() on it when done.
1042 */
1043 struct device_node *of_find_node_by_phandle(phandle handle)
1044 {
1045 struct device_node *np;
1046 unsigned long flags;
1047
1048 if (!handle)
1049 return NULL;
1050
1051 raw_spin_lock_irqsave(&devtree_lock, flags);
1052 for_each_of_allnodes(np)
1053 if (np->phandle == handle)
1054 break;
1055 of_node_get(np);
1056 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1057 return np;
1058 }
1059 EXPORT_SYMBOL(of_find_node_by_phandle);
1060
1061 /**
1062 * of_property_count_elems_of_size - Count the number of elements in a property
1063 *
1064 * @np: device node from which the property value is to be read.
1065 * @propname: name of the property to be searched.
1066 * @elem_size: size of the individual element
1067 *
1068 * Search for a property in a device node and count the number of elements of
1069 * size elem_size in it. Returns number of elements on sucess, -EINVAL if the
1070 * property does not exist or its length does not match a multiple of elem_size
1071 * and -ENODATA if the property does not have a value.
1072 */
1073 int of_property_count_elems_of_size(const struct device_node *np,
1074 const char *propname, int elem_size)
1075 {
1076 struct property *prop = of_find_property(np, propname, NULL);
1077
1078 if (!prop)
1079 return -EINVAL;
1080 if (!prop->value)
1081 return -ENODATA;
1082
1083 if (prop->length % elem_size != 0) {
1084 pr_err("size of %s in node %s is not a multiple of %d\n",
1085 propname, np->full_name, elem_size);
1086 return -EINVAL;
1087 }
1088
1089 return prop->length / elem_size;
1090 }
1091 EXPORT_SYMBOL_GPL(of_property_count_elems_of_size);
1092
1093 /**
1094 * of_find_property_value_of_size
1095 *
1096 * @np: device node from which the property value is to be read.
1097 * @propname: name of the property to be searched.
1098 * @len: requested length of property value
1099 *
1100 * Search for a property in a device node and valid the requested size.
1101 * Returns the property value on success, -EINVAL if the property does not
1102 * exist, -ENODATA if property does not have a value, and -EOVERFLOW if the
1103 * property data isn't large enough.
1104 *
1105 */
1106 static void *of_find_property_value_of_size(const struct device_node *np,
1107 const char *propname, u32 len)
1108 {
1109 struct property *prop = of_find_property(np, propname, NULL);
1110
1111 if (!prop)
1112 return ERR_PTR(-EINVAL);
1113 if (!prop->value)
1114 return ERR_PTR(-ENODATA);
1115 if (len > prop->length)
1116 return ERR_PTR(-EOVERFLOW);
1117
1118 return prop->value;
1119 }
1120
1121 /**
1122 * of_property_read_u32_index - Find and read a u32 from a multi-value property.
1123 *
1124 * @np: device node from which the property value is to be read.
1125 * @propname: name of the property to be searched.
1126 * @index: index of the u32 in the list of values
1127 * @out_value: pointer to return value, modified only if no error.
1128 *
1129 * Search for a property in a device node and read nth 32-bit value from
1130 * it. Returns 0 on success, -EINVAL if the property does not exist,
1131 * -ENODATA if property does not have a value, and -EOVERFLOW if the
1132 * property data isn't large enough.
1133 *
1134 * The out_value is modified only if a valid u32 value can be decoded.
1135 */
1136 int of_property_read_u32_index(const struct device_node *np,
1137 const char *propname,
1138 u32 index, u32 *out_value)
1139 {
1140 const u32 *val = of_find_property_value_of_size(np, propname,
1141 ((index + 1) * sizeof(*out_value)));
1142
1143 if (IS_ERR(val))
1144 return PTR_ERR(val);
1145
1146 *out_value = be32_to_cpup(((__be32 *)val) + index);
1147 return 0;
1148 }
1149 EXPORT_SYMBOL_GPL(of_property_read_u32_index);
1150
1151 /**
1152 * of_property_read_u8_array - Find and read an array of u8 from a property.
1153 *
1154 * @np: device node from which the property value is to be read.
1155 * @propname: name of the property to be searched.
1156 * @out_values: pointer to return value, modified only if return value is 0.
1157 * @sz: number of array elements to read
1158 *
1159 * Search for a property in a device node and read 8-bit value(s) from
1160 * it. Returns 0 on success, -EINVAL if the property does not exist,
1161 * -ENODATA if property does not have a value, and -EOVERFLOW if the
1162 * property data isn't large enough.
1163 *
1164 * dts entry of array should be like:
1165 * property = /bits/ 8 <0x50 0x60 0x70>;
1166 *
1167 * The out_values is modified only if a valid u8 value can be decoded.
1168 */
1169 int of_property_read_u8_array(const struct device_node *np,
1170 const char *propname, u8 *out_values, size_t sz)
1171 {
1172 const u8 *val = of_find_property_value_of_size(np, propname,
1173 (sz * sizeof(*out_values)));
1174
1175 if (IS_ERR(val))
1176 return PTR_ERR(val);
1177
1178 while (sz--)
1179 *out_values++ = *val++;
1180 return 0;
1181 }
1182 EXPORT_SYMBOL_GPL(of_property_read_u8_array);
1183
1184 /**
1185 * of_property_read_u16_array - Find and read an array of u16 from a property.
1186 *
1187 * @np: device node from which the property value is to be read.
1188 * @propname: name of the property to be searched.
1189 * @out_values: pointer to return value, modified only if return value is 0.
1190 * @sz: number of array elements to read
1191 *
1192 * Search for a property in a device node and read 16-bit value(s) from
1193 * it. Returns 0 on success, -EINVAL if the property does not exist,
1194 * -ENODATA if property does not have a value, and -EOVERFLOW if the
1195 * property data isn't large enough.
1196 *
1197 * dts entry of array should be like:
1198 * property = /bits/ 16 <0x5000 0x6000 0x7000>;
1199 *
1200 * The out_values is modified only if a valid u16 value can be decoded.
1201 */
1202 int of_property_read_u16_array(const struct device_node *np,
1203 const char *propname, u16 *out_values, size_t sz)
1204 {
1205 const __be16 *val = of_find_property_value_of_size(np, propname,
1206 (sz * sizeof(*out_values)));
1207
1208 if (IS_ERR(val))
1209 return PTR_ERR(val);
1210
1211 while (sz--)
1212 *out_values++ = be16_to_cpup(val++);
1213 return 0;
1214 }
1215 EXPORT_SYMBOL_GPL(of_property_read_u16_array);
1216
1217 /**
1218 * of_property_read_u32_array - Find and read an array of 32 bit integers
1219 * from a property.
1220 *
1221 * @np: device node from which the property value is to be read.
1222 * @propname: name of the property to be searched.
1223 * @out_values: pointer to return value, modified only if return value is 0.
1224 * @sz: number of array elements to read
1225 *
1226 * Search for a property in a device node and read 32-bit value(s) from
1227 * it. Returns 0 on success, -EINVAL if the property does not exist,
1228 * -ENODATA if property does not have a value, and -EOVERFLOW if the
1229 * property data isn't large enough.
1230 *
1231 * The out_values is modified only if a valid u32 value can be decoded.
1232 */
1233 int of_property_read_u32_array(const struct device_node *np,
1234 const char *propname, u32 *out_values,
1235 size_t sz)
1236 {
1237 const __be32 *val = of_find_property_value_of_size(np, propname,
1238 (sz * sizeof(*out_values)));
1239
1240 if (IS_ERR(val))
1241 return PTR_ERR(val);
1242
1243 while (sz--)
1244 *out_values++ = be32_to_cpup(val++);
1245 return 0;
1246 }
1247 EXPORT_SYMBOL_GPL(of_property_read_u32_array);
1248
1249 /**
1250 * of_property_read_u64 - Find and read a 64 bit integer from a property
1251 * @np: device node from which the property value is to be read.
1252 * @propname: name of the property to be searched.
1253 * @out_value: pointer to return value, modified only if return value is 0.
1254 *
1255 * Search for a property in a device node and read a 64-bit value from
1256 * it. Returns 0 on success, -EINVAL if the property does not exist,
1257 * -ENODATA if property does not have a value, and -EOVERFLOW if the
1258 * property data isn't large enough.
1259 *
1260 * The out_value is modified only if a valid u64 value can be decoded.
1261 */
1262 int of_property_read_u64(const struct device_node *np, const char *propname,
1263 u64 *out_value)
1264 {
1265 const __be32 *val = of_find_property_value_of_size(np, propname,
1266 sizeof(*out_value));
1267
1268 if (IS_ERR(val))
1269 return PTR_ERR(val);
1270
1271 *out_value = of_read_number(val, 2);
1272 return 0;
1273 }
1274 EXPORT_SYMBOL_GPL(of_property_read_u64);
1275
1276 /**
1277 * of_property_read_u64_array - Find and read an array of 64 bit integers
1278 * from a property.
1279 *
1280 * @np: device node from which the property value is to be read.
1281 * @propname: name of the property to be searched.
1282 * @out_values: pointer to return value, modified only if return value is 0.
1283 * @sz: number of array elements to read
1284 *
1285 * Search for a property in a device node and read 64-bit value(s) from
1286 * it. Returns 0 on success, -EINVAL if the property does not exist,
1287 * -ENODATA if property does not have a value, and -EOVERFLOW if the
1288 * property data isn't large enough.
1289 *
1290 * The out_values is modified only if a valid u64 value can be decoded.
1291 */
1292 int of_property_read_u64_array(const struct device_node *np,
1293 const char *propname, u64 *out_values,
1294 size_t sz)
1295 {
1296 const __be32 *val = of_find_property_value_of_size(np, propname,
1297 (sz * sizeof(*out_values)));
1298
1299 if (IS_ERR(val))
1300 return PTR_ERR(val);
1301
1302 while (sz--) {
1303 *out_values++ = of_read_number(val, 2);
1304 val += 2;
1305 }
1306 return 0;
1307 }
1308 EXPORT_SYMBOL_GPL(of_property_read_u64_array);
1309
1310 /**
1311 * of_property_read_string - Find and read a string from a property
1312 * @np: device node from which the property value is to be read.
1313 * @propname: name of the property to be searched.
1314 * @out_string: pointer to null terminated return string, modified only if
1315 * return value is 0.
1316 *
1317 * Search for a property in a device tree node and retrieve a null
1318 * terminated string value (pointer to data, not a copy). Returns 0 on
1319 * success, -EINVAL if the property does not exist, -ENODATA if property
1320 * does not have a value, and -EILSEQ if the string is not null-terminated
1321 * within the length of the property data.
1322 *
1323 * The out_string pointer is modified only if a valid string can be decoded.
1324 */
1325 int of_property_read_string(struct device_node *np, const char *propname,
1326 const char **out_string)
1327 {
1328 struct property *prop = of_find_property(np, propname, NULL);
1329 if (!prop)
1330 return -EINVAL;
1331 if (!prop->value)
1332 return -ENODATA;
1333 if (strnlen(prop->value, prop->length) >= prop->length)
1334 return -EILSEQ;
1335 *out_string = prop->value;
1336 return 0;
1337 }
1338 EXPORT_SYMBOL_GPL(of_property_read_string);
1339
1340 /**
1341 * of_property_match_string() - Find string in a list and return index
1342 * @np: pointer to node containing string list property
1343 * @propname: string list property name
1344 * @string: pointer to string to search for in string list
1345 *
1346 * This function searches a string list property and returns the index
1347 * of a specific string value.
1348 */
1349 int of_property_match_string(struct device_node *np, const char *propname,
1350 const char *string)
1351 {
1352 struct property *prop = of_find_property(np, propname, NULL);
1353 size_t l;
1354 int i;
1355 const char *p, *end;
1356
1357 if (!prop)
1358 return -EINVAL;
1359 if (!prop->value)
1360 return -ENODATA;
1361
1362 p = prop->value;
1363 end = p + prop->length;
1364
1365 for (i = 0; p < end; i++, p += l) {
1366 l = strnlen(p, end - p) + 1;
1367 if (p + l > end)
1368 return -EILSEQ;
1369 pr_debug("comparing %s with %s\n", string, p);
1370 if (strcmp(string, p) == 0)
1371 return i; /* Found it; return index */
1372 }
1373 return -ENODATA;
1374 }
1375 EXPORT_SYMBOL_GPL(of_property_match_string);
1376
1377 /**
1378 * of_property_read_string_helper() - Utility helper for parsing string properties
1379 * @np: device node from which the property value is to be read.
1380 * @propname: name of the property to be searched.
1381 * @out_strs: output array of string pointers.
1382 * @sz: number of array elements to read.
1383 * @skip: Number of strings to skip over at beginning of list.
1384 *
1385 * Don't call this function directly. It is a utility helper for the
1386 * of_property_read_string*() family of functions.
1387 */
1388 int of_property_read_string_helper(struct device_node *np, const char *propname,
1389 const char **out_strs, size_t sz, int skip)
1390 {
1391 struct property *prop = of_find_property(np, propname, NULL);
1392 int l = 0, i = 0;
1393 const char *p, *end;
1394
1395 if (!prop)
1396 return -EINVAL;
1397 if (!prop->value)
1398 return -ENODATA;
1399 p = prop->value;
1400 end = p + prop->length;
1401
1402 for (i = 0; p < end && (!out_strs || i < skip + sz); i++, p += l) {
1403 l = strnlen(p, end - p) + 1;
1404 if (p + l > end)
1405 return -EILSEQ;
1406 if (out_strs && i >= skip)
1407 *out_strs++ = p;
1408 }
1409 i -= skip;
1410 return i <= 0 ? -ENODATA : i;
1411 }
1412 EXPORT_SYMBOL_GPL(of_property_read_string_helper);
1413
1414 void of_print_phandle_args(const char *msg, const struct of_phandle_args *args)
1415 {
1416 int i;
1417 printk("%s %s", msg, of_node_full_name(args->np));
1418 for (i = 0; i < args->args_count; i++)
1419 printk(i ? ",%08x" : ":%08x", args->args[i]);
1420 printk("\n");
1421 }
1422
1423 static int __of_parse_phandle_with_args(const struct device_node *np,
1424 const char *list_name,
1425 const char *cells_name,
1426 int cell_count, int index,
1427 struct of_phandle_args *out_args)
1428 {
1429 const __be32 *list, *list_end;
1430 int rc = 0, size, cur_index = 0;
1431 uint32_t count = 0;
1432 struct device_node *node = NULL;
1433 phandle phandle;
1434
1435 /* Retrieve the phandle list property */
1436 list = of_get_property(np, list_name, &size);
1437 if (!list)
1438 return -ENOENT;
1439 list_end = list + size / sizeof(*list);
1440
1441 /* Loop over the phandles until all the requested entry is found */
1442 while (list < list_end) {
1443 rc = -EINVAL;
1444 count = 0;
1445
1446 /*
1447 * If phandle is 0, then it is an empty entry with no
1448 * arguments. Skip forward to the next entry.
1449 */
1450 phandle = be32_to_cpup(list++);
1451 if (phandle) {
1452 /*
1453 * Find the provider node and parse the #*-cells
1454 * property to determine the argument length.
1455 *
1456 * This is not needed if the cell count is hard-coded
1457 * (i.e. cells_name not set, but cell_count is set),
1458 * except when we're going to return the found node
1459 * below.
1460 */
1461 if (cells_name || cur_index == index) {
1462 node = of_find_node_by_phandle(phandle);
1463 if (!node) {
1464 pr_err("%s: could not find phandle\n",
1465 np->full_name);
1466 goto err;
1467 }
1468 }
1469
1470 if (cells_name) {
1471 if (of_property_read_u32(node, cells_name,
1472 &count)) {
1473 pr_err("%s: could not get %s for %s\n",
1474 np->full_name, cells_name,
1475 node->full_name);
1476 goto err;
1477 }
1478 } else {
1479 count = cell_count;
1480 }
1481
1482 /*
1483 * Make sure that the arguments actually fit in the
1484 * remaining property data length
1485 */
1486 if (list + count > list_end) {
1487 pr_err("%s: arguments longer than property\n",
1488 np->full_name);
1489 goto err;
1490 }
1491 }
1492
1493 /*
1494 * All of the error cases above bail out of the loop, so at
1495 * this point, the parsing is successful. If the requested
1496 * index matches, then fill the out_args structure and return,
1497 * or return -ENOENT for an empty entry.
1498 */
1499 rc = -ENOENT;
1500 if (cur_index == index) {
1501 if (!phandle)
1502 goto err;
1503
1504 if (out_args) {
1505 int i;
1506 if (WARN_ON(count > MAX_PHANDLE_ARGS))
1507 count = MAX_PHANDLE_ARGS;
1508 out_args->np = node;
1509 out_args->args_count = count;
1510 for (i = 0; i < count; i++)
1511 out_args->args[i] = be32_to_cpup(list++);
1512 } else {
1513 of_node_put(node);
1514 }
1515
1516 /* Found it! return success */
1517 return 0;
1518 }
1519
1520 of_node_put(node);
1521 node = NULL;
1522 list += count;
1523 cur_index++;
1524 }
1525
1526 /*
1527 * Unlock node before returning result; will be one of:
1528 * -ENOENT : index is for empty phandle
1529 * -EINVAL : parsing error on data
1530 * [1..n] : Number of phandle (count mode; when index = -1)
1531 */
1532 rc = index < 0 ? cur_index : -ENOENT;
1533 err:
1534 if (node)
1535 of_node_put(node);
1536 return rc;
1537 }
1538
1539 /**
1540 * of_parse_phandle - Resolve a phandle property to a device_node pointer
1541 * @np: Pointer to device node holding phandle property
1542 * @phandle_name: Name of property holding a phandle value
1543 * @index: For properties holding a table of phandles, this is the index into
1544 * the table
1545 *
1546 * Returns the device_node pointer with refcount incremented. Use
1547 * of_node_put() on it when done.
1548 */
1549 struct device_node *of_parse_phandle(const struct device_node *np,
1550 const char *phandle_name, int index)
1551 {
1552 struct of_phandle_args args;
1553
1554 if (index < 0)
1555 return NULL;
1556
1557 if (__of_parse_phandle_with_args(np, phandle_name, NULL, 0,
1558 index, &args))
1559 return NULL;
1560
1561 return args.np;
1562 }
1563 EXPORT_SYMBOL(of_parse_phandle);
1564
1565 /**
1566 * of_parse_phandle_with_args() - Find a node pointed by phandle in a list
1567 * @np: pointer to a device tree node containing a list
1568 * @list_name: property name that contains a list
1569 * @cells_name: property name that specifies phandles' arguments count
1570 * @index: index of a phandle to parse out
1571 * @out_args: optional pointer to output arguments structure (will be filled)
1572 *
1573 * This function is useful to parse lists of phandles and their arguments.
1574 * Returns 0 on success and fills out_args, on error returns appropriate
1575 * errno value.
1576 *
1577 * Caller is responsible to call of_node_put() on the returned out_args->np
1578 * pointer.
1579 *
1580 * Example:
1581 *
1582 * phandle1: node1 {
1583 * #list-cells = <2>;
1584 * }
1585 *
1586 * phandle2: node2 {
1587 * #list-cells = <1>;
1588 * }
1589 *
1590 * node3 {
1591 * list = <&phandle1 1 2 &phandle2 3>;
1592 * }
1593 *
1594 * To get a device_node of the `node2' node you may call this:
1595 * of_parse_phandle_with_args(node3, "list", "#list-cells", 1, &args);
1596 */
1597 int of_parse_phandle_with_args(const struct device_node *np, const char *list_name,
1598 const char *cells_name, int index,
1599 struct of_phandle_args *out_args)
1600 {
1601 if (index < 0)
1602 return -EINVAL;
1603 return __of_parse_phandle_with_args(np, list_name, cells_name, 0,
1604 index, out_args);
1605 }
1606 EXPORT_SYMBOL(of_parse_phandle_with_args);
1607
1608 /**
1609 * of_parse_phandle_with_fixed_args() - Find a node pointed by phandle in a list
1610 * @np: pointer to a device tree node containing a list
1611 * @list_name: property name that contains a list
1612 * @cell_count: number of argument cells following the phandle
1613 * @index: index of a phandle to parse out
1614 * @out_args: optional pointer to output arguments structure (will be filled)
1615 *
1616 * This function is useful to parse lists of phandles and their arguments.
1617 * Returns 0 on success and fills out_args, on error returns appropriate
1618 * errno value.
1619 *
1620 * Caller is responsible to call of_node_put() on the returned out_args->np
1621 * pointer.
1622 *
1623 * Example:
1624 *
1625 * phandle1: node1 {
1626 * }
1627 *
1628 * phandle2: node2 {
1629 * }
1630 *
1631 * node3 {
1632 * list = <&phandle1 0 2 &phandle2 2 3>;
1633 * }
1634 *
1635 * To get a device_node of the `node2' node you may call this:
1636 * of_parse_phandle_with_fixed_args(node3, "list", 2, 1, &args);
1637 */
1638 int of_parse_phandle_with_fixed_args(const struct device_node *np,
1639 const char *list_name, int cell_count,
1640 int index, struct of_phandle_args *out_args)
1641 {
1642 if (index < 0)
1643 return -EINVAL;
1644 return __of_parse_phandle_with_args(np, list_name, NULL, cell_count,
1645 index, out_args);
1646 }
1647 EXPORT_SYMBOL(of_parse_phandle_with_fixed_args);
1648
1649 /**
1650 * of_count_phandle_with_args() - Find the number of phandles references in a property
1651 * @np: pointer to a device tree node containing a list
1652 * @list_name: property name that contains a list
1653 * @cells_name: property name that specifies phandles' arguments count
1654 *
1655 * Returns the number of phandle + argument tuples within a property. It
1656 * is a typical pattern to encode a list of phandle and variable
1657 * arguments into a single property. The number of arguments is encoded
1658 * by a property in the phandle-target node. For example, a gpios
1659 * property would contain a list of GPIO specifies consisting of a
1660 * phandle and 1 or more arguments. The number of arguments are
1661 * determined by the #gpio-cells property in the node pointed to by the
1662 * phandle.
1663 */
1664 int of_count_phandle_with_args(const struct device_node *np, const char *list_name,
1665 const char *cells_name)
1666 {
1667 return __of_parse_phandle_with_args(np, list_name, cells_name, 0, -1,
1668 NULL);
1669 }
1670 EXPORT_SYMBOL(of_count_phandle_with_args);
1671
1672 /**
1673 * __of_add_property - Add a property to a node without lock operations
1674 */
1675 int __of_add_property(struct device_node *np, struct property *prop)
1676 {
1677 struct property **next;
1678
1679 prop->next = NULL;
1680 next = &np->properties;
1681 while (*next) {
1682 if (strcmp(prop->name, (*next)->name) == 0)
1683 /* duplicate ! don't insert it */
1684 return -EEXIST;
1685
1686 next = &(*next)->next;
1687 }
1688 *next = prop;
1689
1690 return 0;
1691 }
1692
1693 /**
1694 * of_add_property - Add a property to a node
1695 */
1696 int of_add_property(struct device_node *np, struct property *prop)
1697 {
1698 unsigned long flags;
1699 int rc;
1700
1701 mutex_lock(&of_mutex);
1702
1703 raw_spin_lock_irqsave(&devtree_lock, flags);
1704 rc = __of_add_property(np, prop);
1705 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1706
1707 if (!rc)
1708 __of_add_property_sysfs(np, prop);
1709
1710 mutex_unlock(&of_mutex);
1711
1712 if (!rc)
1713 of_property_notify(OF_RECONFIG_ADD_PROPERTY, np, prop, NULL);
1714
1715 return rc;
1716 }
1717
1718 int __of_remove_property(struct device_node *np, struct property *prop)
1719 {
1720 struct property **next;
1721
1722 for (next = &np->properties; *next; next = &(*next)->next) {
1723 if (*next == prop)
1724 break;
1725 }
1726 if (*next == NULL)
1727 return -ENODEV;
1728
1729 /* found the node */
1730 *next = prop->next;
1731 prop->next = np->deadprops;
1732 np->deadprops = prop;
1733
1734 return 0;
1735 }
1736
1737 void __of_remove_property_sysfs(struct device_node *np, struct property *prop)
1738 {
1739 if (!IS_ENABLED(CONFIG_SYSFS))
1740 return;
1741
1742 /* at early boot, bail here and defer setup to of_init() */
1743 if (of_kset && of_node_is_attached(np))
1744 sysfs_remove_bin_file(&np->kobj, &prop->attr);
1745 }
1746
1747 /**
1748 * of_remove_property - Remove a property from a node.
1749 *
1750 * Note that we don't actually remove it, since we have given out
1751 * who-knows-how-many pointers to the data using get-property.
1752 * Instead we just move the property to the "dead properties"
1753 * list, so it won't be found any more.
1754 */
1755 int of_remove_property(struct device_node *np, struct property *prop)
1756 {
1757 unsigned long flags;
1758 int rc;
1759
1760 mutex_lock(&of_mutex);
1761
1762 raw_spin_lock_irqsave(&devtree_lock, flags);
1763 rc = __of_remove_property(np, prop);
1764 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1765
1766 if (!rc)
1767 __of_remove_property_sysfs(np, prop);
1768
1769 mutex_unlock(&of_mutex);
1770
1771 if (!rc)
1772 of_property_notify(OF_RECONFIG_REMOVE_PROPERTY, np, prop, NULL);
1773
1774 return rc;
1775 }
1776
1777 int __of_update_property(struct device_node *np, struct property *newprop,
1778 struct property **oldpropp)
1779 {
1780 struct property **next, *oldprop;
1781
1782 for (next = &np->properties; *next; next = &(*next)->next) {
1783 if (of_prop_cmp((*next)->name, newprop->name) == 0)
1784 break;
1785 }
1786 *oldpropp = oldprop = *next;
1787
1788 if (oldprop) {
1789 /* replace the node */
1790 newprop->next = oldprop->next;
1791 *next = newprop;
1792 oldprop->next = np->deadprops;
1793 np->deadprops = oldprop;
1794 } else {
1795 /* new node */
1796 newprop->next = NULL;
1797 *next = newprop;
1798 }
1799
1800 return 0;
1801 }
1802
1803 void __of_update_property_sysfs(struct device_node *np, struct property *newprop,
1804 struct property *oldprop)
1805 {
1806 if (!IS_ENABLED(CONFIG_SYSFS))
1807 return;
1808
1809 /* At early boot, bail out and defer setup to of_init() */
1810 if (!of_kset)
1811 return;
1812
1813 if (oldprop)
1814 sysfs_remove_bin_file(&np->kobj, &oldprop->attr);
1815 __of_add_property_sysfs(np, newprop);
1816 }
1817
1818 /*
1819 * of_update_property - Update a property in a node, if the property does
1820 * not exist, add it.
1821 *
1822 * Note that we don't actually remove it, since we have given out
1823 * who-knows-how-many pointers to the data using get-property.
1824 * Instead we just move the property to the "dead properties" list,
1825 * and add the new property to the property list
1826 */
1827 int of_update_property(struct device_node *np, struct property *newprop)
1828 {
1829 struct property *oldprop;
1830 unsigned long flags;
1831 int rc;
1832
1833 if (!newprop->name)
1834 return -EINVAL;
1835
1836 mutex_lock(&of_mutex);
1837
1838 raw_spin_lock_irqsave(&devtree_lock, flags);
1839 rc = __of_update_property(np, newprop, &oldprop);
1840 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1841
1842 if (!rc)
1843 __of_update_property_sysfs(np, newprop, oldprop);
1844
1845 mutex_unlock(&of_mutex);
1846
1847 if (!rc)
1848 of_property_notify(OF_RECONFIG_UPDATE_PROPERTY, np, newprop, oldprop);
1849
1850 return rc;
1851 }
1852
1853 static void of_alias_add(struct alias_prop *ap, struct device_node *np,
1854 int id, const char *stem, int stem_len)
1855 {
1856 ap->np = np;
1857 ap->id = id;
1858 strncpy(ap->stem, stem, stem_len);
1859 ap->stem[stem_len] = 0;
1860 list_add_tail(&ap->link, &aliases_lookup);
1861 pr_debug("adding DT alias:%s: stem=%s id=%i node=%s\n",
1862 ap->alias, ap->stem, ap->id, of_node_full_name(np));
1863 }
1864
1865 /**
1866 * of_alias_scan - Scan all properties of the 'aliases' node
1867 *
1868 * The function scans all the properties of the 'aliases' node and populates
1869 * the global lookup table with the properties. It returns the
1870 * number of alias properties found, or an error code in case of failure.
1871 *
1872 * @dt_alloc: An allocator that provides a virtual address to memory
1873 * for storing the resulting tree
1874 */
1875 void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align))
1876 {
1877 struct property *pp;
1878
1879 of_aliases = of_find_node_by_path("/aliases");
1880 of_chosen = of_find_node_by_path("/chosen");
1881 if (of_chosen == NULL)
1882 of_chosen = of_find_node_by_path("/chosen@0");
1883
1884 if (of_chosen) {
1885 /* linux,stdout-path and /aliases/stdout are for legacy compatibility */
1886 const char *name = of_get_property(of_chosen, "stdout-path", NULL);
1887 if (!name)
1888 name = of_get_property(of_chosen, "linux,stdout-path", NULL);
1889 if (IS_ENABLED(CONFIG_PPC) && !name)
1890 name = of_get_property(of_aliases, "stdout", NULL);
1891 if (name)
1892 of_stdout = of_find_node_opts_by_path(name, &of_stdout_options);
1893 }
1894
1895 if (!of_aliases)
1896 return;
1897
1898 for_each_property_of_node(of_aliases, pp) {
1899 const char *start = pp->name;
1900 const char *end = start + strlen(start);
1901 struct device_node *np;
1902 struct alias_prop *ap;
1903 int id, len;
1904
1905 /* Skip those we do not want to proceed */
1906 if (!strcmp(pp->name, "name") ||
1907 !strcmp(pp->name, "phandle") ||
1908 !strcmp(pp->name, "linux,phandle"))
1909 continue;
1910
1911 np = of_find_node_by_path(pp->value);
1912 if (!np)
1913 continue;
1914
1915 /* walk the alias backwards to extract the id and work out
1916 * the 'stem' string */
1917 while (isdigit(*(end-1)) && end > start)
1918 end--;
1919 len = end - start;
1920
1921 if (kstrtoint(end, 10, &id) < 0)
1922 continue;
1923
1924 /* Allocate an alias_prop with enough space for the stem */
1925 ap = dt_alloc(sizeof(*ap) + len + 1, 4);
1926 if (!ap)
1927 continue;
1928 memset(ap, 0, sizeof(*ap) + len + 1);
1929 ap->alias = start;
1930 of_alias_add(ap, np, id, start, len);
1931 }
1932 }
1933
1934 /**
1935 * of_alias_get_id - Get alias id for the given device_node
1936 * @np: Pointer to the given device_node
1937 * @stem: Alias stem of the given device_node
1938 *
1939 * The function travels the lookup table to get the alias id for the given
1940 * device_node and alias stem. It returns the alias id if found.
1941 */
1942 int of_alias_get_id(struct device_node *np, const char *stem)
1943 {
1944 struct alias_prop *app;
1945 int id = -ENODEV;
1946
1947 mutex_lock(&of_mutex);
1948 list_for_each_entry(app, &aliases_lookup, link) {
1949 if (strcmp(app->stem, stem) != 0)
1950 continue;
1951
1952 if (np == app->np) {
1953 id = app->id;
1954 break;
1955 }
1956 }
1957 mutex_unlock(&of_mutex);
1958
1959 return id;
1960 }
1961 EXPORT_SYMBOL_GPL(of_alias_get_id);
1962
1963 const __be32 *of_prop_next_u32(struct property *prop, const __be32 *cur,
1964 u32 *pu)
1965 {
1966 const void *curv = cur;
1967
1968 if (!prop)
1969 return NULL;
1970
1971 if (!cur) {
1972 curv = prop->value;
1973 goto out_val;
1974 }
1975
1976 curv += sizeof(*cur);
1977 if (curv >= prop->value + prop->length)
1978 return NULL;
1979
1980 out_val:
1981 *pu = be32_to_cpup(curv);
1982 return curv;
1983 }
1984 EXPORT_SYMBOL_GPL(of_prop_next_u32);
1985
1986 const char *of_prop_next_string(struct property *prop, const char *cur)
1987 {
1988 const void *curv = cur;
1989
1990 if (!prop)
1991 return NULL;
1992
1993 if (!cur)
1994 return prop->value;
1995
1996 curv += strlen(cur) + 1;
1997 if (curv >= prop->value + prop->length)
1998 return NULL;
1999
2000 return curv;
2001 }
2002 EXPORT_SYMBOL_GPL(of_prop_next_string);
2003
2004 /**
2005 * of_console_check() - Test and setup console for DT setup
2006 * @dn - Pointer to device node
2007 * @name - Name to use for preferred console without index. ex. "ttyS"
2008 * @index - Index to use for preferred console.
2009 *
2010 * Check if the given device node matches the stdout-path property in the
2011 * /chosen node. If it does then register it as the preferred console and return
2012 * TRUE. Otherwise return FALSE.
2013 */
2014 bool of_console_check(struct device_node *dn, char *name, int index)
2015 {
2016 if (!dn || dn != of_stdout || console_set_on_cmdline)
2017 return false;
2018 return !add_preferred_console(name, index,
2019 kstrdup(of_stdout_options, GFP_KERNEL));
2020 }
2021 EXPORT_SYMBOL_GPL(of_console_check);
2022
2023 /**
2024 * of_find_next_cache_node - Find a node's subsidiary cache
2025 * @np: node of type "cpu" or "cache"
2026 *
2027 * Returns a node pointer with refcount incremented, use
2028 * of_node_put() on it when done. Caller should hold a reference
2029 * to np.
2030 */
2031 struct device_node *of_find_next_cache_node(const struct device_node *np)
2032 {
2033 struct device_node *child;
2034 const phandle *handle;
2035
2036 handle = of_get_property(np, "l2-cache", NULL);
2037 if (!handle)
2038 handle = of_get_property(np, "next-level-cache", NULL);
2039
2040 if (handle)
2041 return of_find_node_by_phandle(be32_to_cpup(handle));
2042
2043 /* OF on pmac has nodes instead of properties named "l2-cache"
2044 * beneath CPU nodes.
2045 */
2046 if (!strcmp(np->type, "cpu"))
2047 for_each_child_of_node(np, child)
2048 if (!strcmp(child->type, "cache"))
2049 return child;
2050
2051 return NULL;
2052 }
2053
2054 /**
2055 * of_graph_parse_endpoint() - parse common endpoint node properties
2056 * @node: pointer to endpoint device_node
2057 * @endpoint: pointer to the OF endpoint data structure
2058 *
2059 * The caller should hold a reference to @node.
2060 */
2061 int of_graph_parse_endpoint(const struct device_node *node,
2062 struct of_endpoint *endpoint)
2063 {
2064 struct device_node *port_node = of_get_parent(node);
2065
2066 WARN_ONCE(!port_node, "%s(): endpoint %s has no parent node\n",
2067 __func__, node->full_name);
2068
2069 memset(endpoint, 0, sizeof(*endpoint));
2070
2071 endpoint->local_node = node;
2072 /*
2073 * It doesn't matter whether the two calls below succeed.
2074 * If they don't then the default value 0 is used.
2075 */
2076 of_property_read_u32(port_node, "reg", &endpoint->port);
2077 of_property_read_u32(node, "reg", &endpoint->id);
2078
2079 of_node_put(port_node);
2080
2081 return 0;
2082 }
2083 EXPORT_SYMBOL(of_graph_parse_endpoint);
2084
2085 /**
2086 * of_graph_get_next_endpoint() - get next endpoint node
2087 * @parent: pointer to the parent device node
2088 * @prev: previous endpoint node, or NULL to get first
2089 *
2090 * Return: An 'endpoint' node pointer with refcount incremented. Refcount
2091 * of the passed @prev node is not decremented, the caller have to use
2092 * of_node_put() on it when done.
2093 */
2094 struct device_node *of_graph_get_next_endpoint(const struct device_node *parent,
2095 struct device_node *prev)
2096 {
2097 struct device_node *endpoint;
2098 struct device_node *port;
2099
2100 if (!parent)
2101 return NULL;
2102
2103 /*
2104 * Start by locating the port node. If no previous endpoint is specified
2105 * search for the first port node, otherwise get the previous endpoint
2106 * parent port node.
2107 */
2108 if (!prev) {
2109 struct device_node *node;
2110
2111 node = of_get_child_by_name(parent, "ports");
2112 if (node)
2113 parent = node;
2114
2115 port = of_get_child_by_name(parent, "port");
2116 of_node_put(node);
2117
2118 if (!port) {
2119 pr_err("%s(): no port node found in %s\n",
2120 __func__, parent->full_name);
2121 return NULL;
2122 }
2123 } else {
2124 port = of_get_parent(prev);
2125 if (WARN_ONCE(!port, "%s(): endpoint %s has no parent node\n",
2126 __func__, prev->full_name))
2127 return NULL;
2128
2129 /*
2130 * Avoid dropping prev node refcount to 0 when getting the next
2131 * child below.
2132 */
2133 of_node_get(prev);
2134 }
2135
2136 while (1) {
2137 /*
2138 * Now that we have a port node, get the next endpoint by
2139 * getting the next child. If the previous endpoint is NULL this
2140 * will return the first child.
2141 */
2142 endpoint = of_get_next_child(port, prev);
2143 if (endpoint) {
2144 of_node_put(port);
2145 return endpoint;
2146 }
2147
2148 /* No more endpoints under this port, try the next one. */
2149 prev = NULL;
2150
2151 do {
2152 port = of_get_next_child(parent, port);
2153 if (!port)
2154 return NULL;
2155 } while (of_node_cmp(port->name, "port"));
2156 }
2157 }
2158 EXPORT_SYMBOL(of_graph_get_next_endpoint);
2159
2160 /**
2161 * of_graph_get_remote_port_parent() - get remote port's parent node
2162 * @node: pointer to a local endpoint device_node
2163 *
2164 * Return: Remote device node associated with remote endpoint node linked
2165 * to @node. Use of_node_put() on it when done.
2166 */
2167 struct device_node *of_graph_get_remote_port_parent(
2168 const struct device_node *node)
2169 {
2170 struct device_node *np;
2171 unsigned int depth;
2172
2173 /* Get remote endpoint node. */
2174 np = of_parse_phandle(node, "remote-endpoint", 0);
2175
2176 /* Walk 3 levels up only if there is 'ports' node. */
2177 for (depth = 3; depth && np; depth--) {
2178 np = of_get_next_parent(np);
2179 if (depth == 2 && of_node_cmp(np->name, "ports"))
2180 break;
2181 }
2182 return np;
2183 }
2184 EXPORT_SYMBOL(of_graph_get_remote_port_parent);
2185
2186 /**
2187 * of_graph_get_remote_port() - get remote port node
2188 * @node: pointer to a local endpoint device_node
2189 *
2190 * Return: Remote port node associated with remote endpoint node linked
2191 * to @node. Use of_node_put() on it when done.
2192 */
2193 struct device_node *of_graph_get_remote_port(const struct device_node *node)
2194 {
2195 struct device_node *np;
2196
2197 /* Get remote endpoint node. */
2198 np = of_parse_phandle(node, "remote-endpoint", 0);
2199 if (!np)
2200 return NULL;
2201 return of_get_next_parent(np);
2202 }
2203 EXPORT_SYMBOL(of_graph_get_remote_port);
This page took 0.123124 seconds and 5 git commands to generate.